
Searching by learning: Exploring artificial general intelligence on small
board games by deep reinforcement learning
Wang, H.

Citation
Wang, H. (2021, September 7). Searching by learning: Exploring artificial general intelligence
on small board games by deep reinforcement learning. Retrieved from
https://hdl.handle.net/1887/3209232

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3209232

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3209232

Cover Page

The handle https://hdl.handle.net/1887/3209232 holds various files of this Leiden
University dissertation.

Author: Wang, H.
Title: Searching by learning: Exploring artificial general intelligence on small board games
by deep reinforcement learning
Issue Date: 2021-09-07

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3209232
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3

Hyper-Parameters for
AlphaZero-like Self-play

3.1 Introduction

In order to further investigate AGI on games in a deep learning era, we can use
a neural network based framework in GGP or switch to use an existing neural
network based deep reinforcement learning system for games. We noticed that
AlphaZero provides a successful general framework to play complex board games
like Go, Chess and Shogi [10], and these AlphaGo series papers [10, 16, 17] have
sparked much interest of researchers and the general public alike into deep re-
inforcement learning. Despite the success of AlphaGo and related methods in
Go and other application areas [61, 62], there are unexplored and unsolved puz-
zles in the parameterization and design of the algorithms. For example, could
MCTS enhancements also improve the performance in AlphaZero-like self-play as
MCS enhancement did in table based Q-learning in GGP (Chapter 2), and how?
(These questions will be further studied in Chapter 5 and Chapter 6.)

As for parameterization, different hyper-parameter settings can lead to very differ-
ent results. However, hyper-parameter design-space sweeps are computationally
very expensive, and in the original publications, we can only find limited informa-
tion of how to set the values of some important parameters and why. Also, there
are few works on how to set the hyper-parameters for these algorithms, and more
insight into the hyper-parameter interactions is necessary. To this end, and there
are some interesting re-implementations of AlphaZero [63, 64], we study the most

25

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

general framework algorithm in the aforementioned AlphaGo series by using a
lightweight re-implementation of AlphaZero: AlphaZeroGeneral [65].

In order to optimize hyper-parameters, it is important to understand their func-
tion and interactions in an algorithm. A single iteration in the AlphaZeroGeneral
framework consists of three stages: self-play, neural network training and arena
comparison. In these stages, we explore 12 hyper-parameters (see section 3.4.1)
in AlphaZeroGeneral. Furthermore, we observe 2 objectives (see section 3.4.2):
training loss and time cost in each single run. A sweep of the hyper-parameter
space is computationally demanding. In order to provide a meaningful analysis
we use small board sizes of typical combinatorial games. This sweep provides an
overview of the hyper-parameter contributions and provides a basis for further
analysis. Based on these results, we choose 4 interesting parameters to further
evaluate in depth.

As performance measure, we use the Elo rating that can be computed during
training time of the self-play system, as a running relative Elo, and computed
separately, in a dedicated tournament between different trained players.

Our contributions can be summarized as follows:

1. We find that in general higher values of most hyper-parameters lead to
higher playing strength.

2. And within a limited budget, a higher number of outer iterations is more
promising than higher numbers of inner iterations: these are subsumed by
outer iterations.

This chapter is structured as follows. We first give an overview of the most
relevant literature, before describing the considered test games in Sect. 3.3. Then
we describe the AlphaZero-like self-play algorithm in Sect. 3.4. After setting up
experiments in Sect. 3.5, we present the results in Sect. 3.6. Finally, we summarize
the chapter and discuss promising future work.

3.2 Related work

Hyper-parameter tuning by optimization is very important for many practical
algorithms. In reinforcement learning, for instance, the ε-greedy strategy of clas-
sical Q-learning is used to balance exploration and exploitation. Different ε val-
ues lead to different learning performance [31]. Another well known example of
hyper-parameter tuning is the parameter Cp in MCTS [7, 66, 67]. There are
many works on tuning Cp for different kinds of tasks. These provide insight on

26

3.3 Test Game

setting its value for MCTS in order to balance exploration and exploitation [58].
In deep reinforcement learning, the effect of the many neural network parameters
are a black-box that precludes understanding, although the strong decision ac-
curacy of deep learning is undeniable [68], as the results in Go (and many other
applications) have shown [69]. After AlphaGo [16], the role of self-play became
more and more important. Earlier works on self-play in reinforcement learning
are [70, 71, 72, 73]. An overview is provided in [74].

