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Abstract

Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mis-

matches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We

examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great

Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We

used a relative index of pollinator availability as a proxy for pollination service. At present, there is a large spatial

overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for

orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in

areas currently used for fruit production, which are predicted to provide suboptimal environmental suitability for

orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production

against the risk of pollination failure in Great Britain over the next 50 years; for instance, choosing fruit tree varieties

that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources.

Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic

scenarios.
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Introduction

Numerous examples show how predicted climate

change will affect land suitability and crop yields; and

how increased frequency and intensity of extreme

weather events can increase fluctuations in crop yields

(Schmidhuber & Tubiello, 2007; Lobell et al., 2008;

Challinor et al., 2010; Hawkins et al., 2013). Minimizing

the negative effects that these fluctuations have on food

security, requires an understanding of the effects of

climate change on the resilience of crop growth and

yield (Fraser et al., 2013) and, where relevant, of crop-

pollinator systems. Eighty-seven of the leading global

food crops, accounting for about 35% of the global pro-

duction, benefit from animal pollination, in particular

from insects (Klein et al., 2007); yet, pollination is rarely

accounted for in projections of the impacts of climate

change on crop yields.

The importance of insect pollinators has been valued

at €153 billion to agricultural production (Gallai et al.,

2009) worldwide. The documented declines in insect

pollinators (Biesmeijer et al., 2006; Potts et al., 2010;

Carvalheiro et al., 2013) may therefore threaten food

security, which in turn may lead to an increased

demand for agricultural land (Aizen et al., 2009).

Climate change, together with land-use intensification

and the spread of alien species and diseases, is one of

the main anthropogenic pressures on insect pollinators

(Vanbergen & The Insect Pollinators Initiative, 2013).

Several authors have investigated how climate change

can affect plant-pollinator interactions (e.g. Devoto

et al., 2007; Memmott et al., 2007). Recent work by

Kuhlmann et al. (2012), for instance, has highlighted

how climate-induced range shifts of dominant bee
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species are likely to affect specialized plant-pollinators

mutualisms, with negative consequences for the repro-

duction of these plants. Other studies have looked at

specific crop-pollinator systems, examining the cost of

replacing pollination service (Allsopp et al., 2008), the

predicted decline in suitable bee habitat due to climate

change (Giannini et al., 2012), and the potential envi-

ronmental suitability of nearby regions allowing the

persistence of crop-pollinators mutualisms (Giannini

et al., 2010, 2011).

Understanding how climate change will affect

crop-pollinator systems helps highlight areas poten-

tially vulnerable to pollinator shortage, or predict

potential geographical mismatches between crops and

their pollinators. Similarly, such information can be

used to identify areas suitable for the persistence of

both the crop and its wild pollinators, or direct local

interventions to boost pollination service, thereby

strengthening food security.

In this study, we examined the impact of projected

climate change on the distribution and likelihood of

occurrence of commercial orchards and their pollina-

tors in Great Britain (GB). Commercial orchards (orch-

ards hereafter) occupy about 19 000 ha in UK, which

equates to nearly 13% of the total area dedicated to the

production of fruit and vegetables. Of the area used for

fruit production, orchards occupy 65.5%, with the

remainder used for the production of soft fruits, such

as strawberries. The major products of orchards in the

UK are apples, pears, plums and cherries, with dessert

apples alone accounting for nearly 28% of the planted

area and having a net value of £70 million annually

(Department for Environment, Food & Rural Affairs,

2013). Bees and hoverflies are the predominant pollen

vectors for these plants (Klein et al., 2007). To ensure

marketable fruits, therefore, it is important that the

activity of pollinators overlaps spatially and temporally

with the flowering period of the fruit trees.

Here, we used the projected climate for 2050 from the

SRES A1B Emissions Scenario (Naki�cenovi�c et al., 2000)

to estimate the nation-wide environmental suitability

for orchard species and their pollinators. Recent trajec-

tories of greenhouse gas emissions are higher than

those considered under the SRES A1B (Raupach et al.,

2007), so the projections used here may be interpreted

as conservative estimates of climate change. We used

present day distributional data to characterize the

climatic conditions most favourable to the orchard

species and to their pollinators. We excluded land-

cover/land-use information, since its distribution can-

not readily be predicted with sufficient certainty

beyond the current time. We then projected the poten-

tial distribution of orchards and pollinators, on the

basis of the climate projected for 2050, and derived a

relative measure of pollination service available to

orchards for present and future conditions. This

approach allowed us to highlight changes in environ-

mental suitability which may threaten the persistence

of the orchard-pollinator system, and identify geo-

graphical mismatches between orchards and pollina-

tors potentially affecting pollination service provision.

We used this information to suggest appropriate inter-

vention measures which could be used to mitigate

against future loss of pollination services to orchards.

Materials and methods

Overview

We used the species distribution model (SDM) Maxent, (Phil-

lips et al., 2006; Aguirre-Guti�errez et al., 2013; Polce et al.,

2013) to predict the distributions of orchards and pollinators

in relation to climatic conditions. Pollinator and orchard data

were collected using different methodologies, thus requiring

different modelling approaches; we describe these datasets in

the following subsections ‘Pollinator data’ and ‘Orchard data’

respectively. Details of the climate data used to characterize

the environmental space of orchards and pollinators are pro-

vided in the subsection ‘Climate data’. We modelled pollina-

tor species individually, using available records to predict

current potential distribution and then future projections. We

modelled future distribution of orchard species as an entire

category since information on orchard composition was not

available from the current agricultural survey data. The model

settings for pollinator species and orchards are described sep-

arately, under ‘Distribution models’. We then describe how

we used the outputs from the SDMs to identify:

1. The climatic predictors that contributed most to the final

models (subsection ‘Contribution of predictors’).

2. How the climatic predictors for the pollinators and orch-

ards are projected to change in 2050 (subsection ‘Similari-

ties between current and predicted climate’).

3. An index of relative pollinator availability to orchards,

which we used as a proxy for potential pollination service

(subsection ‘Pollinator availability’).

Pollinator data

We used presence-only sightings of wild bees and hoverflies

recorded in GB within the period 2000–2010 (‘Bees, Wasps

and Ants Recording Society’, BWARS, http://www.bwars.

com/; ‘Hoverfly Recording Scheme’, HRS, http://www.

hoverfly.org.uk/). On the basis of literature (Free, 1993; Marini

et al., 2012) and knowledge gained by our team members dur-

ing the past years of pollinator-related field projects (e.g.

http://www.reading.ac.uk/caer/Project_IPI_Crops/project_

ipi_crops_index.html; http://www.step-project.net/; http://

www.alarmproject.net/alarm/; all accessed February 2014),

we selected 22 species of wild bees and 8 species of hoverflies,
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known to be visitors of fruit trees and therefore potential

pollinators of orchard crop flowers in GB. The spatial resolu-

tion of the records varied from 100 m2 to 4 km2. We aggre-

gated all sightings for each species on the 25 km2 grid (5 by

5 km cells) and removed any duplicate records, so that for

each species, there was at the most one entry per grid cell. The

number of available records per bee species ranged from 26 to

2096 (mean � SD = 650 � 580; median = 471); records per

hoverfly species ranged from 150 to 1981 (mean � SD =
1032 � 616; median = 1033). Pollinator species and numbers

of records are listed in the Data S1 (Table S1 in Data S1).

