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A B S T R A C T   

Various adaptive cellular stress response pathways are critical in the pathophysiology of liver disease and drug- 
induced liver injury. Human-induced pluripotent stem cell (hiPSC)-derived hepatocyte-like cells (HLCs) provide 
a promising tool to study cellular stress response pathways, but in this context there is limited insight on how 
HLCs compare to other in vitro liver models. Here, we systematically compared the transcriptomic profiles upon 
chemical activation in HLCs, hiPSC, primary human hepatocytes (PHH) and HepG2 liver cancer cells. We used 
targeted RNA-sequencing to map concentration transcriptional response using benchmark concentration 
modeling for the various stress responses in the different test systems. We found that HLCs are very sensitive 
towards oxidative stress and inflammation conditions as corresponding genes were activated at over 3 fold lower 
concentrations of the corresponding pathway inducing compounds as compared to PHH. PHH were the most 
sensitive model when studying UPR related effects. Due to the non-proliferative nature of PHH and HLCs, these 
do not pose a good/sensitive model to pick up DNA damage responses, while hiPSC and HepG2 were more 
sensitive in these conditions. We envision that this study contributes to a better understanding on how HLCs can 
contribute to the assessment of cell physiological stress response activation to predict hepatotoxic events.   

1. Introduction 

Drug-induced liver injury (DILI) is one of the most frequent causes 
for drug withdrawal and the leading cause for compound attrition in 
drug development (Kullak-Ublick et al., 2017). Current models that are 
used in drug safety screening include hepatoma cell lines and primary 
human hepatocytes (PHH), but these models have their limitations. The 
gold standard for toxicity testing, PHH, have a lack in bioavailability, 
high cost, high inter-donor variability and tendency to quickly dedif
ferentiate upon plating. Moreover, they can only provide limited 

mechanistic information (Lu et al., 2015). HepG2, a liver carcinoma cell 
line, displays many phenotypic features of normal liver cells, but has a 
low metabolic capacity compared to PHH. On the other hand, current 
models that possess relatively high metabolic capacity such as HepaRG 
and Upcyte, show lower hepatotoxicity predictivity than HepG2 cells in 
comparison to PHH (Sison et al., 2017). 

A new and very promising source for unlimited, stabile cells with 
potentially improved predictivity for hepatotoxicity are stem cell- 
derived hepatocyte models (Helsen et al., 2016; José et al., 2016). 
Ethical issues with embryonic stem cell-derived hepatocytes were 
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HLCs, hepatocyte-like cells; HNF4α, hepatocyte nuclear factor 4 alpha; LDM, liver differentiation medium; NAFLD, non-alcoholic fatty liver disease; PC, principal 
component; PCA, principal component analysis; PHH, primary human hepatocytes; TNF, tumor necrosis factor α; TUN, tunicamycin.. 
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resolved when reprogramming techniques made it possible to generate 
human-induced pluripotent stem cells (hiPSC) from fibroblasts or any 
other nucleated somatic cell (Takahashi et al., 2007). This procedure 
also makes it possible to study hepatotoxicity in patient-derived hiPSC- 
derived hepatocyte-like cells (HLCs) having specific genetic mutations 
and drug sensitivity backgrounds (Li et al., 2015). To understand the 
application value of hiPSC-HLCs as compared to PHH, most studies have 
measured the expression and activity of biotransformation enzymes, 
including both phase I, phase II and phase III metabolism, as these are 
critical components for onset of DILI (Weaver et al., 2019). However, 
also other cell physiological responses that determine the ultimate fatal 
outcome for onset of hepatotoxicity are critical to evaluate, including 
cellular stress response pathways related to either internal or external 
cues and specific cell injury or inflammatory cytokines. The main 
cellular stress responses include oxidative stress-mediated NRF2 acti
vation, unfolded protein response (UPR) through ATF4, ATF6 and XBP1 
transcriptional responses, DNA damage responses through TP53 
signaling and inflammatory cytokine-mediated NF-κB activation (Wink 
et al., 2018). Most likely, the dynamics and amplitude of these responses 
differ between cell types and will determine the ultimate cellular 
outcome. Since various drugs with DILI liability activate these stress 
pathways (Wink et al., 2018), it is of major interest to compare the 
cellular stress response pathways between hiPSC-HLCs and PHH. How
ever, so far a systematic analysis of the response of hepatic hiPSC- 
progeny towards chemically-induced stress is lacking. 

