
Searching by learning: Exploring artificial general intelligence on small
board games by deep reinforcement learning
Wang, H.

Citation
Wang, H. (2021, September 7). Searching by learning: Exploring artificial general intelligence
on small board games by deep reinforcement learning. Retrieved from
https://hdl.handle.net/1887/3209232

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3209232

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3209232

Cover Page

The handle https://hdl.handle.net/1887/3209232 holds various files of this Leiden
University dissertation.

Author: Wang, H.
Title: Searching by learning: Exploring artificial general intelligence on small board games
by deep reinforcement learning
Issue Date: 2021-09-07

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3209232
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

Loss Functions of AlphaZero-like
Self-play

4.1 Introduction

As we introduced in Chapter 3, the AlphaGo series of papers [10, 16, 17] have
sparked enormous interest of researchers and the general public alike into deep
reinforcement learning [85, 86, 87, 88]. AlphaGo Zero [17], the successor of Al-
phaGo, masters the game of Go even without human knowledge. It generates
game playing data purely by an elegant form of self-play, training a single uni-
fied neural network with a policy head and a value head, in an MCTS searcher.
AlphaZero [10] uses a single architecture for playing three different games (Go,
Chess and Shogi) without human knowledge. Many applications and optimiza-
tion methods [89, 90] have been published and transformed the research field into
one of the most active of current computer science.

Despite the success of AlphaGo and related methods in various application areas,
there are unexplored and unsolved puzzles in the design and parameterization of
the algorithms. We have demonstrated the hyper-parameter tuning results of a
light-weight AlphaZero-like self-play framework in Chapter 3. Therefore, in this
Chapter, we focus on the loss function design of the AlphaZero-like self-play.

The neural network in AlphaZero is represented as fθ = (p, v) (a unified deep
network with a policy head and a value head). A policy p is a probability dis-
tribution for choosing the best move. A lower policy loss (lp) indicates a more
accurate selection of the best move. A value function v is the prediction of the

43

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

final outcome. A lower value loss (lv) indicates a more accurate prediction of
the final outcome. The use of a double-headed network by Alpha(Go) Zero is
innovative, and we know of no in-depth study of how the two losses (lp and lv)
contribute to the playing strength of the final player. In Alpha(Go) Zero the sum
of the two losses is used. Other studies based on the AlphaGo series algorithms
just use it that way. However, the finding in the work of Matsuzaki et al. [91]
is different, which reminds us to carefully study alternative evaluation functions.
Thus, In order to increase our understanding of the inner workings of the mini-
mization of the double-headed network we study different combinations of policy
and value loss in this chapter. Therefore, in this work, we investigate:

a) what will happen if we only minimize a single target?

b) is a product combination a good alternative to summation?

We perform our experiments using a light-weight AlphaZero implementation
named AlphaZeroGeneral [65] and focus on smaller games, namely 5×5 and
6×6 Othello [76], 5×5, 6×6 Connect Four games [92] and 5×5 and 6×6 Gob-
ang [93].

As performance measure we use the Elo rating that can be computed during
training time of the self-play system, as a running relative Elo. It can also be
computed separately, in a dedicated tournament between different trained players.
Our contributions can be summarized as follows:

• Experimental results show that there is a high self-play bias in computing
training Elo ratings, such that it is incomparable among different training
runs. A full tournament is necessary to compare final best players’ Elo
ratings and accurately measure the playing strength of different players
relative to each other.

• We evaluate 4 alternative loss functions for 3 games and 2 board sizes, and
find that the best setting depends on the game and is usually not the sum
of policy and value loss. However, the sum might be considered as a good
default compromise if no further information about the game is present.

The chapter is structured as follows. Part 4.2 presents related work. Part 4.3
presents games tested in the experiments. Part 4.4 introduces the default loss
function of AlphaZero-like self-play and alternative loss functions. Part 4.5 sets
up the experiments. Part 4.6 presents the experimental results. Part 4.7 discusses
future work and summarizes this chapter.