Orchard data

The current distribution of orchards was derived from the

2010 Defra June Agricultural Survey (http://www.defra.gov.

uk/statistics/foodfarm/landuselivestock/junesurvey/junesur

veyresults/). Orchards included areas of at least 1 ha, planted

with top fruit such as apples, cherries, pears, plums and nuts

(walnuts and hazelnuts mainly); their distribution was origi-

nally mapped on a grid of 2 9 2 km cells (‘tetrads’) and

included information on the extent of the orchards within each

tetrad. We superimposed a 5 9 5 km grid onto the crop tetr-

ads, proportionally allocating each tetrad’s orchard extent to

the overlapping 5 km grid cell(s). The final extent of the orch-

ards within each cell was the sum of the proportional extent

from all tetrads intersecting the cell. Of the 9726 grid cells

used to represent GB, around 14% contained orchards (1354),

with a total mapped extent greater than 12 200 ha. The differ-

ence between the Defra figures for orchards and the actual

mapped hectares are due to insufficient spatial information

for some of the orchard fields to be mapped.

Climate data

We used total annual precipitation and monthly minimum

and maximum temperature to derive a set of environmental

descriptors commonly used in species distribution models

(e.g. Hijmans & Graham, 2006; Warren et al., 2010; Warren

et al., 2013; Wolmarans et al., 2010): growing degree days

greater than 5 °C (GDD5, used only for crop), calculated fol-

lowing Sork et al. (2010); and 19 bioclimatic variables (Hijmans

et al., 2005, 2011). This choice reflected the need to satisfy two

main criteria: the same predictors needed to be available for

both the present and the future projections; they needed to be

relevant for the modelled group. The three input variables

were obtained from UKCP09 (http://www.metoffice.gov.uk/

climatechange/science/monitoring/ukcp09/). Baseline data

for pollinator distribution models were made of the 25 km2

gridded monthly averages for the decade 1990–1999, while for

the orchard distribution model, we used gridded data for the

30 year period 1977–2006 (the most recent available complete

30 year period). We used a longer time series for orchard

crops, to reflect the longer life cycle of fruit trees compared to

insect pollinators. Future projections of monthly averages

were derived from the UKCP09 projections (Murphy et al.,

2010) for the SRES A1B storyline (‘Medium’ Emissions Sce-

nario, as referred in the UKCP09 report). We used the 30 year

period from 2040 to 2069; we will refer to the baseline data as

the ‘Present’ and to the future projections as the ‘M2050’.

These data are located on a rotated-pole grid with a spatial

resolution of approximately 25 by 25 km. We rescaled them to

the 5 9 5 km British National Grid, to match the orientation

and resolution of the baseline data. Additional information on

this dataset and details of the rescaling procedure are pro-

vided in the Data S1 (Data S1, Material and Methods, ‘Climate

data for future projections’).

All the variables were computed within R (R Development

Core Team, 2011). To minimize colinearity between predictors

(Guisan & Thuiller, 2005), subsets were created for pollinators

and orchards. For pollinators, due to lack of a general set of

commonly used variables, we used Jolliffe’s Principal Compo-

nent Analysis with the rejection method ‘B2’ and k0 = 0.70

(Jolliffe, 1972, 1973); we reduced the original set to six predic-

tors (Table 1). For orchards, we based the choice on literature

(Thuiller, 2004; Termansen et al., 2006; Sork et al., 2010; Frank-

lin et al., 2013; Warren et al., 2013), and we selected five pre-

dictors (Table 1). The Pearson’s correlation between the

selected crop and pollinator variables is reported in the Data

S1 (Data S1, Material and Methods, ‘Correlation between

selected climatic predictors’, Tables S2 to S5).

Distribution models

Pollinator distribution models. Detailed settings for the Max-

ent pollinators’ distribution models (PDM) follow Polce et al.

(2013) and are summarized in the Data S1 (Data S1, Material

and Methods, ‘Pollinator distribution model’). Model training

and testing was performed through 10-fold cross-validation,

and ‘10th percentile of training presence’ was used as a

threshold to convert probability of occurrence into binary pre-

dictions (‘presence-absence maps’). We chose this threshold

since it retains as suitable environmental conditions, those

characterizing 90% of the training locations, thus excluding

records that were found at the extreme of the species’ suitable

environment. We assumed unlimited dispersal capability for

each species, but we restricted the predicted presence to areas

where all 10 model runs had predicted ‘presence’; we

assigned average probability of occurrence (p) to these areas,

and ‘absence’ outside them.

We assessed the models using the Area Under the Receiver

Operating Characteristic Curve (AUC), which, despite known

assumptions and limitations (Termansen et al., 2006; Austin,

2007), is commonly used as a threshold-independent measure of

model performance within SDMs. With presence-only data such

as the pollinators’ sightings, the maximum achievable AUC is

<1 (Wiley et al., 2003) so standard thresholds for evaluating

goodness of fit do not apply. Instead, we followed Raes & ter

Steege (2007) and we compared the average AUC value of each

species PDM (AUCPDM) with the average AUC value of a set of

null models (AUCNM) where species records were replaced by

randomly chosen locations. We expected AUCPDM > AUCNM.

Orchard distribution models. After running Maxent models

using different feature classes (i.e. including different possible

relationships between species data and climate variables from

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 20, 2815–2828
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linear to hinge to quadratic) to predict present orchards distri-

butions, we retained the models that used hinge features,

which were then used to predict orchards’ future probability of

occurrence. For the orchard distribution model (ODM), Maxent

was trained on 75% sample points, and the remainder was

used for testing. This procedure was repeated 10 times. We

used areas where at least seven model runs had predicted pres-

ence (based on the ‘10th percentile of training presence’), to

indicate suitable conditions for crop growing under the M2050

scenario, and assigned to these areas the average probability of

occurrence obtained from the 10 model runs. We used a more

relaxed criterion for orchards than pollinators (7 vs. 10 model

runs to indicate presence), to account for the fact that orchards

are a managed resource and so can overcome some of the barri-

ers which would prevent colonization and establishment of

wild organisms such as the pollinators that were modelled.

Contribution of different predictors to distribution models

The contribution of each predictor to the final PDMs and

ODM was derived from the drop in AUC observed after per-

muting the values of each variable with those of the back-

ground, with larger drops indicating that the model depended

heavily on that variable (Data S1, Material and Methods, ‘Con-

tribution of different predictors’). Average and confidence

interval for the observed drops were derived through 10 000

bootstrap replicates.

