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Abstract  

Cancer immunotherapy is emerging as a candidate treatment modality for treating post-

surgical metastasis and recurrences. Despite the great promises with therapeutic cancer 

vaccines and checkpoint blocking antibodies in pre-clinical studies, response rates in the 

clinic still remain unsatisfactory. The evaluation of immunotherapy after surgery in patients 

could confront significant unexpected hurdles. Surgery itself tends to cause immune 

suppression, while wound healing factors also stimulate tumor cell outgrowth and metastasis. 

Regarding the marked changes in the post-surgical tumor microenvironment, one can 

anticipate that better tumor growth control is attainable by combining cancer vaccines with 

immune checkpoint blockade. However, it is important that vaccines and checkpoint blocking 

antibodies are delivered efficiently to their target cells, are released sustained and locally and 

do not induce cytotoxic effects. The generation of effective anti-tumor immunity and durable 

response rates could largely depend on these parameters. In the last decade, researchers spend 

tremendous effort in optimizing the delivery of immunotherapeutic compounds with the use 

of nanomedicine. Biocompatible nanoparticle based delivery systems demonstrated intriguing 

results with regard to specific immune cell activation, improved drug delivery, cell targeting, 

limiting off target toxicity and improving treatment outcome. It therefore makes sense, to 

speculate on the promises of combined cancer vaccination and immune checkpoint blocking 

immunotherapy with the aid of nanomedicine. A powerful nanoparticle combination 

immunotherapy conferring durable therapeutic benefit whilst leaving healthy tissue 

untouched represents the base for more efficient post-surgical cancer treatment. 
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1.   Introduction  

Cancer is a worldwide leading cause of mortality following cardiovascular diseases[1]. 

Although surgery represents the conventional way to remove the primary tumor mass, its 

notorious limitation is the omission of residual and occult tumor cells. These often progress 

into relapses and metastasis, thereby accounting for the majority of cancer deaths[2, 3]. To 

prevent this from occurring, (neo)adjuvant therapies including hormone, chemo- and 

radiotherapy are often provided. Unfortunately, these modalities bear certain short-comings, 

including off-target toxicity, treatment resistance and marginal response rates[4, 5].  

In meantime, therapeutic cancer vaccines (TCVs) and checkpoint blocking antibodies 

(CBAs) are emerging as promising immunotherapeutic treatment modalities for the 

prevention of post-surgical tumor recurrences. Immunotherapy explores the body’s own 

immune system to fight cancer cells and features a promising strategy to prevent post-

surgical tumor recurrences[6-8]. Unfortunately, clinical trials evaluating TCVs and CBAs for 

the treatment of post-surgical cancer recurrences have mostly not yielded convincing results 

so far. The clinical evaluation of immunotherapy with regard to surgery has confronted 

numerous challenges. It is apparent that the complex interplay between surgery, anti-tumor 

immunity and tumor pathophysiology has not been adequately considered during the design 

of immunotherapies. Surgery tends to exert immunosuppressive effects, while wound healing 

factors induce unfavorable immune phenotypical alterations in recurring tumors. Omitting 

these factors putatively lead to inadequate evaluation and design of (neo)adjuvant 

immunotherapies  in the clinic. This could explain why certain clinically evaluated TCVs 

failed to prevent post-surgical tumor recurrences, although they could generate T cell 

responses[9]. The marked immunosuppressive effects of surgery and the post-surgical tumor 

microenvironment (TME) tend to dampen T cell function and viability. Considering these 

hurdles, combination immunotherapies concomitantly targeting immunosuppressive and 

immunostimulatory pathways are putatively more effective to halt tumor outgrowth. 

Combined vaccination with TCVs together with immune checkpoint blockade is deemed to 

harness these synergistic effects. Additional immune stimulation from CBAs that alleviate 

immune suppression and restore T cell function may strongly potentiate the T cell responses, 

which may break the immunosuppressive post-surgical TME barrier.  

Whilst combination immunotherapies portray promising concepts for halting tumor 

progression, particular combinations could trigger systemic immune related side effects 

(IRAEs). Moreover, drug release control, cumbersome treatment schedules and poor 

therapeutic efficiency could raise treatment costs. In this regard, the field of nanomedicine 
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has spent tremendous effort on optimizing nanomaterial based drug delivery systems to tackle 

these issues. Recent advances in nanomedicine elegantly underscored the promises of 

nanoparticle (NP) assisted immunomodulation. Important focus points of nanomedicine 

based immunotherapy encompass the improvement of drug bioavailability, extension of 

immune cell activation, targeting of specific (immune) cells and prevention of systemic drug 

delivery to healthy tissues[10-12].  

This review will highlight the complex tumor-immunological changes in the post-surgical 

TME. Combination therapies with TCVs and CBAs can confer synergistic effects to achieve 

more powerful TME immunomodulation, but require further improvement. We will focus on 

the recent advances of NP based immunotherapy, and speculate on the benefits of combined 

TCV and CBA immunomodulation with the aid of nanomedicine. 

 

 

2.   The challenges of applying immunotherapy in combination with surgery 

 

 

2.1.   The role of T cell immunity in protecting against post-surgical tumor recurrence 

The human immune system orchestrates pivotal functions in the defense against invading 

pathogens and detection and elimination of cancerous cells, a theory referred to as ‘immune 

surveillance’ by Burnet[13, 14]. Although ‘immune surveillance’ is accepted as a mostly T-

cell mediated controlling system that protects our body for malignancies, it is obvious that 

this system has failed in cancer patients. In these patients it has been shown that there are 

tumor-specific T cells present, but these are generally in a tolerized state mainly caused by 

the suppressive TME and immune escape[15]. Current immunotherapies aim to re-activate 

these tumor-specific T cells to attack and eliminate malignant cells. There are several types of 

immune responses. Cytotoxic CD8 T lymphocyte (CTL) responses mainly targeted to 

specific intracellular epitopes presented on the MHC-I of (cancer) cells, are efficient to 

eliminate cancer cells. A T-helper 1 (TH1) type immunity is mediated by CD4 T helper 1 

cells of the adaptive immune system and is commonly initiated by antigen presenting cells 

