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Chapter 1

Introduction

1.1 Background

Modern Artificial Intelligence (AI) research began in the mid-1950s [1]. Main-
stream AI scientists focused on the narrow AI research which usually aims to solve
a single sub-problem (specific task). In 1990s, some researchers started to try to
develop artificial general intelligence (AGI), also known as strong AI [2, 3], by
combining the programs that solve various sub-problems (different tasks). AGI
is the hypothetical intelligence of a computer program that has the capacity to
understand or learn any intellectual task that a human being can [4]. Although
current AI techniques have achieved impressive performance in mastering specific
tasks, AGI it is still speculated to be decades away [5]. Therefore, it is useful to
further study how far the current techniques (especially in reinforcement learning
landscape [6]) can bring us to AGI, which I will do in this thesis. I will now list
a few challenges in AGI to frame the contributions in this thesis.

Reinforcement Learning

There are many of AI techniques, such as searching, reasoning, pattern recog-
nition and learning that achieve impressive successes [7, 8, 9, 10]. In reinforce-
ment learning, as this thesis will emphasize, searching and learning are both
important. Well-known techniques are Monte Carlo Search (MCS) [11], Monte
Carlo Tree Search (MCTS) [7, 12] and table based (or neural network based)
Q-learning [13, 14, 15]. These techniques have shown impressive capability in
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1. INTRODUCTION

mastering practical problems, especially the recent success of training the Al-
phaGo series of programs playing Go, Chess and Shogi [10, 16, 17]. The AlphaGo
programs use an architecture that combines MCTS and neural network training,
which has become a highly successful paradigm of deep reinforcement learning
for high-dimensional problems. Before neural networks were used, table-based
Q-learning has been employed in combination with MCTS, resulting to the same
structure combining online search and offline learning [18]. It is interesting to
study this approach.

General Game Playing

General game playing (GGP) is a well-known testbed for AGI. The goal of GGP
is to play previously unknown board games, where the rules are not known in
advance. The program must play the game without human intervention. The
games are described using a standard game description language; legal moves
can be automatically generated. Thus, in writing the program, the GGP-author
can use search and learning techniques. For example, MCTS and its variants
achieve quite good performance on the GGP system [19, 20, 21, 22]. However,
there are few works that apply deep reinforcement learning to play GGP games.
Therefore, a table based Q-learning should be investigated for GGP to enter the
deep reinforcement learning era.

AlphaZero

AlphaZero [10] can also be regarded as an AGI framework. AlphaZero provides
a general framework to play Go, Chess and Shogi. In fact, it is implemented to
play a class of two-player zero sum games. Therefore, it is a promising testbed
for AGI with deep reinforcement learning. The landmark achievements of the
AlphaGo series of programs have created a large research interest into self-play
in reinforcement learning. In self-play, MCTS is used to train a deep neural
network, that is then used in tree searches. Training itself is governed by many
hyper-parameters. There has been surprisingly little research on design choices for
hyper-parameter values and loss functions, presumably because of the prohibitive
computational cost to explore the parameter space.

Expert Data

In addition, we note that the creators of AlphaGo use data from expert games
for AlphaGo, but not for AlphaGo Zero nor for AlphaZero, which are so-called
tabula rasa approaches. However, a further program, in this series, AlphaStar,
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1.1 Background

for StarCraft, does use expert data again [23]. There is little research into the
necessity of expert data. Well studied MCTS enhancements, such as Rapid Action
Value Estimation (RAVE) [24, 25, 26] can improve the performance of table-based
Q-learning, but there is no research reported on applying such enhancements to
the AlphaZero framework.

Single Agent Combinatorial Optimization

Last but not the least, AlphaZero-like deep reinforcement learning is initially
developed for two-player games, where it is highly successful. Therefore, it is
interesting to see how it could be transferred to deal with single agent combina-
torial optimization games and to benefit the solution of combinatorial problems
in computer science.

Overview

Overall, in this dissertation, we focus on GGP and the AlphaZero framework to
test promising and novel ideas to explore AGI. The computational demands of
these approaches are high. By using small board games we are able to perform
many experiments while retaining many aspects of larger games.

Specifically, in Chapter 2, we assess the potential of classical Q-learning in GGP,
together with dynamic ε and MCS enhancements. Then, in Chapter 3, we inves-
tigate 12 hyper-parameters in an AlphaZero-like self-play algorithm and evaluate
how these parameters contribute to training. Next, Chapter 4 evaluates the alter-
native loss functions of AlphaZero-like self-play to study the importance of policy
function and value function. Subsequently, we propose a warm-start search en-
hancement method to boost training at the start phase of self-play training in
Chapter 5, which evidences the necessity of expert data and we show how these
data can be generated by MCTS enhancements. In the following Chapter 6,
we further propose an adaptive warm-start method to dynamically control the
warm-start length during training. In Chapter 7, we embed a ranked reward al-
gorithm within AlphaZero-like self-play to challenge a well-studied single player
combinatorial game, Morpion Solitaire, and obtain a near human level result as
a first attempt.

In Fig 1.1, the structure of this dissertation is depicted as a diagram. The diagram
shows that the main work of our thesis is based on two frameworks (GGP and
AlphaZero-like self-play). For each framework, different learning and searching
techniques are investigated in different chapters.
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Figure 1.1: A general structure of this dissertation
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1.2 Research Questions

1.2 Research Questions

In the following, we list the research questions of this thesis and sketch the ap-
proaches used to find answers to them.

RQ1 (Chapter 2) How to assess the potential of classical Q-learning in
GGP? In order to build a bridge between GGP and deep reinforcement
learning, the initial step is to assess the potential of table-based Q-learning
on GGP system. We test different values for fixed ε and then propose a dy-
namic ε enhancement, where the ε is used to balance the exploration and ex-
ploitation of Q-learning. Furthermore, we introduce another enhancement
with MCS which is to generate better training examples at the beginning
when the Q-table has no record of the state. All experiments are tested on
small board games, such as Tic-Tac-Toe, 3×3 Hex and 4×4 Connect Four.
In order to assess convergence with different board size, 3×3, 4×4 and 5×5
Tic-Tac-Toe are also investigated.

RQ2 (Chapter 3) How hyper-parameters contribute to AlphaZero-like
self-play? A hyper-parameter sweep is computationally expensive; Little
is known on how to set these hyper-parameters, there is a need to pro-
vide insight into how the hyper-parameters contribute to training efficiency.
AlphaZero-like self-play can be divided into three stages, namely self-play,
neural network training and arena comparison. We identify 12 main hyper-
parameters for this framework. The explanation of each hyper-parameter is
given, and a light hyper-parameter sweep is performed. This sweep provides
an overview of the hyper-parameter contributions. Besides, a further study
of the interaction between important hyper-parameters is also performed in
this dissertation, which helps to understand the trade off between searching
and learning.

RQ3 (Chapter 4) How alternative loss functions work in AlphaZero-
like self-play? Players in AlphaZero consist of a combination of MCTS
and a deep neural network, that is trained using self-play. A unified deep
neural network is used, which has a policy-head and a value-head. During
training, the optimizer minimizes the sum of policy loss and value loss.
However, it is not clear if and under which circumstances other formulations
of the loss function are better. Therefore, we perform experiments with
different combinations of these two minimization targets. In contrast to
many recent papers who adopt single run experiments and use the whole
history Elo ratings from self-play, we propose to use repeated runs. The
results show that this method can describe the training performance quite

5



1. INTRODUCTION

well within each training run. Because of a high self-play bias a final best
player Elo rating is adopted to evaluate the playing strength in a direct
competition between the evolved players, inspired by the approach reported
by the AlphaZero team.

RQ4 (Chapter 5) Can MCTS enhancements be used to replace human
experts to improve the AlphaZero-like self-play? AlphaZero’s design
is purely based on self-play and makes no use of labeled expert data or
domain specific enhancements; it is designed to learn from scratch. We
propose a novel approach to deal with this cold-start problem by employing
simple search enhancements at the beginning phase of self-play training. We
use Rollout, RAVE and dynamically weighted combinations of these with
the neural network, and Rolling Horizon Evolutionary Algorithms (RHEA).

RQ5 (Chapter 6) How to control the warm-start length? While tuning
warm-start length for different enhancements, the results show that it is
costly and usually unstable. Therefore we propose an adaptive method to
control the warm-start length of using MCTS enhancements by employing
an arena to determine whether the enhancement is not better any more. The
experimental results show that our approach works better than the fixed
I ′, especially for deep, tactical, games (Othello and Connect Four). We
conjecture that the adaptive value for I ′ is also influenced by the size of the
game, and that on average I ′ will increase with game size. We conclude that
AlphaZero-like deep reinforcement learning benefits from adaptive rollout
based warm-start, as RAVE did for rollout-based reinforcement learning 15
years ago.

RQ6 (Chapter 7) Can AlphaZero-like self-play be used to master com-
plex single player combinatorial optimization games? Morpion Soli-
taire is a popular single player complex combinatorial optimization game,
performed with paper and pencil [27, 28]. Due to its large state space (on
the order of the game of Go) traditional search algorithms, such as MCTS,
have not been able to find good solutions. A new algorithm, Nested Rollout
Policy Adaptation, was able to find a new record of 82 steps, albeit with
large computational resources [29]. Morpion Solitaire has never been stud-
ied in a deep reinforcement learning framework. A challenge of Morpion
Solitaire is that the state space is sparse, there are few win/loss signals.
Therefore, we use an approach known as ranked reward to create a rein-
forcement learning self-play framework for Morpion Solitaire. This enables
us to find medium-quality solutions with reasonable computational effort.

6



1.3 Dissertation Outline

Our record is a 67 steps solution, which is very close to the human best (68)
without any other adaptation to the problem than using ranked reward.

1.3 Dissertation Outline

The dissertation outline is described in this section. For each main chapter of
this dissertation, there is at least one publication by the author. A brief outline
of this work is presented as follows.

F Chapter 2 introduces the GGP system and the definition of classical Q-
learning. In addition, two enhancements (dynamic ε and QM-learning)
of classical Q-learning are proposed. The classical Q-learning and pro-
posed enhancements are assessed in a GGP system to play several different
games (different size of Tic-Tac-Toe, 3×3 Hex and 4×4 ConnectFour). The
contents of this chapter are published in a preprint [30] and a conference
paper [31] (best regular paper award).

Wang H., Emmerich M., Plaat A. (2018) Monte Carlo Q-learning for
General Game Playing. arXiv preprint 1802.05944.

Wang H., Emmerich M., Plaat A. (2019) Assessing the Potential of
Classical Q-learning in General Game Playing. In: Atzmueller M.,
Duivesteijn W. (eds) Artificial Intelligence. BNAIC 2018. Communi-
cations in Computer and Information Science, vol 1021. Springer.

F Chapter 3 introduces the AlphaZero-like self-play framework with three
stages in a single iterative loop, and identities 12 potentially important
hyper-parameters. A hyper-parameter sweep is performed for every hyper-
parameter and moreover, further experiments of four selected more inter-
esting hyper-parameters are also performed and evaluated. Parts of this
chapter are published in preprints [32, 33].

Wang H., Emmerich M., Preuss M., Plaat A. (2019) Hyper-Parameter
Sweep on AlphaZero General. arXiv preprint 1903.08129.

Wang H., Emmerich M., Preuss M., Plaat A. (2020) Analysis of
Hyper-Parameters for Small Games: Iterations or Epochs in Self-
Play?. arXiv preprint 2003.05988, submitted to journal.

F Chapter 4 introduces the default loss function of AlphaZero-like self-play,
and three alternative loss functions. A running Elo is computed and a full

7



1. INTRODUCTION

tournament Elo is also employed. Parts of this chapter are published in a
conference paper [34] and a preprint [33].

Wang H., Emmerich M., Preuss M., Plaat A. (2019) Alternative loss
functions in AlphaZero-like self-play. 2019 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, pp. 155-162.

Wang H., Emmerich M., Preuss M., Plaat A. (2020) Analysis of
Hyper-Parameters for Small Games: Iterations or Epochs in Self-Play?
arXiv preprint 2003.05988, submitted to journal.

F Chapter 5 investigates the AlphaZero-like self-play start phase by employing
MCTS enhancements to improve training performance. The description
and analysis of RAVE and RHEA is provided. The work of the chapter is
published in a conference paper [35].

Wang H., Preuss M., Plaat A. (2020) Warm-Start AlphaZero Self-
play Search Enhancements. In: Bäck T. et al. (eds) Parallel Problem
Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in
Computer Science, vol 12270. Springer.

F Chapter 6 introduces the adaptive warm-start method, and a parameter
tuning for fixed I ′ is also provided. The work of the chapter is published as
a preprint [36].

Wang H., Preuss M., Plaat A. (2021) Adaptive Warm-Start MCTS in
AlphaZero-like Deep Reinforcement Learning. arXiv preprint 2105.06136,
submitted to conference.

F Chapter 7 introduces how to embed the ranked reward mechanism into
AlphaZero-like self-play. A description of Morpion Solitair game is provided.
And a near-human level solution with 67 steps is presented. The work of
the chapter is published in a conference paper [37].

Wang, H., Preuss, M., Emmerich, M. and Plaat, A. (2020) Tackling
Morpion Solitaire with AlphaZero-like Ranked Reward Reinforcement
Learning. 22nd International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC). IEEE, pp. 149-152

F Chapter 8 summarizes the contributions of this dissertation and highlights
points to some interesting directions for future work.
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1.3 Dissertation Outline

F In addition to the aforementioned publications, another publication of the
author is [38]. This publication is related to the research, but was not part
of this thesis.

Wang H., Tang Y., Liu J., Chen W. (2018) A Search Optimization
Method for Rule Learning in Board Games. In: Geng X., Kang BH.
(eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018.
Lecture Notes in Computer Science, vol 11013. Springer.
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Chapter 2

Classical Q-learning in GGP

2.1 Introduction

Traditional game playing programs are written to play a single specific game,
such as Chess, or Go. The aim of General Game Playing [39] (GGP) is to create
adaptive game playing programs; programs that can play more than one game
well. To this end, GGP uses a so-called Game Description Language (GDL) [40].
GDL-authors write game-descriptions that specify the rules of a game. The chal-
lenge for GGP-authors is to write a GGP player that will play any game well.
GGP players should ensure that a wide range of GDL-games can be played well.
Comprehensive tool-suites exist to help researchers write GGP and GDL pro-
grams, and an active research community exists [38, 41, 42, 43].

The GGP model follows the state/action/result paradigm of reinforcement learn-
ing [6], a paradigm that has yielded many successful problem solving algorithms.
For example, the successes of AlphaGo are based on two reinforcement learning
algorithms, MCTS [7] and Deep Q-learning (DQN) [16, 44]. MCTS, in particu-
lar, has been successful in GGP [45]. However, few works analyze the potential
of Q-learning for GGP, not to mention DQN. The aim of this chapter is to be
a basis for further research of DQN for GGP and applying promising MCTS
enhancements for neural network based reinforcement learning approaches.

Q-learning with deep neural networks requires extensive computational resources.
Table-based Q-learning might offer a viable alternative for small games. There-
fore, following Banerjee [46], in this chapter the convergence speed of table-based
Q-learning is addressed. Three small two-player zero-sum games: Tic-Tac-Toe,
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2. CLASSICAL Q-LEARNING IN GGP

Hex and Connect Four, and table-based Q-learning are used. This chapter in-
troduces two enhancements: dynamic ε, and, borrowing an idea from [18], a
new version of Q-learning is created, inserting MCS into Q-learning, using online
search for offline learning1.

The main contributions of this chapter can be summarized as follows:

1. Dynamic ε: The classical Q-learning is evaluated, finding (1) that Q-
learning works and converges in GGP, and (2) that Q-learning with a dy-
namic ε can enhance the performance of TD(λ)2 baseline with a fixed ε [46].

2. QM-learning: To further improve performance the classical Q-learning
is enhanced by adding a modest amount of Monte Carlo lookahead (QM-
Player) [47]. This improves the convergence rate of Q-learning, and shows
that online search can also improve the offline learning in GGP.

The chapter is organized as follows. Sect. 2.2 presents related work and recalls
basic concepts of GGP and reinforcement learning. Sect. 2.3 presents the designs
of the QPlayer with fixed and dynamic ε and QMPlayer for two-player zero-sum
games for GGP to assess the potential of classical Q-learning in detail. Sect. 2.4
presents the experimental results. Sect. 2.5 summarizes the chapter and discusses
directions for future work.

2.2 Related Work and Preliminaries

2.2.1 GGP

A General Game Player must be able to accept formal GDL descriptions of a
game and play games effectively without human intervention [42], where the GDL
has been defined to describe the game rules [48]. An interpreter program [43]
generates legal moves (actions) for a specific board (state). Furthermore, a Game
Manager (GM) is at the center of the software ecosystem. The GM interacts with
game players through TCP/IP protocol to control the match. The GM manages
game descriptions and matches records and temporary states of matches while
the game is running. The system also contains a viewer interface for users who are
interested in running matches and a monitor to analyze the match process.

1source code: https://github.com/wh1992v/ggp-rl
2one of temporal difference methods, see [6]
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2.2.2 Reinforcement Learning

Since Watkins proposed Q-learning in 1989 [49], much progress has been made
in reinforcement learning [50, 51, 52, 53]. However, few works report on the use
of Q-learning in GGP. In [46], Banerjee and Stone propose a method to create
a general game player to study knowledge transfer [54], combining Q-learning
and GGP. Their aim is to improve the performance of Q-learning by transferring
the knowledge learned in one game to a new, but related, game. They found
knowledge transfer with Q-learning to be expensive. In [18], Gelly and Silver
combine online and offline knowledge to improve learning performance.

Recently, DeepMind published work on mastering Chess and Shogi by self-play
with a deep, generalized reinforcement learning algorithm [10]. With a series
of landmark publications from AlphaGo to AlphaZero [10, 16, 17], these works
showcase the promise of general reinforcement learning algorithms. However,
such learning algorithms are very resource-intensive and typically require special
GPU/TPU hardware. Furthermore, the neural network-based approach is quite
inaccessible to theoretical analysis. Therefore, this chapter starts from studying
the performance of table-based Q-learning.

In GGP, variants of MCTS [7] are used with great success [45]. Tom Vodopivec et
al. studied MCTS with planning methods inspired by reinforcement learning [55].
Méhat et al. combined UCT (Upper Confidence bound applied to Trees) and
nested MCS for single-player GGP [56]. Cazenave et al. further proposed a
nested MCS for two-player games [57]. Monte Carlo techniques have proved a
viable approach for searching intractable game spaces and other optimization
problems [58]. Therefore, in this chapter MCS is combined as an enhancement
to improve performance.

2.2.3 Q-learning

A basic distinction between reinforcement learning methods is that of "on-policy"
and "off-policy" methods. On-policy methods attempt to evaluate or improve
the policy that is used to make decisions, whereas off-policy methods evaluate or
improve a policy different from that used to make decisions [6]. Q-learning is an
off-policy method. The reinforcement learning model consists of an agent, a set
of states S, and a set of actions A available in state S [6]. The agent can move to
the next state s′, s′ ∈ S from state s after following action a, a ∈ A, denoted as
s

a−→ s′. After finishing the action a, the agent gets an immediate reward R(s, a),
usually a numerical score. The cumulative return of current state s by taking
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2. CLASSICAL Q-LEARNING IN GGP

the action a, denoted as Q(s, a), is a weighted sum, calculated by R(s, a) and the

maximum Q(s′, a′) value of all next states:

Q(s, a) = R(s, a) + γ maxa′Q(s
′, a′) (2.1)

where a′ ∈ A′ and A′ is the set of actions available in state s′. γ is the dis-

count factor of maxa′Q(s′, a′) for next state s′. Q(s, a) can be updated by online

interactions with the environment using the following rule:

Q(s, a)← (1− α) Q(s, a) + α ( R(s, a) + γ maxa′Q(s
′, a′)) (2.2)

where α ∈ [0, 1] is the learning rate. The Q-values are guaranteed to converge

after iteratively updating.