On hyper-parameters for AlphaZero-like systems there are a few studies: [75]
tuned some parameters (in particular MCTS-related parameters in self-play game
playing) in AlphaGo with Bayesian optimization, which leads to abandoning the
fast rollout in AlphaGo Zero and AlphaZero.

Our experiments are also performed using AlphaZeroGeneral [65] on 6×6 Oth-
ello [76]. The smaller size of the game allows us to do more experiments, and
these lead us into largely uncharted territory where we hope to find effects that
cannot be seen in Go or Chess.

3.3 Test Game

1
2
3
4
5
6

1 2 3 4 5 6

Figure 3.1: Starting position for 6×6 Othello

In our hyper-parameter sweep experiments, we use Othello with a 6×6 board size,
see Fig. 3.1. Othello is a two-player game. Players take turns placing their own
color pieces. Any opponent’s color pieces that are in a straight line and bounded

27

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

by the piece just placed and another piece of the current player’s are flipped to
the current player’s color. While the last legal position is filled, the player who
has most pieces wins the game. Fig. 3.1 shows the start configurations for 6×6
Othello.

There is a wealth of research on finding playing strategies for these three games
by means of different methods. For example, Buro created Logistello [77] to play
Othello. Chong et al. described the evolution of neural networks for learning to
play Othello [78]. Moreover, Banerjee et al. tested knowledge transfer in GGP
on small games including 4×4 Othello [46]. The board size gives us a handle to
reduce or increase the overall difficulty of these games. In our experiments we
use AlphaZero-like zero learning, where a reinforcement learning system learns
from tabula rasa, by playing games against itself using a combination of deep
reinforcement learning and MCTS.

3.4 AlphaZero-like Self-play

3.4.1 The Base Algorithm

Following the works by Silver et al. [10, 16] the fundamental structure of AlphaZero-
like Self-play is an iteration over three different stages (see Algorithm 2).

The first stage is a self-play tournament. The computer player performs several
games against itself in order to generate data for further training. In each step of
a game (episode), the player runs MCTS to obtain, for each move, an enhanced
policy π based on the probability p provided by the neural network fθ. We now
introduce the hyper-parameters, and their abbreviation that we use in this thesis.
In MCTS, hyper-parameter Cp is used to balance exploration and exploitation of
game tree search, and we abbreviate it to c (the equation of P-UCT with c for
MCTS can be found in Chapter 5). Hyper-parameter m is the number of times
to run down from the root for building the game tree, where the parameterized
network fθ provides the value (v) of the states for MCTS. For actual (self-)play,
from T’ steps on, the player always chooses the best move according to π. Before
that, the player always chooses a random move based on the probability distribu-
tion of π. After finishing the games, the new examples are normalized as a form
of (st, πt, zt) and stored in D.

The second stage consists of neural network training, using data from the self-
play tournament. Training lasts for several epochs. In each epoch (ep), training
examples generated in the most recent rs iterations are stored in a retrain buffer

28

3.4 AlphaZero-like Self-play

Algorithm 2 AlphaZero-like Self-play Algorithm
1: function AlphaZeroGeneral
2: Initialize fθ with random weights; Initialize retrain buffer D with capacity N
3: for iteration=1, . . . , I do
4: for episode=1,. . . , E do . stage 1
5: for t=1, . . . , T ′, . . . , T do
6: Get the best move prediction πt by performing MCTS based on fθ(st)
7: if Before step T ′ then
8: select random action at based on probability πt
9: else
10: select action at = argmaxa(πt)

11: Store example (st, πt, zt) in D
12: Set st=excuteAction(st, at)

13: Label reward zt (t ∈ [1, T]) as zT in examples

14: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
15: fθ′ ← Train fθ by minimizing Equation 3.1 based on sampled examples
16: Set fθ = fθ′ if fθ′ is better than fθ . stage 3

17: return fθ;

and are divided into several small batches [79] according to the specific batch
size (bs). The neural network is trained to minimize [80] the value of the loss func-
tion which (see Equation 3.1) sums up the mean-squared error between predicted
outcome and real outcome and the cross-entropy losses between p and π with a
learning rate (lr) and dropout (d). Dropout is used as probability to randomly
ignore some nodes of the hidden layer in order to avoid overfitting [81].