(APCs), which can orchestrate an effective CD8 T cell response. Dendritic cells (DCs) are 

APCs with superior capacities to process antigens and present them to (naïve) CD4 and CD8 

T cells via MHC-II and I molecules, respectively[16]. Specific damage-associated molecular 

patterns or pathogen associated molecular patterns danger signals can trigger DCs to initiate a 

skew towards a TH1 type of response. These danger signals stimulate DCs to upregulate the 
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expression of co-stimulatory molecules including CD40, CD80 (B7.1), CD86 (B7.2) and 

MHC-I/II molecules and to produce TH1 cytokines, such as interleukine-12 (IL-12) and 

interferon gamma (IFN-γ). These TH1 polarizing signals are necessary to effectively prime 

naïve CD4 T cells into TH1 cells[17, 18]. TH1 cells and DCs form subsequent cognate pairs 

with naïve CD8 T cells to develop them into CTLs, which then enter the blood to seek and 

destroy cancer cells.  

A TCV is regarded as a treatment modality that aims to stimulate an immune response to 

fight existing cancers[19-21]. Tumor cells are typically hallmarked by the expression of 

tumor associated antigens (TAAs) and tumor antigens. Vaccinating with adjuvants and 

antigen stimuli can induce DC maturation to onset tumor specific CTL responses to eliminate 

cancer cells[22]. Notably the cancer testis antigens (BAGE, MAGE, NY-ESO), tissue 

differentiation antigens (gp100, Melan-A/MART-1) and oncofetal antigens (MUC-1, CEA) 

have been extensively explored as targets for TCVs. Rather than delivering a single antigen, 

TCVs could also contain whole tumor cells. A well-known example is GVAX, that consists 

of whole tumor cells secreting granulocyte-macrophage colony-stimulating factor (GM-CSF). 

This TCV recruits and maturates DCs for effective priming of CTLs and is especially 

evaluated in pancreatic cancer patients[23-25]. In a comparable way, OncoVAX® consists of 

autologous tumor cells supplemented with Bacillus Calmette-Guerin adjuvant and has been 

evaluated in patients with stage II and III colorectal cancer and was notably effective in stage 

II patients[26]. 

CTLA-4 and PD-1 are inhibitory checkpoint molecules, which activation leads to T cell 

activity inhibition. They further tend to promote regulatory T cells (Tregs) development, 

albeit the exact mechanisms remain elusive[27, 28]. Their functional opposites are 

immunostimulatory checkpoint molecules, such as CD40, OX-40 and 4-1BB. CTLA-4 binds 

to CD80 and CD86 similar to CD28, although with considerably higher affinity. CTLA-4 

transmits inhibitory signals in T cells and is functionally the opposite of CD28[29]. The 

cognate ligands for PD-1 are PD-L1 and PD-L2, which are often found overexpressed by 

(tumor) cells in the TME, including tumor associated macrophages (TAMs), tumor associated 

DCs, fibroblasts and Tregs. PD-L1 or PD-L2 binding to PD-1 induces T cell anergy or 

apoptosis[30-32]. Not surprisingly, inhibitory checkpoint molecules are regarded as 

appealing targets to restore effector T cell function[7, 33]. Ipilimumab (Yervoy®) is an anti-

CTLA-4 antibody approved by the FDA in 2011 for the treatment of metastatic 

melanoma[34]. A PD-1 blocking antibody Nivolumab is approved for treating melanoma and 

non-small cell lung carcinoma since 2015[35-37]. Ipilimumab was recently evaluated as post-
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surgical therapy for resectable stage III cutaneous melanoma in a double blind phase III trial 

and significantly prolonged relapse-free survival (RFS) and overall survival (OS)[38, 39].  

At the end of the previous century, it was apparent that the immune system could reduce 

post-surgical cancer recurrences. Háková et al.[40] evaluated IL-2 gene therapy as post-

surgical immunotherapy in mice bearing MK16 carcinomas. While tumor recurrence rate in 

the operated-only mice was 90%, recurrence rate was 38.5% in mice receiving also IL-2. 

After approximately 50 days, splenocytes were collected, cultured further in IL-2 containing 

medium and analyzed for splenocyte activity. Splenocyte activity was considerably higher in 

mice that remained free of tumor relapses. Natural killer (NK), CD4 and CD8 T cell 

depletion abrogated the effects of post-surgical IL-2 treatment. In their follow-up study, the 

authors evaluated IL-2, IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-

CSF) as cytokine therapy after surgical resection of HPV16-associated tumors (TC1 and 

MK16)[41]. Splenocyte cytolytic activity was significantly higher in mice free of relapses, 

but this result was irrespective of the adjuvant treatment and tumor type.  

In pre-clinical studies, immunotherapies stimulating the TH1 type response demonstrated 

great promises as potential cancer treatment. Various therapies were further explored in the 

clinical setting for different cancer types. Although some TCVs improved OS and RFS 

following surgical resection of melanomas[42-44], results were not convincing in other trials 

and cancer types[45-47]. Several reasons may underlie the discordance between pre-clinical 

studies and clinical trials.  

 

2.2.   Surgery suppresses TH1 type immunity and induces profound cellular and cytokine 

changes in the post-surgical TME 

Surgery could affect local and systemic immunity and tumor pathophysiology[48]. Whilst 

immunotherapies have been thoroughly evaluated in a variety of murine tumor models, these 

models often did not introduce any surgical variables. It may not be adequate to directly 

translate results obtained from non-surgical studies to the surgical clinic. Surgery is a large 

stressor and stimulates the hypothalamic-pituitary-adrenal (HPA) axis and the release of 

stress hormones, notably glucocorticoids and corticosterones, while also increasing 

sympathetic nervous outflow and the release of (nor)adrenaline. These ‘fight-or-flight 

response’ hormones have immunosuppressive properties. Surgical stress could further induce 

tumor vascularization and tumor cell dissemination, mainly via angiogenesis, with VEGF as 

the main regulator[49-51]. In response to surgical stress and anesthesia, cancer cells are also 

more prone to escape immune attack and tend to possess enhanced survival and proliferative 
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capacity[52]. Table 1 provides an overview of some effects that surgery could exert on 

immunity. 