2.3 Design

2.3.1 Classical Q-learning for Two-Player Games

GGP games in experiments for this chapter are two-player zero-sum games that

alternate moves. Therefore, the same rule can be used, see Algorithm 1 line 5, to

create R(s, a), rather than to use a reward table. In experiments, R(s, a) = 0 is

set for non-terminal states, and call the getGoal() function for terminal states. In

order to improve the learning effectiveness, the Q(s, a) table is updated only at

the end of the match. During offline learning, QPlayer uses an ε-greedy strategy

to balance exploration and exploitation towards convergence. While the ε-greedy

strategy is enabled, QPlayer will perform a random action. Otherwise, QPlayer

will perform the best action according to Q(S,A) table. If no record matches

current state, QPlayer will perform a random action. The pseudo code for this

algorithm is given in Algorithm 1.
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2.3 Design

Algorithm 1 Classical Q-learning Player with Static ε
1: function QPlayer(current state s, learning rate α, discount factor γ, Q

table: Q(S,A))
2: for each match do
3: if s terminates then
4: for each (s, a) from end to the start in current match record do
5: R(s,a) =s′ is terminal state? getGoal(s′, myrole) : 0
6: UpdateQ(s, a)← (1−α)Q(s, a)+α (R(s, a)+γ maxa′Q(s

′, a′))

7: else
8: if ε-greedy is enabled then
9: selected_action = Random()
10: else
11: selected_action = SelectFromQTable()
12: if no s record in Q(S,A) then
13: selected_action = Random()
14: . To be changed for different versions

15: performAction(s, selected_action)

16: return Q(S,A)

2.3.2 Dynamic ε Enhancement

In contrast to the baseline of [46], which uses a fixed ε value, a dynamically
decreasing ε-greedy Q-learning [50] is used. In the implementation, the func-
tion

ε(m) =

{
a(cos(m

2l
π)) + b m ≤ l

0 m > l
(2.3)

is used for ε, wherem is the current match count, and l is a number of matches set
in advance to control the decaying speed of ε. During offline learning, if m = l, ε
decreases to 0. a and b is set to limit the range of ε, where ε ∈ [b, a+ b], a, b ≥ 0

and a+ b ≤ 1. The player generates a random number num where num ∈ [0, 1].
If num < ε, the player will explore a random action, else the player will exploit
best action from the currently learnt Q(s, a) table. Note that in this function, in
order to assess the potential of Q-learning in detail, l is introduced for controlling
the decay of ε. This parameter determines the value and changing speed of ε in
current match count m. Instances in experiments are shown in Fig 2.1:
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2. CLASSICAL Q-LEARNING IN GGP

 

Figure 2.1: Decaying Curves of ε with Different l. Every curve decays from 0.5
(learning start, explore & exploit) to 0 (m ≥ l, fully exploit).

2.3.3 QM-learning Enhancement

The main idea of MCS [47] is to make some lookahead probes from a non-terminal
state to the end of the game by selecting random moves for the players to estimate
the value of that state. To apply Monte Carlo in game playing, a time-limited
version is used, since in competitive game playing time for each move is an im-
portant factor for the player to consider. The time limited MCS used in GGP is
written as MonteCarloSearch(time_limit).

In Algorithm 1 (line 13), we see that a random action is chosen when QPlayer
can not find an existing value in the Q(s, a) table. In this case, QPlayer acts
like a random player, which will lead to a low win rate and slow learning speed.
In order to address this problem, a variant of Q-learning combined with MCS
is introduced. MCS performs a time limited lookahead to find better moves.
The more time it has, the better the action it finds will be. To achieve this,
selected_action = MonteCarloSearch(time_limit) is used to replace the
line 13, giving QM-learning. By adding MCS, a local version of the last two
stages of MCTS is effectively added to Q-learning: the playout and backup
stage [7].
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2.4 Experiments and Results

2.4 Experiments and Results

2.4.1 Dynamic ε Enhancement

In experiments, the ε-greedy Q-learning players (α = 0.1, γ = 0.9) with fixed
ε=0.1, 0.2 and with dynamically decreasing ε ∈ [0, 0.5] is created to play 30000
matches first (l=30000) against a Random player, respectively. During these
30000 matches, the dynamic ε decreases from 0.5 to 0 based on the decay function,
see equation 2.3. The fixed values for ε are 0.1 and 0.2, respectively. After
30000 matches, fixed ε is also set to 0 to continue the competition. For Tic-Tac-
Toe, results in Fig. 2.2 show that dynamically decreasing ε performs better. We
see that the final win rate of dynamically decreasing ε is 4% higher than fixed
ε=0.1 and 7% higher than fixed ε=0.2. Therefore, in the rest of the experiments,
dynamic ε is used for further improvements.

 

Figure 2.2: Win Rate of the Fixed and Dynamic ε Q-learning Player vs a Random
Player Baseline. In the white part, the player uses ε-greedy to learn; in the grey
part, all players set ε=0 (stable performance). The color code of the rest figures
are the same

To enable comparison with previous work, TD(λ) is also implemented, the base-
line learner of [46](α = 0.3, γ = 1.0, λ = 0.7, ε = 0.01), and dynamic ε
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2. CLASSICAL Q-LEARNING IN GGP

learner(α = 0.1, γ = 0.9, ε ∈ [0, 0.5], l=30000, Algorithm 1). For Tic-Tac-
Toe, from Fig. 2.3, It is found that although the TD(λ) player converges more
quickly initially (win rate stays at about 75.5% after 9000th match) the dynamic
ε player performs better when the value of ε decreases dynamically with the
learning process.

 

Figure 2.3: Win Rate of Classical Q-learning and [46] Baseline Player vs Random.

Experiments above suggest the following conclusions: that (1) classical Q-learning
is applicable to a GGP system, and that (2) a dynamic ε can enhance the per-
formance of fixed ε. However, beyond the basic applicability in a single game,
showing that it can do so (1) efficiently, and (2) in more than one game is needed.
Thus, further experiments with QPlayer to play Hex (l=50000) and Connect Four
(l=80000) against the Random player are investigated. In order to limit excessive
learning times, following [46], a very small 3×3 board Hex and ConnectFour on
a 4×4 board are played. The results of these experiments are given in Fig. 2.4.
We see that QPlayer can also play these other games effectively. Note that the
reason why the player achieves different win rates could be that the game space
of 3×3 Hex is much smaller than 4×4 ConnectFour.
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2.4 Experiments and Results

 

(a) 3×3 Hex

 

(b) 4×4 Connect Four

Figure 2.4: Win Rate of QPlayer vs Random Player in Different Games. For Hex
and Connect-Four the win rate of Q-learning also converges

However, so far, all studied games are small. QPlayer should be able to learn
to play larger games. The complexity influences how many matches the QPlayer
should learn. Now results will be shown to demonstrate how QPlayer performs
while playing more complex games. QPlayer plays Tic-Tac-Toe (a line of 3 stones
is a win, l=50000) in 3×3, 4×4 and 5×5 boards, respectively. and the results are
shown in Fig. 2.5.
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Figure 2.5: Win Rate of QPlayer vs Random in Tic-Tac-Toe on Different Board
Size. For larger board sizes convergence slows down

The results show that with the increase of game board size, QPlayer performs
worse. For larger boards can not achieve convergence. The reason for the lack of
convergence is that QPlayer has not learned enough knowledge. The experiments
also show that for table-based Q-learning in GGP, large game complexity leads
to slow convergence, which confirms the well-known drawback of classical Q-
learning.

2.4.2 QM-learning Enhancement

The second contribution of this chapter is QM-learning enhancement, the QPlayer
and QMPlayer are both implemented based on Algorithm 1 and section 2.3.3. For
both players, parameters are set to α = 0.1, γ = 0.9, ε ∈ [0, 0.5] respectively and
the l=5000, 10000, 20000, 30000, 40000, 50000, respectively. For QMPlayer,
time_limit = 50ms. Next both players play the game with the Random baseline
player for 1.5 × l matches for 5 rounds respectively. The comparison between
QPlayer and QMPlayer is shown in Fig. 2.6.
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(a) l=5000

 

(b) l=10000

 

(c) l=20000

 

(d) l=30000

 

(e) l=40000

 

(f) l=50000

Figure 2.6: Win Rate of QMPlayer (QPlayer) vs Random in Tic-Tac-Toe for 5
experiments. Small Monte Carlo lookaheads improve the convergence of Q-learning,
especially in the early part of learning. QMPlayer always outperforms Qplayer
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Fig. 2.6(a) shows that QPlayer has the most unstable performance (the largest

variance in 5 experiments) and only wins around 55% matches after training

5000 matches. Fig. 2.6(b) illustrates that after training 10000 matches QPlayer

wins about 80% matches. However, during the exploration period (the white

part of the figure) the performance is still very unstable. Fig. 2.6(c) shows that

QPlayer wins about 86% of the matches while learning 20000 matches still with

high variance. Fig. 2.6(d), Fig. 2.6(e), Fig. 2.6(f), show us that after training

30000, 40000, 50000 matches, QPlayer gets a similar win rate, which is nearly

86.5% with smaller and smaller variance.

In Fig. 2.6(a), QMPlayer gets a high win rate (about 67%) at the very beginning.

Then the win rate decreases to 66% and 65%, and then increases from 65% to

around 84% at the 5000th macth. Finally, the win rate stays at around 85%.

Also in the other sub figures, for QMPlayer, the curves all decrease first and

then increase until reaching a stable state. This is because at the very beginning,

QMPlayer chooses more actions from MCS. Then as the learning period moves

forward, it chooses more actions from Q table.

Overall, as the l increases, the win rate of QPlayer becomes higher until leveling

off around 86.5%. The variance becomes smaller and smaller, which proves that

Q-learning can achieve convergence in GGP games and that a proper ε decay-

ing speed makes sense for classical Q-learning. Note that in every sub figure,

QMPlayer can always achieve a higher win rate than QPlayer, not only at the

beginning but also at the end of the learning period. Overall, QMPlayer achieves

a better performance than QPlayer with the higher convergence win rate (at

least 87.5% after training 50000 matches). To compare the convergence speeds

of QPlayer and QMPlayer, the convergence win rates of different l is summarized

according to Fig. 2.6 in Fig. 2.7.
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2.5 Summary

 

Figure 2.7: Convergence Win Rate of QMPlayer (QPlayer) vs Random in Tic-
Tac-Toe

These results show that combining online MCS with classical Q-learning for GGP
can improve the win rate both at the beginning and at the end of the offline
learning period. The main reason is that QM-learning allows the Q(s, a) table
to be filled quickly with good actions from MCS, achieving a quick and direct
learning rate. It is worth to note that, QMPlayer will spend slightly more time
(at most is search time limit× number of (state-action) pairs) in training than
QPlayer. It will be time consuming for MCS to compute a large game, and this is
also the essential drawback of table-based Q-learning, so currently QM-learning
is also only applicable for small games.

2.5 Summary

This chapter examines the applicability of Q-learning, a canonical reinforcement
learning algorithm, to create general players for GGP programs. Firstly, it
has shown how good canonical implementations of Q-learning perform on GGP
games. The GGP system allows to easily use three real games for the exper-
iments: Tic-Tac-Toe, Connect Four, and Hex. It is found that (1) Q-learning
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is indeed general enough to achieve convergence in GGP games. However, con-
vergence is slow. In accordance with Banerjee [46], who used a static value for
ε, it is also found that (2) a value for ε that changes with the learning phases
gives better performance (start with more exploration, become more greedy later
on). The table-based implementation of Q-learning facilitates theoretical anal-
ysis, and comparison against some baselines [46]. However, it is only suitable
for small games. A neural network implementation facilitates the study of larger
games, and allows meaningful comparison to DQN variants [44].

Still using the table-based implementation, Q-learning is then enhanced with an
MCS based lookahead. It is found that, especially at the start of the learning,
this speeds up convergence considerably. The Q-learning is table-based, limiting
it to small games. Even with the MCS enhancement, convergence of QM-learning
does not yet allow its direct use in larger games. The QPlayer needs to learn a
large number of matches to get good performance in playing larger games. The
results with the improved Monte Carlo algorithm show a real improvement of
the player’s win rate, and learn the most probable strategies to get high rewards
faster than learning completely from scratch. This enhancement shows how online
search can be used to improve the performance of offline learning in GGP. On this
basis, different offline learning algorithms can be assessed (or follow Gelly [18] to
combine it with neural networks for larger games in GGP).

The use of Monte Carlo in QM-learning is different from the AlphaGo archi-
tecture, where MCTS is wrapped around Q-learning (DQN) [44]. In this work,
Monte Carlo is inserted within the Q-learning loop. Future work should show
if the QM-learning results transfer to AlphaGo-like uses of DQN inside MCTS,
if QM-learning can achieve faster convergence, reducing the high computational
demands of AlphaGo [16]. Additionally, nested MCS in Q-learning [57] could also
be an option. Implementing Neural Network based players also allows the study
of more complex GGP games [59].

Importantly, this work inspires a deep reinforcement learning framework to play
GDL-games on GGP [60] and inspires the further studies of applying MCTS en-
hancements to improve neural network based reinforcement learning (Alphazero-
like self-play) in Chapter 5 and Chapter 6.
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Chapter 3

Hyper-Parameters for
AlphaZero-like Self-play

3.1 Introduction

In order to further investigate AGI on games in a deep learning era, we can use
a neural network based framework in GGP or switch to use an existing neural
network based deep reinforcement learning system for games. We noticed that
AlphaZero provides a successful general framework to play complex board games
like Go, Chess and Shogi [10], and these AlphaGo series papers [10, 16, 17] have
sparked much interest of researchers and the general public alike into deep re-
inforcement learning. Despite the success of AlphaGo and related methods in
Go and other application areas [61, 62], there are unexplored and unsolved puz-
zles in the parameterization and design of the algorithms. For example, could
MCTS enhancements also improve the performance in AlphaZero-like self-play as
MCS enhancement did in table based Q-learning in GGP (Chapter 2), and how?
(These questions will be further studied in Chapter 5 and Chapter 6.)

As for parameterization, different hyper-parameter settings can lead to very differ-
ent results. However, hyper-parameter design-space sweeps are computationally
very expensive, and in the original publications, we can only find limited informa-
tion of how to set the values of some important parameters and why. Also, there
are few works on how to set the hyper-parameters for these algorithms, and more
insight into the hyper-parameter interactions is necessary. To this end, and there
are some interesting re-implementations of AlphaZero [63, 64], we study the most
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general framework algorithm in the aforementioned AlphaGo series by using a
lightweight re-implementation of AlphaZero: AlphaZeroGeneral [65].

In order to optimize hyper-parameters, it is important to understand their func-
tion and interactions in an algorithm. A single iteration in the AlphaZeroGeneral
framework consists of three stages: self-play, neural network training and arena
comparison. In these stages, we explore 12 hyper-parameters (see section 3.4.1)
in AlphaZeroGeneral. Furthermore, we observe 2 objectives (see section 3.4.2):
training loss and time cost in each single run. A sweep of the hyper-parameter
space is computationally demanding. In order to provide a meaningful analysis
we use small board sizes of typical combinatorial games. This sweep provides an
overview of the hyper-parameter contributions and provides a basis for further
analysis. Based on these results, we choose 4 interesting parameters to further
evaluate in depth.

As performance measure, we use the Elo rating that can be computed during
training time of the self-play system, as a running relative Elo, and computed
separately, in a dedicated tournament between different trained players.

Our contributions can be summarized as follows:

1. We find that in general higher values of most hyper-parameters lead to
higher playing strength.

2. And within a limited budget, a higher number of outer iterations is more
promising than higher numbers of inner iterations: these are subsumed by
outer iterations.

This chapter is structured as follows. We first give an overview of the most
relevant literature, before describing the considered test games in Sect. 3.3. Then
we describe the AlphaZero-like self-play algorithm in Sect. 3.4. After setting up
experiments in Sect. 3.5, we present the results in Sect. 3.6. Finally, we summarize
the chapter and discuss promising future work.

3.2 Related work

Hyper-parameter tuning by optimization is very important for many practical
algorithms. In reinforcement learning, for instance, the ε-greedy strategy of clas-
sical Q-learning is used to balance exploration and exploitation. Different ε val-
ues lead to different learning performance [31]. Another well known example of
hyper-parameter tuning is the parameter Cp in MCTS [7, 66, 67]. There are
many works on tuning Cp for different kinds of tasks. These provide insight on
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3.3 Test Game

setting its value for MCTS in order to balance exploration and exploitation [58].
In deep reinforcement learning, the effect of the many neural network parameters
are a black-box that precludes understanding, although the strong decision ac-
curacy of deep learning is undeniable [68], as the results in Go (and many other
applications) have shown [69]. After AlphaGo [16], the role of self-play became
more and more important. Earlier works on self-play in reinforcement learning
are [70, 71, 72, 73]. An overview is provided in [74].

On hyper-parameters for AlphaZero-like systems there are a few studies: [75]
tuned some parameters (in particular MCTS-related parameters in self-play game
playing) in AlphaGo with Bayesian optimization, which leads to abandoning the
fast rollout in AlphaGo Zero and AlphaZero.

Our experiments are also performed using AlphaZeroGeneral [65] on 6×6 Oth-
ello [76]. The smaller size of the game allows us to do more experiments, and
these lead us into largely uncharted territory where we hope to find effects that
cannot be seen in Go or Chess.

3.3 Test Game

1
2
3
4
5
6

1  2  3  4  5  6 

 
Figure 3.1: Starting position for 6×6 Othello

In our hyper-parameter sweep experiments, we use Othello with a 6×6 board size,
see Fig. 3.1. Othello is a two-player game. Players take turns placing their own
color pieces. Any opponent’s color pieces that are in a straight line and bounded
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by the piece just placed and another piece of the current player’s are flipped to
the current player’s color. While the last legal position is filled, the player who
has most pieces wins the game. Fig. 3.1 shows the start configurations for 6×6
Othello.

There is a wealth of research on finding playing strategies for these three games
by means of different methods. For example, Buro created Logistello [77] to play
Othello. Chong et al. described the evolution of neural networks for learning to
play Othello [78]. Moreover, Banerjee et al. tested knowledge transfer in GGP
on small games including 4×4 Othello [46]. The board size gives us a handle to
reduce or increase the overall difficulty of these games. In our experiments we
use AlphaZero-like zero learning, where a reinforcement learning system learns
from tabula rasa, by playing games against itself using a combination of deep
reinforcement learning and MCTS.

3.4 AlphaZero-like Self-play

3.4.1 The Base Algorithm

Following the works by Silver et al. [10, 16] the fundamental structure of AlphaZero-
like Self-play is an iteration over three different stages (see Algorithm 2).

The first stage is a self-play tournament. The computer player performs several
games against itself in order to generate data for further training. In each step of
a game (episode), the player runs MCTS to obtain, for each move, an enhanced
policy π based on the probability p provided by the neural network fθ. We now
introduce the hyper-parameters, and their abbreviation that we use in this thesis.
In MCTS, hyper-parameter Cp is used to balance exploration and exploitation of
game tree search, and we abbreviate it to c (the equation of P-UCT with c for
MCTS can be found in Chapter 5). Hyper-parameter m is the number of times
to run down from the root for building the game tree, where the parameterized
network fθ provides the value (v) of the states for MCTS. For actual (self-)play,
from T’ steps on, the player always chooses the best move according to π. Before
that, the player always chooses a random move based on the probability distribu-
tion of π. After finishing the games, the new examples are normalized as a form
of (st, πt, zt) and stored in D.

The second stage consists of neural network training, using data from the self-
play tournament. Training lasts for several epochs. In each epoch (ep), training
examples generated in the most recent rs iterations are stored in a retrain buffer
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Algorithm 2 AlphaZero-like Self-play Algorithm
1: function AlphaZeroGeneral
2: Initialize fθ with random weights; Initialize retrain buffer D with capacity N
3: for iteration=1, . . . , I do
4: for episode=1,. . . , E do . stage 1
5: for t=1, . . . , T ′, . . . , T do
6: Get the best move prediction πt by performing MCTS based on fθ(st)
7: if Before step T ′ then
8: select random action at based on probability πt
9: else
10: select action at = argmaxa(πt)

11: Store example (st, πt, zt) in D
12: Set st=excuteAction(st, at)

13: Label reward zt (t ∈ [1, T ]) as zT in examples

14: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
15: fθ′ ← Train fθ by minimizing Equation 3.1 based on sampled examples
16: Set fθ = fθ′ if fθ′ is better than fθ . stage 3

17: return fθ;

and are divided into several small batches [79] according to the specific batch
size (bs). The neural network is trained to minimize [80] the value of the loss func-
tion which (see Equation 3.1) sums up the mean-squared error between predicted
outcome and real outcome and the cross-entropy losses between p and π with a
learning rate (lr) and dropout (d). Dropout is used as probability to randomly
ignore some nodes of the hidden layer in order to avoid overfitting [81].

The last stage is arena comparison, in which the newly trained neural network
model (fθ′) is run against the previous neural network model (fθ). The better
model is adopted for the next iteration. In order to achieve this, fθ′ and fθ play
against each other for n games. If fθ′ wins more than a fraction of u games, it is
replacing the previous best fθ. Otherwise, fθ′ is rejected and fθ is kept as current
best model. Compared with AlphaGo Zero, AlphaZero does not entail the arena
comparison stage anymore. However, we keep this stage for making sure that we
can safely recognize improvements.

Furthermore, we present a conceptual diagram to describe the Algorithm 2 with
necessary components for 3 stages and corresponding hyper-parameters in Fig. 3.2:
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Self-play
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Neural Network

Game examples

New NN

state

Update?
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Figure 3.2: A diagram of the schema of AlphaZero-like Self-play Algorithm over 3
stages with corresponding hyper-parameters. Hyper-parameter I controls the loop
over these 3 stages.