The last stage is arena comparison, in which the newly trained neural network
model (fθ′) is run against the previous neural network model (fθ). The better
model is adopted for the next iteration. In order to achieve this, fθ′ and fθ play
against each other for n games. If fθ′ wins more than a fraction of u games, it is
replacing the previous best fθ. Otherwise, fθ′ is rejected and fθ is kept as current
best model. Compared with AlphaGo Zero, AlphaZero does not entail the arena
comparison stage anymore. However, we keep this stage for making sure that we
can safely recognize improvements.

Furthermore, we present a conceptual diagram to describe the Algorithm 2 with
necessary components for 3 stages and corresponding hyper-parameters in Fig. 3.2:

29

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

Self-play
{T’,E,m,c}

Training
{rs, ep,bs,lr,d}

Arena
{u,n,m,c}

Neural Network

Game examples

New NN

state

Update?

policy/value

Old NN

Old NN

Figure 3.2: A diagram of the schema of AlphaZero-like Self-play Algorithm over 3
stages with corresponding hyper-parameters. Hyper-parameter I controls the loop
over these 3 stages.

3.4.2 Loss Function

The training loss function consists of lp and lv. The neural network fθ is
parameterized by θ. fθ takes the game board state s as input, and provides the
value vθ ∈ [−1, 1] of s and a policy probability distribution vector p over all legal
actions as outputs. pθ is the policy provided by fθ to guide MCTS for playing
games. After performing MCTS, we obtain an improvement estimate as policy π.
Training aims at making p more similar to π. This can be achieved by minimizing
the cross entropy of both distributions. Therefore, lp is defined as −π> logp.
The other aim is to minimize the difference between the output value (vθ(st))
of the state s according to fθ and the real outcome (zt ∈ {−1, 1}) of the game.
Therefore, lv is defined as the mean squared error (v − z)2. Summarizing, the
total loss function of AlphaZero is defined in Equation 3.1.

l+ = −π> logp+ (v − z)2 (3.1)

Note that in AlphaZero’s loss function, there is an extra regularization term to
guarantee the training stability of the neural network. In order to pay more
attention to two evaluation function components, instead, we apply standard
measures to avoid overfitting such as the dropout mechanism.

3.4.3 Bayesian Elo System

The Elo rating function has been developed as a method for calculating the
relative skill levels of players in games. Usually, in zero-sum games, there are

30

3.4 AlphaZero-like Self-play

two players, A and B. If their Elo ratings are RA and RB, respectively, then
the expectation that player A wins the next game is EA = 1

1+10(RB−RA)/400 . If
the real outcome of the next game is SA, then the updated Elo of player A can
be calculated from its original Elo by RA = RA + K(SA − EA), where K is the
factor of the maximum possible adjustment per game. In practice, K should be
bigger for weaker players but smaller for stronger players. Following [10], in our
design, we adopt the Bayesian Elo system [82] to show the improvement curve
of the learning player during self-play. We also employ this method to assess the
playing strength of the final models.

3.4.4 Time Cost Function

Because of the high computational cost of self-play reinforcement learning, the
running time of self-play is of great importance. We have created a time cost
function to predict the running time, based on the algorithmic structure in
Algorithm 2. According to Algorithm 2, the whole training process consists of
several iterations with three steps as introduced in section 3.4.1. Please refer to
the algorithm and to equation 3.2. In ith iteration (1 ≤ i ≤ I), if we assume
that in jth episode (1 ≤ j ≤ E), for kth game step (the size of k mainly depends
on the game complexity), the time cost of lth MCTS (1 ≤ l ≤ m) simulation is
t
(i)
jkl, and assume that for pth epoch (1 ≤ p ≤ ep), the time cost of pulling qth
batch (1 ≤ q ≤ trainingExampleList.size/bs)1 through the neural network is
t
(i)
pq , and assume that in wth arena comparison (1 ≤ w ≤ n), for xth game step,
the time cost of yth MCTS simulation (1 ≤ y ≤ m) is t(i)xyw. The time cost of the
whole training process is summarized in equation 3.2.

∑
i

(

self−play︷ ︸︸ ︷∑
j

∑
k

∑
l

t
(i)
jkl +

training︷ ︸︸ ︷∑
p

∑
q

t(i)pq +

arena comparison︷ ︸︸ ︷∑
x

∑
y

∑
w

t(i)xyw) (3.2)

Please refer to Table 3.1 for an overview of the hyper-parameters. From Algo-
rithm 2 and equation 3.2, we can see that the hyper-parameters, such as I, E, m,
ep, bs, rs, n etc., influence training time. In addition, t(i)jkl and t

(i)
xyw are simulation

time costs that rely on hardware capacity and game complexity. t(i)uv also relies
on the structure of the neural network. In our experiments, all neural network
models share the same structure, which consists of 4 convolutional layers and 2
fully connected layers.