 

 

Table 1 

Surgical induced stress can exert numerous effects on the immune system 

 

Effect of surgery 

 

 

Ref. 

 

Adrenaline ↑ which in turn decreases IL-2 production  

 

 

[53] 

 

Decrease in neutrophil and macrophage numbers/mobility  

 

 

[54-56] 

 

Decrease in NK cell numbers and function 

 

 

[57, 58] 

 

Decrease in numbers of circulating T cells and proliferation 

 

 

[53, 59-

61] 

 

Decrease of TH1 type of cytokine production (i.e. IL-2, IL-12, IFN-γ, 

TNF-α) 

 

 

[62-64] 

 

Increase in anti-inflammatory gene expression (i.e. lipocortin-6, IL-1, 

IL-10, neutral endopeptidase)  

 

 

[64] 

 

Anesthesia and analgesia induced general immunosuppression  

 

 

[65-68] 

 

 

Only a few pre-clinical studies have explicitly assessed immunotherapy in the context of 

tumor resection. In these studies, subcutaneous tumors were established and the entire tumor 

could be easily resected. However, this may not be a realistic representation of tumor 

recurrence in patients, since residual tumor cells are often omitted[48]. These cells reside in 

the post-surgical wound and may be influenced by surgical stress, wound healing and 

inflammatory mediators. Predina et al.[48] introduced an interesting post-surgical tumor 

recurrence model that for the first time introduced considerably more surgical variables 

representative for human surgery. The novelty in this study was that the authors left behind a 

small portion (margin) from subcutaneously growing tumors at the site of resection. Some 

studies revealed a rise of wound and inflammatory mediators, including TGF-β, COX-2, 
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prostaglandins and VEGF in the post-surgical TME[69, 70]. These mediators can promote 

tumor cell outgrowth and suppress anti-tumor immunity, i.e. by exhausting T cells, impairing 

T cell infiltration, and promoting the development of Tregs and myeloid-derived suppressor 

cells (MDSCs)[71]. Furthermore, Tregs in dormant tumor tissue may also contribute to tumor 

recurrence[72]. Indeed, the administration of TGF-β and COX-2 inhibitors effectively led to 

the cessation of tumor growth, but also affected wound healing. In their following study[73], 

the authors evaluated various TCVs in mice that underwent surgical resection of 

subcutaneous tumors. The TCV-induced T cell responses were effective to clear tumor cells 

from primary, non-resected tumors. However, these T cell responses were infective to halt 

outgrowth of tumors recurring at the surgical area. TME and tumor draining lymph nodes 

(TDLNs) analysis of these recurring tumors revealed higher numbers of wound healing 

macrophages (type 2 macrophages; M2), TAMs and Tregs, but lower numbers of tumor 

infiltrating T cells (TILs). This was accompanied by a decrease of IFN-γ and a rise of IL-6, 

IL-10 and VEGF. Besides wound healing factors, platelets covering the surgical wound could 

also trigger inflammation and metastasis. Interestingly, Wang et al.[74] utilized platelets as 

delivery system for immunotherapeutics. The authors conjugated PD-L1 blocking antibody to 

platelets, and the release of PD-L1 blocking antibody reduced post-surgical tumor recurrence 

in mice bearing B16F10 melanoma and 4T1 (murine tumor model for metastatic breast 

cancer) tumors. Platelets delivered the bound PD-L1 blocking antibody to the surgical area, 

which also reached circulating cancer cells. 

Above discussion highlights the unwanted general decrease of TH1 type immunity and reveal 

certain cumbersome hurdles for the design of immunotherapies to treat post-surgical 

recurrences. Surgery affects immunity and commonly promotes the formation of an immune 

suppressed environment that is necessary to allow wound healing to occur. But this wound 

healing environment is also a favorable environment for residual cancer cells to grow and 

metastasize unhampered, thereby representing a large risk for developing tumor relapses (see 

Fig. 1).  
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Fig. 1. Profound cytokine and cellular changes in the post-surgical TME. Surgery induces local 

tissue/skin damage, resulting in the production of wound healing and inflammatory factors. These 

factors could potentiate the outgrowth and metastasis of residual tumor cells. The post-surgical TME 

is furthermore enriched in Tregs, Taner, M2 and TAM type of macrophages. These profound cytokine 

and cellular changes typically favor the outgrowth of omitted residual cancer cells, whilst 

antagonizing CTL infiltration and anti-cancer TH1 type of immunity. Abbreviations: CTL: cytotoxic 

T lymphocyte; M2: type 2 macrophage; TAM: tumor associated macrophage; Taner: anergic T cell; 

TME: tumor microenvironment; Tregs: regulatory T cells. 

 

 

Omitting these insights may lead to inaccurate evaluation and design of post-surgical 

immunotherapies in the clinic, which may – at least in part – explain the marginal outcomes 

in earlier clinical trials. Whilst TCVs could generate substantial CTL responses sufficient to 

contain the outgrowth of naïve tumors in mice, these may succumb to the profound immune 

dampened and wound healing post-surgical TME of patients. More effective 

immunomodulation is likely attainable by combining immunotherapies, that (re-)shape the 

TME in such way, that it favors anti-tumor immunity while leaving wound healing 

unhampered. There is rationale to concomitantly generate effective CTL responses while 



C.K. Chung et al. Journal of Controlled Release 285 (2018): 56-66 

11 

 

alleviating immunosuppression on immune cells, which effect could be attained by 

combining TCVs and CBAs. 