We used a linear mixed effects model (Pinheiro et al., 2013)

to test if the contribution of different predictors differed

between pollinator species and/or model runs. We used

predictors as fixed factors and model run as a random factor.

Model run was nested within species and group (bees or

hoverflies) when analysing the results from the PDM. Multiple

pairwise comparisons of different predictors were then

performed using Tukey’s post hoc test for a general linear

hypothesis (Hothorn et al., 2013).

Similarities between current and predicted climate

The PDM and ODM were required to predict conditions not

sampled in training data. Computing the similarity between

conditions at training locations and conditions where predic-

tions are to be made can be done within Maxent, through

Multivariate Environmental Similarity Surfaces (MESS) (Elith

et al., 2010). MESS measure the similarity of any given point to

a set of reference points, for each model predictor. The lowest

similarity obtained for that point is used as the point’s MESS.

Negative values indicate conditions that are outside the range

of references values, while positive values indicate greater

similarity to the set of reference points, with 100 assigned to a

point not novel at all (i.e. having a predicted value within the

range of reference points). In addition to mapping the MESS

across the region of interest (GB), an accompanying map also

showed, at any given location, the variable that drove the

MESS. We used these two maps to spatially quantify predicted

climatic changes.

Pollinator availability

We used pollinator availability (PA) as a proxy for pollination

service. Pollinator availability resulted from the contribution

of each species probability of occurrence predicted by the

Maxent model. We assumed that all pollinator species are

equally efficient in pollinating orchard flowers. For each grid

cell, where the presence of orchards was predicted or

observed, PA was defined as:

PAm ¼
Ps

s¼1 psm
S

ð1Þ

Where: PAm = pollinator availability to the orchards in grid

cell m, resulting from all pollinator species; psm = Maxent

probability of occurrence for species s on cell m; S = total

number of pollinator species. Eqn 1 is loosely based on

Table 1 Variables used for orchards and pollinators distribution modelling. The table shows the final set of predictors used to

model the distribution of orchards (ODM) and pollinators (PDM). The selection of predictors was based on several criteria, includ-

ing their use in published literature and minimizing multicollinearity

Original

code Definition Abbreviation Model

Bio03 *Isothermality Isoth PDM

Bio04 Temperature Seasonality (SD 9 100) TSeasSD ODM

Bio06 Min Temperature of Coldest Month mTCM ODM

Bio07 Temperature annual range TAR PDM

Bio08 Mean Temperature of Wettest Quarter MTWQ ODM

Bio09 Mean temperature of driest quarter MTDQ PDM; ODM

Bio11 Mean temperature of coldest quarter MTCQ PDM

Bio15 Precipitation seasonality

(Coefficient of variation)

RainSeasCV PDM

Bio18 Precipitation of Warmest Quarter RainWQ ODM

Bio19 Precipitation of coldest quarter RainCQ PDM

*Isothermality = Mean diurnal range/Temperature annual range 9 100. Isothermality quantifies how large is the day-to-night tem-

perature oscillation in comparison to the summer-to-winter oscillation, with 100 representing a site where the diurnal temperature

range is equal to the annual temperature range.

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 20, 2815–2828
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Lonsdorf et al.(2009) and Polce et al. (2013), with the main dif-

ference being that the weighted term allowing pollinators to

reach an orchard located on neighbouring cells is excluded, as

the model resolution is coarser than the typical pollinator

foraging distance.

We used Eqn 1 to derive the PA where:

• Orchards are currently present: the baseline PA;

• Orchards are predicted to occur based on the M2050 future

scenario: to assess whether the most suitable areas for fruit

trees are also suitable for their pollinators;

• Orchards are currently present, but climatic conditions are

those predicted for M2050: to derive the difference in PA

between the present and the M2050 scenario, assuming that

fruit trees can continue to persist where currently present,

despite changes in climatic conditions.

Results

Climate and bioclimatic variables

Plotting the climatic variables used for pollinators and

crop models highlighted any distributional difference

in the predictor values between Present and M2050

(Figure S1 in Data S1). We identified three patterns: (i)

No major differences in range of values or distribution;

(ii) Similar distribution with systematic shift; (iii)

Change in the mean and the shape of the distribution.

Table 2 groups the predictors according to the observed

change.

The environmental similarities between the parame-

ter space used during model training and the parame-

ter space used for the M2050 projections are

summarized in Fig. 1 and Fig. 2. The two maps in

Fig. 1 show the MESS: they have to be read in relation

to the predictors used to build the model, hence the dif-

ferences between the orchards- and pollinators-MESS.

The pattern of the orchards-MESS reveals a latitudinal

gradient, with dissimilarity increasing southwards, and

coastal areas generally holding environmental condi-

tions within the present range (Fig. 1a). With between

species subtle differences in the decimal values, the

pollinators-MESS showed a zoned similarity, with

novel climate concentrated in the South and often along

the coast (Fig. 1b).

The most dissimilar variable at any given locality

across the orchards- and pollinators-MESS is shown

in Fig. 2. The most dissimilar variable from the orch-

ards-MESS was Temperature Seasonality (TSeasSD) in

almost the entire region (92%), while the area that

had not experienced shifts in the parameter space

summed to only 2% (Fig. 2a). The most dissimilar

variable derived from the pollinators-MESS showed a

different pattern: the vast majority (55%) of the area

was characterized by climatic conditions within the

present range. For areas characterized by novel cli-

matic conditions (novel in relation to the training

points), Mean Temperature of the Driest Quarter

(MTDQ) was the most dissimilar variable, covering

the Southern part of the region, for 36% of the total

extent (Fig. 2b).

Pollinator and crop distribution models

Model performance. Pollinators distribution models pro-

vided a significantly better fit than expected by chance

alone for all the species: AUC of model testing ranged

from 0.57 to 0.92 (average AUC = 0.72), while null

model AUC ranged from 0.48 to 0.51 (average

AUC = 0.49) (Figure S2 in Data S1). A similar pattern

was observed for the model training AUC. ODMs ren-

dered average model testing AUC = 0.80, varying from

Table 2 Qualitative assessment of the changes observed

between present and future climatic predictors. The table

groups the climatic predictors according to the changes

observed between present and M2050 projections. Three main

types of changes were identified (in Italics). Climatic predic-

tors are defined in Table 1

Observed change Characteristics of the future projections

No major differences

MTCQ

TAR

RainWQ

Similar distribution

with systematic shift

mTCM Warmer

MTWQ Warmer

TSeas Twice as big

Change in the mean

and the shape of the

distribution

Isoth Expanded to include lower values,

indicating areas with a greater

difference between the diurnal

temperature range and the

summer-to-winter oscillations

MTDQ Changed from a normal distribution

towards a bimodal distribution, with

a small peak towards lower

temperature, and a greater one

towards temperature 5 degrees higher

than then present mean

RainSeas Changed from having two peaks and a

trough to having one peak, around

the values currently characterized by

the trough (i.e. 25%), indicating a

greater number of sites with similar

rainfall pattern

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 20, 2815–2828
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0.79 to 0.82, which is considered within the range of

useful applications (Swets, 1988).