1the size of trainingExampleList is also relative to the game complexity

31

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

3.5 Experimental Setup

We sweep the 12 hyper-parameters by configuring 3 different values (minimum
value, default value and maximum value) to find the most promising parameter
values. In each single run of training, we play 6×6 Othello [76] and change
the value of one hyper-parameter, keeping the other hyper-parameters at default
values (see Table 3.1).

Our experiments are run on a machine with 128GB RAM, 3TB local storage,
20-core Intel Xeon E5-2650v3 CPUs (2.30GHz, 40 threads), 2 NVIDIA Titanium
GPUs (each with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each with
6GB memory). In order to keep using the same GPUs, we deploy each run of
experiments on the NVIDIA GTX 980 Ti GPU. Each run of experiments takes 2
to 3 days.

3.5.1 Hyper-Parameter Sweep

In order to train a player to play 6×6 Othello based on Algorithm 2, we employ
the parameter values in Table. 3.1. Each experiment only observes one hyper-
parameter, keeping the other hyper-parameters at default values.

Table 3.1: Hyper-Parameter Setting

- Description Minimum Default Maximum
I number of iteration 50 100 150
E number of episode 10 50 100
T’ step threshold 10 15 20
m MCTS simulation times 25 100 200
c weight in UCT 0.5 1.0 2.0
rs number of retrain iteration 1 20 40
ep number of epoch 5 10 15
bs batch size 32 64 96
lr learning rate 0.001 0.005 0.01
d dropout probability 0.2 0.3 0.4
n number of comparison games 20 40 100
u update threshold 0.5 0.6 0.7

32

3.6 Experimental Results

3.5.2 Hyper-Parameters Correlation Evaluation

Based on the above experiments, we further explore the correlation of interesting

hyper-parameters (i.e. I, E, m and ep) in terms of their best final player’s playing

strength and overall training time. We set values for these 4 hyper-parameters as

Table 3.2, and other parameters values are set to the default values in Table. 3.1.

In addition, for (and only for) this part of experiments, the stage 3 of Algorithm 2

is cut off. Instead, for every iteration, the trained model fθ′ is accepted as the

current best model fθ automatically, which is also adopted by AlphaZero and

saves a lot of time.

Table 3.2: Correlation Evaluation Hyper-Parameter Setting

- Description Minimum Middle Maximum
I number of iteration 25 50 75
E number of episode 10 20 30
m MCTS simulation times 25 50 75
ep number of epoch 5 10 15

Note that due to computation resource limitations, for hyper-parameter sweep

experiments on 6×6 Othello, we only perform single run experiments. This

may cause noise, but still provides valuable insights on the importance of hyper-

parameters under the AlphaZero-like self-play framework.

3.6 Experimental Results

In order to better understand the training process, first, we depict training loss

evolution for default settings in Fig. 3.3.

33

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

I

0
20

40
60

80

ep

0
1

2
3

4
5

6
7

8
9

l +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 3.3: Single run training loss over iterations I and epochs ep

We plot the training loss of each epoch in every iteration and see that (1) in
each iteration, loss decreases along with increasing epochs, and that (2) loss also
decreases with increasing iterations up to a relatively stable level.

3.6.1 Hyper-Parameter Sweep Results

I: In order to find a good value for I (iterations), we train 3 different models to
play 6×6 Othello by setting I at minimum, default and maximum value respec-
tively. We keep the other hyper-parameters at their default values. Fig. 3.4(a)
shows that training loss decreases to a relatively stable level. However, after
iteration 120, the training loss unexpectedly increases to the same level as for
iteration 100 and further decreases. This surprising behavior could be caused
by a too high learning rate, an improper update threshold, or overfitting, or the
learner suddenly explores something new.

E: Since more episodes mean more training examples, it can be expected that
more training examples lead to more accurate results. However, collecting more
training examples also needs more resources. This shows again that hyper-
parameter optimization is necessary to find a reasonable value of for E. In Fig. 3.4(b),
for E=100, the training loss curve is almost the same as the 2 other curves for a
long time before eventually going down.