 

2.3.   Combined cancer vaccination and immune checkpoint blockade for synergistic TME 

immunomodulation 

Early studies demonstrated how GVAX, a TCV composed of whole tumor cells genetically 

modified to produce the cytokine GM-CSF, synergized with CTLA-4 blocking therapy in 

poor immunogenic melanoma and prostate cancer[75-77]. Importantly, combined TCV and 

CBA treatment modulates the TME by depleting intratumoral Treg populations, while 

expanding T effector cell populations[78-81]. In a similar way, CTLA-4 blockade on both 

CTLs and Tregs confers the full therapeutic effects of CTLA-4 blockade[82]. PD-(L)1 

blockade exerts comparable immunological effects[83-87]. Pancreatic tumors with weak PD-

L1 expression are often resistant for PD-1 blockade. Soares et al.[86] demonstrated that 

GVAX enhanced PD-L1 expression in pancreatic tumor bearing mice. Combined with PD-1 

blockade, GVAX elevated the number of TILs and IFN-γ concentration in the TME, while 

abolishing immunosuppressive pathways. Lutz et al.[88] demonstrated that TCVs sensitized a 

poor immunogenic murine pancreas tumor for CBA therapy. These results were extended 

into a clinical trial, where the GVAX vaccine together with cyclophosphamide (a Treg 

depleting compound) were administrated prior to surgical debulking of pancreatic ductal 

adenocarcinomas. Examination of resected tumors revealed a higher TIL-Treg ratio in 

vaccinated patients but also increased PD-L1 expression, which increased sensitivity to PD-1 

blockade[89]. A noteworthy observation in patients is that CBAs are mostly effective against 

melanomas or non-small cell lung cancer (NSCLC). A plausible explanation for this 

phenomenon is that these cancer types harbor many immunogenic (point) mutations, thereby 

yielding neo-epitopes[90, 91]. These cancer types attract more TILs and in fact trigger a 

baseline endogenous anti-tumor immune response[92, 93]. It is speculated that CBAs 

synergize with the intrinsic T cell responses against the melanoma epitopes, while poor 

immunogenic tumors are often resistant to CBA therapy. In the clinic, numerous clinical 

trials are finished or planned that combine TCVs with ipilimumab or nivolumab for post-

surgical immunomodulation (Table 2).   

 

Table 2 

Overview of trials combining ipilimumab or nivolumab with cancer vaccines  
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Cancer type  

    

Regimen 

 

Readout/analysis 

 

Reference/trial ID 

Resectable 

melanoma stage, 

IIIc/IV 

 

Ipilimumab + 

gp100/Tyros/MART-1 

OS, RFS   

 

TAA specific CTLs 

 

[94] 

Resectable 

melanoma, stage 

IIIc/IV 

 

Nivolumab + NY-ESO-1 

/gp100/MART-1 multi-peptide 

vaccine 

OS, RFS 

 

TAA specific CTLs and 

THs 

 

[95] 

Resectable 

melanoma, stage 

IIIc/IV 

 

 

Nivolumab + NY-ESO-

1/gp100/Montanide  

OS, RFS NCT01176474a 

Resectable 

melanoma, stage 

IIIc/IV 

 

Nivolumab + GVAX + 

Cyclophosphamide  

OS, DMFSa  NCT03161379a 

Resectable 

pancreatic cancer 

Neo/adjuvant GVAX + 

Nivolumab  

OS, RFS NCT02451982a 

 

Abbreviations: DMFS: distant metastasis free survival; gp100: glycoprotein 100; OS: overall survival; 

RFS: relapse free survival; GVAX: granulocyte macrophage colony-stimulating factor (GM-CSF)-

secreting pancreatic cancer vaccine. 

a   Full trial data can be retrieved at https://clinicaltrials.gov 

 

 

To date, two clinical trials finished evaluating this combination therapy after resection of 

high-risk stage IIIc/V melanomas. In a phase II trial[94], ipilimumab was combined with a 

TCV after melanoma resection. The vaccine did not significantly improve the T cell 

responses, but increased the frequency of TH17 inducible cells, which was a marker of RFS. 

In the other trial[95], nivolumab and a multi-peptide vaccine (gp100, MART-1, and NY-

ESO-1 with Montanide ISA 51) were provided following melanoma resection. In the treated 

groups, CTLA-4(+)/CD4(+), CD25(+)Treg/CD4(+), and tetramer specific CD8(+) T-cell 

https://clinicaltrials.gov/
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population were increased. In relapse free patients, there was a trend towards lower baseline 

MDSCs and Tregs. Other (control) groups were however not included. New trials are in 

meantime scheduled to evaluate nivolumab with gp100/NY-ESO-1 TCV (NCT01176474) or 

nivolumab with GVAX TCV (NCT03161379) following resection of melanoma and 

pancreatic tumors, respectively. One trial (NCT02451982) is evaluating an interesting 

combination with nivolumab and GVAX before as well as after surgical resection of 

pancreatic cancer. Altogether, pre-clinical research convincingly provides supporting 

evidence for the advantages of combining TCVs with CBAs. Clinical studies have not yet 

yielded equally convincing data, but there appears to be reasonable interest and optimism to 

further explore and optimize this combination therapy. While new trials are planned, certain 

challenges can already be anticipated with the current experimental set-up. A noteworthy 

aspect is that the TCVs in most trials consist of the low immunogenic ‘self-antigen’ TAAs, to 

which tolerance have been developed during T cell education[96], in contrast to neo-antigens. 

Neo-antigens have been postulated as better candidates for generating stronger anti-tumor 

immunity, since these neo-epitopes originate from genome mutations to which these non-self-

peptides immune tolerance do not develop[97, 98]. However, a disadvantage with neo-

antigen vaccination is antigen identification, which is a time consuming task requiring 

personalized vaccine design. Furthermore, classical TAA expression could be very 

heterogenic among patients and generalized vaccine design is often not feasible[99]. Another 

current concern is the inefficient drug dosing, generation of durable immune responses, 

patient response rates and side effect management[20-22]. A challenge with conventional 

TCVs is the inefficient delivery of adjuvant and antigen to DCs, which typically hampers the 

generation of durable and specific anti-cancer CTL responses[100]. Adjuvants delivered in 

‘soluble’ form also spread systemically and induce pain, erythema, swelling, flu-like 

symptoms and potentially fatal hematological toxicities and cytokine storms[101-104]. 