44

4.2 Related Work

4.2 Related Work

Deep reinforcement learning [94] is currently one of the most active research areas
in AI, reaching human level performance for difficult games such as Go [69], which
was almost unthinkable 10 years ago. Since Mnih et al. reported human-level
control for playing Atari 2600 games by means of deep reinforcement learning [44],
the performance of deep Q-networks (DQN) improved dramatically.

We have also observed a shift in DQN from imitating and learning from expert
human players [16] to relying more on self-play. This has been advocated in
the area of reinforcement learning [72, 73] for quite some time already. Silver
et al. [17] turned to self-play to generate training data instead of training from
human data (AlphaGo Zero), which not only saves a lot of work of collecting
and labeling data from human experts, but also shifts the constraining factor
for learning from available data to computing power, and achieves a form of
efficient curriculum learning [95]. This approach was generalized to a framework
(AlphaZero), showing the same approach that worked in Go, also worked in Shogi
and Chess, demonstrating how to transfer the learning process [10].

Reinforcement learning is a very active field. We see a move away from human
data to self-play. After many years of active research in MCTS [7], currently
most research effort is in improving DQN variants. AlphaGo is a complex system
with many tunable hyper-parameters. It is unclear if the many choices concern-
ing parameters and methods that have been made in the AlphaGo series are
close to optimal or if they can be improved by, e.g., changing parameters [32].
This includes the choice of minimization tasks (loss functions) used for measuring
training success. For instance, [96] studied policy and value network optimization
as a multi-task learning problem [97]. Even if the choices were very good for Go
and other complex games, this does not necessarily transfer well to less complex
tasks. For example, AlphaGo’s PUCT achieves better results than a single evalu-
ation function, but the result in [91] is different while playing Othello. Moreover,
[98] showed that the value function has more importance than the policy function
in the P-UCT algorithm for Othello.

4.3 Test Games

In our experiments, we use the games Othello, Connect Four and Gobang, each
with 5×5 and 6×6 board sizes. As described in Chapter 3, Othello is a pop-
ular two-player game. Players take turns placing their own color pieces. Any
opponent’s color pieces that are in a straight line and bounded by the piece just

45

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

1 2 3 4 5
1
2
3
4
5

(a) 5×5 Othello

1 2 3 4 5
1
2
3
4
5
(b) 5×5 Connect Four

1 2 3 4 5
1
2
3
4
5

(c) 5×5 Gobang

Figure 4.1: Our test games on 5× 5 boards

placed and another piece of the current player’s are flipped to the current player’s
color. After the last legal position is filled, the player who has most pieces wins
the game. Fig. 4.1(a) is the start configuration for 5×5 Othello. Connect Four
is a two-player connection game. Players take turns dropping their own pieces
from the top into a vertically suspended grid. The pieces fall straight down and
occupy the lowest position within the column. The player who first forms a hor-
izontal, vertical, or diagonal line of four pieces wins the game. Fig. 4.1(b) is a
game termination example for 5×5 Connect Four where the red player wins the
game. Gobang is another connection game that is traditionally played with Go
pieces (black and white stones) on a Go board. Players alternate turns, placing a
stone of their color on an empty position. The winner is the first player to form
an unbroken chain of 4 stones horizontally, vertically, or diagonally. Fig. 4.1(c)
is a game termination example for 5×5 Gobang where the black player wins the
game.

There is a wealth of research on finding playing strategies for these three games
by means of different methods. For example, Buro created Logistello [77] to play
Othello. Chong et al. described the evolution of neural networks for learning to
play Othello [78]. Thill et al. applied temporal difference learning to play Connect
Four [99]. Zhang et al. designed evaluation functions for Gobang [100]. Moreover,
Banerjee et al. tested knowledge transfer in GGP on small games including 4×4
Othello [46]. Wang et al. assessed the potential of classical Q-learning based on
small games including 4×4 Connect Four [31]. Obviously, these two games are
commonly tested in game playing.