34

3.6 Experimental Results

T’: The step threshold controls when to choose a random action or the one
suggested by MCTS. This parameter controls exploration in self-play, to prevent
deterministic policies from generating training examples. Small T’ results in
more deterministic policies, large T’ in policies more different from the model.
In Fig. 3.4(c), we see that T’=10 is a good value.

m: In theory, more MCTS simulations m should provide better policies. How-
ever, higher m requires more time to get such a policy. Fig. 3.4(d) shows that
a value for 200 MCTS simulations achieves the best performance in the 70th it-
eration, then has a drop, to reach a similar level as 100 simulations in iteration
100.

c: This hyper-parameter Cp is used to balance the exploration and exploitation
during tree search. It is often set at 1.0. However, in Fig. 3.4(e), our experi-
mental results show that more exploitation (c=0.5) can provide smaller training
loss.

rs: In order to reduce overfitting, it is important to retrain models using previous
training examples. Finding a good retrain length of historical training examples is
necessary to reduce training time. In Fig. 3.4(f), we see that using training exam-
ples from the most recent single previous iteration achieves the smallest training
loss. This is an unexpecrted result, suggesting that overfitting is prevented by
other means and that the time saving works out best overall.

ep: The training loss of different ep is shown in Fig. 3.4(g). For ep=15 the
training loss is the lowest. This result shows that along with the increase of
epoch, the training loss decreases, which is as expected.

bs: a smaller batch size bs increases the number of batches, leading to higher
time cost. However, smaller bs means less training examples in each batch, which
may cause more fluctuation (larger variance) of training loss. Fig. 3.4(h) shows
that bs=96 achieves the smallest training loss in iteration 85.

lr: In order to avoid skipping over optima, a small learning rate is generally sug-
gested. However, a smaller learning rate learns (accepts) new knowledge slowly.
In Fig. 3.4(i), lr=0.001 achieves the lowest training loss around iteration 80.

d: Dropout is a popular method to prevent overfitting. Srivastava et al. claim
that dropping out 20% of the input units and 50% of the hidden units is often
found to be good [81]. In Fig. 3.4(j), however, we can not see a significant
difference.

35

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

0 20 40 60 80 100 120 140
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

I=50
I=100(default)
I=150

(a) l+ vs I

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

E=10
E=50(default)
E=100

(b) l+ vs E

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

T ′=10
T ′=15(default)
T ′=20

(c) l+ vs T ′

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

m=25
m=100(default)
m=200

(d) l+ vs m

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

c=0.5
c=1.0(default)
c=2.0

(e) l+ vs c

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

rs=1
rs=20(default)
rs=40

(f) l+ vs rs

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

ep=5
ep=10(default)
ep=15

(g) l+ vs ep

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

bs=32
bs=64(default)
bs=96

(h) l+ vs bs

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

lr=0.001
lr=0.005(default)
lr=0.01

(i) l+ vs lr

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

d=0.2
d=0.3(default)
d=0.4

(j) l+ vs d

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

n=20
n=40(default)
n=100

(k) l+ vs n

0 20 40 60 80
I

0.0

0.5

1.0

1.5

2.0

2.5

l +

u=0.5
u=0.6(default)
u=0.7

(l) l+ vs u

Figure 3.4: Training loss for different parameter settings over iterations. Larger
figures in arXiv version can be found in [33].

36

3.6 Experimental Results

n: The number of games in the arena comparison is a key factor of time cost. A
small value may miss accepting good new models and too large a value is a waste
of time. Our experimental results in Fig. 3.4(k) show that there is no significant
difference. A combination with u can be used to determine the acceptance or
rejection of a newly learnt model. In order to reduce time cost, a small n combined
with a large u may be a good choice.

u: This hyper-parameter is the update threshold. Normally, in two-player games,
player A is better than player B if it wins more than 50% games. A higher
threshold avoids fluctuations. However, if we set it too high, it becomes too
difficult to accept better models. Fig. 3.4(l) shows that u=0.7 is too high, 0.5
and 0.6 are acceptable.