Similarly, CBAs are conventionally (over)dosed in the systemic circulation, thereby often 

IRAEs, autoimmune diseases, cytokine storms or even death. Due to these IRAEs, many 

immune therapies can only be combined with utmost care. The need of multiple dosing can 

finally rises treatment costs[105-107]. In the recent years, there is increasing interest for 

improving local immunotherapy with the use of nanomaterial platform based delivery 

systems[108]. Nanomedicine assisted local immune activation bears attractive advantages 

that can be integrated with cancer surgery.  
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3.   NPs as promising delivery systems for optimizing TCV and CBA immunotherapy 

 

3.1.   Foundations of NP based research  

The term nanomedicine generally describes the application of nanotechnology in medicine. 

While the research field of nanomedicine is very broad, this review will be limited to the 

application of nanomaterials - in particular NPs - for cancer immunotherapy. NPs are 

colloidal structures ranging in size of 10 to 1000 nm and have found a broad range of 

application as drug delivery and imaging studies[109]. They are classified according to the 

material they are made up with. Polymeric NPs, lipid based NPs, micelles and gold NPs are 

frequently manufactured drug delivery systems. Material preference depends on various 

factors. Polymeric NPs manufactured with the polymer poly (lactic-co glycolic acid; PLGA) 

are for instance appraised for the good biocompatibility of PLGA, as PLGA hydrolysis yields 

the non-toxic monomers lactic acid and glycolic acid[110]. These compounds are readily 

metabolized with the Krebs-cycle. Liposomes are likewise popular due to their good 

biocompatibility. Many of the clinical approved formulations – notably for the delivery of 

chemotherapeutic drugs – are liposomal formulations, including Doxil, DepoCyt, 

DaunoXome and Onivyde[111-113]. NPs can encapsulate or be coupled with multiple 

compounds, including antibodies, dyes and cancer therapeutics. Such construction permits 

the co-delivery of multiple compounds with different functions, which could obviate the need 

to deliver compounds separately[114]. For instance, NPs co-delivering imaging tracking 

molecules (e.g. dye’s, contrast agents, isotopes, etc.) and therapeutics allow in vivo tracking, 

which is the main emphasis of theranostics[115-117]. Another advantage of NPs is that they 

could improve drug pharmacokinetic (PK) properties, since NPs can release their cargo in a 

sustained manner. This not only increases drug bioavailability and therapeutic efficacy, it 

furthermore reduces unnecessary drug delivery to healthy tissue[118]. This potentially 

reduces the induction of off-target toxicity[119]. 

NPs size is a crucial parameter since size influences NP trafficking in vivo. NPs are believed 

to passively drain to the tumor via the hypothesized existence of the enhanced permeability 

retention (EPR) effect[120]. This theory is based on the leaky tumor vasculature and 

inefficient tumor lymphatic drainage, which permits small NPs passively draining to tumors. 

Caution is warranted with very small NPs (<30 nm), as these may be subjected to renal 

clearance[121]. Very large NPs, in contrast, may remain entrapped in the extra cellular matrix 

near the site of administration[122]. Noteworthy, these concepts are mainly based on murine 

studies, so it remains ambivalent whether the EPR effect exists in man[123]. Besides passive 
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delivery, NPs can be conjugated with targeting moieties, in particular antibodies, in order to 

specifically deliver therapeutics to the targeted cell types[124, 125]. Other characteristics of 

NPs that could influence particle adjuvanticity include particle charge, shape, hydrophobicity 

and coating with surfactants. For more detailed insights on these physico-chemical properties, 

please consider the review article from Silva et al.[126]. In the next sessions, we will discuss 

the recent milestones of NP based immunotherapy, in particular for TCVs and CBAs. 

 

3.2.   NPs platform based TAA and adjuvant delivery induces effective anti-tumor immune 

responses 

In the last years, various NPs have been formulated as multifunctional delivery system for 

TAAs and adjuvants (Toll-like receptor ligands; TLR-Ls) including TLR3-L (poly(I:C))[127, 

128], TLR4-L (MLPA)[129-131], TLR-7/8 (R848)[132] and TLR-9L (CpG)[132-135]. These 

NPs platform based TCVs are sometimes referred to as ‘nanovaccines’ and have particularly 

found application in pre-clinical studies. Ranging in particular in sizes around 200 nm and 

co-delivering TLR-Ls and antigens, NPs mimic pathogens and are easily engulfed by 

DCs[136]. Hamdy et al.[129] showed that PLGA NPs co-encapsulating Trp2 (tyrosinase 

relate peptide 2) peptide and TLR4-L strongly stimulated IFN-γ secretion at the lymph nodes 

and spleens, which strongly potentiated tumor containment. Xu et al.[135] manufactured 

multifunctional lipid-calcium-phosphate NPs co-delivering Trp2 peptide and TLR9-L. These 

NPs had superior effects on IFN-γ production, CTL expansion and containing B16F10 tumor 

outgrowth, as compared to freely dosed TLR9-L and Trp2. The CTLs moreover effectively 

cleared distal metastasis in the lung. Ilyinskii et al.[132] also focused on immune adverse 

effects and demonstrated that NPs co-delivering TLR7/8-L or TLR9-L together with OVA 

induced strong CTL responses, without signs of systemic toxicity. In stark contrast, freely 

dosed adjuvants resulted in 50 to 200 folds higher serum levels IL-6 and TNF-α, a condition 

referred to as ‘cytokine storm’[137]. These studies uniformly demonstrated that NP based 

TCVs induce more efficient DC and CTL activation and improved tumor containment, as 

opposed to free administration of adjuvants and antigens. These benefits are putatively 

attributed to antigen protection, more efficient delivery to DCs and extended release of 

antigen and adjuvant within DCs. These features are, among others, crucial for efficient DC 

maturation and the generation of strong and durable CTL responses[138]. Indeed, Silva et 

al.[139] demonstrated that a low burst release of antigens favors efficient DC activation. NPs 

facilitate the co-release of TLR-Ls and TAAs inside DCs, which could obviate the need to 

administer multiple compounds separately[140]. These benefits were clearly lost if burst 
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release take place outside DCs, a problem with NPs releasing their cargo prematurely. This 

leads to comparable problems as when adjuvants and TAAs are dosed freely[141]. 