46

4.4 Loss Function

4.4 Loss Function

4.4.1 Minimization Targets

As we want to assess the effect of minimizing different loss functions for AlphaZero-
like self-play (Algorithm 2), besides the default loss function (Equation: 3.1), we
employ a weighted sum loss function based on Equation 3.1:

lλ = λ(−π> logp) + (1− λ)(v − z)2 (4.1)

where λ is a weight parameter. This provides some flexibility to gradually change
the nature of the function. In our experiments, we first set λ=0 and λ=1 in
order to assess lp or lv independently. Then we use Equation 3.1 as training
loss function. Furthermore, inspired by that, in the theory of multi-attribute
utility functions in multi-criteria optimization [101], a sum tends to prefer extreme
solutions, whereas product prefers more balanced solution in case of coefficient
objectives. Thus a product combination loss function is employed as follows:

l× = −π> logp× (v − z)2 (4.2)

For all experiments, each setting is run 8 times to get statistically significant
results (with error bars) using the parameters of Table 4.1 as default values.
However, in order to save training time, we reduce the iteration number to 100
in the larger games (6×6 Othello and 6×6 Connect Four).

4.5 Experimental Setup

Our experiments are performed on a GPU server with 128G RAM, 3TB local
storage, 20 Intel Xeon E5-2650v3 CPUs (2.30GHz, 40 threads), 2 NVIDIA Tita-
nium GPUs (each with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each
with 6GB memory). On these GPUs, every algorithm training run takes 2∼3
days. In this work, all neural network models share the same structure as used
in Chapter 3, which consists of 4 convolutional layers and 2 fully connected lay-
ers [65]. The parameter values for Algorithm 2 used in our experiments are given
in Table 4.1. In order to enhance reproducibility, we used values based on work
reported by [32].

47

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

Table 4.1: Default Parameter Settings

Parameter Brief Description Default Value
I number of iteration 200
E number of episode 50
T’ step threshold 15
m MCTS simulation times 100
c weight in UCT 1.0
rs number of retrain iteration 20
ep number of epoch 10
bs batch size 64
lr learning rate 0.005
d dropout probability 0.3
n number of comparison games 40
u update threshold 0.6

4.5.1 Measurements

The chosen loss function is used to guide each training process, with the expec-
tation that smaller loss means a stronger model. However, in practise, we have
found that this is not always the case and another measure is needed to check
based on trained models real playing performance in competitions. Therefore,
following Deep Mind’s work, we employ Bayesian Elo ratings [82] to describe the
playing strength of the model in every iteration. In addition, for each game, we
use all best players trained from the four different targets (lp, lv, l+, l×) and 8
repetitions plus a random player to play the game with each other for 20 times.
From this, we calculate the Elo ratings of these 33 players to show the real play-
ing strength of a player, rather than the playing strength only based on its own
self-play training.

4.6 Experiment Results

In the following, we present the results of different loss functions. We have mea-
sured the individual value loss, the individual policy loss, the sum of the two, and
the product of the two, for the three games. We report training loss, the training
Elo rating and the tournament Elo rating of the final best players. Error bars
indicate standard deviations of 8 runs.

48

4.6 Experiment Results

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Minimize lp

0 20 40 60 80 100 120 140 160 180
Training iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Va
lu

e

lp
lv

l+

l×

(b) Minimize lv

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(c) Minimize l+

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(d) Minimize l×

Figure 4.2: Training losses for minimizing different targets in 5×5 Othello, aver-
aged over 8 runs. All measured losses are shown, but only one of these is minimized
for. Note the different scaling for subfigure (b). Except for the l+, the target that
is minimized for is also the lowest

4.6.1 Training Loss

We first show the training losses in every iteration with one minimization task
per diagram, hence we need four of these per game. In these graphs we see what
minimizing for a specific target actually means for the other loss types.

For 5×5 Othello, from Fig. 4.2(a), we find that when minimizing lp only, the
loss decreases significantly to about 0.6 at the end of each training, whereas lv
stagnates at 1.0 after 10 iterations. Minimizing only lv (Fig. 4.2(b)) brings it
down from 0.5 to 0.2, but lp remains stable at a high level. In Fig. 4.2(c), we
see that when the l+ is minimized, both losses are reduced significantly. The lp

49

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Minimize lp

0 20 40 60 80
Training iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Va
lu

e

lp
lv

l+

l×

(b) Minimize lv

0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(c) Minimize l+

0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(d) Minimize l×

Figure 4.3: Training losses for minimizing different targets in 6×6 Othello, av-
eraged from 8 runs. All losses are shown while we minimize only one (similar to
Fig 4.2). Note the different scaling for subfigure (b). Except for l+, the target that
is minimized for is the lowest

decreases from about 1.2 to 0.5, lv surprisingly decreases to 0. Fig. 4.2(d), it is
similar to Fig. 4.2(c), while the l× is minimized, the lp and lv are also reduced.
The lp decreases to 0.5, the lv also surprisingly decreases to about 0.

For the larger 6×6 Othello, we find that minimizing only lp reduces it significantly
to about 0.75, where lv is stable again after about 10 iterations (Fig. 4.3(a)). For
minimizing lv (Fig. 4.3(b)), the results show that lv is reduced from more than
0.5 to about 0.25 at the end of each training, but lp seems to remain almost
unchanged. For minimizing the l+ (Fig. 4.3(c)), we find in contrast to 5×5 Othello
that lp decreases from about 1.1 to 0.4, whereas lv increases slightly from about
0.2 and then decreases to about 0.2 again. We also find a similar behavior of lv

50

4.6 Experiment Results

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Minimize lp

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(b) Minimize lv

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(c) Minimize l+

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(d) Minimize l×

Figure 4.4: Training losses for minimizing the four different targets in 5×5 Con-
nect Four, averaged from 8 runs. lv is always the lowest

when minimizing the l× (Fig. 4.3(d)), with the difference that the final computed
loss is much lower as the values are usually smaller than one. However, the
similarity of the single losses is striking.

For 5×5 Connect Four (see Fig. 4.4(a)), we find that when only minimizing lp, it
significantly reduces from 1.4 to about 0.6, whereas lv is minimized much quicker
from 1.0 to about 0.2, where it is almost stationary. Minimizing lv (Fig. 4.4(b))
leads to some reduction from more than 0.5 to about 0.15, but lp is not mov-
ing much after an initial slight decrease to about 1.6. For minimizing the l+
(Fig. 4.4(c)) and the l× (Fig. 4.4(d)), the behavior of lp and lv is very similar,
they both decrease steadily, until lv surprisingly reaches 0. Of course the l+ and
the l× arrive at different values, but in terms of both lp and lv they are not
different.

51

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Optimize lp

0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(b) Optimize lv

0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(c) Optimize sum

0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(d) Optimize product

Figure 4.5: Training losses for optimizing different targets in 6×6 Connect Four,
averaged from 8 Runs. lv is the lowest except for the product target

The training process of the larger 6×6 Connect Four is investigated in Fig 4.5(a).
We find that optimizing lp reduces it significantly from 1.7 to about 0.7 at the
end of each training, where lv is minimized from 1.2 to about 0.4. For the scenario
with optimizing lv (Fig 4.5(b)), we find a similar behavior than for the smaller
Connect Four. After some initial progress, there is only stagnation. Again, for
optimizing the sum and the product, the target value changes, but the single loss
values lp and lv behave similarly (Figs 4.5(c) and 4.5(d)). Thus we see that both
targets lead to very similar training processes.