Table 3.3: Time Cost (hr) of Different Parameter Setting

Parameter Minimum Default Maximum Type
I 23.8 44.0 60.3 time-sensitive
E 17.4 44.0 87.7 time-sensitive
T’ 41.6 44.0 40.4 time-friendly
m 26.0 44.0 64.8 time-sensitive
c 50.7 44.0 49.1 time-friendly
rs 26.5 44.0 50.7 time-sensitive
ep 43.4 44.0 55.7 time-sensitive
bs 47.7 44.0 37.7 time-sensitive
lr 47.8 44.0 40.3 time-friendly
d 51.9 44.0 51.4 time-friendly
n 33.5 44.0 57.4 time-sensitive
u 39.7 44.0 40.4 time-friendly

To investigate the impact on running time, we present the effect of different values
for each hyper-parameter in Table 3.3. We see that for parameter I, E, m, rs, n,
smaller values lead to quicker training, which is as expected. For bs, larger values
result in quicker training. The other hyper-parameters are indifferent, changing
their values will not lead to significant changes in training time. Therefore, tuning
these hyper-parameters shall reduce training time or achieve better quality in the
same time.

37

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

Based on the aforementioned results and analysis, we summarize the importance
by evaluating the contribution of each parameter to training loss and time cost,
respectively, in Table 3.4 (best values in bold font). For training loss, different val-
ues of n and u do not result in a significant difference. Modifying time-indifferent
hyper-parameters changes training time only slightly , whereas larger value of
time-sensitive hyper-parameters lead to higher time cost.

Table 3.4: A Summary of Importance in Different Objectives

Parameter Default Value Loss Time Cost
I 100 100 50
E 50 10 10
T’ 15 10 similar
m 100 200 25
c 1.0 0.5 similar
rs 20 1 1
ep 10 15 5
bs 64 96 96
lr 0.005 0.001 similar
d 0.3 0.3 similar
n 40 insignificant 20
u 0.6 insignificant similar

3.6.2 Hyper-Parameter Correlation Evaluation Results

In this part, we investigate the correlation between promising hyper-parameters
in terms of time cost and playing strength. There are 34 = 81 final best players
trained based on 3 different values of 4 hyper-parameters (I, E, m and ep) plus a
random player (i.e. 82 in total). Any 2 of these 82 players play with each other.
Therefore, there are 82×81/2=3321 pairs, and for each of these, 10 games are
played.

In each sub-figures of Fig. 3.5, all models are trained from the same value of I and
E, according to the different values in x-axis and y-axis, we find that, generally,
larger m and larger ep lead to higher Elo ratings. However, in the last sub-
figure, we can clearly notice that the Elo rating of ep=10 is higher than that of
ep=15 for m=75, which shows that sometimes more training can not improve the

38

3.6 Experimental Results

5

10

15

ep

I=25,E=10 I=25,E=20 I=25,E=30

5

10

15

ep

I=50,E=10 I=50,E=20 I=50,E=30

25 50 75
m

5

10

15

ep

I=75,E=10

25 50 75
m

I=75,E=20

25 50 75
m

I=75,E=30

300

200

100

0

100

200

Figure 3.5: Elo ratings of the final best players of the full tournament (3 param-
eters, 1 target value)

playing strength but decreases the training performance. We suspect that this is
caused by overfitting. Looking at the sub-figures, the results also show that more
(outer) training iterations can significantly improve the playing strength, also
more training examples in each iteration (bigger E) helps. These outer iterations
are clearly more important than optimizing the inner hyper-parameters of m and
ep. Note that higher values for the outer hyper-parameters imply more MCTS
simulations and more training epochs, but not vice versa (more MCTS simulations
and more training epochs could also come from more inner MCTS simulation and
training epochs). This is an important insight regarding tuning hyper-parameters
for self-play.

According to (3.2) and Table. 3.4, we know that smaller values of time-sensitive
hyper-parameters result in quicker training. However, some time-sensitive hyper-
parameters influence the training of better models. Therefore, we analyze train-
ing time versus Elo rating of the hyper-parameters, to achieve the best training

39

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

performance for a fixed time budget.

0 5000 10000 15000 20000 25000
Self-play time/s

0

10000

20000

30000

40000

50000

60000

70000

Tr
ai

ni
ng

 ti
m

e/
s

240

160

80

0

80

160

240

Figure 3.6: Elo ratings of the final best players with different time cost of Self-play
and neural network training (same base data as in Fig. 3.5)

In order to find a way to assess the relationship between time cost and Elo
ratings, we categorize the time cost into two parts, one part is the self-play (stage
1 in Algorithm 2, iterations and episodes) time cost, the other is the training
part (stage 2 in Algorithm 2, training epochs). In general, spending more time in
training and in self-play gives higher Elo. In self-play time cost, there is also an
other interesting variable, searching time cost, which is influenced by the value
of m.