Since DCs are the main targets of NP based TCVs, researchers recently designed NPs with 

targeting moieties to specifically target DC receptors, including CD40, DEC-205, DC-SIGN 

and CD11c[142-146]. These receptors mediate DC uptake or activation functions. Targeting 

these receptors is believed to further improve DC antigen and adjuvant delivery, while 

limiting delivery to other tissues. DC targeting NPs demonstrated better DC and CTL 

activation as compared to untargeted NPs, as shown by better DC NP internalization, 

increased T cell proliferation, higher IL-12 and IFN-γ production and more efficient tumor 

containment. Targeting moieties thus represent promising attributes to improve specific DC 

antigen and adjuvant delivery. In Fig. 2, the promises of NP based TCV therapy are 

represented. 

 

 

Fig. 2. Efficient DC maturation with NPs delivering TAAs and adjuvants. After tumor resection (1), 

vaccination with NPs could lead to DC maturation in different ways. NPs injected in bloodstream may 

passively reach or be actively targeted to DCs in the bloodstream  (2A). NPs may furthermore 

passively drain to DCs residing in the tumor through the larger fenestrations in the tumor vasculature 

(2B). Altogether, the sustained and controlled release of TAA and TLRs initiate efficient DCs 

maturation (3), which migrate towards the TDLNs to efficiently prime the development of TH1 and 
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CTL cells (4). Activated CTLs leave the TDLN to eliminate residual tumor cells (5). Abbreviations: 

CTL: cytotoxic T lymphocyte; DC: dendritic cell; EPR: enhanced permeability and retention; IFN-γ: 

interferon gamma; IL-12: interleukine-12; MHC: major histocompatibility complex; TAA: tumor 

associated antigen; TDLN: tumor draining lymph node; TH1: T-helper 1 cell; TLR-L: Toll-like 

receptor ligand. 

 

 

3.3.   NPs mediated immune checkpoint blockade for local and sustained alleviation of 

immunosuppression  

There is increasing optimism that local and sustained CBA delivery with slow release 

platforms offers promising perspectives for immune checkpoint blockade therapy[147, 148]. 

Simmons et al.[147] generated the GM-CSF producing cell line expressing the full-length 

CTLA-4 monoclonal antibody gene for cellular mediated release of anti-CTLA-4 antibody. 

Cellular mediated antibody delivery induced potent anti-tumor responses in mice, while 

furthermore reduced serum antibody concentrations. This significantly reduced the induction 

of systemic IRAEs. Fransen et al.[149] demonstrated that local and slow delivery of the 

agonistic anti-CD40 antibody with Montanide ISA 51 nearby the TDLN reduced systemic 

autoimmunity, as compared to systemic antibody delivery. Interestingly, when antibodies 

were given locally, a much lower dose sufficed for effective tumor growth containment. 

However, mineral oil depots bear the risk of inducing chronic inflammation-associated 

adverse effects[150, 151]. Lei et al.[152] encapsulated anti-CTLA-4 antibodies in 

functionalized mesoporous silica for achieving sustained release of anti-CTLA-4 antibodies. 

NPs mediated CTLA-4 blockade mediated superior effects on inhibiting tumor outgrowth, as 

compared to free antibodies given systemically. Rahimian et al.[153] designed polymeric 

microparticles (MPs) with a diameter of 12-15 μm to investigate local anti-CD40 and anti-

CTLA-4 antibody delivery. The rationale for larger particles is that these are putatively less 

prone for non-specific uptake (phagocytosis)[122, 154]. The treatment was evaluated in the 

immune checkpoint blockade sensitive MC-38 murine colon cancer model. Incomplete 

Freund’s Adjuvant and MP mediated CTLA-4 and CD40 blockade were equally effective in 

conferring MC-38 tumor growth inhibition, albeit the MP treated mice did not develop serum 

antibodies against the therapeutic antibodies. MP treated mice furthermore displayed no 

remnants of inflamed depots at the injection site. Similarly, Fransen et al.[155] evaluated 

anti-CD40 blockade with dextran coated MPs. Dextran is considered as an appealing 

biocompatible building block for slow delivery systems[156]. Dextran coated MPs loaded 
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with anti-CD40 antibodies displayed slow release of anti-CD40 antibody without inducing 

systemic toxicity. Unfortunately, they did induce severe local inflammation without 

improving tumor growth inhibition. A putative explanation is that dextran contains sugar, 

which may have served as nutrient source for tumor cells. Polyethylene glycol (PEG) could 

represent an alternative for limiting non-specific uptake of NPs by phagocytes, as PEG 

increases the stealthness of the NPs[157, 158]. In summary, local and sustained release of 

CBAs could greatly improve the efficacy of immune checkpoint blocking therapies, while 

also reducing unnecessary spread of CBAs in the systemic circulation. Besides the reduced 

toxicity, it may also spare treatment costs, because of the increased CBA bioavailability and 

residence time (Fig. 3). 