3.4.2 Loss Function

The training loss function consists of lp and lv. The neural network fθ is
parameterized by θ. fθ takes the game board state s as input, and provides the
value vθ ∈ [−1, 1] of s and a policy probability distribution vector p over all legal
actions as outputs. pθ is the policy provided by fθ to guide MCTS for playing
games. After performing MCTS, we obtain an improvement estimate as policy π.
Training aims at making p more similar to π. This can be achieved by minimizing
the cross entropy of both distributions. Therefore, lp is defined as −π> logp.
The other aim is to minimize the difference between the output value (vθ(st))
of the state s according to fθ and the real outcome (zt ∈ {−1, 1}) of the game.
Therefore, lv is defined as the mean squared error (v − z)2. Summarizing, the
total loss function of AlphaZero is defined in Equation 3.1.

l+ = −π> logp+ (v − z)2 (3.1)

Note that in AlphaZero’s loss function, there is an extra regularization term to
guarantee the training stability of the neural network. In order to pay more
attention to two evaluation function components, instead, we apply standard
measures to avoid overfitting such as the dropout mechanism.

3.4.3 Bayesian Elo System

The Elo rating function has been developed as a method for calculating the
relative skill levels of players in games. Usually, in zero-sum games, there are
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3.4 AlphaZero-like Self-play

two players, A and B. If their Elo ratings are RA and RB, respectively, then
the expectation that player A wins the next game is EA = 1

1+10(RB−RA)/400 . If
the real outcome of the next game is SA, then the updated Elo of player A can
be calculated from its original Elo by RA = RA + K(SA − EA), where K is the
factor of the maximum possible adjustment per game. In practice, K should be
bigger for weaker players but smaller for stronger players. Following [10], in our
design, we adopt the Bayesian Elo system [82] to show the improvement curve
of the learning player during self-play. We also employ this method to assess the
playing strength of the final models.

3.4.4 Time Cost Function

Because of the high computational cost of self-play reinforcement learning, the
running time of self-play is of great importance. We have created a time cost
function to predict the running time, based on the algorithmic structure in
Algorithm 2. According to Algorithm 2, the whole training process consists of
several iterations with three steps as introduced in section 3.4.1. Please refer to
the algorithm and to equation 3.2. In ith iteration (1 ≤ i ≤ I), if we assume
that in jth episode (1 ≤ j ≤ E), for kth game step (the size of k mainly depends
on the game complexity), the time cost of lth MCTS (1 ≤ l ≤ m) simulation is
t
(i)
jkl, and assume that for pth epoch (1 ≤ p ≤ ep), the time cost of pulling qth
batch (1 ≤ q ≤ trainingExampleList.size/bs)1 through the neural network is
t
(i)
pq , and assume that in wth arena comparison (1 ≤ w ≤ n), for xth game step,
the time cost of yth MCTS simulation (1 ≤ y ≤ m) is t(i)xyw. The time cost of the
whole training process is summarized in equation 3.2.

∑
i

(

self−play︷ ︸︸ ︷∑
j

∑
k

∑
l

t
(i)
jkl +

training︷ ︸︸ ︷∑
p

∑
q

t(i)pq +

arena comparison︷ ︸︸ ︷∑
x

∑
y

∑
w

t(i)xyw) (3.2)

Please refer to Table 3.1 for an overview of the hyper-parameters. From Algo-
rithm 2 and equation 3.2, we can see that the hyper-parameters, such as I, E, m,
ep, bs, rs, n etc., influence training time. In addition, t(i)jkl and t

(i)
xyw are simulation

time costs that rely on hardware capacity and game complexity. t(i)uv also relies
on the structure of the neural network. In our experiments, all neural network
models share the same structure, which consists of 4 convolutional layers and 2
fully connected layers.

1the size of trainingExampleList is also relative to the game complexity
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3.5 Experimental Setup

We sweep the 12 hyper-parameters by configuring 3 different values (minimum
value, default value and maximum value) to find the most promising parameter
values. In each single run of training, we play 6×6 Othello [76] and change
the value of one hyper-parameter, keeping the other hyper-parameters at default
values (see Table 3.1).

Our experiments are run on a machine with 128GB RAM, 3TB local storage,
20-core Intel Xeon E5-2650v3 CPUs (2.30GHz, 40 threads), 2 NVIDIA Titanium
GPUs (each with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each with
6GB memory). In order to keep using the same GPUs, we deploy each run of
experiments on the NVIDIA GTX 980 Ti GPU. Each run of experiments takes 2
to 3 days.

3.5.1 Hyper-Parameter Sweep

In order to train a player to play 6×6 Othello based on Algorithm 2, we employ
the parameter values in Table. 3.1. Each experiment only observes one hyper-
parameter, keeping the other hyper-parameters at default values.

Table 3.1: Hyper-Parameter Setting

- Description Minimum Default Maximum
I number of iteration 50 100 150
E number of episode 10 50 100
T’ step threshold 10 15 20
m MCTS simulation times 25 100 200
c weight in UCT 0.5 1.0 2.0
rs number of retrain iteration 1 20 40
ep number of epoch 5 10 15
bs batch size 32 64 96
lr learning rate 0.001 0.005 0.01
d dropout probability 0.2 0.3 0.4
n number of comparison games 20 40 100
u update threshold 0.5 0.6 0.7
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3.6 Experimental Results

3.5.2 Hyper-Parameters Correlation Evaluation

Based on the above experiments, we further explore the correlation of interesting

hyper-parameters (i.e. I, E, m and ep) in terms of their best final player’s playing

strength and overall training time. We set values for these 4 hyper-parameters as

Table 3.2, and other parameters values are set to the default values in Table. 3.1.

In addition, for (and only for) this part of experiments, the stage 3 of Algorithm 2

is cut off. Instead, for every iteration, the trained model fθ′ is accepted as the

current best model fθ automatically, which is also adopted by AlphaZero and

saves a lot of time.

Table 3.2: Correlation Evaluation Hyper-Parameter Setting

- Description Minimum Middle Maximum
I number of iteration 25 50 75
E number of episode 10 20 30
m MCTS simulation times 25 50 75
ep number of epoch 5 10 15

Note that due to computation resource limitations, for hyper-parameter sweep

experiments on 6×6 Othello, we only perform single run experiments. This

may cause noise, but still provides valuable insights on the importance of hyper-

parameters under the AlphaZero-like self-play framework.

3.6 Experimental Results

In order to better understand the training process, first, we depict training loss

evolution for default settings in Fig. 3.3.
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Figure 3.3: Single run training loss over iterations I and epochs ep

We plot the training loss of each epoch in every iteration and see that (1) in
each iteration, loss decreases along with increasing epochs, and that (2) loss also
decreases with increasing iterations up to a relatively stable level.

3.6.1 Hyper-Parameter Sweep Results

I: In order to find a good value for I (iterations), we train 3 different models to
play 6×6 Othello by setting I at minimum, default and maximum value respec-
tively. We keep the other hyper-parameters at their default values. Fig. 3.4(a)
shows that training loss decreases to a relatively stable level. However, after
iteration 120, the training loss unexpectedly increases to the same level as for
iteration 100 and further decreases. This surprising behavior could be caused
by a too high learning rate, an improper update threshold, or overfitting, or the
learner suddenly explores something new.

E: Since more episodes mean more training examples, it can be expected that
more training examples lead to more accurate results. However, collecting more
training examples also needs more resources. This shows again that hyper-
parameter optimization is necessary to find a reasonable value of for E. In Fig. 3.4(b),
for E=100, the training loss curve is almost the same as the 2 other curves for a
long time before eventually going down.
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3.6 Experimental Results

T’: The step threshold controls when to choose a random action or the one
suggested by MCTS. This parameter controls exploration in self-play, to prevent
deterministic policies from generating training examples. Small T’ results in
more deterministic policies, large T’ in policies more different from the model.
In Fig. 3.4(c), we see that T’=10 is a good value.

m: In theory, more MCTS simulations m should provide better policies. How-
ever, higher m requires more time to get such a policy. Fig. 3.4(d) shows that
a value for 200 MCTS simulations achieves the best performance in the 70th it-
eration, then has a drop, to reach a similar level as 100 simulations in iteration
100.

c: This hyper-parameter Cp is used to balance the exploration and exploitation
during tree search. It is often set at 1.0. However, in Fig. 3.4(e), our experi-
mental results show that more exploitation (c=0.5) can provide smaller training
loss.

rs: In order to reduce overfitting, it is important to retrain models using previous
training examples. Finding a good retrain length of historical training examples is
necessary to reduce training time. In Fig. 3.4(f), we see that using training exam-
ples from the most recent single previous iteration achieves the smallest training
loss. This is an unexpecrted result, suggesting that overfitting is prevented by
other means and that the time saving works out best overall.

ep: The training loss of different ep is shown in Fig. 3.4(g). For ep=15 the
training loss is the lowest. This result shows that along with the increase of
epoch, the training loss decreases, which is as expected.

bs: a smaller batch size bs increases the number of batches, leading to higher
time cost. However, smaller bs means less training examples in each batch, which
may cause more fluctuation (larger variance) of training loss. Fig. 3.4(h) shows
that bs=96 achieves the smallest training loss in iteration 85.

lr: In order to avoid skipping over optima, a small learning rate is generally sug-
gested. However, a smaller learning rate learns (accepts) new knowledge slowly.
In Fig. 3.4(i), lr=0.001 achieves the lowest training loss around iteration 80.

d: Dropout is a popular method to prevent overfitting. Srivastava et al. claim
that dropping out 20% of the input units and 50% of the hidden units is often
found to be good [81]. In Fig. 3.4(j), however, we can not see a significant
difference.
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Figure 3.4: Training loss for different parameter settings over iterations. Larger
figures in arXiv version can be found in [33].
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n: The number of games in the arena comparison is a key factor of time cost. A
small value may miss accepting good new models and too large a value is a waste
of time. Our experimental results in Fig. 3.4(k) show that there is no significant
difference. A combination with u can be used to determine the acceptance or
rejection of a newly learnt model. In order to reduce time cost, a small n combined
with a large u may be a good choice.

u: This hyper-parameter is the update threshold. Normally, in two-player games,
player A is better than player B if it wins more than 50% games. A higher
threshold avoids fluctuations. However, if we set it too high, it becomes too
difficult to accept better models. Fig. 3.4(l) shows that u=0.7 is too high, 0.5
and 0.6 are acceptable.

Table 3.3: Time Cost (hr) of Different Parameter Setting

Parameter Minimum Default Maximum Type
I 23.8 44.0 60.3 time-sensitive
E 17.4 44.0 87.7 time-sensitive
T’ 41.6 44.0 40.4 time-friendly
m 26.0 44.0 64.8 time-sensitive
c 50.7 44.0 49.1 time-friendly
rs 26.5 44.0 50.7 time-sensitive
ep 43.4 44.0 55.7 time-sensitive
bs 47.7 44.0 37.7 time-sensitive
lr 47.8 44.0 40.3 time-friendly
d 51.9 44.0 51.4 time-friendly
n 33.5 44.0 57.4 time-sensitive
u 39.7 44.0 40.4 time-friendly

To investigate the impact on running time, we present the effect of different values
for each hyper-parameter in Table 3.3. We see that for parameter I, E, m, rs, n,
smaller values lead to quicker training, which is as expected. For bs, larger values
result in quicker training. The other hyper-parameters are indifferent, changing
their values will not lead to significant changes in training time. Therefore, tuning
these hyper-parameters shall reduce training time or achieve better quality in the
same time.
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Based on the aforementioned results and analysis, we summarize the importance
by evaluating the contribution of each parameter to training loss and time cost,
respectively, in Table 3.4 (best values in bold font). For training loss, different val-
ues of n and u do not result in a significant difference. Modifying time-indifferent
hyper-parameters changes training time only slightly , whereas larger value of
time-sensitive hyper-parameters lead to higher time cost.

Table 3.4: A Summary of Importance in Different Objectives

Parameter Default Value Loss Time Cost
I 100 100 50
E 50 10 10
T’ 15 10 similar
m 100 200 25
c 1.0 0.5 similar
rs 20 1 1
ep 10 15 5
bs 64 96 96
lr 0.005 0.001 similar
d 0.3 0.3 similar
n 40 insignificant 20
u 0.6 insignificant similar

3.6.2 Hyper-Parameter Correlation Evaluation Results

In this part, we investigate the correlation between promising hyper-parameters
in terms of time cost and playing strength. There are 34 = 81 final best players
trained based on 3 different values of 4 hyper-parameters (I, E, m and ep) plus a
random player (i.e. 82 in total). Any 2 of these 82 players play with each other.
Therefore, there are 82×81/2=3321 pairs, and for each of these, 10 games are
played.

In each sub-figures of Fig. 3.5, all models are trained from the same value of I and
E, according to the different values in x-axis and y-axis, we find that, generally,
larger m and larger ep lead to higher Elo ratings. However, in the last sub-
figure, we can clearly notice that the Elo rating of ep=10 is higher than that of
ep=15 for m=75, which shows that sometimes more training can not improve the
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Figure 3.5: Elo ratings of the final best players of the full tournament (3 param-
eters, 1 target value)

playing strength but decreases the training performance. We suspect that this is
caused by overfitting. Looking at the sub-figures, the results also show that more
(outer) training iterations can significantly improve the playing strength, also
more training examples in each iteration (bigger E ) helps. These outer iterations
are clearly more important than optimizing the inner hyper-parameters of m and
ep. Note that higher values for the outer hyper-parameters imply more MCTS
simulations and more training epochs, but not vice versa (more MCTS simulations
and more training epochs could also come from more inner MCTS simulation and
training epochs). This is an important insight regarding tuning hyper-parameters
for self-play.

According to (3.2) and Table. 3.4, we know that smaller values of time-sensitive
hyper-parameters result in quicker training. However, some time-sensitive hyper-
parameters influence the training of better models. Therefore, we analyze train-
ing time versus Elo rating of the hyper-parameters, to achieve the best training
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performance for a fixed time budget.
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Figure 3.6: Elo ratings of the final best players with different time cost of Self-play
and neural network training (same base data as in Fig. 3.5)

In order to find a way to assess the relationship between time cost and Elo
ratings, we categorize the time cost into two parts, one part is the self-play (stage
1 in Algorithm 2, iterations and episodes) time cost, the other is the training
part (stage 2 in Algorithm 2, training epochs). In general, spending more time in
training and in self-play gives higher Elo. In self-play time cost, there is also an
other interesting variable, searching time cost, which is influenced by the value
of m.

In Fig. 3.6 we also find high Elo points closer to the origin, confirming that
high Elo combinations of low self-play time and low training time exist, as was
indicated above, by choosing low epoch ep and simulation m values, since the
outer iterations already imply adequate training and simulation.

In order to further analyze the influence of self-play and training on time, we
present in Fig. 3.7(a) the full-tournament Elo ratings of the lower right panel
in Fig. 3.5. The blue line indicates the Pareto front of these combinations. We
find that low epoch values achieves the highest Elo in a high iteration training
session: more outer self-play iterations implies more training epochs, and the data
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3.7 Summary

generated is more diverse such that training reaches more efficient stable state
(no overfitting). All the points below the Pareto lines are sub optimal: it does
not make much sense to use them. For all the Pareto points, it is a question of
what is more important, time or strength.
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Figure 3.7: Elo ratings of final best players to self-play, training and total time
cost while I=75 and E=30.The values of tuple (m, ep) are given in the figures for
every data point. In long total training, for m, larger values cost more time and
generally improve the playing strength. For ep, more training within one iteration
does not show improvement for Elo ratings. The lines indicate the Pareto fronts of
Elo rating vs. time.

3.7 Summary

AlphaGo has taken reinforcement learning by storm. The performance of the
novel approach to self-play is stunning, yet the computational demands are high,
prohibiting the wider applicability of this method. Little is known about the
impact of the values of the many hyper-parameters on the speed and quality of
learning. In this work, we analyze important hyper-parameters and combinations
of loss-functions. We gain more insight and find recommendations for faster and
better self-play. We have used small games to allow us to perform a thorough
sweep using a large number of hyper-parameters, within a reasonable computa-
tional budget. We sweep 12 parameters in AlphaZeroGeneral [65] and analyse
loss and time cost for 6×6 Othello, and select the 4 most promising parameters
for further optimization.
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We more thoroughly evaluate the interaction between these 4 time-related hyper-
parameters, and find that i) generally, higher values lead to higher playing strength;
ii) within a limited budget, a higher number of the outer self-play iterations is
more promising than higher numbers of the inner training epochs, search simu-
lations, and game episodes. At first this is a surprising result, since conventional
wisdom tells us that deep learning networks should be trained well, and MCTS
needs many play-out simulations to find good training targets.

In AlphaZero-like self-play, the outer-iterations subsume the inner training and
search. Performing more outer iterations automatically implies that more inner
training and search is performed. The training and search improvements carry
over from one self-play iteration to the next, and long self-play sessions with many
iterations can get by with surprisingly little inner training epochs and MCTS sim-
ulations. The sample-efficiency of self-play is higher than simple composition of
the constituent elements would predict. Also, the implied high number of training
epochs may cause overfitting, to be reduced by small values for epochs.

In our experiments we also noted that care must be taken in computing Elo
ratings. Computing Elo based on game-play results during training typically gives
biased results that differ greatly from tournaments between multiple opponents.
Final best models tournament Elo calculation should be used.

For future work, more insight into training bias is needed. Also, automatic op-
timization frameworks can be explored, such as [83, 84]. Also, reproducibility
studies should be performed to see how our results carry over to larger games (like
Go), computational load permitting. Given that [75] tuned some MCTS-related
parameters (like exploration and exploitation balancing which we also adopt as
parameter c) in AlphaGo with Bayesian optimization, resulting in Elo improve-
ments, which evidenced our findings in self-play. However, [75] did not directly
study the parameters in neural network training, we believe our work provides
insightful analysis for future work on larger games.
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Chapter 4

Loss Functions of AlphaZero-like
Self-play

4.1 Introduction

As we introduced in Chapter 3, the AlphaGo series of papers [10, 16, 17] have
sparked enormous interest of researchers and the general public alike into deep
reinforcement learning [85, 86, 87, 88]. AlphaGo Zero [17], the successor of Al-
phaGo, masters the game of Go even without human knowledge. It generates
game playing data purely by an elegant form of self-play, training a single uni-
fied neural network with a policy head and a value head, in an MCTS searcher.
AlphaZero [10] uses a single architecture for playing three different games (Go,
Chess and Shogi) without human knowledge. Many applications and optimiza-
tion methods [89, 90] have been published and transformed the research field into
one of the most active of current computer science.

Despite the success of AlphaGo and related methods in various application areas,
there are unexplored and unsolved puzzles in the design and parameterization of
the algorithms. We have demonstrated the hyper-parameter tuning results of a
light-weight AlphaZero-like self-play framework in Chapter 3. Therefore, in this
Chapter, we focus on the loss function design of the AlphaZero-like self-play.

The neural network in AlphaZero is represented as fθ = (p, v) (a unified deep
network with a policy head and a value head). A policy p is a probability dis-
tribution for choosing the best move. A lower policy loss (lp) indicates a more
accurate selection of the best move. A value function v is the prediction of the
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final outcome. A lower value loss (lv) indicates a more accurate prediction of
the final outcome. The use of a double-headed network by Alpha(Go) Zero is
innovative, and we know of no in-depth study of how the two losses (lp and lv)
contribute to the playing strength of the final player. In Alpha(Go) Zero the sum
of the two losses is used. Other studies based on the AlphaGo series algorithms
just use it that way. However, the finding in the work of Matsuzaki et al. [91]
is different, which reminds us to carefully study alternative evaluation functions.
Thus, In order to increase our understanding of the inner workings of the mini-
mization of the double-headed network we study different combinations of policy
and value loss in this chapter. Therefore, in this work, we investigate:

a) what will happen if we only minimize a single target?

b) is a product combination a good alternative to summation?

We perform our experiments using a light-weight AlphaZero implementation
named AlphaZeroGeneral [65] and focus on smaller games, namely 5×5 and
6×6 Othello [76], 5×5, 6×6 Connect Four games [92] and 5×5 and 6×6 Gob-
ang [93].

As performance measure we use the Elo rating that can be computed during
training time of the self-play system, as a running relative Elo. It can also be
computed separately, in a dedicated tournament between different trained players.
Our contributions can be summarized as follows:

• Experimental results show that there is a high self-play bias in computing
training Elo ratings, such that it is incomparable among different training
runs. A full tournament is necessary to compare final best players’ Elo
ratings and accurately measure the playing strength of different players
relative to each other.

• We evaluate 4 alternative loss functions for 3 games and 2 board sizes, and
find that the best setting depends on the game and is usually not the sum
of policy and value loss. However, the sum might be considered as a good
default compromise if no further information about the game is present.