For 5×5 Gobang game, we find that, in Fig. 4.6, when only minimizing lp, the lp
value decreases from around 2.5 to about 1.25 while the lv value reduces from 1.0
to 0.5 (see Fig. 4.6(a)). When minimizing lv, lv value quickly reduces to a very
low level which is lower than 0.1 (see Fig. 4.6(b)). Minimizing l+ and l× both

52

4.6 Experiment Results

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Minimize lp

0 20 40 60 80 100 120 140 160 180
Training iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Va
lu

e

lp
lv

l+

l×

(b) Minimize lv

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(c) Minimize l+

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(d) Minimize l×

Figure 4.6: Training losses for minimizing the four different targets in 5×5 Gob-
ang, averaged from 8 runs. lv is always the lowest

lead to stationary low lv levels from the beginning of training which is different
from Othello and Connect Four.

4.6.2 Training Elo Rating

Following the AlphaGo papers, the training Elo rating of every iteration during
training is investigated. Instead of showing results from single runs, means and
variances for 8 runs for each target are provided, categorized by different games
in Fig. 4.7.

From Fig. 4.7(a) (small 5×5 Othello) we see that for all minimization tasks, Elo
values steadily improve, while they raise fastest for lp. In Fig. 4.7(b), we find
that for 6×6 Othello version, Elo values also always improve, but much faster for

53

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

0 20 40 60 80 100 120 140 160 180 200
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(a) 5×5 Othello

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(b) 6×6 Othello

0 20 40 60 80 100 120 140 160 180 200
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(c) 5×5 Connect Four

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(d) 6×6 Connect Four

0 20 40 60 80 100 120 140 160 180 200
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(e) 5×5 Gobang

0 20 40 60 80 100
Training iteration

−4

−3

−2

−1

0

1

2

3

4

E
lo

ra
tin

g

×103

lp
lv

l+

l×

(f) 6×6 Gobang

Figure 4.7: The whole history Elo rating at each iteration during training for
different games, aggregated from 8 runs. The training Elo for l+ and l× in panel b
and c for example shows inconsistent results

54

4.6 Experiment Results

the l+ and l× target, compared to the single loss targets.

Fig. 4.7(c) and Fig. 4.7(d) show the Elo rate progression for training players
with the four different targets on the small and larger Connect Four setting.
This looks a bit different from the Othello results, as we find stagnation (for
6×6 Connect Four) as well as even degeneration (for 5×5 Connect Four). The
latter actually means that for decreasing loss in the training phase, we achieve
decreasing Elo rates, such that the players get weaker and not stronger. In the
larger Connect Four setting, we still have a clear improvement, especially if we
minimize for lv. Minimizing for lp leads to stagnation quickly, or at least to a
very slow improvement.

Overall, we display the Elo progression obtained from the different minimization
targets for one game together. However, one must be aware that their numbers
are not directly comparable due to the high self-play bias (as they stem from
players who have never played against each other). Nevertheless, the trends as
observed for single self-play are of interest, and it is especially interesting to see
if Elo values correlate with the progression of losses. Based on the experimental
results, we can conclude that the training Elo rating is certainly good for assessing
if training actually works, whereas the losses alone do not always show that. We
may even experience contradicting outcomes as stagnating losses and rising Elo
ratings (for the big Othello setting and lv) or completely counterintuitive results
as for the small Connect Four setting where Elo ratings and losses are partly anti-
correlated. We have experimental evidence for the fact that training losses and
Elo ratings are by no means interchangeable as they can provide very different
impressions of what is actually happening.

4.6.3 The Final Best Player Tournament Elo Rating

In order to measure which target can achieve better playing strength, we let all
final models trained from 8 runs and 4 targets plus a random player pit against
each other for 20 times in a full round robin tournament. This enables a direct
comparison of the final outcomes of the different training processes with different
targets. It is thus more informative than the training Elo due to the self-play bias,
but provides no information during the self-play training process. In principle,
it is possible to do this also during the training at certain iterations, but this is
computationally very expensive.