 

 

 

Fig. 3. NPs for sustained and local immune checkpoint blocking therapy. After tumor resection (1), 

the TME (left) is typically featured by the constitution of immunosuppressive Tregs/Taner cells and 

increased concentrations of immunosuppressive cytokines, which exert immunosuppressive effects on 

nearby immune cells and TDLNs. NPs administrated nearby the TME gradually release CBAs (2 and 

3). Locally released CBAs then bind to inhibitory checkpoint molecules such as CTLA-4 and PD-1 

(4). These alleviate immune suppression on CTLs, TH cells and stimulate their activation (5), while 

supposedly depleting Tregs or Taner in the TME. Activated CTLs can then effectively eliminate 
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tumor cells (6). Because released locally, the antibodies are mostly retained within the TME/TDLN 

zone, which putatively limits the spread of antibodies in systemic circulation (7). Abbreviations: 

CBA: checkpoint blocking antibody; CTL: cytotoxic T lymphocyte; IFN-γ: interferon gamma; IL-12: 

interleukine-12; MHC: major histocompatibility complex; Taner: anergic T cell; TDLN: tumor 

draining lymph node; TH1: T-helper 1 cell; TME: tumor microenvironment; Treg: regulatory T cell. 

 

 

3.4.   Post-surgical TME and TDLN as targets for local immunomodulation to inhibit post-

surgical tumor outgrowth 

Local and sustained immune checkpoint blockade with NPs platform based immunotherapy 

could keep the TME in an immunogenic state for a sustained period of time, which offers 

clear benefits for the generation of durable anti-tumor immune responses after surgery. For 

numerous reasons, TDLNs represent interesting organs of consideration when evaluating 

surgery with immunotherapy, as TDLNs in fact harbor the majority of relevant cells for 

immunotherapy[159]. As these cells tend to be immunosuppressed, it could particularly be 

promising to regard the (targeted) delivery of immunomodulators or checkpoint blockers to 

the TME to reactivate these suppressed cells. The advantage is that locally activated immune 

cells are capable of attacking distal metastasis, as has been shown with tumor re-challenge 

studies. Secondary tumors could mimic metastasis and several studies demonstrated that 

locally activated T cells could efficiently clear secondary tumors[160, 161]. It would 

therefore make sense to administer/target NPs in the proximity of TDLNs and TMEs zone. 

The sustained release of immunotherapeutics and prolonged immune activation is deemed to 

convert the tumor in a sustained ‘protective auto-vaccine’[162]. A promising feature is that 

NPs could be administered more distantly from the tumor, but may still target local immune 

cells in the TME/TDLN. This is especially valuable for tumors or distal metastasis that are 

difficult to reach for surgeons. Fluorescent dyes coupled to NPs enable their tracking in vivo. 

Cruz et al.[163] monitored DC targeting PLGA NPs that encapsulate fluorescent and 

superparamagnetic iron oxide (SPIO) labeled antigen. DCs that engulfed the fluorescently 

and SPIO labeled NPs were traced back in the lymph nodes, which illustrates the possibility 

to monitor NPs and immune cell travelling in vivo.  

The discussion about TDLNs as immune organs could raise interesting questions for 

surgeons, as they typically consider TDLNs as cancerous tissues. Khong et al.[164] addressed 

this dubious question by evaluating the agonistic anti-CD40 antibody following surgical 

resection of subcutaneous AB1-HA mesothelioma tumors in BALB/c mice. Recurrence was 
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mimicked by injecting tumor cells in the post-surgical wound. Agonistic anti-CD40 antibody 

stimulated DC activation and facilitated tumor specific CTL priming. Interestingly, TDLN 

resection did not abrogate anti-CD40 therapy efficacy. This suggests that, at least for the 

efficacy of anti-CD40 therapy, TDLNs were dispensable. In their subsequent study[165], 

anti-CD40 therapy together with TLR7 ligand imiquimod were evaluated as post-surgical 

immunotherapy with the same tumor model, albeit without TDLN resection. Post-surgical 

anti-CD40 + imiquimod therapy effectively facilitated tumor growth inhibition and expanded 

TILs number in the TDLN and tumor. A recent study further underscored the promises of 

local and sustained immune activation following surgery with the use of hydrogels scaffolds. 

Hydrogel scaffolds are another class of nanomaterial that could extend immunotherapeutic 

drug release. Engraftment of hydrogels loaded with different compounds, including TLR7/8, 

anti-PD-1 or anti-CTLA-4 after surgery greatly increased the numbers of DCs, NK cells and 

T cells, while also induced production of type I interferons. This indicates the conversion of 

an immunosuppressive TME into one that favors TH1 anti-tumor immunity. In line with this, 

the local treatment reduced development of post-surgical metastasis in mice carrying 4T1 

tumors [166]. These benefits were neither observed in mice receiving the same treatment in 

PBS nor in those receiving the treatment systemically. While local and sustained drug release 

was crucial, the authors also speculated on the timing of the immunotherapy, as hydrogel 

scaffold were implanted directly after tumor resection (peri-operative therapy). The 

advantage of peri-operative immunotherapy is that the tumor is directly accessible for 

immunotherapeutics. Furthermore, peri-operative immunotherapy may directly counteract 

surgical stress induced immunosuppression. In contrast, the study from Liu et al.[167] 

evaluated immunotherapy before tumor resection (neo-adjuvant therapy). The authors 

demonstrated that the combined neo-adjuvant anti-PD-1 and anti-4-1BB therapy strongly 

prevents post-surgical recurrence in 4T1 tumors. In contrast, mice receiving the therapy few 

days later after surgery developed more metastasis and larger tumors. A rationale for neo-

adjuvant is that the tumor mass is still present, which serves as a source of TAAs for T cells. 

Also, immunity has not been affected yet by surgery. More studies are required in order to 

find the optimal dosing moments of immunotherapy with respect to surgery.  

 

 

4.   Future perspective of combinational NP based immunotherapy 

When evaluating immunotherapy in combination with surgery, it is important to consider the 

complex interplay between the immune system, tumor pathophysiology and the effects of 
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surgery on the TME. Until now, these concepts have only been partially addressed in (pre-

)clinical studies, however there is increasing awareness that surgery could impact 

immunotherapy. The difficulty of eliminating recurring cancers with conventional TCVs calls 

for the exploration of stronger combination immunotherapeutic treatment regimens that target 

the anti-tumor immune response at multiple levels. Different strategies could be envisaged, 

such as reducing the amount of Tregs and TAMs, depleting immunosuppressive cytokines 

and stimulating immune pathways that favor anti-tumor immunity[168]. A desired outcome is 

the generation of durable high affinity anti-tumor immune responses that effectively clear the 

tumor, while exerting minimal cytotoxicity. This goal is putatively attainable by creating, or 

re-establishing a TME that favors the generation of anti-tumor immune responses, without 

affecting wound healing. Whilst combined immunotherapy represents a promising avenue of 

research, certain aspects need to be regarded carefully. Uncontrolled immune activation could 

strongly limit the evaluation of potentially strong combination therapies. Furthermore, 

combination treatments may interfere with each other, which should be avoided by carefully 

timing the administration moment of the different modalities. Particularly the type of CBA 

could play an important role, since they exert their (predominant) effects at different phases 

within the immune cycle. Rather than giving all modalities at once, it is recommended to give 

the different modalities in sequence, repeat the treatment by multiple drug dosing and treat at 

different locations. To demonstrate, anti-CTLA-4 is expected to be most efficient at the 

moment when T cells received a strong TCR signal from potent vaccines, and it is suggested 

to be more efficient at the time a second (booster) vaccine is given[169].  

In this review, we addressed how recent investments in nanomedicine based immunotherapy 

research clearly sparked the interests of NPs as delivery system for cancer immunotherapy. 

Alongside the growing interest for manufacturing and optimizing NPs for TCV and CBA 

based immunotherapy, combined NP based immune checkpoint blockade with TCVs could 

emerge as a future treatment strategy for more effective post-surgical TME 

immunomodulation. This is putatively a pivotal step for the treatment of post-surgical 

recurrences, as depicted in Fig. 4. 
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Fig. 4.   The promises of synergistic NP based immunotherapy with TCVs and CBAs. Surgery 

triggers stress and tends to lead to aberrant alteration of the TME (1). A more effective treatment 

approach is putatively realized with combination immunotherapy with NPs inducing DC maturation 

and NPs delivering CBAs, which could mediate synergistic effects on tumor elimination (2). 

Sustained TAA and TLR release leads on one hand to efficient DC maturation (3; pathway shown 

with red arrows) and mature DCs efficiently prime CTL development. On the other hand, NPs 

releasing CBAs can alleviate immunosuppression on immune cells (4; pathway shown with green 

arrow). Proper dosing schedules and repeated dosing could further improve therapeutic outcome. The 

sustained bioavailability of immunotherapeutics prolong immune cell activation, which is deemed to 

convert the immunosuppressive post-surgical TME into one that favors CTL mediated anti-tumor 

immunity (5). Abbreviations: CBA: checkpoint blocking antibody; CTL: cytotoxic T lymphocyte; 

DC: dendritic cell; IFN-γ: interferon gamma; IL-12: interleukine-12; MHC: major histocompatibility 

complex; Taner: anergic T cells; TH1: T-helper 1 cell; Treg: regulatory T cells 

 

 

Several studies are already under way to explore combination immunotherapies with the aid 

of nanomedicine. Ali et al.[170] combined PLGA NP GVAX vaccine with CTLA-4 and PD-

1 blockade, which efficiently facilitated the regression of B16 melanoma tumor in mice, even 

without vaccine boosting. Particularly CTLA-4 blockade strongly increased CTL activity in 

the TDLN and at the site of vaccination, while PD-1 blockade alone increased CTL activity 
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in the tumor only. Chen et al.[171] assessed the synergism between CTLA-4 blockade and 

PLGA NPs co-delivering imiquimod with indocyanine green (photothermal compound). The 

NPs were used for near infrared (NIR) laser mediated photothermal therapy of primary 

tumors, thereby inducing immunogenic cell death and the release of TAAs. The imiquimod 

release in the dying tumor cells served as an endogenous vaccine, which strongly synergized 

with CTLA-4 blocking antibodies to clear distal metastasis. CTLA-4 blockade combined with 

NPs was furthermore evaluated as post-surgical therapy. The combination therapy effectively 

cleared primary tumors and distal metastasis, while neither mono-therapy with CTLA-4 

blockade nor NP alone facilitated tumor growth inhibition.  NP based combination treatments 

that target other (comparable) immunostimulatory and immunosuppressive pathways in the 

TME are also under development. Xu et al.[172] evaluated a combined NP immunotherapy, 

with one set of NP (vaccine NP) delivering Trp2 peptide and TLR9-L CpG to stimulate DCs 

and another set of lipid–polymer hybrid NPs delivering siRNA to suppress TGF-β expression 

in the TME. The combination therapy facilitated significant inhibition of tumor growth 

compared to mice receiving the NP vaccine only. Park et al.[173] formulated a combination 

therapy within one NP delivery system with IL-2 adjuvant and TGF-β inhibitor using 

nanolipogel NPs, which effectively contained outgrowth of B16 melanoma tumors. Options 

remain open to encapsulate various other types of immunotherapeutics, ranging from 

adjuvants, siRNAs, immunomodulatory antibodies etc. Regarding these developments, it is 

conceivable that NP based immunotherapy will find application soon in the clinic. One 

PLGA nanovaccine formulation (WDvax) is already being evaluated in a phase I trial for 

melanoma (NCT01753089).  

 

 

5.   Conclusion 

Surgery could induce a general state of immunosuppression with the post-surgical TME often 

being manifested by profound cellular and cytokine changes. These changes do not favor 

anti-tumor immunity, whilst also promoting tumor cell outgrowth. More durable response 

rates are likely attainable by strategically combining immunotherapies that change the post-

surgical TME into one that promotes anti-tumor immunity. Versatile combined NP based 

immunotherapies with TCVs and CBAs may serve well for post-surgical TME 

immunomodulation and yielding better response rates in patients. 
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