Omics approaches, such as transcriptomic profiling, enable a thor
ough comparison of different liver in vitro models and assess the 
resemblance to primary hepatocytes or liver tissue. Some studies 
describe a transcriptomic comparison between HLCs and other models 
like PHH and hepatoma lines (Gao and Liu, 2017; Godoy et al., 2015), 
but a comparison of cellular stress responses has not been performed. 
Recent advances in higher throughput targeted RNA-sequencing tech
nology, such as TempO-Seq, enables a snapshot of the transcriptomic 
profiles of thousands of genes for various conditions (Ramaiahgari et al., 
2019; Yeakley et al., 2017). This allows for detailed concentration 
response evaluation of chemical-induced cell injury responses in various 
cell types. Here using the TempO-Seq technology, a cost-effective 
technique allowing for the evaluation of the expression of a targeted 
set of genes only needing a small amount of sample, we compared the 
chemically-induced cellular stress response activation in hiPSC-HLCs 
with cryopreserved PHH and HepG2 cells. We used diethyl maleate to 
induce an oxidative stress response, tunicamycin to induce unfolded 
protein stress response, cisplatin to induce the DNA damage response 
and tumor necrosis factor alpha (TNFα) to initiate inflammatory cyto
kine signaling for 8 h to capture the primary stress response activation. 
The goal of this study is to compare specific stress pathway activation 
sensitivities to evaluate the suitability of each model in a hepatotoxicity 
assay. To our knowledge, this is the first systematic study that focusses 
on the transcriptomic effect of chemically-induced cellular stress re
sponses in hiPSC-derived hepatocytes. 

2. Materials and methods 

2.1. Cell culturing 

The hiPSC BJ-1 line (generated at KU Leuven) was cultured on 
Matrigel (Corning) coated plates. Medium (mTeSR1) was refreshed 
daily. Full description of the characteristics of the hiPSC BJ-1 line can be 
found in Helsen et al. (Helsen et al., 2016). The human liver carcinoma 
cell line, HepG2, obtained from American Type Culture Collection 
(ATCC) were cultured as described in Wink et al. (Wink et al., 2014). 
Cryo-preserved PHH derived from three different individuals (S1295T: 
86-year-old male Caucasian patient with hepatocellular carcinoma; 
S1307T: male Caucasian 75-year-old patient with colorectal carcinoma; 
and S1423T: male Caucasian 68-year-old patient with colorectal 
adenocarcinoma) were provided by KaLy-Cell (Plobsheim, France) and 

selected based on their plateability. PHH were thawed, transferred to 
pre-warmed thawing UCRM medium (IVAL, Columbia, USA), trans
ferred to pre-warmed seeding UPCM medium (IVAL). Viability was 
assessed using the Trypan Blue, cells were seeded at a density of 70.000 
viable cells per well in 96 wells Biocoat Corning Collagen I Cellware 
plates from Corning (Wiesbaden, Germany). Medium was refreshed 
using seeding UPCM medium 6 h after plating. Compound exposures 
were done 24 h after plating in William’s E medium supplemented with 
100 U/mL penicillin and 100 μg/mL streptomycin. 