In Fig. 3.6 we also find high Elo points closer to the origin, confirming that
high Elo combinations of low self-play time and low training time exist, as was
indicated above, by choosing low epoch ep and simulation m values, since the
outer iterations already imply adequate training and simulation.

In order to further analyze the influence of self-play and training on time, we
present in Fig. 3.7(a) the full-tournament Elo ratings of the lower right panel
in Fig. 3.5. The blue line indicates the Pareto front of these combinations. We
find that low epoch values achieves the highest Elo in a high iteration training
session: more outer self-play iterations implies more training epochs, and the data

40

3.7 Summary

generated is more diverse such that training reaches more efficient stable state
(no overfitting). All the points below the Pareto lines are sub optimal: it does
not make much sense to use them. For all the Pareto points, it is a question of
what is more important, time or strength.

0.0 0.5 1.0 1.5 2.0
Self-play time/s 1e4

160

180

200

220

240

260

280

El
o

ra
tin

g

(25,5)

(25,10)

(25,15)

(50,5)

(50,10)
(50,15)

(75,5)
(75,10)

(75,15)

(a) Self-play time vs Elo

0 1 2 3 4 5 6 7 8 9
Total time/s 1e4

160

180

200

220

240

260

280

El
o

ra
tin

g

(25,5)

(25,10)

(25,15)

(50,5)

(50,10)
(50,15)

(75,5)
(75,10)

(75,15)

(b) Total time vs Elo

Figure 3.7: Elo ratings of final best players to self-play, training and total time
cost while I=75 and E=30.The values of tuple (m, ep) are given in the figures for
every data point. In long total training, for m, larger values cost more time and
generally improve the playing strength. For ep, more training within one iteration
does not show improvement for Elo ratings. The lines indicate the Pareto fronts of
Elo rating vs. time.

3.7 Summary

AlphaGo has taken reinforcement learning by storm. The performance of the
novel approach to self-play is stunning, yet the computational demands are high,
prohibiting the wider applicability of this method. Little is known about the
impact of the values of the many hyper-parameters on the speed and quality of
learning. In this work, we analyze important hyper-parameters and combinations
of loss-functions. We gain more insight and find recommendations for faster and
better self-play. We have used small games to allow us to perform a thorough
sweep using a large number of hyper-parameters, within a reasonable computa-
tional budget. We sweep 12 parameters in AlphaZeroGeneral [65] and analyse
loss and time cost for 6×6 Othello, and select the 4 most promising parameters
for further optimization.

41

3. HYPER-PARAMETERS FOR ALPHAZERO-LIKE SELF-PLAY

We more thoroughly evaluate the interaction between these 4 time-related hyper-
parameters, and find that i) generally, higher values lead to higher playing strength;
ii) within a limited budget, a higher number of the outer self-play iterations is
more promising than higher numbers of the inner training epochs, search simu-
lations, and game episodes. At first this is a surprising result, since conventional
wisdom tells us that deep learning networks should be trained well, and MCTS
needs many play-out simulations to find good training targets.

In AlphaZero-like self-play, the outer-iterations subsume the inner training and
search. Performing more outer iterations automatically implies that more inner
training and search is performed. The training and search improvements carry
over from one self-play iteration to the next, and long self-play sessions with many
iterations can get by with surprisingly little inner training epochs and MCTS sim-
ulations. The sample-efficiency of self-play is higher than simple composition of
the constituent elements would predict. Also, the implied high number of training
epochs may cause overfitting, to be reduced by small values for epochs.

In our experiments we also noted that care must be taken in computing Elo
ratings. Computing Elo based on game-play results during training typically gives
biased results that differ greatly from tournaments between multiple opponents.
Final best models tournament Elo calculation should be used.

For future work, more insight into training bias is needed. Also, automatic op-
timization frameworks can be explored, such as [83, 84]. Also, reproducibility
studies should be performed to see how our results carry over to larger games (like
Go), computational load permitting. Given that [75] tuned some MCTS-related
parameters (like exploration and exploitation balancing which we also adopt as
parameter c) in AlphaGo with Bayesian optimization, resulting in Elo improve-
ments, which evidenced our findings in self-play. However, [75] did not directly
study the parameters in neural network training, we believe our work provides
insightful analysis for future work on larger games.

42