Contribution of different predictors. There was a signifi-

cant difference in the permutation importance of the

different predictors resulting from the PDMs. Tempera-

ture Annual Range (TAR) was the most important pre-

dictor (bootstrap mean importance: 30.7%); Mean

Temperature of the Coldest Quarter (MTCQ) followed

next (26.8%) and was significantly less important than

TAR (Tukey’s post hoc test: P = 0.01). Isothermality

(Isoth) and Mean Temperature of the Driest Quarter

(MTDQ) were, equally (P = 0.36), the least important

predictors (Figure S3, Table S6 and Table S7 in Data

S1).

Predictors’ importance was consistent across differ-

ent runs of the ODMs: Temperature Seasonality

(TSeasSD) was the most important predictor (bootstrap

mean 39.0%), followed by Minimum Temperature of

the Coldest Month (mTCM, bootstrap mean 35.6%)

(Figure S4 in Data S1). Multiple pairwise comparisons

between the predictors confirmed a ranking of decreas-

ing importance (Figure S4, Table S8 and Table S9 in

Data S1). Given the potential effects of mTCM on the

fulfilment of the chill hours, we inspected Maxent

models built with this variable alone: probability of

orchard occurrence was greatest for 1 ≤ mTCM ≤ 2 °C
and decreased nearly symmetrically outside this inter-

val (Figure S5 in Data S1).

Future projections

Orchard model. Per cent change between M2050 and

present in probability of occurrence (p) for existing

orchards ranged from �77.5% to +53.4% (mean � SD:

�36.9% � 18.7%, Fig. 3). Negative changes were more

frequent than positives (Histogram in Fig. 3). At the

locations of existing orchards, present probability of

occurrence ranged from 0.01 to 0.84 (mean � SD:

0.52 � 0.15), with the largest crop parcels found in

areas with p > 0.40. In the M2050 scenario, however,

the predicted probability of occurrence for the current

locations of the largest orchards decreased to p < 0.30

and in most cases p < 0.20, indicating a change in the

climatic conditions at the sites currently used for orch-

ards (Fig. 4). The pattern shown in Fig. 4 was con-

firmed by testing the correlation between orchard size

and probability of occurrence. We found that size of

orchards and probability of occurrence were positively

correlated under present climatic conditions

(a) (b)

Fig. 1 Multivariate environmental similarity surface (MESS) from (a) orchards and (b) pollinators’ distribution models (ODM and

PDM respectively) The two maps summarize the environmental similarity between the present parameter space used during model

training (reference value), and the parameter space used to project model results (the future M2050 scenario), for (a) orchards and (b)

pollinators. Negative values indicate conditions that are outside the range of references values, while positive values indicate greater

similarity to the set of reference points; 100 would indicate a point not novel at all.
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(a) (b)

Fig. 2 Most dissimilar variable (MoD) from (a) orchards and (b) pollinators distribution models (ODM and PDM respectively). The

two maps show the MoD based on the multivariate environmental similarity surface derived from the predictors used to model (a)

orchards and (b) pollinators distribution and mapped in Fig. 1. Grey areas indicate that the distribution of values predicted for the

M2050 future is within the range of values observed in present time. It is important to note that MoD is defined over the entire range of

values for each predictor, and therefore cannot be used to assess whether the predicted climatic conditions at a particular location differ

from the baseline. Variables are defined in Table 1.

Fig. 3 Per cent change in probability of occurrence at the localities currently occupied by orchards. The map shows the spatial distribu-

tion of the change in probability of occurrence (p) between the future scenario and the present conditions, for the localities currently

occupied by orchards. The difference in p between the two periods (pFuture–pPresent) was converted to percentage. The histogram shows

the frequency of the change, and it highlights that negative changes are expected to be more frequent than positive changes, implying

that most of the areas currently occupied by orchards are expected to become less suitable.
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(q = 0.153), but negatively correlated for the M2050 sce-

nario (q = �0.233). Both correlations were significant

based on 9999 samples with replacement taken at ran-

dom from the two distributions (Figure S6 in Data S1).

The predicted probability of occurrence for orchards

in M2050 from the average of 10 model runs ranged

from 0.01 to 0.69, with the highest values in the Wes-

tern part of GB, in areas currently not occupied by

orchards. If we only include regions where at least

seven of the 10 model runs have predicted crop pres-

ence, the minimum probability of occurrence becomes

0.32, while the maximum remains unchanged (Fig. 5).

These regions, chosen by the vast majority of the

model runs, were taken as the most likely locations for

fruit tree production under the M2050 scenario (i.e.

those with most suitable climate; soil and other grow-

ing conditions may still be limiting) for subsequent

estimates of the service provision. In addition, the min-

imum probability of occurrence found for these

regions (0.32) was within 2 SD of the mean obtained at

the localities of orchards based on current predictions

(mean–2SD: 0.22).

Pollinator models. Pollinators distribution models

predicted a range expansion for 20 species and range

contraction for 10 species. Range expansion varied from

8% to 165% (Andrena haemorroa and Megachile maritima

respectively); range contraction varied from 1% to 99%

(Osmia bicornis and O. bicolor respectively) (Fig. 6). The

overall mean and median were 18% and 33% respec-

tively, indicating a greater change in the direction of

range expansion than in range contraction.

The areas with greatest species richness (SR) were

predicted to occur in a large part of Southern GB for

present time (SR = 25–30); for the M2050 only a small

area in the Eastern part of the country was predicted to

Fig. 4 Current orchards’ extent in relation to current and pre-

dicted probability of occurrence based on climate suitability.

Current extent measured in hectares is mapped with propor-

tional symbols, using five intervals from <1 ha to 324 ha. The

map suggests that most of the largest orchards are currently in

areas where the model has predicted probability of occurrence

(p) > 0.4, while the same orchards will be in areas with future

p < 0.3 and in most cases p < 0.2. The red line marks where cur-

rent p = future p and highlights that the predicted environmen-

tal suitability for larger orchards is lower than the current one.

(a) (b) (c)

Fig. 5 Current orchards locations and future probability of occurrence. From left to right: the first map (a) shows the locations of the

current orchards. The second map (b) shows the orchards’ average probability of occurrence (p) in the M2050 future, as predicted from

10 model runs. The third map (c) indicates the average p for areas where at least seven of the 10 model runs have predicted crop pres-

ence, based on the threshold defined in the main text.
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reach a similar richness (SR = 25–29) (Fig. 7). In addi-

tion, comparing the predicted SR for the two periods,

revealed an area of greatest species loss in the Western

part of GB (11–21 species lost), and an extensive area

with the opposite trend along the East coast (11–21 spe-

cies gained). The largest areas where SR did not change

were in the Northern part of GB, mainly in the Eastern

and Western part of Scotland.

Pollinator availability. The present pollination availabil-

ity (PA) ranged from 0 (absence of pollinator) to 0.48

(Fig. 8a and Figure S7 in Data S1): complete absence of

pollinators for crops was predicted for <1% of the horti-

cultural areas (Fig. 9) and was localized mainly in the

Western part of Wales; 73% of the area was predicted

within the range 0.06 ≤ PA ≤ 0.35, while the highest

class of PA (0.35 < PA ≤ 0.5) was predicted for 19% of

the areas, mainly in the Southern part of GB. The PA to

orchards for the locations predicted by the M2050 sce-

nario ranged again from 0 to 0.48 (Fig. 8b and Figure S8

in Data S1), but its distribution differed from present.

Absence of PA characterized 7% of the horticultural

areas (Fig. 9) and was mainly localized along the

North-west coast (Scotland); the majority of the area

(89%) was predicted to have 0.01 ≤ PA ≤ 0.2, along the

central and Western part of the country. The highest

class of PA was only predicted for 1% of the potential

future horticultural areas, which was made up of a few

isolated fragments. The last scenario shows the PA

available for M2050, but at the locations where orchards

are currently planted. PA ranged from 0.01 to 0.77

(Fig. 8c and Figure S9 in Data S1) indicating a change

in the pollinator distribution from the present patterns.

All the orchards were predicted to be exposed to pollin-

ators, and thus to potentially benefit from their service.

The class of PA corresponding to the highest currently

Fig. 6 Predicted change in species’ range. Per cent change is

obtained by comparing each species’ predicted future range to

its current range, under a universal expansion hypothesis (i.e.

no barriers to expansion). Negative values indicate loss of suit-

able areas (i.e. range contraction) while positive value indicate

gain of areas (i.e. range expansion). Within each group (bees,

hoverflies), species are listed alphabetically, with the dot sepa-

rating the first three letters of the genus from the first three and

last two letters of the species.
Fig. 7 Change in species richness between current and future

predictions. The maps in the inset show the predicted number

of pollinator species, based on the Maxent models. Species rich-

ness (SR) was predicted within the range of 0–30 for present,

and 0–29 for the M2050 scenario. SR is displayed using intervals

and coloured using blue shades for areas with lower SR (i.e.

diversity cold spots) to green shades for areas with higher SR

(i.e. diversity hot spots). The larger map shows the change in

SR, resulting from comparing the predicted SR for the two peri-

ods. Gains of species are mapped in green, with darker shades

indicating greater species gain. Losses of species are mapped in

red, with darker shades indicating greater species loss. Grey

indicates areas where SR was not predicted to change.
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predicted (0.36–0.5) occupied 53% of the area (Fig. 9),

while it was 1% for present conditions. An even greater

PA, namely 0.51 < PA < 0.8 was predicted for 22% of

the area, generally corresponding to the regions cur-

rently receiving the greatest PA (the Southern part of

GB). However, looking at the future orchards, p shown

in Fig. 8d reveals that these areas are characterized by

low p, indicating that the climatic conditions may not

favour crop growth.

Discussion

It has been widely documented that shifts in species

ranges are correlated with climatic change (Parmesan &

Yohe, 2003; Root et al., 2003; Chen et al., 2011). By act-

ing on the distribution and survival of single species,

climate change is likely to affect ecosystem functions

and, as a result, the provisioning of ecosystem services.

In this study, we examined the potential consequences

of climate change for pollination services as provided

by an array of 22 bee and 8 hoverfly species known to

be frequent visitors of orchards in Great Britain.

Changes in climatic conditions can affect plant-pollina-

tor interaction networks in several ways (Hegland et al.,

2009), for instance by causing phenological mismatches

(a) (b) (c) (d)

Fig. 8 Pollinator availability for different scenarios of orchards distribution and climatic conditions. Pollinator availability (PA) is used

as a proxy for pollination service, and measured with a relative index from 0 to 1. PA is mapped from red to green using intervals. Red

is used only to indicate areas where PA is predicted to be 0 (i.e. where pollinators are predicted to be absent). The first map (a) shows

the PA currently available to orchards. The second map (b) shows the future PA for areas most suitable to orchards based on the

M2050 scenario. The third map (c) shows the PA predicted where orchards are currently planted, but based on the pollinator availabil-

ity for M2050. The smaller map (d) shows the probability of occurrence (ρ) for orchards, based on the M2050 climatic conditions. Darker

areas indicate greater p: this map suggests that, under future climatic conditions, ρ for areas where orchards are currently planted is

predicted to be low.

Fig. 9 Distribution of classes of pollinator availability. Bars

show the distribution of classes of pollinator availability (PA)

mapped in Fig. 8, according to their per cent frequency. Fre-

quency was defined as the number of grid cell characterized by

a certain PA. Black bars represent current PA; light grey show

the PA for areas where orchards have the greatest probability of

occurrence based on the future scenario M2050; dark grey show

the PA based on climatic conditions predicted for M2050 but for

areas where orchards are currently planted.

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 20, 2815–2828

2824 C. POLCE et al.



(Burkle et al., 2013) or spatial mismatches (Schweiger

et al., 2008). Here, we focused on potential geographical

mismatches, and showed that under future climate sce-

nario, suitable conditions for orchards and orchard poll-

inators may not overlap, threatening pollination

service. In particular, we examined the potential distri-

bution of pollinators and orchard species grown in GB,

based on the SRES A1B Emissions Scenario climatic pro-

jections. We used a relative measure of pollinator avail-

ability as an indication of potential pollination service,

since quantifying service delivery in absence of pollina-

tor abundance data cannot be done. Using the environ-

mental suitability for wild pollinators, as a relative

measure of potential pollination service is a commonly

adopted approach (Lonsdorf et al., 2009; Lautenbach

et al., 2011; Polce et al., 2013; Zulian et al., 2013), in

absence of sufficient information to parameterize the

relation between pollinator availability and yield.

Pollinator species differ in their efficacy to pollinate

flowers (e.g. Bischoff et al., 2013; Castro et al., 2013;

Garratt et al., 2014). In addition, altered phonologies

due to climate change may result in temporal mis-

matches between the availability of the most effective

pollinators and the onset of flowering, with potential

negative consequences on plant reproduction success

(Rafferty & Ives, 2012) and service provision. Although

approaches to estimate and compare pollinators’ per-

formances have been discussed (Ne’eman et al., 2010;

King et al., 2013), there remain practical and theoretical

difficulties to apply the proposed methods over large

geographical regions and to many pollinator species.