2.2. Differentiation of hiPSCs towards hepatocytes 

HiPSCs were differentiated to HLCs as described by Tricot et al. 
(Tricot et al., 2018). In short, BJ1 hiPSC cells were seeded in mTeSR, 
supplemented with 1:100 Revitacell (Thermofisher), with 100.000 cells 
per 48-well. During differentiation, the cells were cultured on liver 
differentiation medium (LDM). In addition to the growth factors Activin- 
A (100 ng/mL), Wnt3a (50 ng/mL), BMP4 (50 ng/mL), FGF1 (50 ng/ 
mL), and HGF (20 ng/mL) (Fig. 1a), 0.6% DMSO (Sigma-Aldrich) was 
added from day 0 until day 11, from day 12 until day 25 2% DMSO was 
added to the LDM (Tricot et al., 2018). It was shown that DMSO im
proves the hepatic differentiation by downregulation of pluripotency 
genes (Czysz et al., 2015). Medium was refreshed daily. All growth 
factors were purchased from PeproTech. For the biological replicates 
three different stem cell culture flasks were used, which were differen
tiated separate from each other. 

2.3. Cell treatment 

Model compounds for oxidative stress (diethyl maleate; DEM) and 
unfolded protein response (tunicamycin; TUN) were purchased from 
Sigma-Aldrich, the cytokine to induce an inflammation response (tumor 
necrosis factor α; TNF) was purchased from R&D systems and the DNA 
damage response compound (cisplatin; CPT) from Ebewe. For each 
compound a concentration range was chosen that is known to induce the 
corresponding stress pathway without inducing cytotoxicity (Fre
driksson et al., 2014; Liguori et al., 2005; Wink et al., 2018). Prior to 
exposure, 1000 times concentrated stock solutions were made in DMSO 
(DEM, TUN) or PBS (TNF, CPT). Exposures were performed by adding 
100 μL two times concentrated exposure medium (with 0.2% DMSO 
independent of compound exposure) to each well already containing 
100 μL maintenance medium. Cells were exposed for 8 h in a 5% CO2 
humidified incubator at 37 ◦C. Thereafter, cells were washed with PBS, 
lysed with 1× TempO-Seq lysis buffer, stored at − 80 ◦C and shipped for 
targeted sequencing. All exposure experiments have been performed 
with three independent biological replicates using different compound 
stock solutions. 

2.4. Immunofluorescence 

Maturity status of the HLC differentiation was assessed with immu
nofluorescence using hepatocyte markers HNF4α (1:200, Abcam, ref. 
#ab41898) and AAT (1,200, Dako, ref.#A0012) following the protocol 
described in Boon et al. (Boon et al., 2020). 

2.5. Targeted sequencing 

Gene expression profiles were analyzed using a targeted RNA 
sequencing technology, TempO-Seq (Biospyder Technologies, Inc., 
Carlsbad, CA, USA). A set of genes was selected based on the S1500+
gene list of NIEHS (Mav et al., 2018). This list contains 2736 genes that 
provide maximal toxicogenomic information on chemical perturbations 
that reflect general cellular responses. We supplemented this list with 
another 245 genes that are involved in hiPSC to hepatocyte differenti
ation, cellular stress pathways activated in PHH (Fredriksson et al., 
2014) and were missing in the S1500 list (for complete gene list see 
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ESM1). A detailed description of the sample processing was described by 
Yeakley et al. (Yeakley et al., 2017). In short, mRNA in the lysates was 
hybridized with detector oligo mix, and amplified using barcoded 
primer pairs to add a unique tag for each of the samples. Sample 
amplicons were pooled and purified. The libraries were sequenced using 
a HiSeq 2500 Ultra-High-Throughput Sequencing System (Illumina, San 
Diego, CA). De-multiplexing of the sequencing readouts resulted in 
FASTQ files. 