55

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(a) 5×5 Othello

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(b) 6×6 Othello

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(c) 5×5 Connect Four

lp lv l+ l×
Minimized target

−400
−350
−300
−250
−200
−150
−100
−50

0
50

100
150
200
250
300
350
400
450
500

E
lo

ra
tin

g

(d) 6×6 Connect Four

lp lv l+ l×
Minimized target

−700

−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

600

700

E
lo

ra
tin

g

(e) 5×5 Gobang

lp lv l+ l×
Minimized target

−700
−600
−500
−400
−300
−200
−100

0
100
200
300
400
500
600
700

E
lo

ra
tin

g

(f) 6×6 Gobang

Figure 4.8: Round-robin tournament of all final models from minimizing different
targets. For each game 8 final models from 4 different targets plus a random
player (i.e. 33 in total). In panel (a) the difference is small. In panel b, c, and d,
the Elo rating of lv minimized players clearly dominates. However, in panel (f), the
Elo rating of lp minimized players clearly achieve the best performance.

56

4.7 Summary

The results are presented in Fig. 4.8. and show that minimizing lv achieves the
highest Elo rating with small variance for 6×6 Othello, 5×5 Connect Four and
6×6 Connect Four. For 5×5 Othello, with 200 training iterations, the difference
between the results is small. We therefore presume that minimizing lv is the best
choice for the games we focus on. This is surprising because we expected the
l+ to perform best as documented in the literature. However, this may apply to
smaller games only, and 5×5 Othello already seems to be a border case where
overfitting levels out all differences.

In conclusion, we find that solely minimizing lv is an alternative to the default
sum objective l+ in many cases. We also report exceptions, especially in relation
to the Elo rating as calculated during training. The relation between Elo and loss
during training is sometimes inconsistent (5×5 Connect Four training shows Elo
decreasing while the losses are actually minimized) due to training bias. And for
Gobang game, only minimizing lp is the best alternative. A combination achieves
lowest loss, but lv achieves the highest training Elo. If we minimize product loss
l×, this can result in higher Elo rating for certain games. More research (such as
training bias and in which case which objective function (combination) should be
employed) should be studied further.

4.7 Summary

Most function approximators in supervised learning and reinforcement learning
use a single neural network with a single input and output. In reinforcement
learning, this is either a policy or a value network. Alpha(Go) Zero innovatively
minimizes both policy and value, using a single unified network with two heads, a
policy head and a value head. Alpha(Go) Zero and other works minimize the sum
of policy and value loss. Here, we study four different loss function combinations:
(1) lp, (2) lv, (3) l+, (4) l×. We use the open source AlphaZeroGeneral system for
light-weight self-play experiments on two small games, Connect Four and Oth-
ello. Surprisingly, we find that in many cases lv achieves the highest tournament
Elo rating, in contrast to the default sum objective in AlphaZero and AlphaZe-
roGeneral. The obtained experimental results in this chapter however indicate
that relying on default setting, major performance gains are likely to be missed
out. Much research in self-play is recently going on using the default loss function
without questioning this default choice. More research is needed into the relative
importance of value function and policy function in small games. Furthermore,
default hyper-parameter settings may be non-optimal, especially for the smaller
games we investigate here.

57

4. LOSS FUNCTIONS OF ALPHAZERO-LIKE SELF-PLAY

During training, we compute a running Elo rating. We find that the training
losses trend and the Elo ratings trend are inconsistent in some games (5×5 Con-
nect Four and 6×6 Othello). Training Elo, while cheap to compute, can be
a misleading indicator of playing strength, because it is influenced by self-play
training bias [17]. Our results provide the methodological contribution that for
comparing playing strength among players, tournament Elo ratings should be
used, instead of running training Elo ratings.

This chapter shows that the choice of the optimal combined loss function can have
a huge impact on Elo performance. Unfortunately, our computational resources
did not allow us to test the approach on large board sizes, but the results should
encourage similar research of loss functions and alternative Elo computation also
for large scale games.

58