Thus, in deriving pollinator availability, we did not take

into account species’ identity and we assumed all spe-

cies be equally efficient in pollinating orchard flowers.

We chose orchards as they represent a major GB fruit

crop, and they include top fruits of global economic

importance, such as apples. The distribution of orch-

ards is limited to locations having suitable soils, climate

and socio-economic conditions. For examples, apples

and other fruits trees are known to be vulnerable to

frost occurring during bloom stage: the projected cli-

mate warming, therefore, raises concerns that the

bloom stage might advance in time and coincide with

periods where frost spells can happen, thus threatening

the quality and possibly the production of fruits (Eccel

et al., 2009). Of the predictors used to model orchard

distribution in our study, Temperature Seasonality pre-

sented the greatest mismatch between present and

future, with projections shifted towards greater vari-

ability. We cannot assert at this stage that this will

directly threaten fruit production, but greater variabil-

ity may increase the risk of sharp temperature varia-

tions, such as the occurrence of frost spells in periods

otherwise characterized by milder temperatures, e.g.

during flowering. In addition, fruit trees benefit from

bud dormancy, which is triggered by a period of expo-

sure to cold weather: the predicted rise in Minimum

Temperature of Coldest Month (mTCM) could interfere

with the fulfilment of the chill hours per year, poten-

tially affecting the production of leaves, flowers and

subsequently fruit. Inspecting Maxent models built

exclusively with this variable provide some support to

this hypothesis. While current mTCM is most com-

monly between 1 and 2 °C, this will increase to 4 °C,
with peaks up to 8 °C, in M2050.

Of the predictors used to model pollinator distribu-

tion, Mean Temperature of the Driest Quarter was the

one with the greatest shift, both in terms of mean and

shape; but for the majority of the country none of the

predictors moved outside the present climatic range. In

interpreting this pattern, we must stress that change

only refers to the range of values of the predictors, and

not to their geographical location; in other words, a

location will be mapped as ‘No change’ if the projected

values for all predictors have changed, but they have

all remained within the range of values observed for

present time. The results from the PDMs projected that

locations with greatest pollinator richness would shift

north-east, suggesting a similar shift in environmental

conditions most suitable to pollinators. For Europe,

Ohlem€uller et al. (2006) have already shown a prevail-

ing north-east shift in the climatic conditions analogous

to the 1931–1960 period. For much of the global land

shifting climate has been projected to be greater than

1 km yr�1 over the 21st century (Diffenbaugh & Field,

2013), potentially posing alarming challenges for terres-

trial ecosystems. The results of the PDMs assume

unlimited dispersal of pollinators and predicted range

expansion to occur more frequently than range contrac-

tion. Indeed, some species are likely to track such

changes. The bumblebee, Bombus hypnorum, arrived in

SE England less than 15 years ago and since then has

reached Scotland. However, if areas of similar climate

are farther than the species’ dispersal distance, coloni-

zation and persistence may not be possible (Thuiller,

2004; Ohlem€uller et al., 2006), and more species would

shrink their range. This risk would be further enhanced

by other pressures acting on the pollinators, such as

habitat fragmentation and degradation, parasites and

alien species (Vanbergen & The Insect Pollinators Initia-

tive, 2013), none of which was considered here. Look-

ing at the species that are already predicted to

experience range contraction, some of them, like Osmia

and Bombus spp., are known to be efficient pollinators

of orchard trees, and of apples in particular (Delaplane

& Mayer, 2000). Therefore, geographical mismatches

between these species and orchards might have

noticeable effects on pollination service provision.
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There could be expansion of orchard pollinators from

the continent into GB, although this element was not

included in our study; there could also be additional

pollination supply from managed pollinators (e.g. hon-

eybees), although the capacity to utilize honeybees for

additional pollination services is primarily independent

of climate.

Solely based on climatic projections, the most suitable

environmental conditions for orchards shifted north-

west, although probability of occurrence for these areas

never reached the maxima obtained for the present.

Since our projections were only based on climate, how-

ever, they must be read with caution: much of the areas

identified as suitable for orchards in M2050 occur in

uplands that may not be suitable for fruit tree cultiva-

tion owing to soil type and topography. In addition, the

pollinator availability predicted for these areas was for

the vast majority ≤0.2, in contrast with present predic-

tions which showed larger areas with 0.2 ≤ PA ≤ 0.5.

These results suggest that, over the next 50 years, the

most suitable areas for orchards may not be character-

ized by pollinator availability as high as now. Further-

more, while the present distribution of orchards largely

overlapped areas with the highest pollinator richness,

future predictions showed a geographical mismatch

between areas most suitable to orchards and areas rich-

est in pollinator species. Pollinator diversity has been

observed to increase fruit set in several crop systems

(Klein et al., 2003; Hoehn et al., 2008; Garibaldi et al.,

2013) and buffer negative effects of extreme weather

events such as strong winds (Brittain et al., 2013). Ade-

quate pollination could still be possible by a few species

of wild bees with high numbers of individuals, but

such a community would be more vulnerable to stres-

sors and stochastic variation. Landscape management

to increase pollinator diversity and abundance in these

areas of future orchard production could be imple-

mented to improve the stability of pollination services,

such as preservation of seminatural landscapes or

increasing pollinator habitat and forage resources

(Ricketts et al., 2008; Scheper et al., 2013), or additional

inputs from managed pollinators might become neces-

sary to achieve optimal yields.

In contrast, the areas currently occupied by orchards

are predicted to become even more suitable to pollina-

tors in M2050. Under this scenario, however, due to

unfavourable conditions the predicted probability of

the occurrence of orchards will decrease. New top fruit

varieties could be developed with future climatic condi-

tions in mind, particularly breeding for resistance to

those factors identified in this study as key to driving

the shift in orchard distribution, namely Temperature

Seasonality and Minimum Temperature of the Coldest

Month.

In this study, we have used species distribution mod-

els and climate projections to derive the environmental

suitability for the orchard-pollinator system in Great

Britain, under different scenarios. Due to the character-

istics of the pollinator data, we used a relative measure

of pollinator availability which cannot (yet) be trans-

lated into units of service delivery (Maes et al., 2012).

Our approach, however, detected a geographical mis-

match in climatic suitability for orchards and pollina-

tors, which may potentially lead to low pollination

service provision, unless production is moved towards

more (climatically) suitable north-westerly areas. How-

ever, we found that wild pollinator availability may be

preserved and possibly enhanced in areas already used

for orchards. The implications of trading off between

wild pollinator availability and lower climatic suitabil-

ity need further research. In particular, methods of

boosting wild pollinators through improving landscape

resources (Scheper et al., 2013), supplementing wild

pollination service with managed pollinators, or choos-

ing fruit tree varieties that are adapted to changed

climatic conditions may provide a combination of

adaptation options to support top fruit production in

GB over the next 50 years. The methods underlying our

study can be applied to other regions and crop systems,

and expanded to include different climatic scenarios.