2.6. Data processing 

TempO-seq transcriptomics derived reads were aligned using the 
TempO-seqR package (done in-house by BioSpyder Technologies). Raw 
counts were normalized using the DESeq2 R package and log2 trans
formed. A library size (sum of reads within one sample) cut-off was used 
of 100.000 reads. Samples that did not meet this criterion were excluded 
for further analysis. Replicate Pearson correlation was calculated for 
each condition and model (supplemental figure ESM5). Data has been 
uploaded to the Gene Expression Omnibus (GEO) with series accession 
number GSE155771. Benchmark concentration (BMC) modeling was 
done using the BMDExpress 2 software (developed by Sciome LCC and 
NIEHS/NTP/EPA) to assess difference in sensitivity (Phillips et al., 
2019). Here, the dose responses were fitted with various continuous 
models (exponential, linear, polynomial, hill and power model) for each 
gene and sample. Best model was selected which had the lowest Akaike’s 

information criterion (AIC) (Kadota et al., 2015) and a p-value of >0.05. 
The BMC was defined as the concentration at 1 standard deviation in
crease of gene expression. Genes were considered significant differen
tially expressed across dose-response when the adjusted p-value was 
<0.05 using a Williams trend test and Benjamini & Hochberg post-hoc 
test. Principal Component Analysis (PCA) of the log2 normalized 
counts or fold changes was done using the prcomp function from the 
Stats R package. Besides BMDExpress 2, Rstudio version 1.0.153 (Bos
ton, USA) in combination with R 3.4.1 was used for data analysis 
including the following R packages: DESeq2 (Love et al., 2014), Anno
tationDbi (Pagès et al., 2018), pheatmap (Kolde, 2012), ggplot2 
(Wickham, 2009), data.table (Dowle et al., 2016)), dplyr (Wickham, 
2011), tidyr (Wickham and Henry, 2018), reshape2 (Zhang, 2016), 
scales and stats. Using R package pheatmap, hierarchical clustering of 
pathway-related genes was done based on Euclidean distance of log2 
fold changes using Wards method. 

2.7. Retrieving pathway specific gene list 

To examine stress response perturbations by each compound using 
PCA, genes were selected when the mean maximal fold change across 
the dose response for the three PHH donors was higher than 4 for DEM, 
TUN and CPT, and 3.5 for TNF treated cells (for gene lists see ESM2). For 
hierarchical clustering and BMC distribution plots, stress response 
pathway-related genes were based on target genes of stress response 

Fig. 1. HiPSC-hepatocyte differentiation process and differentiation quality. A) The 25-day hiPSC-HLC differentiation mTeSR based protocol. Compound ex
posures were performed at the indicated days during differentiation (0, 4, 8, 12, 20 and 25 days). B) Brightfield image overview of the differentiation process, in 
which several intermediate cell types can be identified. C) Immunofluorescence (HNF4α and AAT) and brightfield imaging of hepatocyte-like cells (day 25). Scale 
bars represent a size of 100 μm. 
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specific transcription factors (UPR: ATF4, ATF6, XBP1 and DDIT3; OX: 
NFE2L2; DDR: TP53; Inflammation: RELA, REL and NFKB1) defined by 
DoRothEA v2 (Garcia-Alonso et al., 2018) with confidence level of A to 
D which were present in the S1500+ geneset. Of these genes, the top 30 
were selected based on the rank of both maximal fold change across dose 
and BMC having at least a fold change of 2.5 for one of the cell types (for 
gene lists see ESM3). These genes were used for hierarchical clustering 
and BMC distribution comparison to assess sensitivity for pathway 
activation. To evaluate the specificity of the compounds activating the 
stress responses of interest, we have performed transcription factor ac
tivity analysis using gene set enrichment analysis using the viper R 
package of the transcription factor regulons defined by DoRothEA vs 
with a confidence level A to D present in the S1500+ geneset. Tran
scription factors were filtered based on FDR < 0.05 and the top 20 were 
selected based on ranking of the minimum FDR across concentration 
range having a positive NES. 

3. Results 

3.1. HiPSC differentiation to hepatocyte-like cells 

A twenty day hiPSC-hepatocyte differentiation protocol (Tricot et al., 
2018) was followed (Fig. 1a), in which growth factors ActivinA and 
Wnt3A started the hiPSC differentiation process towards a definitive 
endoderm cell stage (Fig. 1b). At this point the cells showed a typical 
epithelial morphology and stopped proliferating. