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4 We use the term ‘item’ to refer to an individual representation held

in WM. ‘Item’ is thus synonymous with ‘chunk’ [97] and ‘cognitive

object’ [98,7] which denote the same concept. There is ongoing debate

about whether items in WM are represented in discrete slots (items held

with high precision in a number of discrete memory locations), allocation

of continuous resources (items allocated limited resources in inverse

proportion to the total number of items in WM), or some hybrid of

the two frameworks (e.g. Refs. [78,74,79,80]). The models and general

approach that we discuss in this paper are not committed to either

architecture but could be used to test between the competing accounts

(see Section ‘Current directions’ below).
Working memory (WM) refers to a set of processes that

makes task-relevant information accessible to higher-level

cognitive processes. Recent work suggests WM is

supported by a variety of information gating, updating, and

removal processes, which ensure only task-relevant

information occupies WM. Current neurocomputational

theory suggests WM gating is accomplished via ‘go/no-go’

signalling in basal ganglia-thalamus-prefrontal cortex

pathways, but is less clear about other subprocesses and

brain structures known to play a role in WM. We review

recent efforts to identify the neural basis of WM

subprocesses using the recently developed reference-back

task as a benchmark measure of WM subprocesses. Targets

for future research using the methods of model-based

cognitive neuroscience and novel extensions to the

reference-back task are suggested.
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Working memory and its subprocesses
Working memory (WM) refers to a set of processes

that makes task-relevant information accessible to

higher-level cognitive processes such as learning,

decision making, reasoning, and reading comprehen-

sion [1–3]. Working memory is extremely capacity-
limited, with current research suggesting that between
www.sciencedirect.com 
one and four items4 can be maintained in an activated

state in WM at a time [4–7]. This strict limit demands a

high degree of control over WM content, such that WM

must strike a balance between stability (i.e. protecting

the current contents of WM from irrelevant or distract-

ing information) and flexibility (i.e. keeping WM up-to-

date with new relevant information and removing

outdated information). This trade-off between stability

and flexibility [8–11] is a core feature of executive

control processes (e.g. cognitive control, conflict moni-

toring/resolution, task switching; [12]) and managing

the trade-off strongly depends on the brain’s dopamine

systems [13�,14].

Prominent computational theories suggest that WM

resolves the stability-flexibility trade-off by operating

in two modes: An updating (gate-open) mode, which

allows new information to enter WM, and a maintenance
(gate-closed) mode, which prevents irrelevant and

distracting information from interfering with the cur-

rent contents of WM [15–22]. In the gate-open mode,

updating is further supported by two main subpro-

cesses: Item removal and item substitution, which

together ensure that only relevant information is kept

active in WM [23,24��]. Together, these processes

allow WM to alternate modes between flexible (when

new information is encountered) and stable (when

distractors are encountered). This enables successful

performance in dynamic environments in which dis-

tractions are common and the relevance of information

frequently changes.

To-date, the most detailed neurocomputational account

of the gating mechanism controlling the trade-off

between updating and maintenance is the prefrontal
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Illustration of the PBWM model. Gate opening is controlled by a

striatal ‘go’ signal that inhibits SNr and disinhibits thalamus and PFC,

enabling updating to occur. Gate closing is controlled by a striatal ‘no-

go’ signal that inhibits GPe, disinhibits SNr, which inhibits thalamus

and PFC, preventing updating. Extending this model to include

additional structures implicated in WM and cognitive control (e.g.

hippocampus, ventral tegmental area, anterior cingulate cortex) and

their role in WM subprocesses beyond gate opening/closing is a key

target for model-based cognitive neuroscience. Adapted from Hazy

et al. [26] with permission.

6 The PBWM model suggests a phasic dopaminergic signal from the

midbrain dopamine structures only in the early phases of a WM task

when the BG must learn when to update. Once WM updating rules are
cortex-basal ganglia WM (PBWM) model (Figure 1;

[25–27]). In this model, gating is implemented via basal

ganglia (BG)-thalamus-prefrontal cortex (PFC) circuits

that control ‘go/no-go’ signalling. As illustrated in

Figure 1, gate opening is controlled by a striatal ‘go’

signal which inhibits substantia nigra pars reticulata

(SNr) and disinhibits thalamus, which in turn excites

PFC. This allows information to enter WM and updating

to occur. Gate closing5 is controlled by a striatal ‘no-go’

signal which inhibits external globus pallidus (GPe),

disinhibits SNr, and inhibits thalamus. This in turn

inhibits PFC, which prevents WM from being updated

(Figure 1; [26]). In short, the ‘go’ signal passes through

two inhibitory connections (striatum-SNr-thalamus),

which excites PFC, while the ‘no-go’ signal passes

through three inhibitory connections (striatum-GPe-

SNr-thalamus), which inhibits PFC. These circuits have

also been implicated in updating value representations in

reinforcement learning and value-based decision making,

suggesting a general neural mechanism for accomplishing

information gating ([16,28,29,26,20,30,22]).
5 The PBWM model assumes that WM sits in the ‘gate-closed’/

maintenance mode by default. We note that this assumption is likely

too strong, since it implies that gate opening must always accompany

updating. Under this assumption the PBWM would fail to predict the

different gating costs to WM updating that occur in behavioural data (e.

g. Refs. [24��,21�]).
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The components of the PBWM model have received

broad support from functional magnetic resonance imag-

ing (fMRI) studies ([19,28,31–33,22,34]). For example,

activation in striatum and dorsolateral PFC has been

widely reported in tasks broadly involving WM updating

(e.g. Refs. [31–34]), while other work has localized activ-

ity specifically related to the updating and gating pro-

cesses rather than other WM processes. Roth et al. [22]

identified a frontoparietal network specifically involved in

updating, while Murty et al. [19] found selective engage-

ment of SN/ventral tegmental area (VTA), caudate, dor-

solateral PFC, and some areas of parietal cortex related to

the updating but not maintenance mode of WM. Striatal

dopamine-receptor expressing neurons and dopamine-

producing midbrain structures have also been implicated

in WM updating [19,28,33], and dynamic causal model-

ling suggests that BG plays a central role in gating

information to PFC [35]. Moreover, a number of cortical

areas (e.g. dorsolateral PFC, medial PFC, posterior pari-

etal cortex) have been linked to the maintenance mode of

WM but not updating ([22,36–38]). This is consistent

with the idea that tonic dopamine activity in PFC controls

the stability of WM representations whereas phasic dopa-

mine release in the striatum trains the BG when to open

the gate (via disinhibition of thalamus and PFC) to allow

information into WM6 [27].

Overall, these findings show that WM updating engages

cortico-striatal circuitry involving BG, midbrain, and PFC

structures broadly in line with the neurocomputational

mechanisms of the PBWM model [39,26] and more

general accounts of cognitive control (e.g. Ref. [40]).

However, as will be discussed, recent work highlights

that WM also depends on several important subprocesses

not accounted for in the PBWM, and on neural substrates

outside of the PBWM’s BG-thalamus-PFC pathways.

Modelling these processes and their neural basis is nec-

essary to achieve a complete neurocomputational under-

standing of WM.

This review discusses recent progress toward this goal.

We focus on recent efforts to link brain measurements

with behaviour on the reference-back task (Figure 2;

[24��,21�]), a WM-based decision-making task that pro-

vides separate behavioural measures of gate opening and

closing, as well as updating and substitution processes not

accounted for in the PBWM. In doing so, we suggest that
learned, BG nuclei no longer rely on a phasic dopaminergic response but

control WM gating via the non-dopaminergic SNr. Any additional

dopaminergic input reflects either reward associations or a feedback-

based response which evaluates the updating process based on the

reward prediction error coded by the same neurons [84]. This response,

in the form of bursts and dips in dopaminergic release onto striatal

neurons, is thought to reinforce ‘go’ and ‘no-go’ activation, respectively.

www.sciencedirect.com
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Figure 2
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Illustration of the reference-back task. On each trial, participants indicate whether the presented letter is same or different from the letter in the

most recent red frame. On reference (red frame) trials, participants must also update WM with the currently displayed letter. On comparison (blue

frame) trials, participants make the same/different decision but do not update WM. Comparing behavioural outcomes (e.g. response time, error

rate) between different trial types measures the cost of gate opening, gate closing, updating, and item substitution processes (see text for details).

Explaining these behavioural phenomena via computational cognitive models and establishing further links to neural data is a key goal of current

WM research. Adapted from Rac-Lubashevsky and Kessler [21�] with permission.
further progress can be made by applying the methods of

model-based cognitive neuroscience [41,42�], which links brain

activity to behaviour via detailed computational models

of cognitive and neural processes [43–45]. Model-based

cognitive neuroscience generates detailed quantitative

theories that span multiple levels of abstraction (e.g.

behavioural, cognitive, neural). This provides greater

constraint on theory and leads to more robust and

detailed inferences. In particular, combining model-

based approaches with developments in ultra-high field

fMRI enables testing neurocomputational theories of

WM (such as the PBWM) with greater spatial and psy-

chometric precision than has previously been possible.

Applying these methods to the reference-back task pro-

mises a more detailed neurocomputational understanding

of WM than is currently available.

Measuring WM subprocesses with the
reference-back paradigm
Most laboratory tasks used to study WM (e.g. n-back,

delayed-match-to-sample) are designed to investigate the

capacity and temporal properties of WM but are unable to

differentiate the contribution of WM subprocesses to

observed behaviour ([24��,46,47��,48�,21�,22]). A recently

developed exception is the reference-back task [24��,21�],
which provides dissociable measures of core WM sub-

processes (gate opening, gate closing, updating, substitu-

tion) from behavioural choice-response time (RT) data.

To perform the reference-back, participants hold one of

two stimuli (e.g. an ‘X’ or ‘O’) in WM while deciding

whether a series of probes match the current item in WM
www.sciencedirect.com 
(Figure 2). On reference trials (indicated by a red frame

around the stimulus), the participant must update WM

with the currently displayed stimulus. On comparison
trials (indicated by a blue frame), the participant simply

compares the current stimulus to the one held in WM (the

one appearing in the most recent red frame) without

updating WM. Both reference and comparison trials

require a same/different decision but only reference trials

require updating. Comparing performance on reference

and comparison trials thus provides a behavioural mea-

sure of the cost of updating. By similar logic, switching

from comparison to reference trials requires opening the

WM gate (to allow for updating), while switching from

reference to comparison trials requires closing the WM

gate (to maintain the current contents). Gate opening is

measured by comparing trials on which participants

switch towards a reference trial to those where reference

trials are repeated. Likewise, gate closing is measured by

comparing trials on which participants switch towards a

comparison trial to those where comparison trials are

repeated. Finally, substitution is measured via the interac-

tion effect of trial type (reference/comparison) and match

type (same/different) and represents the cost of updating

a new item into WM.

The benchmark behavioural finding from the reference-

back task is that trials requiring additional WM processes

tend to have slower RTs and/or more frequent errors

than trials that do not require such processes

[24��,47��,49�,21�,50�,51�,52�]. These costs are typically

interpreted as reflecting a combination of time required

for additional subprocesses to run outside of the same/
Current Opinion in Behavioral Sciences 2021, 38:57–65
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different decision stage, and subprocesses interfering

with the primary task (e.g. creating noisier WM repre-

sentations due to drawing attention/capacity away from

the decision process) [53]. However, distinguishing

these accounts requires detailed choice-RT models

of the latent cognitive processes underlying memory-

based decision making (e.g. the highly successful evi-
dence accumulation framework, [54,55]), which are yet to

be applied to the reference-back paradigm. Before

discussing approaches to modelling the reference-back

task, we first review recent efforts to identify the neural

substrates  of WM subprocesses by correlating brain

activity with behavioural measures derived from the

reference-back.

Neural correlates of the reference-back task
As outlined above, there is broad consensus from neuro-

imaging supporting the role of BG, thalamus, and PFC in

WM gating as instantiated in the PBWM [27]. However,

the neural basis of several core WM subprocesses (e.g.

gate closing, updating, substitution) is less clear. Recent

work has begun to address this gap by linking behavioural

measures derived from the reference-back with neuro-

physiological measures such as EEG and fMRI

[47��,49�,51�,52�].

Two initial studies investigated EEG correlates of the

reference-back task. Rac-Lubashevsky and Kessler [51�]
found that gate closing was associated with increased

theta power, a neural signature of cognitive control

[56–58], while gate opening and updating were associated

with increased delta power, a signature of reactive (event-

driven) control and action selection processes that engage

in response to reward prediction errors [59–61]. This

suggests a functional role for delta and theta signals in

the control of WM consistent with ‘go/no-go’ signalling in

the PBWM model [25,39,26]. A follow-up study explored

the role of the P3b EEG signal (a positive event-related

potential that signals task-relevant events and peaks

300 ms after stimulus onset) in gating and updating

[52�]. P3b amplitude spiked depending on whether the

stimulus matched the WM reference item, implicating

P3b in stimulus comparison/categorisation processes

rather than updating per se. Greater negative activity

(in an N2-like ERP component unrelated to the P3b)

was found in anterior cortical regions on reference versus

comparison trials. This signal has been implicated in

controlled inhibition and action selection [62] and, in

the context of the reference-back task, likely reflects a

gate-opening or updating signal, consistent with the

PBWM’s assumption that reference trials trigger an

update or ‘go’ signal to allow new information into

WM. This initial work demonstrates that neural signa-

tures of specific updating and gating processes are detect-

able in EEG oscillatory signals that show activity broadly

consistent with ‘go/no-go’ signalling in BG-thalamus-

PFC pathways involved in WM gating [25,26]. However,
Current Opinion in Behavioral Sciences 2021, 38:57–65 
the poor spatial resolution of EEG limits our ability to

draw conclusions about the specific structures associated

with each WM subprocess.

Extending this work, Nir-Cohen et al. [47��] used 3T

fMRI to identify neural substrates of WM subprocesses

using a modified reference-back with more complex

face-morph stimuli. BG, frontoparietal cortex, and

task-relevant sensory areas such as visual cortex were

involved in gate opening. Gate closing activated parietal

cortex and substitution elicited activation in left dorso-

lateral PFC and inferior parietal lobule. A whole-brain

conjunction analysis revealed shared activity in the

supplementary motor area for updating and substitution,

while updating and gating both activated the posterior

parietal cortex. These results broadly agree with the

PBWM model [26] and support the role of BG and

PFC in controlling the flow of information into WM

and replacing old with new information. However, pari-

etal cortex activation during gate closing is not predicted

by the PBWM. This suggests that additional brain

structures are involved in controlling WM subprocesses

and points to an opportunity to extend the PBWM to

explain the neural basis of WM subprocesses beyond

gate opening.

Jongkees [49�] provided further evidence for the dopa-

minergic basis of WM gating and updating processes by

administering dopamine precursor L-tyrosine to young

adults and comparing reference-back performance to a

placebo-control group. The L-tyrosine group had less

variable gate opening times than placebo controls, sug-

gesting that the drug improved WM performance for poor

performers but impaired high performers. There was no

effect on updating or gate closing, consistent with the role

of striatal dopamine signals in opening the gate to WM in

line with the PBWM [25,26]. Further indirect support for

striatal dopamine involvement comes from a study link-

ing event-based eye-blink rate (a proxy measure of striatal

dopamine) to WM updating in the reference-back task

[50�]. However, follow-up work combining this approach

with ultra-high field fMRI is needed to identify how

activity in small subcortical structures as well as layers

in cortex (e.g. striatum, GP, thalamus, PFC) is modulated

by dopamine.

Current directions
The work reviewed above has taken important first

steps toward identifying the neural substrates of WM

subprocesses beyond the BG-thalamus-PFC ‘go/no-

go’ gating mechanism of the PBWM [39,26]. However,

existing work has so far been limited to relating brain

activity directly to the reference-back’s behavioural

measures rather than the latent cognitive processes

that give rise to behaviour. Model-based approaches

that link brain and behaviour via computational

cognitive models offer numerous advantages over
www.sciencedirect.com
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7 Note, however, that continuous resource models can mimic discrete

slots models. For example, if a resource pool has capacity to accommo-

date four items, then item fidelity may only begin to degrade once

demands exceed capacity (i.e. when n > 4), thus producing similar

predictions to a discrete slots model. Careful experimental design is

needed in order to correctly attribute effects to capacity limitations [99].
traditional statistical analyses of mean RT and error

rate in understanding the cognitive and neural basis of

WM. For example, applying evidence accumulation

models of choice-RT (e.g. Refs. [54,55]) to reference-

back data would reveal whether performance costs

occur because WM subprocesses add time outside of

the decision stage (longer nondecision time), interfere

with the decision process itself (reduced or noisier

processing rate; [53]), or induce strategic adjustments

engaging top-down cognitive control (increased

response caution). Decomposing behavioural effects

(e.g. gating, updating costs) into a set of latent cogni-

tive processes (e.g. accumulation rate, nondecision

time, cognitive control of thresholds) rather than

coarse behavioural-level summary statistics enables

exploring the neural substrates of WM in greater detail

than is possible with traditional methods [63,64]. This

places stronger constraints on theory and ultimately

produces more robust and detailed inferences  about

the latent processes that generate behaviour. Applying

cognitive models to the reference-back holds great

promise in this regard.

In its standard form, the reference-back paradigm ignores

several important additional WM processes. These

include mechanisms that operate on information already

active in WM [65–67], such as object selection and

retrieval [7], item-specific removal ([23]; but see Ref.

[68], for evidence of removal in the reference-back),

and grouping and reorganization operations (e.g. sorting

items into alphabetical or chronological order, chunking

or grouping items together to form a single accessible

representation, changing the serial position of items;

[69–72]). These mechanisms support effective remem-

bering by restructuring information into more memorable

formats and ensuring only relevant information is main-

tained and retrieved from WM. The standard reference-

back also ignores phenomena associated with WM’s lim-

ited capacity (e.g. WM load/set-size effects; [73–75,7])

and the temporal degradation (e.g. by decay or interfer-

ence) of WM representations (for a review, see Ref. [76]).

Analyses that do not account for these processes risk

misattributing their effects to other processes, resulting

in biased inferences.

Simple extensions to the reference-back task (e.g. using

multiple-item WM sets, inserting delays between the

update cue and stimulus presentation), however, enable

testing such effects alongside the gating and updating

processes of the standard reference-back. For example,

Verschooren et al. [77] developed a modified reference-

back paradigm where one among several items in long-

term memory or perception is gated into WM. This allows

for comparing gating dynamics for perceptual versus long-

term memory information. Similar multiple-item modifi-

cations can be used to investigate some of the WM

phenomena described above, including informing the
www.sciencedirect.com 
ongoing debate about whether items in WM are held

in a small number of discrete high-precision slots [74] or

allocated capacity from a limited pool of continuous

resources [78–80]. In discrete slots models, the fidelity

of items in WM only degrades once all memory slots are

full (e.g. when n > 4). In continuous resource models, an

item’s fidelity is determined by its share of the available

resources and thus should degrade in inverse proportion

to the total number of items in WM7 . Evidence accumu-

lation models are well suited to test between these

competing accounts (e.g. via accumulation rate parame-

ters) as they can be used to assess the fidelity of WM

representations and measure capacity-sharing effects;

[74,81]). Varying set size in the reference-back and asses-

sing the effects on decision-making and WM processes (as

measured by cognitive models) could test between slots

and resource architectures. Similarly, combining a multi-

ple-item reference-back task with reinforcement learning

(e.g. by reinforcing some items but not others) could shed

light on the interplay between WM and learning (e.g.

Refs. [73,75]) and the role of expected value in WM-

based decisions. Overall, we believe that detailed choice-

RT modelling will play an important role in resolving

these important questions and in explaining additional

WM phenomena captured by variants of the reference-

back task.

Combining computational approaches with recent devel-

opments in ultra-high field fMRI (7T and higher) (e.g.

increased resolution and better signal- and contrast-to-

noise ratios) holds great promise for identifying activity in

small subcortical structures (e.g. GP, SN, subthalamic

nucleus, VTA; [82,83]) and gaining a deeper understand-

ing of their functional role in WM than is currently

available. For example, this would enable a stronger test

of the so-called ‘third phase’ response of the PBWM

model [27], which evaluates the updating process via

dopaminergic midbrain neurons that code reward predic-

tion errors [84]. Under the PBWM, midbrain dopamine

responses that train the BG when to update should no

longer occur once updating-related task rules have been

learned. This mechanism has proven difficult to verify

with low field strength fMRI [85,86], however, imaging

reference-back performance with ultra-high field fMRI

and linking neural measurements to cognitive model

parameters would enable identifying these anatomical

and functional mechanisms in greater detail and provide

additional constraint on cognitive models of WM. Spe-

cifically, when modelling two or more sources of data (e.g.

fMRI and choice-RT) simultaneously, the power to

detect joint effects (e.g. correlations between BOLD
Current Opinion in Behavioral Sciences 2021, 38:57–65



62 Computational cognitive neuroscience
signal and cognitive model parameters) is determined by

the signal-to-noise ratios of each data source. Increasing

the signal-to-noise ratio of neural data (e.g. via 7T fMRI;

[82]) reduces uncertainty throughout the model, as does

including data from additional modalities (e.g.

EEG + fMRI + behavioural; [87])8. A further benefit is

that connecting neural signals to cognitive model param-

eters allows for selecting between cognitive models that

make identical predictions at the level of choice-RT but

differ in their internal dynamics [45,64,88,89]. That is,

different internal mechanisms can be titrated by evaluat-

ing which is most consistent with the additional structure

provided by the neural data. Combining such approaches

with the reference-back task has potential to shed light on

other structures known to be involved in WM (e.g.

hippocampus; [90,91,92�]), dopaminergic response evalu-

ation (e.g. VTA; [93,94]), and cognitive control (e.g.

anterior cingulate cortex; [95]), which are not yet

accounted for in existing neurocomputational models.

Linking state-of-the-art fMRI to the latent cognitive

processes engaged by the reference-back would offer

particular insight into the function of small dopamine-

producing midbrain structures, with implications for

understanding WM impairments in a range of clinical

disorders involving abnormal dopamine function [96].

Overall, we believe that viewing the reference-back task

through the lens of model-based cognitive neuroscience

promises a more detailed understanding of the subpro-

cesses that support WM and their neural substrates.

Concluding remarks
This review discussed recent efforts to identify the neural

basis of subprocesses that support WM in the recently

developed reference-back task. Current empirical work

supports the idea that WM gating is controlled by striatal

‘go/no-go’ signalling in BG-thalamus-PFC pathways.

However, the neural substrates of several additional

WM subprocesses are yet to be established, pointing to

a need for ultra-high field functional imaging combined

with detailed computational cognitive modelling. Targets

for future research include extending the reference-back

task to account for additional WM subprocesses (e.g.

removal, selection, and reorganization operations) and

effects of WM load and capacity (e.g. longer retrieval

times, noisier WM representations), as ignoring such

processes leads to mis-specified models and potentially

biased inferences. Applying the methods of model-based

cognitive neuroscience to the reference-back task would

provide a major advance in understanding WM at neural,

cognitive, and behavioural levels. A comprehensive

understanding of WM subprocesses and their neural basis

is within reach, with implications for both cognitive and

clinical neuroscience.
8 This is particularly important for individual differences analyses,

which rely on precise measurement at the individual level to accurately

capture the variation between people.
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