The chapter is structured as follows. Part 4.2 presents related work. Part 4.3
presents games tested in the experiments. Part 4.4 introduces the default loss
function of AlphaZero-like self-play and alternative loss functions. Part 4.5 sets
up the experiments. Part 4.6 presents the experimental results. Part 4.7 discusses
future work and summarizes this chapter.
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4.2 Related Work

4.2 Related Work

Deep reinforcement learning [94] is currently one of the most active research areas
in AI, reaching human level performance for difficult games such as Go [69], which
was almost unthinkable 10 years ago. Since Mnih et al. reported human-level
control for playing Atari 2600 games by means of deep reinforcement learning [44],
the performance of deep Q-networks (DQN) improved dramatically.

We have also observed a shift in DQN from imitating and learning from expert
human players [16] to relying more on self-play. This has been advocated in
the area of reinforcement learning [72, 73] for quite some time already. Silver
et al. [17] turned to self-play to generate training data instead of training from
human data (AlphaGo Zero), which not only saves a lot of work of collecting
and labeling data from human experts, but also shifts the constraining factor
for learning from available data to computing power, and achieves a form of
efficient curriculum learning [95]. This approach was generalized to a framework
(AlphaZero), showing the same approach that worked in Go, also worked in Shogi
and Chess, demonstrating how to transfer the learning process [10].

Reinforcement learning is a very active field. We see a move away from human
data to self-play. After many years of active research in MCTS [7], currently
most research effort is in improving DQN variants. AlphaGo is a complex system
with many tunable hyper-parameters. It is unclear if the many choices concern-
ing parameters and methods that have been made in the AlphaGo series are
close to optimal or if they can be improved by, e.g., changing parameters [32].
This includes the choice of minimization tasks (loss functions) used for measuring
training success. For instance, [96] studied policy and value network optimization
as a multi-task learning problem [97]. Even if the choices were very good for Go
and other complex games, this does not necessarily transfer well to less complex
tasks. For example, AlphaGo’s PUCT achieves better results than a single evalu-
ation function, but the result in [91] is different while playing Othello. Moreover,
[98] showed that the value function has more importance than the policy function
in the P-UCT algorithm for Othello.

4.3 Test Games

In our experiments, we use the games Othello, Connect Four and Gobang, each
with 5×5 and 6×6 board sizes. As described in Chapter 3, Othello is a pop-
ular two-player game. Players take turns placing their own color pieces. Any
opponent’s color pieces that are in a straight line and bounded by the piece just
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(c) 5×5 Gobang

Figure 4.1: Our test games on 5× 5 boards

placed and another piece of the current player’s are flipped to the current player’s
color. After the last legal position is filled, the player who has most pieces wins
the game. Fig. 4.1(a) is the start configuration for 5×5 Othello. Connect Four
is a two-player connection game. Players take turns dropping their own pieces
from the top into a vertically suspended grid. The pieces fall straight down and
occupy the lowest position within the column. The player who first forms a hor-
izontal, vertical, or diagonal line of four pieces wins the game. Fig. 4.1(b) is a
game termination example for 5×5 Connect Four where the red player wins the
game. Gobang is another connection game that is traditionally played with Go
pieces (black and white stones) on a Go board. Players alternate turns, placing a
stone of their color on an empty position. The winner is the first player to form
an unbroken chain of 4 stones horizontally, vertically, or diagonally. Fig. 4.1(c)
is a game termination example for 5×5 Gobang where the black player wins the
game.

There is a wealth of research on finding playing strategies for these three games
by means of different methods. For example, Buro created Logistello [77] to play
Othello. Chong et al. described the evolution of neural networks for learning to
play Othello [78]. Thill et al. applied temporal difference learning to play Connect
Four [99]. Zhang et al. designed evaluation functions for Gobang [100]. Moreover,
Banerjee et al. tested knowledge transfer in GGP on small games including 4×4
Othello [46]. Wang et al. assessed the potential of classical Q-learning based on
small games including 4×4 Connect Four [31]. Obviously, these two games are
commonly tested in game playing.
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4.4 Loss Function

4.4.1 Minimization Targets

As we want to assess the effect of minimizing different loss functions for AlphaZero-
like self-play (Algorithm 2), besides the default loss function (Equation: 3.1), we
employ a weighted sum loss function based on Equation 3.1:

lλ = λ(−π> logp) + (1− λ)(v − z)2 (4.1)

where λ is a weight parameter. This provides some flexibility to gradually change
the nature of the function. In our experiments, we first set λ=0 and λ=1 in
order to assess lp or lv independently. Then we use Equation 3.1 as training
loss function. Furthermore, inspired by that, in the theory of multi-attribute
utility functions in multi-criteria optimization [101], a sum tends to prefer extreme
solutions, whereas product prefers more balanced solution in case of coefficient
objectives. Thus a product combination loss function is employed as follows:

l× = −π> logp× (v − z)2 (4.2)

For all experiments, each setting is run 8 times to get statistically significant
results (with error bars) using the parameters of Table 4.1 as default values.
However, in order to save training time, we reduce the iteration number to 100
in the larger games ( 6×6 Othello and 6×6 Connect Four).

4.5 Experimental Setup

Our experiments are performed on a GPU server with 128G RAM, 3TB local
storage, 20 Intel Xeon E5-2650v3 CPUs (2.30GHz, 40 threads), 2 NVIDIA Tita-
nium GPUs (each with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each
with 6GB memory). On these GPUs, every algorithm training run takes 2∼3
days. In this work, all neural network models share the same structure as used
in Chapter 3, which consists of 4 convolutional layers and 2 fully connected lay-
ers [65]. The parameter values for Algorithm 2 used in our experiments are given
in Table 4.1. In order to enhance reproducibility, we used values based on work
reported by [32].
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Table 4.1: Default Parameter Settings

Parameter Brief Description Default Value
I number of iteration 200
E number of episode 50
T’ step threshold 15
m MCTS simulation times 100
c weight in UCT 1.0
rs number of retrain iteration 20
ep number of epoch 10
bs batch size 64
lr learning rate 0.005
d dropout probability 0.3
n number of comparison games 40
u update threshold 0.6

4.5.1 Measurements

The chosen loss function is used to guide each training process, with the expec-
tation that smaller loss means a stronger model. However, in practise, we have
found that this is not always the case and another measure is needed to check
based on trained models real playing performance in competitions. Therefore,
following Deep Mind’s work, we employ Bayesian Elo ratings [82] to describe the
playing strength of the model in every iteration. In addition, for each game, we
use all best players trained from the four different targets (lp, lv, l+, l×) and 8
repetitions plus a random player to play the game with each other for 20 times.
From this, we calculate the Elo ratings of these 33 players to show the real play-
ing strength of a player, rather than the playing strength only based on its own
self-play training.

4.6 Experiment Results

In the following, we present the results of different loss functions. We have mea-
sured the individual value loss, the individual policy loss, the sum of the two, and
the product of the two, for the three games. We report training loss, the training
Elo rating and the tournament Elo rating of the final best players. Error bars
indicate standard deviations of 8 runs.
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(a) Minimize lp
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(b) Minimize lv
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(c) Minimize l+
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(d) Minimize l×

Figure 4.2: Training losses for minimizing different targets in 5×5 Othello, aver-
aged over 8 runs. All measured losses are shown, but only one of these is minimized
for. Note the different scaling for subfigure (b). Except for the l+, the target that
is minimized for is also the lowest

4.6.1 Training Loss

We first show the training losses in every iteration with one minimization task
per diagram, hence we need four of these per game. In these graphs we see what
minimizing for a specific target actually means for the other loss types.

For 5×5 Othello, from Fig. 4.2(a), we find that when minimizing lp only, the
loss decreases significantly to about 0.6 at the end of each training, whereas lv
stagnates at 1.0 after 10 iterations. Minimizing only lv (Fig. 4.2(b)) brings it
down from 0.5 to 0.2, but lp remains stable at a high level. In Fig. 4.2(c), we
see that when the l+ is minimized, both losses are reduced significantly. The lp
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(a) Minimize lp
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(b) Minimize lv
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(c) Minimize l+
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(d) Minimize l×

Figure 4.3: Training losses for minimizing different targets in 6×6 Othello, av-
eraged from 8 runs. All losses are shown while we minimize only one (similar to
Fig 4.2). Note the different scaling for subfigure (b). Except for l+, the target that
is minimized for is the lowest

decreases from about 1.2 to 0.5, lv surprisingly decreases to 0. Fig. 4.2(d), it is
similar to Fig. 4.2(c), while the l× is minimized, the lp and lv are also reduced.
The lp decreases to 0.5, the lv also surprisingly decreases to about 0.

For the larger 6×6 Othello, we find that minimizing only lp reduces it significantly
to about 0.75, where lv is stable again after about 10 iterations (Fig. 4.3(a)). For
minimizing lv (Fig. 4.3(b)), the results show that lv is reduced from more than
0.5 to about 0.25 at the end of each training, but lp seems to remain almost
unchanged. For minimizing the l+ (Fig. 4.3(c)), we find in contrast to 5×5 Othello
that lp decreases from about 1.1 to 0.4, whereas lv increases slightly from about
0.2 and then decreases to about 0.2 again. We also find a similar behavior of lv
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(a) Minimize lp
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(b) Minimize lv
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(c) Minimize l+
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(d) Minimize l×

Figure 4.4: Training losses for minimizing the four different targets in 5×5 Con-
nect Four, averaged from 8 runs. lv is always the lowest

when minimizing the l× (Fig. 4.3(d)), with the difference that the final computed
loss is much lower as the values are usually smaller than one. However, the
similarity of the single losses is striking.

For 5×5 Connect Four (see Fig. 4.4(a)), we find that when only minimizing lp, it
significantly reduces from 1.4 to about 0.6, whereas lv is minimized much quicker
from 1.0 to about 0.2, where it is almost stationary. Minimizing lv (Fig. 4.4(b))
leads to some reduction from more than 0.5 to about 0.15, but lp is not mov-
ing much after an initial slight decrease to about 1.6. For minimizing the l+
(Fig. 4.4(c)) and the l× (Fig. 4.4(d)), the behavior of lp and lv is very similar,
they both decrease steadily, until lv surprisingly reaches 0. Of course the l+ and
the l× arrive at different values, but in terms of both lp and lv they are not
different.
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(a) Optimize lp
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(b) Optimize lv
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(c) Optimize sum
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(d) Optimize product

Figure 4.5: Training losses for optimizing different targets in 6×6 Connect Four,
averaged from 8 Runs. lv is the lowest except for the product target

The training process of the larger 6×6 Connect Four is investigated in Fig 4.5(a).
We find that optimizing lp reduces it significantly from 1.7 to about 0.7 at the
end of each training, where lv is minimized from 1.2 to about 0.4. For the scenario
with optimizing lv (Fig 4.5(b)), we find a similar behavior than for the smaller
Connect Four. After some initial progress, there is only stagnation. Again, for
optimizing the sum and the product, the target value changes, but the single loss
values lp and lv behave similarly (Figs 4.5(c) and 4.5(d)). Thus we see that both
targets lead to very similar training processes.

For 5×5 Gobang game, we find that, in Fig. 4.6, when only minimizing lp, the lp
value decreases from around 2.5 to about 1.25 while the lv value reduces from 1.0
to 0.5 (see Fig. 4.6(a)). When minimizing lv, lv value quickly reduces to a very
low level which is lower than 0.1 (see Fig. 4.6(b)). Minimizing l+ and l× both

52



4.6 Experiment Results

0 20 40 60 80 100 120 140 160 180
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Minimize lp

0 20 40 60 80 100 120 140 160 180
Training iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Va
lu

e

lp
lv

l+

l×

(b) Minimize lv
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(c) Minimize l+
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(d) Minimize l×

Figure 4.6: Training losses for minimizing the four different targets in 5×5 Gob-
ang, averaged from 8 runs. lv is always the lowest

lead to stationary low lv levels from the beginning of training which is different
from Othello and Connect Four.

4.6.2 Training Elo Rating

Following the AlphaGo papers, the training Elo rating of every iteration during
training is investigated. Instead of showing results from single runs, means and
variances for 8 runs for each target are provided, categorized by different games
in Fig. 4.7.

From Fig. 4.7(a) (small 5×5 Othello) we see that for all minimization tasks, Elo
values steadily improve, while they raise fastest for lp. In Fig. 4.7(b), we find
that for 6×6 Othello version, Elo values also always improve, but much faster for
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(a) 5×5 Othello
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(b) 6×6 Othello
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(c) 5×5 Connect Four
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(d) 6×6 Connect Four
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(e) 5×5 Gobang
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(f) 6×6 Gobang

Figure 4.7: The whole history Elo rating at each iteration during training for
different games, aggregated from 8 runs. The training Elo for l+ and l× in panel b
and c for example shows inconsistent results
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the l+ and l× target, compared to the single loss targets.

Fig. 4.7(c) and Fig. 4.7(d) show the Elo rate progression for training players
with the four different targets on the small and larger Connect Four setting.
This looks a bit different from the Othello results, as we find stagnation (for
6×6 Connect Four) as well as even degeneration (for 5×5 Connect Four). The
latter actually means that for decreasing loss in the training phase, we achieve
decreasing Elo rates, such that the players get weaker and not stronger. In the
larger Connect Four setting, we still have a clear improvement, especially if we
minimize for lv. Minimizing for lp leads to stagnation quickly, or at least to a
very slow improvement.

Overall, we display the Elo progression obtained from the different minimization
targets for one game together. However, one must be aware that their numbers
are not directly comparable due to the high self-play bias (as they stem from
players who have never played against each other). Nevertheless, the trends as
observed for single self-play are of interest, and it is especially interesting to see
if Elo values correlate with the progression of losses. Based on the experimental
results, we can conclude that the training Elo rating is certainly good for assessing
if training actually works, whereas the losses alone do not always show that. We
may even experience contradicting outcomes as stagnating losses and rising Elo
ratings (for the big Othello setting and lv) or completely counterintuitive results
as for the small Connect Four setting where Elo ratings and losses are partly anti-
correlated. We have experimental evidence for the fact that training losses and
Elo ratings are by no means interchangeable as they can provide very different
impressions of what is actually happening.

4.6.3 The Final Best Player Tournament Elo Rating

In order to measure which target can achieve better playing strength, we let all
final models trained from 8 runs and 4 targets plus a random player pit against
each other for 20 times in a full round robin tournament. This enables a direct
comparison of the final outcomes of the different training processes with different
targets. It is thus more informative than the training Elo due to the self-play bias,
but provides no information during the self-play training process. In principle,
it is possible to do this also during the training at certain iterations, but this is
computationally very expensive.
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(b) 6×6 Othello
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(d) 6×6 Connect Four
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(e) 5×5 Gobang

lp lv l+ l×
Minimized target

−700
−600
−500
−400
−300
−200
−100

0
100
200
300
400
500
600
700

E
lo

ra
tin

g

(f) 6×6 Gobang

Figure 4.8: Round-robin tournament of all final models from minimizing different
targets. For each game 8 final models from 4 different targets plus a random
player (i.e. 33 in total). In panel (a) the difference is small. In panel b, c, and d,
the Elo rating of lv minimized players clearly dominates. However, in panel (f), the
Elo rating of lp minimized players clearly achieve the best performance.
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4.7 Summary

The results are presented in Fig. 4.8. and show that minimizing lv achieves the
highest Elo rating with small variance for 6×6 Othello, 5×5 Connect Four and
6×6 Connect Four. For 5×5 Othello, with 200 training iterations, the difference
between the results is small. We therefore presume that minimizing lv is the best
choice for the games we focus on. This is surprising because we expected the
l+ to perform best as documented in the literature. However, this may apply to
smaller games only, and 5×5 Othello already seems to be a border case where
overfitting levels out all differences.

In conclusion, we find that solely minimizing lv is an alternative to the default
sum objective l+ in many cases. We also report exceptions, especially in relation
to the Elo rating as calculated during training. The relation between Elo and loss
during training is sometimes inconsistent (5×5 Connect Four training shows Elo
decreasing while the losses are actually minimized) due to training bias. And for
Gobang game, only minimizing lp is the best alternative. A combination achieves
lowest loss, but lv achieves the highest training Elo. If we minimize product loss
l×, this can result in higher Elo rating for certain games. More research (such as
training bias and in which case which objective function (combination) should be
employed) should be studied further.

4.7 Summary

Most function approximators in supervised learning and reinforcement learning
use a single neural network with a single input and output. In reinforcement
learning, this is either a policy or a value network. Alpha(Go) Zero innovatively
minimizes both policy and value, using a single unified network with two heads, a
policy head and a value head. Alpha(Go) Zero and other works minimize the sum
of policy and value loss. Here, we study four different loss function combinations:
(1) lp, (2) lv, (3) l+, (4) l×. We use the open source AlphaZeroGeneral system for
light-weight self-play experiments on two small games, Connect Four and Oth-
ello. Surprisingly, we find that in many cases lv achieves the highest tournament
Elo rating, in contrast to the default sum objective in AlphaZero and AlphaZe-
roGeneral. The obtained experimental results in this chapter however indicate
that relying on default setting, major performance gains are likely to be missed
out. Much research in self-play is recently going on using the default loss function
without questioning this default choice. More research is needed into the relative
importance of value function and policy function in small games. Furthermore,
default hyper-parameter settings may be non-optimal, especially for the smaller
games we investigate here.
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During training, we compute a running Elo rating. We find that the training
losses trend and the Elo ratings trend are inconsistent in some games (5×5 Con-
nect Four and 6×6 Othello). Training Elo, while cheap to compute, can be
a misleading indicator of playing strength, because it is influenced by self-play
training bias [17]. Our results provide the methodological contribution that for
comparing playing strength among players, tournament Elo ratings should be
used, instead of running training Elo ratings.

This chapter shows that the choice of the optimal combined loss function can have
a huge impact on Elo performance. Unfortunately, our computational resources
did not allow us to test the approach on large board sizes, but the results should
encourage similar research of loss functions and alternative Elo computation also
for large scale games.

58



Chapter 5

Warm-Starting AlphaZero-like
Self-Play

5.1 Introduction

In Chapter 2, we showed that MCS enhancements can improve table based Q-
learning, which suggests whether MCTS enhancements could also improve neural
network based deep reinforment learning? We have seen that the AlphaGo series
of programs [10, 16, 17] achieve impressive super human level performance in
board games. Subsequently, there is much interest among deep reinforcement
learning researchers in self-play, and self-play is applied to many applications [61,
62]. In self-play, MCTS [7] is used to train a deep neural network, that is then
employed in tree searches, in which MCTS uses the network that it helped train
in previous iterations.

On the one hand, self-play is utilized to generate game playing records and assign
game rewards for each training example automatically. Next, these examples
are fed to the neural network for improving the model. No database of labeled
examples is used. Self-play learns tabula rasa, from scratch. However, self-play
suffers from a cold-start problem, and may also easily suffer from bias since only
a small part of the search space is used for training, and training samples in
reinforcement learning are heavily correlated [17, 44].

On the other hand, the MCTS search enhances performance of the trained model
by providing improved training examples. There has been much research into
enhancements to improve MCTS [7, 74], but to the best of our knowledge, few of
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5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

these are used in Alphazero-like self-play, which we find surprising, given the large
computational demands of self-play and the cold-start and bias problems.

A reason may be that AlphaZero-like self-play is still young. Another reason could
be that the original AlphaGo paper [16] remarks about AMAF and RAVE [18],
two of the best known MCTS enhancements, that "AlphaGo does not employ the
all-moves-as-first (AMAF) or rapid action value estimation (RAVE) [24] heuris-
tics used in the majority of Monte Carlo Go programs; when using policy networks
as prior knowledge, these biased heuristics do not appear to give any additional
benefit". Our experiments indicate otherwise, and we believe there is merit in
exploring warm-start MCTS in an AlphaZero-like self-play setting.

We agree that when the policy network is well trained, then heuristics may not
provide significant added benefit. However, when this policy network has not
been well trained, especially at the beginning of the training, the neural network
provides approximately random values for MCTS, which can lead to bad perfor-
mance or biased training. The MCTS enhancements or specialized evolutionary
algorithms such as RHEA [102] may benefit the searcher by compensating the
weakness of the early neural network, providing better training examples at the
start of iterative training for self-play, and quicker learning. Therefore, in this
work, we first test the possibility of MCTS enhancements and RHEA for improv-
ing self-play, and then choose MCTS enhancements to do full scale experiments,
the results show that MCTS with warm-start enhancements in the start period
of AlphaZero-like self-play improve iterative training with tests on 3 different
regular board games, using an AlphaZero re-implementation [65].

Our main contributions can be summarized as follows:

1. We test MCTS enhancements and RHEA, and then choose warm-start en-
hancements (Rollout, RAVE and their combinations) to improve MCTS
in the start phase of iterative training to enhance AlphaZero-like self-play.
Experimental results show that in all 3 tested games, the enhancements
can achieve significantly higher Elo ratings, indicating that warm-start en-
hancements can improve AlphaZero-like self-play.

2. In our experiments, a weighted combination of Rollout and RAVE with a
value from the neural network always achieves better performance, suggest-
ing also for how many iterations to enable the warm-start enhancement.

This chapter is structured as follows. After giving an overview of the most rele-
vant literature in Sect. 5.2, we describe the AlphaZero-like self-play algorithm in

60



5.2 Related Work

Sect. 5.3. Before the full length experiments in Sect. 5.5, an orientation experi-
ment is performed in Sect. 5.4. Finally, we summarize the chapter and discuss
future work.

5.2 Related Work

Since MCTS was created [103], many variants have been studied [7, 104], espe-
cially in games [105]. In addition, enhancements such as RAVE and AMAF have
been created to improve MCTS [18, 24]. Specifically, [24] can be regarded as one
of the early prologues of the AlphaGo series, in the sense that it combines on-
line search (MCTS with enhancements like RAVE ) and offline knowledge (table
based model) in playing small board Go.

In self-play, the large number of parameters in the deep network as well as the
large number of hyper-parameters (see Table 5.2) are a black-box that precludes
understanding. The high decision accuracy of deep learning [106], however, is un-
deniable [68], as the results in Go (and many other applications) have shown [69].
After AlphaGo Zero [17], which uses an MCTS searcher for training a neural
network model in a self-play loop, the role of self-play has become more and more
important. The neural network has two heads: a policy head and a value head,
aimed at learning the best next move, and the assessment of the current board
state, respectively.

Earlier works on self-play in reinforcement learning are [70, 71, 72, 73, 107]. An
overview is provided in [74]. For instance, [70, 72] compared self-play and using
an expert to play backgammon with temporal difference learning. [107] studied
co-evolution versus self-play temporal difference learning for acquiring position
evaluation in small board Go. All these works suggest promising results for self-
play.

More recently, [30] assessed the potential of classical Q-learning by introducing
MCS enhancement to improve training examples efficiency. [108] uses domain-
specific features and optimizations, but still starts from random initialization and
makes no use of outside strategic knowledge or preexisting data, that can accel-
erate the AlphaZero-like self-play. Cazenave et al. improved the Zero learning
using different structure of neural networks [109]. And Albert Silver improved
the Fat Fritz by learning from the surgical precision of Stockfish’s [10] legendary
search with a massive new neural network [110].
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However, to the best of our knowledge there is no further study on applying
MCTS enhancements in AlphaZero-like self-play despite the existence of many
practical and powerful enhancements.

5.3 AlphaZero-like Self-play Algorithms

5.3.1 The Algorithm Framework

According to [10, 34], the basic structure of warm-start AlphaZero-like self-play
is also an iterative process over three different stages (see Algorithm 3).

Algorithm 3 Warm-Start AlphaZero-like Self-play Algorithm
1: function AlphaZeroGeneralwithEnhancements
2: Initialize fθ with random weights; Initialize retrain buffer D with capacity N
3: for iteration=1, . . . ,I ′, . . . , I do . play curriculum of I tournaments
4: for episode=1,. . . , E do . stage 1, play tournament of E games
5: for t=1, . . . , T ′, . . . , T do . play game of T moves
6: πt ← MCTS Enhancement before I ′ or MCTS after I ′ iteration
7: at =randomly select on πt before T ′ or argmaxa(πt) after T ′ step
8: executeAction(st, at)

9: Store every (st, πt, zt) with game outcome zt (t ∈ [1, T ]) in D

10: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
11: Train fθ′ ← fθ

12: fθ = fθ′ if fθ′ is better than fθ using MCTS mini-tournament . stage 3

13: return fθ;

The first stage is a self-play tournament. The player plays several games against
itself to generate game playing records as training examples. In each step of a
game episode, the player runs MCTS (or one of the MCTS enhancements before I’
iteration) to obtain, for each move, an enhanced policy π based on the probability
p provided by the policy network fθ. The hyper-parameters, and the abbreviation
that we use in this chapter is given in Table 5.2. In MCTS, hyper-parameter Cp is
used to balance exploration and exploitation of the tree search, and we abbreviate
it to c. Hyper-parameter m is the number of times to search down from the root
for building the game tree, where the value (v) of the states is provided by fθ.
In (self-)play game episode, from T’ steps on, the player always chooses the
best action based on π. Before that, the player always chooses a random move
according to the probability distribution of π to obtain more diverse training
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examples. After the game ends, the new examples are normalized as a form of
(st, πt, zt) and stored in D.

The second stage consists of neural network training, using data from stage
1. Several epochs are usually employed for the training. In each epoch (ep),
training examples are randomly selected as several small batches [79] based on
the specific batch size (bs). The neural network is trained with a learning rate (lr)
and dropout (d) by minimizing [80] the value of the loss function which is the
sum of the mean-squared error between predicted outcome and real outcome and
the cross-entropy losses between p and π. Dropout is a probability to randomly
ignore some nodes of the hidden layer to avoid overfitting [81].

The last stage is the arena comparison, where a competition between the newly
trained neural network model (f ′θ) and the previous neural network model (fθ)
is run. The winner is adopted for the next iteration. In order to achieve this,
the competition runs n rounds of the game. If fθ′ wins more than a fraction of
u games, it is accepted to replace the previous best fθ. Otherwise, fθ′ is rejected
and fθ is kept as current best model. Compared with AlphaGo Zero, AlphaZero
does not employ this stage anymore. However, we keep it to make sure that we
can safely recognize improvements.

Algorithm 4 Neural Network Based MCTS
1: function MCTS(s, fθ)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree, initialize Q(s, ·) and N(s, ·) to 0
9: Get P (s, ·) and v(s) by looking up fθ(s)
10: return v(s)

11: else
12: Select an action a with highest UCT value
13: s′ ←getNextState(s, a)
14: v ←Search(s′)
15: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

16: N(s, a)← N(s, a) + 1

17: return v;
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5.3.2 MCTS

In self-play, MCTS is used to generate high quality examples for training the
neural network. A recursive MCTS pseudo code is given in Algorithm 4. For
each search, the value from the value head of the neural network is returned (or
the game termination reward, if the game terminates). During the search, for
each visit of a non-leaf node, the action with the highest P-UCT value is selected
to investigate next [17, 111]. After the search, the average win rate value Q(s, a)
and visit count N(s, a) in the followed trajectory are updated correspondingly.
The P-UCT formula that is used is as follows (with c as constant weight that
balances exploitation and exploration):

U(s, a) = Q(s, a) + c ∗ P (s, a)
√
N(s, ·)

N(s, a) + 1
(5.1)

In the whole training iterations (including the first I’ iterations), the Baseline
player always runs neural network based MCTS (i.e line 6 in Algorithm 3 is simply
replaced by πt ←MCTS).

5.3.3 MCTS Enhancements

In this chapter, we introduce 2 individual enhancements and 3 combinations to
improve neural network training based on MCTS (Algorithm 4).

Rollout Algorithm 4 uses the value from the value network as return value at
leaf nodes. However, if the neural network is not yet well trained, the values are
not accurate, and even random at the start phase, which can lead to biased and
slow training. Therefore, as warm-start enhancement we perform a classic MCTS
random rollout to get a value that provides more meaningful information. We
thus simply add a random rollout function which returns a terminal value after
line 9 in Algorithm 4, written as Get result v(s) by performing random rollout
until the game ends.1 See Algorithm 10 in Appendix A.3.

RAVE is a well-studied enhancement for improving the cold-start of MCTS in
games like Go (for details see [18]). The same idea can be applied to other
domains where the playout-sequence can be transposed. Standard MCTS only
updates the (s, a)-pair that has been visited. The RAVE enhancement extends
this rule to any action a that appears in the sub-sequence, thereby rapidly col-
lecting more statistics in an off-policy fashion. The idea to perform RAVE at

1In contrast to AlphaGo [16], where random rollouts were mixed in with all value-lookups,
in our scheme they replace the network lookup at the start of the training.
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startup is adapted from AMAF in the game of Go [18]. The main pseudo code of
RAVE is similar to Algorithm 4, the differences are in line 3, line 12 and line 16.
For RAVE, in line 3, policy πs is normalized based on Qrave(s, ·). In line 12, the
action a with highest UCTrave value, which is computed based on Equation 5.2,
is selected. After line 16, the idea of AMAF is applied to update Nrave and
Qrave, which are written as: Nrave(st1 , at2)← Nrave(st1 , at2) + 1, Qrave(st1 , at2)←
Nrave(st1 ,at2 )∗Qrave(st1 ,at2 )+v

Nrave(st1 ,at2 )+1
, where st1 ∈ V isitedPath, and at2 ∈ A(st1), and for

∀t < t2, at 6= at2 . More specifically, under state st, in the visited path, a state
st1 , all legal actions at2 of st1 that appear in its sub-sequence (t ≤ t1 < t2) are
considered as a (st1 , at2) tuple to update their Qrave and Nrave. See Algorithm 11
in Appendix A.3.

UCTrave(s, a) = (1− β) ∗ U(s, a) + β ∗ Urave(s, a) (5.2)

where

Urave(s, a) = Qrave(s, a) + c ∗ P (s, a)
√
Nrave(s, ·)

Nrave(s, a) + 1
, (5.3)

and

β =

√
equivalence

3 ∗N(s, ·) + equivalence
(5.4)

Usually, the value of equivalence is set to the number of MCTS simulations (i.e
m), as is also the case in our following experiments.

RoRa Based on Rollout and Rave enhancement, the first combination is to
simply add the random rollout to enhance RAVE. See Algorithm 12 in Ap-
pendix A.3.

WRo As the neural network model is getting better, we introduce a weighted
sum of rollout value and the value network as the return value. See Algorithm 13
in Appendix A.3. In our experiments, v(s) is computed as follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrollout (5.5)

WRoRa In addition, we also employ a weighted sum to combine the value a
neural network and the value of RoRa. See Algorithm 14 in Appendix A.3. In our
experiments, weight weight is related to the current iteration number i, i ∈ [0, I ′].
v(s) is computed as follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrora (5.6)

where
weight = 1− i

I ′
(5.7)
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5.4 Initial Experiment: MCTS(RAVE) vs. RHEA

Before running full scale experiments on warm-start self-play that take days to
weeks, we consider other possibilities for methods that could be used instead of
MCTS variants. Justesen et al. [102] have recently shown that depending on
the type of game that is played, RHEA can actually outperform MCTS variants
also on adversarial games. Especially for long games, RHEA seems to be strong
because MCTS is not able to reach a good tree/opening sequence coverage.

The general idea of RHEA has been conceived by Perez et al. [112] and is simple:
they directly optimize an action sequence for the next actions and apply the first
action of the best found sequence for every move. Originally, this has been applied
to one-player settings only, but recently different approaches have been tried also
for adversarial games, as the co-evolutionary variant of Liu et al. [113] that shows
to be competitive in 2 player competitions [114]. The current state of RHEA is
documented in [115], where a large number of variants, operators and parameter
settings is listed. No one-beats-all variant is known at this moment.

Generally, the horizon (number of actions in the planned sequence) is often much
too short to reach the end of the game. In this case, either a value function is
used to assess the last reached state, or a rollout is added. For adversarial games,
opponent moves are either co-evolved, or also played randomly. We do the latter,
with a horizon size of 10. In preliminary experiments, we found that a number
of 100 rollouts is already working well for MCTS on our problems, thus we also
applied this for the RHEA. In order to use these 100 rollouts well, we employ
a population of only 10 individuals, using only cloning+mutation (no crossover)
and a (10+1) truncation selection (the worst individual from 10 parents and 1
offspring is removed). The mutation rate is set to 0.2 per action in the sequence.
However, parameters are not sensitive, except rollouts. RHEA already works with
50 rollouts, albeit worse than with 100. As our rollouts always reach the end of
the game, we usually get back Qi(as) = {1,−1} for the i-th rollout for the action
sequence as, meaning we win or lose. Counting the number of steps until this
happens h, we compute the fitness of an individual to Q(as) =

∑n
i=1Qi(as)/h

n
over

multiple rollouts, thereby rewarding quick wins and slow losses. We choose n = 2

(rollouts per individual) as it seems to perform a bit more stable than n = 1. We
thus evaluate 50 individuals per run.

In our comparison experiment, we pit a random player, MCTS, RAVE (both
without neural network support but a standard random rollout), and RHEA (see
Algorithm 15 in Appendix A.3) against each other with 500 repetitions over all
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three games, with 100 rollouts per run for all methods. The results are shown in
Table 5.1.

Table 5.1: Comparison of random player, MCTS, Rave, and RHEA on the three
games, win rates in percent (column vs row), 500 repetitions each.

Gobang Connect Four Othello
adv rand mcts rave rhea rand mcts rave rhea rand mcts rave rhea

random 97.0 100.0 90.0 99.6 100.0 80.0 98.50 98.0 48.0
mcts 3.0 89.4 34.0 0.4 73.0 3.0 1.4 46.0 1.0
rave 0.0 10.6 17.0 0.0 27.0 4.0 2.0 54.0 5.0
rhea 10.0 66.0 83.0 20.0 97.0 96.0 52.0 99.0 95.0

The results indicate that in nearly all cases, RAVE is better than MCTS is better
than RHEA is better than random, according to a binomial test at a significance
level of 5%. Only for Othello, RHEA does not convincingly beat the random
player. We can conclude from these results that RHEA is no suitable alternative
in our case. The reason for this may be that the games are rather short so that
we always reach the end, providing good conditions for MCTS and even more so
for RAVE that more aggressively summarizes rollout information. Besides, start
sequence planning is certainly harder for Othello where a single move can change
large parts of the board.

5.5 Full Length Experiment

Taking into account the results of the comparison of standard MCTS/RAVE and
RHEA at small scale, we now focus on the previously defined neural network based
MCTS and its enhancements and run them over the full scale training.

5.5.1 Experiment Setup

For all 3 tested games and all experimental training runs based on Algorithm 3,
we set parameters values in Table 5.2. Since tuning I’ requires enormous com-
putation resources, we set the value to 5 based on an initial experiment test,
which means that for each self-play training, only the first 5 iterations will use
one of the warm-start enhancements, after that, there will be only the MCTS in
Algorithm 4. Other parameter values are set based on [32, 33].

Our experiments are run on a GPU-machine with 2x Xeon Gold 6128 CPU at
2.6GHz, 12 core, 384GB RAM and 4x NVIDIA PNY GeForce RTX 2080TI. We
use small versions of games (6×6) in order to perform a sufficiently high number
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of computationally demanding experiments. Shown are graphs with errorbars of
8 runs, of 100 iterations of self-play. Each single run takes 1 to 2 days.

Table 5.2: Default Parameter Setting
Para Description Value Para Description Value
I number of iteration 100 rs number of retrain iteration 20
I’ iteration threshold 5 ep number of epoch 10
E number of episode 50 bs batch size 64
T’ step threshold 15 lr learning rate 0.005
m MCTS simulation times 100 d dropout probability 0.3
c weight in UCT 1.0 n number of comparison games 40
u update threshold 0.6

5.5.2 Results

After training, we collect 8 repetitions for all 6 categories players. Therefore we
obtain 49 players in total (a Random player is included for comparison). In a
full round robin tournament, every 2 of these 49 players are set to pit against
each other for 20 matches on 3 different board games (Gobang, Connect Four and
Othello). The Elo ratings are calculated based on the competition results using
the same Bayesian Elo computation [82] as AlphaGo papers.
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(b) 6×6 Connect Four

Figure 5.1: Tournament results for 6×6 Gobang and 6×6 Connect Four among
Baseline, Rollout, Rave, RoRa, WRo and WRoRa. Training with enhancements
tends to be better than baseline MCTS.
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Fig. 5.1(a) displays results for training to play the 6×6 Gobang game. We can
clearly see that all players with the enhancement achieve higher Elo ratings than
the Baseline player. For the Baseline player, the average Elo rating is about -100.
For enhancement players, the average Elo ratings are about 50, except for Rave,
whose variance is larger. Rollout players and its combinations are better than
the single Rave enhancement players in terms of the average Elo. In addition,
the combination of Rollout and RAVE does not achieve significant improvement
of Rollout, but is better than RAVE. This indicates than the contribution of the
Rollout enhancement is larger than RAVE in Gobang game.

Figure 5.1(b) shows that all players with warm-start enhancement achieve higher
Elo ratings in training to play the 6×6 Connect Four game. In addition, we find
that comparing Rollout with WRo, a weighted sum of rollout value and neural
network value achieves higher performance. Comparing Rave and WRoRa, we
see the same. We conclude that in 5 iterations, for Connect Four, enhancements
that combine the value derived from the neural network contribute more than
the pure enhancement value. Interestingly, in Connect Four, the combination of
Rollout and RAVE shows improvement, in contrast to Othello (next figure) where
we do not see significant improvement. However, this does not apply to WRoRa,
the weighted case.

In Fig 5.2 we see that in Othello, except for Rollout which holds the similar Elo
rating as Baseline setting, all other investigated enhancements are better than the
Baseline. Interestingly, the enhancement with weighted sum of RoRa and neural
network value achieves significant highest Elo rating. The reason that Rollout
does not show much improvement could be that the rollout number is not large
enough for the game length (6×6 Othello needs 32 steps for every episode to
reach the game end, other 2 games above may end up with vacant positions). In
addition, Othello does not have many transposes as Gobang and Connect Four
which means that RAVE can not contribute to a significant improvement. We
can definitively state that the improvements of these enhancements are sensitive
to the different games. In addition, for all 3 tested games, at least WRoRa
achieves the best performance according to a binomial test at a significance level
of 5%.

5.6 Summary

Self-play has achieved much interest due to the AlphaGo Zero results. How-
ever, self-play is currently computationally very demanding, which hinders re-
producibility and experimenting for further improvements. In order to improve
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Figure 5.2: Tournament results for 6×6 Othello among Baseline, Rollout, Rave,
RoRa, WRo and WRoRa. Training with enhancements is mostly better than the
baseline setting.

performance and speed up training, in this chapter, we investigate the possibility
of utilizing MCTS enhancements to improve AlphaZero-like self-play. We embed
Rollout, RAVE and their possible combinations as enhancements at the start pe-
riod of iterative self-play training. The hypothesis is, that self-play suffers from
a cold-start problem, as the neural network and the MCTS statistics are initial-
ized to random weights and zero, and that this can be cured by prepending it
with running MCTS enhancements or similar methods alone in order to train the
neural network before "switching it on" for playing.

We introduce Rollout, RAVE, and combinations with network values, in order to
quickly improve MCTS tree statistics before we switch to Baseline-like self-play
training, and test these enhancements on 6x6 versions of Gobang, Connect Four,
and Othello. We find that, after 100 self-play iterations, we still see the effects of
the warm-start enhancements as playing strength has improved in many cases.
For different games, different methods work best; there is at least one combination
that performs better. It is hardly possible to explain the performance coming
from the warm-start enhancements and especially to predict for which games
they perform well, but there seems to be a pattern: Games that enable good
static opening plans probably benefit more. For human players, it is a common
strategy in Connect Four to play a middle column first as this enables many good
follow-up moves. In Gobang, the situation is similar, only in 2D. It is thus harder
to counter a good plan because there are so many possibilities. This could be
the reason why the warm-start enhancements work so well here. For Othello, the
situation is different, static openings are hardly possible, and are thus seemingly
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not detected. One could hypothesize that the warm-start enhancements recover
human expert knowledge in a generic way. Recently, we have seen that human
knowledge is essential for mastering complex games as StarCraft [23], whereas
others as Go [17] can be learned from scratch. Re-generating human knowledge
may still be an advantage, even in the latter case.

We also find that often, a single enhancement may not lead to significant im-
provement. There is a tendency for the enhancements that work in combination
with the value of the neural network to be stronger, but that also depends on
the game. Concluding, we can state that we find moderate performance im-
provements when applying warm-start enhancements and that we expect there is
untapped potential for more performance gains here.
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Chapter 6

Adaptive Warm-Start
AlphaZero-like Self-play

6.1 Introduction

Following Chapter 5, in this chapter, we will further propose an adaptive warm-
start method on AlphaZero-like deep reinforcement learning framework.

The combination of online MCTS [7] in self-play and offline neural network train-
ing has been widely applied as a deep reinforcement learning technique, in par-
ticular for solving game-related problems by means of the AlphaGo series pro-
grams [10, 16, 17]. The approach of this paradigm is to use game playing records
from self-play by MCTS as training examples to train the neural network, whereas
this trained neural network is used to inform the MCTS value and policy. Note
that in contrast to AlphaGo Zero or AlphaZero, the original AlphaGo also uses
large amounts of expert data to train the neural network and a fast rollout pol-
icy together with the policy provided by neural network to guide the MCTS
search.

However, although the transition from a combination of using expert data and
self-play (AlphaGo) to only using self-play (AlphaGo Zero and AlphaZero) ap-
pears to have only positive results, it does raise some questions.

The first question is: ‘should all human expert data be abandoned?’ In other
games we have seen that human knowledge is essential for mastering complex
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games, such as StarCraft [23]. Then when should expert data be taken into
consideration while training neural networks?

The second question is: ‘should the fast rollout policy be abandoned?’ Chap-
ter 5 has proposed to use warm-start search enhancements at the start phase
in AlphaZero-like self-play, which improves performance in 3 small board games.
Instead of only using the neural network for value and policy, in the first few iter-
ations, classic rollout can be used (or RAVE, or a combination, or a combination
with the neural network). This can improve training especially at the start phase
of self-play training.

In fact, the essence of the warm-start search enhancement is to re-generate expert
knowledge in the start phase of self-play training, to reduce the cold-start problem
of playing against untrained agents. The method uses rollout (which can be seen
as experts) instead of a randomly initialized neural network, up until a number of
I ′ iterations, when it switches to the regular value network. In their experiments,
the I ′ was fixed at 5. Obviously, a fixed I ′ may not be optimal. Therefore, in this
work, we propose an adaptive switch method. The method uses an arena in the
self-play stage (see Algorithm 6), where the search enhancement and the default
MCTS are matched, to judge whether to switch or not. With this mechanism,
we can dynamically switch off the enhancement if it is no longer better than the
default MCTS player, as the neural network is being trained.

Our main contributions can be summarized as follows:

1. Warm-start method improves the Elo of AlphaZero-like self-play in small
games, but it introduces a new hyper-parameter. Adaptive warm-start fur-
ther improves performance and removes the hyper-parameter.

2. For deep games (with a small branching factor) warm-start works better
than for shallow games. This indicates that the effectiveness of warm-start
method may increase for larger games.

The rest of this chapter is designed as follows. An overview of the most rele-
vant literature is given in Sect. 6.2. Before proposing our adaptive switch method
in Sect. 6.4, we describe the warm-start AlphaZero-like self-play algorithm in
Sect. 6.3. Thereafter, we set up the experiments in Sect. 6.5 and present their re-
sults in Sect. 6.6. Finally, we conclude the chapter and discuss future work.
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6.2 Related Work

There are a lot of early successful works in reinforcement learning [6], e.g. us-
ing temporal difference learning with a neural network to play backgammon [70].
MCTS has also been well studied, and many variants/enhancements were de-
signed to solve problems in the domain of sequential decisions, especially on
games. For example, enhancements such as RAVE and All Moves as First (AMAF)
have been conceived to improve MCTS [18, 24]. The AlphaGo series algorithms
replace the table based model with a deep neural network based model, where the
neural network has a policy head (for evaluating of a state) and a value head (for
learning a best action) [34], enabled by the GPU hardware development. There-
after, the structure that combines MCTS with neural network training has be-
come a typical approach for reinforcement learning tasks and many successful
applications [37, 89] of this kind model-based deep reinforcement learning [68].
Comparing AlphaGo with AlphaGo Zero and AlphaZero, the latter did not use
any expert data to train the neural network, and abandoned the fast rollout
policy for improving the MCTS on the trained neural network. Therefore, all
training data is generated purely by self-play, which is also a very important fea-
ture of reinforcement learning. We base our work on an open reimplementation
of AlphaZero, AlphaZero General [65].

There are many interesting works on self-play in reinforcement learning [70, 74,
107]. Temporal difference learning for acquiring position evaluation in small board
Go with co-evolution has been compared to self-play [107]. These works demon-
strated the impressive results for self-play and emphasized its importance.

Within a GGP framework, in order to improve training examples efficiency, [31]
assessed the potential of classical Q-learning by introducing MCS enhancements.
In an AlphaZero-like self-play framework, [108] used domain-specific features and
optimizations, starting from random initialization and no preexisting data, to
accelerate the training.

However, AlphaStar, the acclaimed algorithm for beating human professionals
at StarCraft [23], went back to utilizing human expert data, thereby suggest-
ing that this is still an option at the start phase of training. Apart from this,
there are few studies on applying MCTS enhancements in AlphaZero-like self-
play. Only [35] (presented in Chapter 5), which proposed a warm-start search
enhancement method, pointed out the promising potential of utilizing MCTS en-
hancements (like a rollout policy) to re-generate expert data at the start phase of
training. Our approach differs from AlphaStar, as we generate expert data using
MCTS enhancements other than collecting it from humans; further, compared to
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the static warm-start in Chapter 5, we propose an adaptive method to control
the iteration length of using such enhancements instead of a fixed I ′.

6.3 Warm-Start AlphaZero Self-play

Based on Chapter 5, we will now briefly recall the warm-start enhancement
method.

6.3.1 The Algorithm Framework

Based on [10, 34] and Chapter 5, the core of AlphaZero-like self-play (see Algo-
rithm 5) is an iterative loop which consists of three different stages within the
single iteration as follows:

1. self-play: The first stage is playing several games against with itself to
generate training examples.

2. neural network training: The second stage is feeding the neural network
with training examples (generated in the first stage) to train a new model.

3. arena comparison: The last stage is employing a tournament to compare
the newly trained model and the old model to decide whether to update or
not.

The detail description of these 3 stages can be found in Chapter 5 (Sect. 5.3.1).
Note that in the Algorithm 5, line 5, a fixed I ′ is employed to control whether
to use neural network MCTS or MCTS enhancements, the I ′ should be set as
relatively smaller than I, which is known as warm-start search. The MCTS
algorithm and MCTS enhancements will be introduced in next subsections.

6.3.2 MCTS

Classical MCTS has shown successful performance to solve complex games, by
taking random samples in the search space to evaluate the state value. Basically,
the classical MCTS algorithm can be divided into 4 stages, which are known
as selection, expansion, rollout and backpropagate [7]. However, for the default
MCTS in AlphaZero-like self-play (eg. our Baseline), the neural network directly
informs the MCTS state policy and value to guide the search instead of running
a rollout (see Algorithm 4).
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Algorithm 5 Warm-start AlphaZero-like Self-play Algorithm
1: Randomly initialize fθ, assign retrain buffer D
2: for iteration=1, . . . ,I ′, . . . , I do
3: for episode=1,. . . , E do . self-play
4: for t=1, . . . , T ′, . . . , T do
5: if I ≤ I ′ then πt ← MCTS Enhancement
6: else πt ← default MCTS

7: if t ≤ T ′ then at = randomly select on πt
8: else at = argmaxa(πt)

9: executeAction(st, at)

10: D ← (st, πt, zt) with outcome zt∈[1,T ]

11: Sample minibatch (sj , πj , zj) from D . training
12: Train fθ′ ← fθ

13: fθ = fθ′ if fθ′ is better, using default MCTS . arena

14: return fθ;

6.3.3 MCTS enhancements

In this chapter, we adopt the same two individual enhancements and three com-
binations to improve neural network training as were used in Chapter 5. Here we
briefly recall them again with a possible minor change for weight calculation.

Rollout is running a classic MCTS random rollout to get a value that provides
more meaningful information than a value from random initialized neural net-
work.

RAVE is a well-studied enhancement to cope with the cold-start of MCTS in
games like Go [18], where the playout-sequence can be transposed. The core
idea of RAVE is using AMAF to update the state visit count Nrave and Q-value
Qrave, which are written as: Nrave(st1 , at2)← Nrave(st1 , at2) + 1, Qrave(st1 , at2)←
Nrave(st1 ,at2 )∗Qrave(st1 ,at2 )+v

Nrave(st1 ,at2 )+1
, where st1 ∈ V isitedPath, and at2 ∈ A(st1), and for

∀t < t2, at 6= at2 . The P-UCT of RAVE is calculated as follows:

PUCTrave(s, a) = (1− β) ∗ U(s, a) + β ∗ Urave(s, a) (6.1)

where

Urave(s, a) = Qrave(s, a) + c ∗ P (s, a)
√
Nrave(s, ·)

Nrave(s, a) + 1
(6.2)

77



6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

and

β =

√
equivalence

3 ∗N(s, ·) + equivalence
(6.3)

The value of equivalence is usually set to the number of MCTS simulations (i.e
m=100 in our experiments).

RoRa is the combination which simply adds the random rollout to enhance
RAVE.

WRo introduces a weighted sum of rollout value and the neural network value
as the return value to guide MCTS. In our experiments, v(s) is computed as
follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrollout (6.4)

WRoRa also employs a weighted sum to combine the value from the neural net-
work and the value of RoRa. The v(s) for MCTS search in WRoRa is computed
as follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrora (6.5)

Different from Chapter 5, since there is no pre-determined I ′, in our work, weight
is simply calculated as 1/i, i ∈ [1, I], where i is the current iteration number.

6.4 Adaptive Warm-Start Switch Method

The fixed I ′ to control the length of using warm-start search enhancements as
suggested in Chapter 5, but seems to require different parameter values for differ-
ent games. In consequence, a costly tuning process would be necessary for each
game. Thus, an adaptive method would have multiple advantages.

We notice that the core of the warm-start method is re-generating expert data
to train the neural network at the start phase of self-training to avoid learning
from weak (random or near random) self-play. We suggest to stop the warm-
start when the neural network is on average playing stronger than the enhance-
ments. Therefore, in the self-play, we employ a tournament to compare the
standard AlphaZero-like self-play model (Baseline) and the enhancements (see
Algorithm 6). The switch occurs once the Baseline MCTS wins more than 50%.
In order to avoid spending too much time on this, these arena game records will
directly be used as training examples, indicating that the training data is played
by the enhancements and the Baseline. This scheme enables to switch at indi-
vidual points in time for different games and even different training runs.

78



6.5 Experimental Setup

Algorithm 6 Adaptive Warm-Start Switch Algorithm
1: Initialize fθ with random weights; Initialize retrain buffer D, Switch←False, rmcts ← 0

2: for iteration=1, . . . , I do . no I ′

3: if not Switch then . not switch
4: for episode=1,. . . , E do . arena with enhancements
5: for t=1, . . . , T ′, . . . , T do
6: if episode ≤ E/2 then
7: if t is odd then πt ← MCTS Enhancement
8: else πt ← default MCTS

9: else
10: if t is odd then πt ← default MCTS
11: else πt ← MCTS Enhancement

12: if t ≤ T ′ then at = randomly select on πt
13: else at = argmaxa(πt)

14: executeAction(st, at)

15: D ← (st, πt, zt) with outcome zt∈[1,T ]

16: rmcts+= reward of default MCTS in this episode

17: else . switch
18: for episode=1,. . . , E do . purely self-play
19: for t=1, . . . , T ′, . . . , T do
20: πt ← default MCTS
21: if t ≤ T ′ then at = randomly select on πt
22: else at = argmaxa(πt)

23: executeAction(st, at)

24: D ← (st, πt, zt) with outcome zt∈[1,T ]

25: Set Switch←True if rmcts >0, and set rmcts ← 0

26: Sample minibatch (sj , πj , zj) from D . training
27: Train fθ′ ← fθ

28: fθ = fθ′ if fθ′ is better, using default MCTS . arena

29: return fθ;

6.5 Experimental Setup

Since Chapter 5 only studied the winrate of single rollout and RAVE against a
random player, this can be used as a test to check whether rollout and RAVE
work. However, it does not reveal any information about relative playing strength,
which is necessary to explain how good training examples provided by MCTS
enhancements actually are. Therefore, at first we let all 5 enhancements and the
baseline MCTS (in this test, the neural network for each player is randomly
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initialized) play 100 games with each other on the same 3 games (6×6 Connect
Four, Othello and Gobang, game description can be found in Chapter 4) in order
to investigate the relative playing strength of each pair.

In the second experiment, we tune the fixed I ′, where I ′ ∈ {1, 3, 5, 7, 9}, for differ-
ent search enhancements, based on Algorithm 5 to play 6×6 Connect Four.

In our last experiment, we use new adaptive switch method Algorithm 6 to play
6×6 Othello, Connect Four and Gobang. We set parameters values according to
Table 4.1. The parameter choices are based on [33].

Our experiments are run on a high-performance computing (HPC) server, which
is a cluster consisting of 20 CPU nodes (40 TFlops) and 10 GPU nodes (40 GPU,
20 TFlops CPU + 536 TFlops GPU). We use small versions of games (6×6) in
order to perform a medium number of repetitions. In the following, our figures
show error bars of 8 runs, of 100 iterations of self-play. Each single run is deployed
in a single GPU which takes several days for different games.

6.6 Results

We list results for a tournament of Baseline and enhancements (Table 6.1). Dig-
ging deeper, we also report the effect of the hyper-parameter I ′ (Fig 6.1). And
results for the adaptive warm-start switch are shown in Table 6.2, Fig 6.2 and
Fig 6.3.

6.6.1 MCTS vs MCTS Enhancements

Here, we compare the Baseline player (the neural network is initialized randomly
which can be regarded as an arena in the first iteration self-play) to the other
five MCTS enhancements players on 3 different games. Each pair performs 100
repetitions. In Table 6.1, we can see that for Connect Four, the highest winrate is
achieved by WRoRa, the lowest by Rave. Except Rave, others are all higher than
50%, showing that the enhancements (except Rave) are better than the untrained
Baseline. In Gobang, it is similar, Rave is the lowest, RoRa is the highest. But
the winrates are relatively lower than that in other 2 games. It is interesting
that in Othello, all winrates are relatively the highest compared to the 2 other
games (nearly 100%), although Rave still achieves the lowest winrate which is
higher than 50%.

One reason that enhancements work best in Othello is that the Othello game tree
is the longest and narrowest (low branching factor). Enhancements like Rollout
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Table 6.1: Results of comparing default MCTS with Rollout, Rave, RoRa, WRo
and WRoRa, respectively on the three games with random neural network, weight
as 1/2, T ′=0, win rates in percent (row vs column), each pair played 100 games.

Default MCTS
ConnectFour Othello Gobang

Rollout 64 93 65
Rave 27.5 53 43
RoRa 76 98 70
WRo 82 96 57
WRoRa 82.5 99 62

can provide relatively accurate estimations for these trees. In contrast, Gobang
has the shortest game length and the most legal action options. Enhancements
like Rollout do not contribute much to the search in short but wide search tree
with limited MCTS simulation. As in shorter games it is more likely to reach a
terminal state, both Baseline and enhancements get the true result. Therefore,
in comparison to MCTS, enhancements like Rollout work better while it does not
terminate too fast. Rave is filling more state action pairs based on information
from the neural network, its weaknesses at the beginning are more emphasized.
After some iterations of training, the neural network becomes smarter, and Rave
can therefore enhance the performance as shown in Chapter 5 .

6.6.2 Fixed I ′ Tuning

Taking Connect Four as an example, in this experiment we search for an optimal
fixed I ′ value, utilizing the warm-start search method proposed in Chapter 5. We
set I ′ as 1, 3, 5, 7, 9 respectively (the value should be relatively small since the
enhancement is only expected to be used at the start phase of training). The
Elo ratings of each enhancements using different I ′ are presented in Fig 6.1. The
Elo ratings are calculated based on the tournament results using a Bayesian Elo
computation system [82], same for Fig 6.3. We can see that for Rave and WRoRa,
it turns out that I ′ = 7 is the optimal value for fixed I ′ warm-start framework,
for others, it is still unclear which value is the best, indicating that the tuning is
inefficient and costly.
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Figure 6.1: Elo ratings for different warm-start phase iterations with different
search enhancement on 6×6 Connect Four
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6.6.3 Adaptive Warm-Start Switch

In this final experiment, we apply the newly suggested adaptive switch warm-start
search enhancement method and compare it to the fixed I ′. We are especially
interested in the averages and variances of the switching times that result from
adaptive switching.

We train models with the parameters in Table 4.1 and then let them compete
against each other in different games. In addition, we record the specific iteration
number where the switch occurs for every training run and the corresponding
self-play arena rewards of MCTS before this iteration. A statistic of the iteration
number for 3 games is shown in Table 6.2.

Table 6.2: Switching iterations for training on different games with different en-
hancements over 8 repetitions (average iteration number ± standard deviation)

Connect Four Othello Gobang
Rollout 6.625± 3.039 5.5± 1.732 1.375±0.484
Rave 2.375±1.218 3.125 ±2.667 1.125±0.331
RoRa 7.75 ±4.74 5.125 ±1.364 1.125±0.331
WRo 4.25±1.561 4.375±1.654 1.125±0.331
WRoRa 4.375±1.576 4.0±1.0 1.25±0.433

The table shows that, generally, the iteration number is relatively small compared
to the total length of the training (100 iterations), and in these small games the
neural network is quickly getting stronger. Besides, not only for different games,
the switch iteration is different, but also for different training runs on the same
game, the switch iteration also varies. This is because for different training runs,
the neural network training progresses differently (we already start from different
random initializations). Therefore, a fixed I ′ can not be used for each specific
training. Note that for Gobang, a game with a large branching factor, with
the default setting, it always switches at the first iteration. Therefore, we also
test with larger m = 200, thereby providing more time to the MCTS. With this
change, there are several runs keeping the enhancements see Table 6.2, but it still
shows a small influence on this game.

In addition, we show the arena results (wins of default MCTS minus wins of en-
hancement) in each training iteration before switch happens in each run over
8 repetitions on Othello as an example in Fig 6.2. In most curves, we can
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Figure 6.2: Reward balances of default MCTS while competing with different
enhancements in self-play arena for 6×6 Othello. Exceeding 0 means default MCTS
defeats the enhancement, switch occurs.
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Figure 6.3: Comparison of adaptive switch method versus fixed I ′ based on a full
tournament for 6×6 Connect Four and Othello

see improving reward balances achieved by default MCTS since it is getting
stronger.

More importantly, we collect all trained models based on our adaptive method,
and let them compete with the models trained using fixed I ′ = 5 in a full round-
robin tournament where each 2 players play 20 games.

From Fig 6.3, we see that, generally, on both Connect Four and Othello, all
fixed I ′ achieve higher Elo ratings than the Baseline, which was also reported in
Chapter 5. And all adaptive switch models also perform better than the Baseline.
Besides, for each enhancement, it is important that the Elo ratings of the adaptive
switch models are higher than for the fixed I ′ method, which suggests that our
adaptive switch method leads to better performance than the fixed I ′ method
when controlling the warm-start iteration length. Specifically, we find that for
Connect Four, WRo and RoRa achieve the higher Elo Ratings (see Fig 6.3(a))
and for Othello, WRoRa performs best (see Fig 6.3(b)), which reproduces the
consistent conclusion (at least one combination enhancement performs better in
different games) as Chapter 5).

In addition, for Connect Four, comparing the tuning results in Fig 6.1 and the
switch iterations by our method in Table 6.2, we find that our method generally
needs a shorter warm-start phase than employing a fixed I ′. The reason could be
that in our method, there are always 2 different players playing the game, and they
provide more diverse training data than a pure self-play player. In consequence,
the neural network also improves more quickly, which is highly desired.
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Note that while we use the default parameter setting for training in the Gobang
game, the switch occurs at the first iteration. And even though we enlarge the
simulation times for MCTS, only a few training runs shortly keep using the en-
hancements. We therefore presume that it is meaningless to further perform the
tournament comparison for Gobang.

6.7 Summary

Since AlphaGo Zero’ results, self-play has become a default approach for gen-
erating training data tabula rasa, disregarding other information for training.
However, if there is a way to obtain better training examples from the start, why
not use them, as has been done recently in StarCraft (see DeepMind’s AlphaS-
tar [23]). In addition, Chapter 5 investigated the possibility of utilizing MCTS
enhancements to improve AlphaZero-like self-play. They embed Rollout, RAVE
and combinations as enhancements at the start period of iterative self-play train-
ing and tested this on small board games. Since the neural network and the
MCTS statistics are initialized to random weights and zero, self-play suffers from
a cold-start problem, and starting from scratch can lead to unstable learning at
the start of the training. These problems can be cured by feeding human expert
data or running MCTS enhancements or similar methods in order to generate
expert data for training the neural network before switching to pure self-play.
(Not unlike RAVE warm-starts the winrate statistics of the original MCTS in
2007.)

Confirming Chapter 5, we find that finding an optimal value of fixed I ′ is dif-
ficult, therefore, we propose an adaptive method for deciding when to switch.
We also use Rollout, RAVE, and combinations with network values to quickly
improve MCTS tree statistics (using RAVE) with meaningful information (using
Rollout) before we switch to Baseline-like self-play training. We employed the
same games, namely the 6x6 versions of Gobang, Connect Four, and Othello. In
these experiments, we find that, for different games, and even different training
runs for the same game, the new adaptive method generally switches at different
iterations. This indicates the noise in the neural network training progress for
different runs. After 100 self-play iterations, we still see the effects of the warm-
start enhancements as playing strength has improved in many cases, and for all
enhancements, our method performs better than the method proposed in Chap-
ter 5 with I ′ set to 5. In addition, some conclusions are consistent to Chapter 5,
for example, there is also at least one combination that performs better.
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The new adaptive method works especially well on Othello and Connect Four,
"deep" games with a moderate branching factor, and less well on Gobang, which
has a larger branching factor. In the self-play arena, the default MCTS is already
quite strong, and for games with a short and wide episode, the MCTS enhance-
ments do not benefit much. Short game lengths reach terminal states early, and
MCTS can use the true reward information more often, resulting in a higher
chance of winning. Since, Rollout still needs to simulate, with a limited simula-
tion count it is likely to not choose a winning terminal state but a state that has
the same average value as the terminal state. In this situation, in a short game
episodes, MCTS works better than the enhancement with T ′=15. With ongoing
training of the neural network, both players become stronger, and as the game
length becomes longer, I ′ = 5 works better than the the Baseline.

Our experiments are with small games. Adaptive warm-start works best in deeper
games, suggesting a larger benefit for bigger games with deeper lines. Future
work includes larger games with deeper lines, and using different but stronger
enhancements to generate training examples. Beside, it is also promising to
apply the adaptive warm-start idea to master single agent or multi-agent deep
reinforcement learning problems.
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Chapter 7

Ranked Reward Reinforcement
Learning

7.1 Introduction

In previous chapters, we mainly test our approaches on relatively small two-player
board games. This chapter will however deal with single-player games and form
thereby a bridge to combinatorial optimization.

In recent years, the interest in combinatorial games as a challenge in AI has in-
creased after the first AlphaGo program [16] defeated the human world champion
of Go [74]. The great success of the AlphaGo and AlphaZero programs [10, 16, 17]
in two-player games, has inspired attempts in other domains [35, 89]. So far, one
of the most challenging single player games, Morpion Solitaire [116] has not yet
been studied with this promising deep reinforcement learning approach.

Morpion Solitaire is a popular single player game since 1960s [27, 116], because
of its simple rules and simple equipment, requiring only paper and pencil. Due
to its large state space it is also an interesting AI challenge in single player
games, just like the game of Go challenge in two-player turn-based games. Could
the AlphaZero self-play approach, that turned out to be so successful in Go,
also work in Morpion Solitaire? For ten years little progress has been made in
Morpion Solitaire. It is time to take up the challenge and to see if a self-play
deep reinforcement learning approach will work in this challenging game as a few
works on applying reinforcement learning are studied to deal with combinatorial
tasks [117, 118, 119].
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AlphaGo and AlphaZero combine deep neural networks [68] and MCTS [7] in
a self-play framework that learns by curriculum learning [95]. Unfortunately,
these approaches can not be directly used to play single agent combinatorial
games, such as Travelling Salesman Problems (TSP) [120] and Bin Packing Prob-
lems (BPP) [121], where cost minimization is the goal of the game. To apply
self-play for single player games, Laterre et al. proposed a Ranked Reward (R2)
algorithm. R2 creates a relative performance metric by means of ranking the
rewards obtained by a single agent over multiple games. In two-dimensional and
three-dimensional bin packing R2 is reported to out-perform MCTS [122]. In
this chapter we use this idea for Morpion Solitaire. Our contributions can be
summarized as follows:

1. We present the first implementation1 of Ranked Reward AlphaZero-style
self-play for Morpion Solitaire.

2. On this implementation, we report our current best solution, of 67 steps (see
Fig 7.2).

This result is very close to the human record, and shows the potential of the self-
play reinforcement learning approach in Morpion Solitaire, and other hard single
player combinatorial problems. Our result is even more remarkable, because it
has been achieved in a tabula rasa setting, that is starting only with the knowl-
edge [123] about the rules of the game and not encoding strategies and tactics of
human players.

This chapter is structured as follows. After giving an overview of related work
in Sect. 7.2, we introduce the Morpion Solitaire challenge in Sect. 7.3. Then we
present how to integrate the idea of R2 into AlphaZero self-play in Sect. 7.4.
Thereafter, we set up the experiment in Sect. 7.5, and show the result and analysis
in Sect. 7.6. Finally, we conclude this chapter and discuss future work.

7.2 Related Work

Recent successes of AlphaGo series spark the interest of creating new self-play
deep reinforcement learning approaches to deal with problems in the field of game
AI, especially for other two player games [30, 31, 33, 64].

However, for single player games, self-play deep reinforcement learning approaches
are not yet well studied since the approaches used for two-player games can not di-
rectly be used in single player games [122], since the goal of the task changes from

1Source code: https://github.com/wh1992v/R2RRMopionSolitaire
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winning from an opponent, to minimizing the solution cost. Nevertheless, some
researchers did initial works on single games with self-play deep reinforcement
learning [124]. The main difficulty is representing single player games in ways that
allow the use of a deep reinforcement learning approach. In order to get over this
difficulty, Vinyals et al. [125] proposed a neural architecture (Pointer Networks)
to represent combinatorial optimization problems as sequence-to-sequence learn-
ing problems. Early Pointer Networks achieved decent performance on TSP, but
this approach is computationally expensive and requires handcrafted training ex-
amples for supervised learning methods. Replacing supervised learning methods
by actor-critic methods removed this requirement [126]. In addition, Laterre et
al. proposed the R2 algorithm through ranking the rewards obtained by a single
agent over multiple games to label win or loss for each search, and this algorithm
reportedly outperformed plain MCTS in the bin packing problem (BPP) [122].
Besides, Feng et al. recently used curriculum-driven deep reinforcement learning
to cope with hard Sokoban instances [127]. The key of R2 is a progressing (like
curriculum learning style) ranked reward list.

In addition to TSP and BPP, Morpion Solitaire has long been a challenge in
NP-hard single player problems [27]. In brief, the goal in Morpion Solitaire is to
maximally extend a given geometrical structure performing certain legal moves,
and given a set of rules. Previous works on Morpion Solitaire mainly employ tra-
ditional heuristic search algorithms [116]. Cazenave created Nested Monte-Carlo
Search and found an 80 moves record [128]. After that, a new Nested Rollout
Policy Adaptation algorithm achieved a new 82 steps record [29]. Thereafter,
Cazenave applied Beam Nested Rollout Policy Adaptation [129], which reached
the same 82 steps record but did not exceed it, indicating the difficulty of making
further progress on Morpion Solitaire using traditional search heuristics.

It is interesting to develop a new approach, applying (self-play) deep reinforce-
ment learning to train a Morpion Solitaire player. The combination of the R2
algorithm with the AlphaZero self-play framework could be a first alternative for
above mentioned approaches.

7.3 Morpion Solitaire

Morpion Solitaire is a single player game played on an unlimited grid. The rules
of the game are simple. There are 36 black circles as the initial state (see Fig 7.1).
A move for Morpion Solitaire consists of two parts: a) placing a new circle on
the paper so that this new circle can be connected with four other existing circles
horizontally, vertically or diagonally, and then b) drawing a line to connect these
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five circles (see action 1, 2, 3 in the figure). Lines are allowed to cross other
lines (action 4), but not allowed to overlap. There are two versions: the Touch-
ing (5T) version and the Disjoint (5D) version. For the 5T version, it is allowed
to touch (action 5, green circle and green line), but for the 5D version, touching
is illegal (any circle can not belong to two lines that have the same direction).
After a legal action the circle and the line are added to the grid. This chapter
focuses on the 5D version.

The best human score for the 5D version is 68 moves [27]. A score of 80 moves
was found by means of Nested Monte-Carlo Search [128]. In addition, [29] found
a new record with 82 steps, and [129] also found a 82 steps solution. It has been
proven mathematically that the 5D version has an upper bound of 121 [28].

7.4 Ranked Reward Reinforcement Learning

AlphaZero self-play achieved milestone successes in two-player games, but can
not be directly used for single player cost minimization games. Therefore, the
R2 algorithm has been created to use self-play for generic single player MDPs.
R2 reshapes the rewards according to player’s relative performance over recent
games [122]. The pseudo code of R2 is given in Algorithm 7.

Following AlphaZero-like self-play [34], we demonstrate the typical three stages as
shown in the pseudo code. Since self-play in Morpion Solitaire MCTS is too time
consuming due to the large state space. Thus, we rely on the policy directly from
fθ without tree search (line 6). For stage 3, we directly replace the previous neural
network model with the newly trained model and let the newly trained model play
a single time with MCTS enhancement (line 15). The R2 idea is integrated (see
line 9 to line 11). The reward list B stores the recent game rewards. According
to a ratio τ , the threshold of rτ is calculated. We then compare rτ to the game
reward rT to reshape the ranked reward z according to Equation 7.1.

z =


1 rT > rτ

−1 rT < rτ

random(1,−1) rT = rτ

(7.1)

where rτ is the stored reward value in B indexed by L× τ , L is the length of B,
τ is a ratio parameter set to control the index of rτ in B.
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3
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21

 

Figure 7.1: Moves Example: Moves 1, 2, 3, 4 are legal moves, move 5 is illegal
for the 5D version, but legal for the 5T version. Move 1 is the first move, Move 2
is the second move, and so on.
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Algorithm 7 Ranked Reward Reinforcement Learning within AlphaZero-like
Self-play Framework
1: function RankedRewardReinforcementLearning
2: Initialize fθ with random weights; Initialize retrain buffer D and reward list B
3: for iteration=1, . . . . . . , I do . self-play curriculum of I tournaments
4: for episode=1,. . . , E do . stage 1, self-play tournament of E games
5: for t=1, . . . , T ′, . . . , T do . play game of T moves
6: πt ← perform MCTS based on fθ or directly get policy from fθ

7: at =randomly select on πt before T ′ or argmaxa(πt) after T ′ step
8: executeAction(st, at)

9: Calculate game reward rT and store it in B
10: Calculate threshold rτ based on the recent games rewards in B
11: Reshape the ranked reward z following Equation 7.1 . Ranked Reward
12: Store every (st, πt, zt) with ranked rewards zt (t ∈ [1, T ]) in D

13: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
14: Train a new model fθ′ based on fθ and examples
15: Play once with MCTS enhancement on fθ′ . stage 3
16: Replace fθ ← f ′θ

17: return fθ;

7.5 Experiment Setup

We perform our experiments on a GPU server with 128G RAM, 3TB local stor-
age, 20 Intel Xeon E5-2650v3 cores (2.30GHz, 40 threads), 2 NVIDIA Titanium
GPUs (each with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each with
6GB memory). And the code of framework interface is based on [65].

The hyper-parameters of our current R2 implementation are as much as possible
equal to previous work. In this work, all neural network models share the same
structure as in [34]. The hyper-parameter values for Algorithm 7 used in our
experiments are given in Table 7.1. Partly, these values are set based on the
work reported in [32] and the R2 approach for BPP [122]. T ′ is set to half of
the current best record. m is set to 100 if using MCTS in self-play, but 20000
for MCTS in stage 3. Due to that MCTS needs too much computation in our
setting, we do not use MCTS to enhance model in self-play (get policy from fθ
directly), but we use MCTS once for every 10 iterations in stage 3. Furthermore,
as there is an upper bound of the best score (121), we did experiments on 16×16,
20×20 and 22×22 boards respectively. Training time for every algorithm is about
a week.
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Table 7.1: Default Parameter Settings

Parameter Brief Description Default Value
I number of iterations 100
E number of episodes 50
T’ step threshold 41
m MCTS simulation times 20000
c weight in UCT 1.0
rs number of retrain iterations 10
ep number of epochs 5
bs batch size 64
lr learning rate 0.005
d dropout probability 0.3
L length of B 200
τ ratio to compute rτ 0.75

7.6 Result and Analysis

As we mentioned above, the best score for Morpion Solitaire of 82 steps has been
achieved by Nested Rollout Policy Adaptation (NRPA) in 2010. The best score
achieved by human is 68. Our first attempt with limited computation resources
on a large size board (22×22) achieved a score of 67, very close to the best human
score. The resulting solution is shown in Fig 7.2.

Based on these promising results with Ranked Reward Reinforcement Learning we
identify areas for further improvement. First, parameter values for the Morpion
Solitaire game can be fine-tuned using results of small board games. Especially
the parameter m = 100 seems not sufficient for large boards. Second, the neural
network could be changed to Pointer Networks and the size of neural network
should be deeper.

Note that the tuning of parameters is critical; if the reward list B is too small,
the reward list can be easily filled up by scores close to 67. The training will
then be stuck in a locally optimal solution. As good solutions are expected to be
sparsely distributed over the search space, this increases the difficulty to get rid
of a locally optimal solution once the algorithm has focused on it.
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Figure 7.2: Detailed Steps of Our Best Solution

96



7.7 Summary

7.7 Summary

In this work, we apply a Ranked Reward Reinforcement Learning AlphaZero-like
approach to play Morpion Solitaire, an important NP-hard single player game
challenge. We train the player on 16×16, 20×20 and 22×22 boards, and find a
near best human performance solution with 67 steps. As a first attempt of uti-
lizing self-play deep reinforcement learning approach to tackle Morpion Solitaire,
achieving near-human performance is a promising result.

To summarize, although the problem is difficult due to its large state space and
sparsity of good solutions, applying a Ranked Reward self-play Reinforcement
Learning approach to tackle Morpion Solitaire is a promising and learns from
tabula rasa. We present our promising near-human result to stimulate future work
on Morpion Solitaire and other single agent games with self-play reinforcement
learning.
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Chapter 8

Conclusion

This work relies on a framework, as used by AlphaZero, that combines online
searching and offline learning. This framework has become an effective approach
in deep reinforcement learning since AlphaGo series algorithms achieve super
human level performance on playing complex games. Within this framework,
the offline learning model provides state values to guide MCTS search, and the
neural network is trained by the self-play game records played by MCTS search
results.

Before deep neural networks were common in reinforcement learning (due to the
limits of hardware computation capacity), table based approaches of Q-learning
were used, and MCTS, as online search methods to play small versions of Go. A
combination of online search (MCS) and offline learning (table based Q-learning)
in GGP was assessed. MCS was used to generate expert data for self-play at the
beginning phase for the table based Q-learning. The results show that table based
Q-learning converges in GGP and has potential to be improved by MCS tech-
niques. Inspired by our work in Chapter 2, [60] establish their deep reinforcement
learning GGP system.

Therefore, in this dissertation, an AlphaZero-like self-play framework was studied
to further investigate the combination of online search and offline learning in a
deep reinforcement learning context. A detailed analysis of 12 hyper-parameters
was provided. Among these hyper-parameters, four interesting hyper-parameters
are analyzed further, and several interesting correlations are presented in Chap-
ter 3. Then the alternative loss functions were evaluated to see how value loss
and policy loss contribute to training in Chapter 4.
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AlphaZero-like self-play initializes its neural network randomly, and therefore
suffers from a cold-start problem, just as table based Q-learning, which is ini-
tialized as empty. Applying MCTS enhancements to generate expert data at the
start phase of training achieves better performance. This methods is called the
warm-start method (Chapter 5). Furthermore, an adaptive warm-start method
was proposed to control the necessary iteration length, which is more robust to
different enhancements and different training runs (Chapter 6).

In Chapter 7, the ranked reward method was combined with AlphaZero-like self-
play to tackle a complex single agent combinatorial game, Morpion Solitaire, and
achieved a near human level grid. This chapter highlights the potential of the
AlphaZero framework to provide competitive results in combinatorial searching
games starting from tabula rasa setting.

Next, the main contributions of this dissertation will be presented in Sect 8.1 and
directions for future work will be discussed in Sect 8.2.

8.1 Contributions

This dissertation mainly focus on applying searching and learning methods of
reinforcement learning in GGP and AlphaZero-like self-play framework. The
main contributions can be summarized as follows.

Classical Q-learning can be used to play GGP games, although train-
ing is slow. This finding provides a basis for applying deep neural networks to
GGP. The MCS enhancement generates better training examples for Q-learning
at the start phase of training, which also reveals a promising direction for deep
reinforcement learning approaches like AlphaZero-like self-play to be further im-
proved.

For AlphaZero-like self-play, balancing the number of outer iteration
loop and the inner epochs training is a key point to generalize more
efficient training examples and to avoid useless and redundant training.
Since the overall epochs number for training is influenced by the outer iteration,
the result is that the neural network is trained by the same training examples
for too many epochs, if the epoch number is too big. Similarly, it is found
that the MCTS search is costly, but that the improvements brought by more
MCTS simulation time can be compensated by a better trained model, which
also requires proper balancing method.
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The policy loss and value loss functions contribute differently to dif-
ferent games in an AlphaZero-like self-play framework, but a sum of
these two losses is a reasonable compromise choice. The neural network
model of AlphaZero-like self-play has two heads, i.e. policy head and value head.
This poses the question whether policy or value loss is necessary for training, and
how they contribute to the training. Again, this confirms that the sum could be
a compromise choice, but not necessary the best choice.

In both general games frameworks (GGP and AlphaZero-like self-play),
employing search enhancements at the start of training improves final
training results. For self-play, learning from scratch is not the default
best choice. Existing available human expert data and expert data
from AI programs can be used to improve training, especially at the
start phase of training. Since the model is initialized randomly, the self-play
agent based on such models performs nearly randomly which results in bad train-
ing examples. Therefore, search enhancements can be used to generate better
examples until the model is improved enough to outperform the search enhance-
ments. Our findings on both frameworks suggest boosting the training at start
phase of training by search enhancements like MCS and MCTS with RAVE works
better.

The structure of combining online search and offline training can be
improved by MCTS enhancements. From table based Q-learning to neural
network based reinforcement learning, search and learning are both important.
It is also found that, just like MCTS with RAVE improves table based learning
in [18], MCTS with RAVE can also be used to improve the performance of neural
network based reinforcement learning, see Chapter 5 and 6.

AlphaZero-like self-play can be transferred to solve a complex sin-
gle agent combinatorial game when assisted by other techniques like
ranked reward. Since it is not possible to directly determine a win or loss for
single player combinatorial games like Morpion Solitaire, methods like ranked
reward can be used to set sub-goals for such sparse reward-long episode schedul-
ing problems. It is found that AlphaZero-like self-play can be used to also solve
complex combinatorial games. The result with Morpion Solitaire indicates a
promising future for this approach.
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8.2 Outlook

The research reported in this thesis has yielded many interesting results. We now
enlist some promising avenues for further research.

Inspired by using table based Q-learning in GGP, Goldwasser et al. [60] have build
a deep reinforcement learning framework, showing that the deep neural network
can easily be embedded into it. The next step could be applying heuristic search
enhancements to improve such deep reinforcement learning framework.

Other possible studies on warm-start enhancements of AlphaZero-like self-play
have not been conducted yet. Thus, a number of interesting problems remain to
be investigated.

F Which enhancements will work best on which games? Does the hypothesis
hold that games with more consistent opening plans benefit more from the
warm-start?

F How should the weight (weight w is the parameter which is used to com-
bine the different enhancements search results) be changed along with the
training iteration progress? Linearly or non-linearly? In our experiments it
simply decays linearly.

F There are more parameters that are critical and that could not really be
explored yet due to computational cost, but this exploration may reveal im-
portant performance gains. For example, the MCTS simulation count (m)
and the step threshold (T ′).

F Other warm-start enhancements, e.g., built on variants of RHEA’s or hy-
brids of it, can be explored.

F All our current test cases are relatively small games. How do the results
transfer to larger games, or to different applications?

For single agent problems, our first results on Morpion Solitaire give us reason to
believe that there remain ample possibilities to improve the approach by investi-
gating the following aspects:

F Parameter Tuning: such as the Monte Carlo simulation times. Since good
solutions are sparse in this game, maybe more exploration is beneficial?

F Neural Network Design: It is reported that Pointer Networks perform better
on combinatorial problems [125]. A next step could be to also make the
neural network structure deeper.
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F Local Optima: By monitoring the reward list B, it can be enlarged to allow
more exploration, once it gets stuck in a locally optimal solution.

F By adding more computational resources and parallelization results can be
enhanced.

In addition, it is also interesting to further study the importance of searching and
learning in AlphaZero-like self-play, as it is still unclear if searching (like MCTS)
is necessary for the last part of a long term training. Searching is quite expensive
and normally the last part of training does not give too much improvement.

To further explore the AGI in deep reinforcement learning, curriculum learn-
ing [95], meta learning [130] and transfer learning techniques [46, 54] should be
also combined to deal with more general tasks.

Besides, in our AlphaZero-like self-play experiments, we suffer from the shortage
of computation resources. In the future, we can technically applying paralleliza-
tion programming for the self-play phase of AlphaZero. And optimizing the neural
network structure is also useful to speed up the training.

In consequence, this thesis should not only provide new methods and results
but also encourage researchers to help explore these approaches and questions in
future investigations.
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Appendix A

A.1 Symbols

Table A.1: Notations

- Type Description Ref.
γ 0 ≤ γ ≤ 1 the discount factor of maxa′Q(s′, a′) Eq. (2.1)
α 0 ≤ α ≤ 1 the learning rate of Q-learning Eq. (2.2)
ε 0 ≤ ε ≤ 1 ε-greedy for exploration and exploitation Eq. (2.3)
l N+ match number used to control decaying speed of ε Eq. (2.3)
d N+ dimension of action space Eq: (3.1)
p Rd policy provided by the neural network Eq: (3.1)
π Rd improved estimate policy after performing MCTS Eq: (3.1)
v R state value prediction Eq: (3.1)
z {−1, 0, 1} real game end reward Eq: (3.1)
λ 0 ≤ λ ≤ 1 a weight to balance policy and value loss function Eq: (4.1)
β R a weight number to balance U(s, a) and Urave(s, a) Eq: (5.4)
L N+ the length of the reward list Eq: (7.1)
τ 0 ≤ τ ≤ 1 a ratio to locate game length threshold in reward list Eq: (7.1)
rτ N+ threshold reward of game length to judge win or loss Eq: (7.1)
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A.2 Abbreviations

Table A.2: Abbreviations

Abb. Full Name
AI Artificial Intelligence
AGI Artificial General Intelligence
MCS Monte Carlo Search
MCTS Monte Carlo Tree Search
GGP General game playing
RAVE Rapid Action Value Estimation
GDL Game Description Language
DQN Deep Q-networks
GM Game Manager
TCP/IP Transmission Control Protocol/Internet Protocol
UCT Upper Confidence bound applied to Trees
AMAF All Moves As First
RHEA Rolling Horizon Evolutionary Algorithm
P-UCT Policy-Upper Confidence bound applied to Trees
HPC High Performance Computing
TSP Travelling Salesman Problems
BPP Bin Packing Problems
R2 Ranked Reward
MDP Markov Decision Process
NRPA Nested Rollout Policy Adaptation
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A.3 Algorithms

Algorithm 8 Time Limited Monte Carlo Search Algorithm
1: function MonteCarloSearch(time_limit)
2: get legal actions set A of current state s
3: get next states set S ′ where s′ ∈ S ′
4: z(s′)=0, count(s′)=0
5: while time_cost ≤ time_limit do
6: for each s′ in S ′ do
7: outcome(s′)←random simulation from s′ to game end.
8: z(s′)+=outcome(s′)
9: count(s′)+=1

10: selected_action← getActionFromStates(s, argmaxs′∈S′
z(S′)

count(S′)
)

11: return selected_action
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Algorithm 9 QM-learning Enhancement
1: function QMPlayer(current state s, learning rate α, discount factor γ, Q

table: Q(S,A))
2: for each match do
3: if s terminates then
4: for each (s, a) from end to the start in current match record do
5: R(s,a) =s′ is terminal state? getGoal(s′, myrole) : 0
6: UpdateQ(s, a)← (1−α)Q(s, a)+α (R(s, a)+γ maxa′Q(s

′, a′))

7: else
8: if ε-greedy is enabled then
9: selected_action = Random()
10: else
11: selected_action = SelectFromQTable()
12: if no s record in Q(S,A) then
13: MonteCarloSearch(time_limit)

14: performAction(s, selected_action)

15: return Q(S,A)
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Algorithm 10 Neural Network Based MCTS with Only Rollout Simulation
Value
1: function Rollout(s, fθ)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree, initialize Q(s, ·) and N(s, ·) to 0
9: Get P (s, ·) and v(s) by looking up fθ(s)
10: Get result v(s) by performing random rollout until the game ends
11: return v(s)

12: else
13: Select an action a with highest UCT value
14: s′ ←getNextState(s, a)
15: v ←Search(s′)
16: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

17: N(s, a)← N(s, a) + 1

18: return v;
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Algorithm 11 Neural Network Based MCTS with Only RAVE Value
1: function RAVE(s, fθ)
2: Search(s)
3: πs ←normalize(Qrave(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree,
9: Initialize Q(s, ·), N(s, ·), Qrave(s, ·) and Nrave(s, ·) to 0.
10: Get P (s, ·) and v(s) by looking up fθ(s)
11: return v(s)

12: else
13: Select an aciton a with highest UCTrave value
14: s′ ←getNextState(s, a)
15: v ←Search(s′)
16: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

17: N(s, a)← N(s, a) + 1

18: Nrave(st1 , at2)← Nrave(st1 , at2) + 1

19: Qrave(st1 , at2)←
Nrave(st1 ,at2 )∗Qrave(st1 ,at2 )+v

Nrave(st1 ,at2 )+1

20: . where st1 ∈ V isitedPath, and at2 ∈ A(st1), and for ∀t < t2, at 6= at2

21: return v;
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Algorithm 12 Neural Network Based MCTS with Rollout Simulation and RAVE
Value
1: function RoRa(s, fθ)
2: Search(s)
3: πs ←normalize(Qrave(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree,
9: Initialize Q(s, ·), N(s, ·), Qrave(s, ·) and Nrave(s, ·) to 0.
10: Get P (s, ·) and v(s) by looking up fθ(s)
11: Get result v(s) by performing random rollout until the game ends
12: return v(s)

13: else
14: Select an aciton a with highest UCTrave value
15: s′ ←getNextState(s, a)
16: v ←Search(s′)
17: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

18: N(s, a)← N(s, a) + 1

19: Nrave(st1 , at2)← Nrave(st1 , at2) + 1

20: Qrave(st1 , at2)←
Nrave(st1 ,at2 )∗Qrave(st1 ,at2 )+v

Nrave(st1 ,at2 )+1

21: . where st1 ∈ V isitedPath, and at2 ∈ A(st1), and for ∀t < t2, at 6= at2

22: return v;
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Algorithm 13 Neural Network Based MCTS with Neural Network and Rollout
Simulation Value
1: function WRo(s, fθ)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree, initialize Q(s, ·) and N(s, ·) to 0
9: Get P (s, ·) and v(s)network by looking up fθ(s)
10: Get result v(s)rollout by performing random rollout until the game ends
11: v(s) = (1− weight) ∗ vnetwork + weight ∗ vrollout
12: return v(s)

13: else
14: Select an action a with highest UCT value
15: s′ ←getNextState(s, a)
16: v ←Search(s′)
17: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

18: N(s, a)← N(s, a) + 1

19: return v;
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Algorithm 14 Neural Network Based MCTS with Neural Network, Rave and
Rollout Simulation Value
1: function WRoRa(s, fθ)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree,
9: Initialize Q(s, ·), N(s, ·), Qrave(s, ·) and Nrave(s, ·) to 0.
10: Get P (s, ·) and v(s)network by looking up fθ(s)
11: Get result v(s)rollout by performing random rollout until the game ends
12: random rollout path added to V isitedPath
13: v(s) = (1− weight) ∗ vnetwork + weight ∗ vrollout
14: return v(s)

15: else
16: Select an aciton a with highest UCTrave value
17: s′ ←getNextState(s, a)
18: v ←Search(s′)
19: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

20: N(s, a)← N(s, a) + 1

21: Nrave(st1 , at2)← Nrave(st1 , at2) + 1

22: Qrave(st1 , at2)←
Nrave(st1 ,at2 )∗Qrave(st1 ,at2 )+v

Nrave(st1 ,at2 )+1

23: . where st1 ∈ V isitedPath, and at2 ∈ A(st1), and for ∀t < t2, at 6= at2

24: return v;
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Algorithm 15 Rolling Horizon Evolutionary Algorithm
1: function RHEA(s, time_limit)
2: Set up population of n valid action sequences of length l: An,l
3: for all Ai<n do Evaluate(Ai)

4: repeat
5: new action sequence Aj =mutate one randomly chosen action sequence

by changing every move with a small random chance
6: f(Aj) = Evaluate(AJ)
7: add AJ to population
8: remove Ai with worst f(Ai) from population
9: until time_cost ≥ time_limit
10: return first action of best sequence in population

11: function Evaluate(Ai)
12: repeat
13: Play action sequence in Ai
14: Get result success, game_steps by performing random rollout until

the game ends
15: until repetitions ≥ 2

16: compute fitness f(Ai) from average success probability with sequence
length penalty (line 117)

17: return f(Ai)
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A.4 Elo Computation

In this dissertation, like AlphaZero series papers did, a whole history Bayesian Elo
computation [82] is also employed to present the relative competence of playing
the game of different trained models instead of a win or loss rate. In this section,
a full computation process will be described in detail based on the Bayesian Elo
computation system (called Bayeselo) provided on github [131].

Bayeselo is a free software tool to compute Elo ratings. It receives a file contain-
ing game records written in PGN (Portable Game Notation) format [132], and
produces a rating list [131]. Therefore, a full process can be simply described in
Fig. A.1.

Recorded game arena  results with 
necessary information win/loss etc.

PGN File

Extract and Transfer  information

Bayeselo software

Excute commands:
readpgn

Elo Rating List

Excute commands:elo->mm->exactdist->
Ratings>filename.txt

 

Figure A.1: a full Bayesian Elo Computation Process.

An example of part of a PGN file (arena_othello_final.pgn) generated based
on win/loss results recorded during AlphaZero-like self-play arena competition is
shown as Fig. A.2.
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…… 

[Event "arena_othello_final.pgn"] 

[Iteration "926"] 

[Site "liacs server, Leiden"] 

[Round "6"] 

[White "bestmodel_mcts_rave_run2"] 

[Black "bestmodel_mcts_rave_run5"] 

[Result "1-0"] 

Here are detailed game moves for [Iteration "926, round6"] 

 

[Event "arena_othello_final.pgn"] 

[Iteration "926"] 

[Site "liacs server, Leiden"] 

[Round "7"] 

[White "bestmodel_mcts_rave_run2"] 

[Black "bestmodel_mcts_rave_run5"] 

[Result "0-1"] 

Here are detailed game moves for [Iteration "926, round7"] 

 

[Event "arena_othello_final.pgn"] 

[Iteration "926"] 

[Site "liacs server, Leiden"] 

[Round "8"] 

[White "bestmodel_mcts_rave_run2"] 

[Black "bestmodel_mcts_rave_run5"] 

[Result "0-1"] 

Here are detailed game moves for [Iteration "926, round8"] 

 

[Event "arena_othello_final.pgn"] 

[Iteration "926"] 

[Site "liacs server, Leiden"] 

[Round "9"] 

…… 

Figure A.2: Small Part of PGN file arena_othello_final.pgn. The file contains
much such format iterative arena competition information. Each pair of White and
Black players played 20 rounds.

An example of elo rating list generated by operating Bayeselo system with PGN
file (arena_othello_final.pgn) as input is shown as follows. See Fig. A.3. The
figures of elo ratings in this dissertation are visualized based on such elo rating
lists.
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Table A.3: An example of Generated Elo Rating List by Bayeselo
Rank Name Elo + - games score oppo. draws
1 bestmodel_mcts_rave_rollout_run6 117 22 22 960 62% -2 0%
2 bestmodel_weight_mcts_rave_rollout_run5 102 21 21 960 57% -2 0%
3 bestmodel_weight_mcts_rave_rollout_run2 100 21 21 960 58% -2 0%
4 bestmodel_weight_mcts_rollout_run5 97 22 21 960 58% -2 0%
5 bestmodel_mcts_rave_run1 86 21 21 960 58% -2 0%
6 bestmodel_weight_mcts_rave_rollout_run8 81 21 21 960 55% -2 0%
7 bestmoldel_pi_v_run1 77 22 21 960 61% -2 0%
8 bestmodel_weight_mcts_rave_rollout_run3 71 21 21 960 54% -1 0%
9 bestmodel_mcts_rave_rollout_run2 62 21 21 960 57% -1 0%
10 bestmodel_weight_mcts_rave_rollout_run1 54 21 21 960 53% -1 0%
11 bestmodel_weight_mcts_rave_rollout_run6 53 21 21 960 52% -1 0%
12 bestmodel_mcts_rave_run4 53 21 21 960 54% -1 0%
13 bestmodel_weight_mcts_rave_rollout_run4 52 21 21 960 52% -1 0%
14 bestmodel_weight_mcts_rollout_run3 44 21 21 960 52% -1 0%
15 bestmodel_weight_mcts_rollout_run8 39 21 21 960 51% -1 0%
16 bestmoldel_pi_v_run4 39 21 21 960 56% -1 0%
17 bestmodel_weight_mcts_rave_rollout_run7 36 21 21 960 50% -1 0%
18 bestmodel_weight_mcts_rollout_run7 34 21 21 960 51% -1 0%
19 bestmodel_mcts_rave_run7 32 21 21 960 51% -1 0%
20 bestmodel_weight_mcts_rollout_run2 30 21 21 960 51% -1 0%
21 bestmodel_mcts_rave_rollout_run5 28 21 21 960 52% -1 0%
22 bestmodel_mcts_rave_run2 21 21 21 960 51% 0 0%
23 bestmodel_weight_mcts_rollout_run4 20 21 21 960 49% 0 0%
24 bestmodel_weight_mcts_rollout_run1 20 21 21 960 50% 0 0%
25 bestmoldel_pi_v_run6 18 21 21 960 53% 0 0%
26 bestmodel_mcts_rollout_run3 17 21 21 960 53% 0 0%
27 bestmodel_mcts_rave_rollout_run7 15 21 21 960 51% 0 0%
28 bestmodel_mcts_rollout_run1 11 21 21 960 52% 0 0%
29 bestmodel_mcts_rave_run8 10 21 21 960 49% 0 0%
30 bestmodel_weight_mcts_rollout_run6 8 21 21 960 48% 0 0%
31 bestmodel_mcts_rollout_run2 7 21 21 960 52% 0 0%
32 bestmodel_mcts_rave_rollout_run8 6 21 21 960 49% 0 0%
33 bestmodel_mcts_rave_run5 5 21 21 960 49% 0 0%
34 bestmodel_mcts_rave_run6 4 21 21 960 48% 0 0%
35 bestmodel_mcts_rave_rollout_run3 2 21 21 960 50% 0 0%
36 bestmoldel_pi_v_run7 -2 21 21 960 51% 0 0%
37 bestmodel_mcts_rollout_run6 -6 21 21 960 49% 0 0%
38 bestmoldel_pi_v_run3 -7 21 21 960 51% 0 0%
39 bestmodel_mcts_rollout_run5 -8 21 21 960 49% 0 0%
40 bestmodel_mcts_rave_rollout_run4 -10 21 21 960 48% 0 0%
41 bestmodel_mcts_rollout_run7 -11 21 21 960 49% 0 0%
42 bestmodel_mcts_rave_rollout_run1 -17 21 21 960 48% 0 0%
43 bestmoldel_pi_v_run8 -17 21 21 960 49% 0 0%
44 bestmodel_mcts_rollout_run8 -43 21 21 960 45% 1 0%
45 bestmoldel_pi_v_run5 -65 21 21 960 44% 1 0%
46 bestmodel_mcts_rave_run3 -66 21 22 960 41% 1 0%
47 bestmoldel_pi_v_run2 -100 21 22 960 41% 2 0%
48 bestmodel_mcts_rollout_run4 -109 22 22 960 38% 2 0%
49 randomplayer -988 124 204 960 0% 21 0%
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English Summary

In deep reinforcement learning, searching and learning techniques are two impor-
tant components. They can be used independently and in combination to solve
different problems in AI, and have achieved impressive results in game playing and
robotics. These results have inspired research into artificial general intelligence
(AGI), using these methods. Two general frameworks—General Game Playing
(GGP) and AlphaZero—have been built as the testbed to explore different aspects
of AGI. Both frameworks combine searching and learning methods.

The purpose of this dissertation is to assess the potential of these methods. We
study table based classic Q-learning on the GGP system, showing that classic Q-
learning works on GGP, although convergence is slow, and it is computationally
expensive to learn complex games. For larger games deep neural networks may
work better, which we study next.

Previous work shows that combining searching and learning can achieve better
performance. In this approach search is based on the learned neural network
model and this model is trained by examples that are played by the search al-
gorithm. This dissertation uses an AlphaZero-like self-play framework to explore
AGI on small games. By tuning different hyper-parameters, the role, effects and
contributions of searching and learning are studied. In order to understand the
relative importance of searching and learning, a correlation experiment is per-
formed, suggesting that within a limited budget, a higher number of the outer
self-play iterations is more promising than inner training epochs, search simula-
tions, and game episodes.

A further experiment shows that search techniques can contribute as experts to
generate better training examples to speed up the start phase of training. This
idea is called warm-start in the dissertation. We find that in AlphaZero-like self-
play, a combination of Rollout and Rave enhancements can improve the start
iterations of self-play training, especially with an adaptive iteration length. The
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warm-start method is a promising methods to improve the training by embedding
searching techniques in self-play based learning.

Based on the successes of AlphaZero-like self-play in two-player games, we explore
the possibility in single-player games. In order to extend the AlphaZero-like
self-play approach to single player complex games, the Morpion Solitaire game
is implemented by combining Ranked Reward method. Morpion Solitaire is a
highly challenging combinatorial puzzle. Our first AlphaZero-based approach is
able to achieve a near human best record. This result indicates that AlphaZero-
like self-play approach is a promising method to explore AGI in single player
games.

Overall, in this thesis, both searching and learning techniques are studied (by
themselves and in combination) in GGP and AlphaZero-like self-play systems.
We do so for the purpose of making steps towards artificial general intelligence,
towards systems that exhibit intelligent behavior in more than one domain. Our
results are promising, and propose alternative ways in which search enhancements
can be embedded as experts to generate better training examples for the start
phase of training.
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Twee belangrijke componenten in het vakgebied Deep Reinforcement Learning
zijn technieken om te zoeken en te leren. Ze kunnen los van elkaar en in com-
binatie worden gebruikt om uiteenlopende problemen in de kunstmatige intelli-
gentie op te lossen, en hebben hierin indrukwekkende resultaten bereikt, zowel
in robotica als in het spelen van spellen. Deze resultaten hebben onderzoek naar
kunstmatige brede intelligentie met behulp van zoek- en leertechnieken gestim-
uleerd (artificial general intelligence: AGI). Twee benaderingen—General Game
Playing (GGP) en AlphaZero—worden veel gebruikt om verschillende aspecten
van AGI te onderzoeken. Deze twee benaderingen gebruiken combinaties van
zoek- en leertechnieken.

Het doel van dit proefschrift is om te kijken hoe ver we kunnen komen met deze
technieken. We bestuderen het klassieke Q-learning algoritme (dat nog een tabel
als basis-datastructuur gebruikt) in een GGP systeem. We tonen hiermee aan dat
klassiek Q-learning werkt in GGP, al convergeert het langzaam, en is er erg veel
rekenkracht nodig om ingewikkelder spellen te leren spelen. Voor grotere spellen
zouden diepe neurale netwerken wel eens beter kunnen werken, hetgeen ons vol-
gende experiment is. Bestaand onderzoek geeft aan dat de combinatie van zoeken
en leren beter zal presteren. In deze werken maken zoektechnieken gebruik van
neurale netwerken die getraind worden met voorbeelden die het zoekalgoritme
dan weer aanlevert—de zogeheten self-play aanpak. In dit proefschrift gebruiken
we een op AlphaZero gebaseerde benadering om AGI in kleine spellen te onder-
zoeken. We onderzoeken met verschillende waarden voor hyperparameters de rol,
het effect, en de bijdrage van zoek- en leertechnieken. Teneinde het relatieve be-
lang van zoeken en leren te bekijken, hebben we een experiment gedaan met als
uitkomst dat het aantal zoek-iteraties van groter belang is dan training-iteraties,
simulaties, of spel-episoden, dan tot nog toe gedacht.

Een ander experiment laat zien dat zoektechnieken gebruikt kunnen worden als
expert om de start van het leerproces te verbeteren. Dit idee noemen we de warme
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start in dit proefschrift. In de AlphaZero benadering kan een combinatie van
Rollout en RAVE technieken de eerste iteraties van self-play-training verbeteren,
en helemaal met een adaptieve iteratie-lengte. De warme-start techniek is een
veelbelovende trainingsmethode om toe te voegen aan de self-play aanpak.

Na het succes van AlphaZero self-play methoden in spellen voor twee personen,
onderzoeken we of dit succes ook gebruikt kan worden in spellen voor één per-
soon, ofwel puzzels. Hiertoe implementeren we het spel Morpion Solitaire met de
Ranked Reward methode. Morpion Solitaire is een heel ingewikkelde combina-
torische puzzel. Onze eerste AlphaZero-achtige aanpak bleek al in staat om het
beste menselijke record te benaderen. Dit geeft aan dat dit een veelbelovende
AGI benadering is voor eenpersoons spellen.

In dit proefschrift worden zoek- en leertechnieken bestudeerd, zowel apart als in
combinatie, in GGP en in AlphaZero-achtige self-play systemen. Ons doel is om
stappen te zetten om kunstmatige intelligentie breder toepasbaar te maken, naar
systemen die intelligent gedrag vertonen in meer dan een domein. Onze resultaten
zijn veelbelovend, en laten zien in welke richting zoektechnieken kunnen worden
toegepast om leertechnieken te verbeteren.
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