Some of the most urgent challenges that need to be

addressed, are the inclusion of other factors limiting

future crop cultivation (e.g. soil type), and the transla-

tion of the relative measure of pollinator availability

into units of service delivery.

Acknowledgements

This study was carried out within the project ‘Sustainable polli-
nation services for UK crops’ (http://www.reading.ac.uk/
caer/Project_IPI_Crops/project_ipi_crops_index.html), funded
jointly by BBSRC, Defra, NERC, the Scottish Government, the
Wellcome Trust and the LWEC, under the Insect Pollinators Ini-
tiative (https://wiki.ceh.ac.uk/display/ukipi/Home). JR-V was
fully supported and AJC was partly supported by the CGIAR
Research Program on Climate Change, Agriculture and Food
Security (CCAFS).

References

Aguirre-Guti�errez J, Carvalheiro LG, Polce C, van Loon EE, Raes N, Reemer M, Bies-

meijer JC (2013) Fit-for-purpose: species distribution model performance depends

on evaluation criteria –Dutch hoverflies as a case study. PLoS ONE, 8, e63708.

Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2009) How much does agricul-

ture depend on pollinators? lessons from long-term trends in crop production.

Annals of Botany, 103, 1579–1588.

Allsopp MH, de Lange WJ, Veldtman R (2008) Valuing insect pollination services

with cost of replacement. PLoS ONE, 3, e3128.

Austin M (2007) Species distribution models and ecological theory: a critical assess-

ment and some possible new approaches. Ecological Modelling, 200, 1–19.

Biesmeijer JC, Roberts SPM, Reemer M et al. (2006) Parallel declines in pollinators

and insect-pollinated plants in Britain and the Netherlands. Science, 313, 351–354.

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 20, 2815–2828

2826 C. POLCE et al.



Bischoff M, Campbell DR, Lord JM, Robertson AW (2013) The relative importance of

solitary bees and syrphid flies as pollinators of two outcrossing plant species in

the New Zealand alpine. Austral Ecology, 38, 169–176.

Brittain C, Kremen C, Klein A-M (2013) Biodiversity buffers pollination from changes

in environmental conditions. Global Change Biology, 19, 540–547.

Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years:

loss of species, co-occurrence and function. Science, 339, 1611–1615.

Carvalheiro LG, Kunin WE, Keil P et al. (2013) Species richness declines and biotic

homogenisation have slowed down for NW-European pollinators and plants. Ecol-

ogy Letters, 16, 870–878.

Castro S, Loureiro J, Ferrero V, Silveira P, Navarro L (2013) So many visitors and so

few pollinators: variation in insect frequency and effectiveness governs the repro-

ductive success of an endemic milkwort. Plant Ecology, 214, 1233–1245.

Challinor AJ, Simelton ES, Fraser EDG, Hemming D, Collins M (2010) Increased

crop failure due to climate change: assessing adaptation options using models

and socio-economic data for wheat in China. Environmental Research Letters, 5,

034012.

Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of spe-

cies associated with high levels of climate warming. Science, 333, 1024–1026.

Delaplane KS, Mayer DF (2000) Crop Pollination by Bees. CABI Publishing, Walling-

ford, UK.

Department for Environment, Food and Rural Affairs (2013) Basic horticultural statis-

tics 2013. United Kingdom areas, production, valuations and trade statistics for

fruit and vegetables to 2012 with historic statistics for ornamental plants and flow-

ers. Available at: https://www.gov.uk/government/publications/basic-horticul-

tural-statistics (accessed 12 September 2013)

Devoto M, Zimmermann M, Medan D (2007) Robustness of plant-flower visitor webs

to simulated climate change. Ecologia Austral, 17, 37–50.

Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate

conditions. Science, 341, 486–492.

Eccel E, Rea R, Caffarra A, Crisci A (2009) Risk of spring frost to apple production

under future climate scenarios: the role of phenological acclimation. International

Journal of Biometeorology, 53, 273–286.

Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Meth-

ods in Ecology and Evolution, 1, 330–342.

Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L (2013)

Modeling plant species distributions under future climates: how fine scale do cli-

mate projections need to be? Global Change Biology, 19, 473–483.

Fraser EDG, Simelton E, Termansen M, Gosling SN, South A (2013) “Vulnerability

hotspots”: integrating socio-economic and hydrological models to identify where

cereal production may decline in the future due to climate change induced

drought. Agricultural and Forest Meteorology, 170, 195–205.

Free JB (1993) Insect Pollination of Crops. Academic Press Limited, London.

Gallai N, Salles J-M, Settele J, Vaissi�ere BE (2009) Economic valuation of the vulnera-

bility of world agriculture confronted with pollinator decline. Ecological Economics,

68, 810–821.

Garibaldi LA, Steffan-Dewenter I, Winfree R et al. (2013) Wild pollinators enhance

fruit set of crops regardless of honey bee abundance. Science, 339, 1608–1611.

Garratt MPD, Coston DJ, Truslove CL et al. (2014) The identity of crop pollinators

helps target conservation for improved ecosystem services. Biological Conservation,

169, 128–135.

Giannini TC, Saraiva AM, Alves-Dos-Santos I (2010) Ecological niche modeling and

geographical distribution of pollinator and plants: a case study of Peponapis Fer-

vens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Eco-

logical Informatics, 5, 59–66.

Giannini TC, Lira-Saade R, Ayala R, Saraiva AM, Alves-Dos-Santos I (2011) Ecologi-

cal niche similarities of Peponapis bees and non-domesticated Cucurbita species.

Ecological Modelling, 222, 2011–2018.

Giannini TC, Acosta AL, Gar�ofalo CA, Saraiva AM, Alves-Dos-Santos I, Imperatriz-

Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to

climate change in Brazil. Ecological Modelling, 244, 127–131.

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than sim-

ple habitat models. Ecology Letters, 8, 993–1009.

Hawkins E, Osborne TM, Ho CK, Challinor AJ (2013) Calibration and bias correction

of climate projections for crop modelling: an idealised case study over Europe.

Agricultural and Forest Meteorology, 170, 19–31.

Hegland SJ, Nielsen A, Lazaro A, Bjerknes AL, Totland O (2009) How does climate

warming affect plant-pollinator interactions? Ecology Letters, 12, 184–195.

Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the

effect of climate change on species distributions. Global Change Biology, 12, 2272–

2281.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution

interpolated climate surfaces for global land areas. International Journal of Climatol-

ogy, 25, 1965–1978.

Hijmans RJ, Phillips S, Leathwick J, Elith J (2011) dismo: species distribution model-

ing. R package version 0.7-11. Available at: http://cran.r-project.org/web/

packages/dismo/index.html (accessed 20 October 2011).

Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group

diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B-

Biological Sciences, 275, 2283–2291.

Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A (2013) multcomp:

simultaneous inference in general parametric models. R package version 1.2-18.

Available at: http://cran.r-project.org/web/packages/multcomp/index.html (acc-

essed 17May 2013)

Jolliffe IT (1972) Discarding variables in a principal component analysis. I: artificial

data. Applied Statistics, 2, 160–173.

Jolliffe IT (1973) Discarding variables in a principal component analysis, II: real data.

Applied Statistics, 22, 21–31.

King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy

for pollination: measuring single-visit pollen deposition, with implications for

pollination networks and conservation. Methods in Ecology and Evolution, 4, 811–

818.

Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee

increases with the diversity of pollinating bees. Proceedings of the Royal Society B-

Biological Sciences, 270, 955–961.

Klein AM, Vaissi�ere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C,

Tscharntke T (2007) Importance of pollinators in changing landscapes for world

crops. Proceedings of the Royal Society B-Biological Sciences, 274, 303–313.

Kuhlmann M, Guo D, Veldtman R, Donaldson J (2012) Consequences of warming up

a hotspot: species range shifts within a centre of bee diversity. Diversity and Distri-

butions, 18, 885–897.

Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in

regional ecosystem service provisioning using land use data. Ecological Indicators,

11, 676–687.

Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Pri-

oritizing climate change adaptation needs for food security in 2030. Science, 319,

607–610.

Lonsdorf E, Kremen C, Ricketts T, Winfree R, Williams N, Greenleaf S (2009) Model-

ling pollination services across agricultural landscapes. Annals of Botany, 103,

1589–1600.

Maes J, Hauck J, Paracchini ML et al. (2012) A spatial assessment of ecosystem ser-

vices in Europe: methods, case studies and policy analysis. - phase 2. PEER Report

No 4. Ispra: Partnership for European Environmental Research.

Marini L, Quaranta M, Fontana P, Biesmeijer JC, Bommarco R (2012) Landscape con-

text and elevation affect pollinator communities in intensive apple orchards. Basic

and Applied Ecology, 13, 681–689.

Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disrup-

tion of plant-pollinator interactions. Ecology Letters, 10, 710–717.

Murphy JM, Sexton DMH, Jenkins GJ et al. (2010) UK Climate Projections Science

Report: Climate change projections., Met Office Hadley Centre, Exeter. UK.

Naki�cenovi�c N, Alcamo J, Davis G et al. (2000) IPCC Special Report on Emissions Scenar-

ios (SRES), Cambridge University Press, UK.

Ne’eman G, Juergens A, Newstrom-Lloyd L, Potts SG, Dafni A (2010) A framework

for comparing pollinator performance: effectiveness and efficiency. Biological

Reviews, 85, 435–451.

Ohlem€uller R, Gritti ES, Sykes MT, Thomas CD (2006) Towards European climate risk

surfaces: the extent and distribution of analogous and non-analogous climates

1931–2100. Global Ecology and Biogeography, 15, 395–405.

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts

across natural systems. Nature, 421, 37–42.

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species

geographic distributions. Ecological Modelling, 190, 231–259.

Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2013) nlme: linear and nonlin-

ear mixed effects models. R package version 3.1-110. Available at: http://cran.

r-project.org/web/packages/nlme/index.html (accessed 07 July 2013)

Polce C, Termansen M, Aguirre-Guti�errez J et al. (2013) Species distribution models

for crop pollination: a modelling framework applied to great Britain. PLoS ONE, 8,

e76308.

Potts SG, Roberts SPM, Dean R et al. (2010) Declines of managed honey bees and bee-

keepers in Europe. Journal of Apicultural Research, 49, 15–22.

R Development Core Team (2011) R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria.

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 20, 2815–2828

ORCHARDS AND POLLINATORS CLIMATE-DRIVEN SHIFT 2827



Raes N, ter Steege H (2007) A null-model for significance testing of presence-only

species distribution models. Ecography, 30, 727–736.

Rafferty NE, Ives AR (2012) Pollinator effectiveness varies with experimental shifts in

flowering time. Ecology, 93, 803–814.

Raupach MR, Marland G, Ciais P, le Quere C, Canadell JG, Klepper G, Field CB

(2007) Global and regional drivers of accelerating CO2 emissions. Proceedings of the

National Academy of Sciences of the United States of America, 104, 10288–10293.

Ricketts TH, Regetz J, Steffan-Dewenter I et al. (2008) Landscape effects on crop polli-

nation services: are there general patterns? Ecology Letters, 11, 499–515.

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Finger-

prints of global warming on wild animals and plants. Nature, 421, 57–60.

Scheper J, Holzschuh A, Kuussaari M, Potts SG, Rundlof M, Smith HG, Kleijn D (2013)

Environmental factors driving the effectiveness of European agri-environmental

measures in mitigating pollinator loss - a meta-analysis. Ecology Letters, 16, 912–920.

Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Pro-

ceedings of the National Academy of Sciences of the United States of America, 104,

19703–19708.

Schweiger O, Settele J, Kudrna O, Klotz S, K€uhn I (2008) Climate change can cause

spatial mismatch of trophically interacting species. Ecology, 89, 3472–3479.

Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D (2010) Gene

movement and genetic association with regional climate gradients in California

valley oak (Quercus lobata Nee) in the face of climate change. Molecular Ecology,

19, 3806–3823.

Swets JA (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285–

1293.

Termansen M, Mcclean CJ, Preston CD (2006) The use of genetic algorithms and Bayes-

ian classification to model species distributions. Ecological Modelling, 192, 410–424.

Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate

change. Global Change Biology, 10, 2020–2027.

Vanbergen AJ, The Insect Pollinators Initiative (2013) Threats to an ecosystem service:

pressures on pollinators. Frontiers in Ecology and the Environment, 11, 251–259.

Warren M, Robertson MP, Greeff JM (2010) A comparative approach to understand-

ing factors limiting abundance patterns and distributions in a fig tree-fig wasp

mutualism. Ecography, 33, 148–158.

Warren R, Vanderwal J, Price J et al. (2013) Quantifying the benefit of early climate

change mitigation in avoiding biodiversity loss. Nature Climate Change, 3, 678–682.

Wiley E, Mcnyset K, Peterson AT, Robins C, Stewart AM (2003) Niche modeling and

geographic range predictions in the marine environment using a machine-learning

algorithm. Oceanography, 16, 120–127.

Wolmarans R, Robertson MP, van Rensburg BJ (2010) Predicting invasive alien plant

distributions: how geographical bias in occurrence records influences model per-

formance. Journal of Biogeography, 37, 1797–1810.

Zulian G, Maes J, Paracchini M (2013) Linking land cover data and crop yields for

mapping and assessment of pollination services in Europe. Land, 2, 472–492.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Data S1. Climate-driven spatial mismatches between British
orchards and their pollinators: increased risks of pollination
deficits.

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 20, 2815–2828

2828 C. POLCE et al.


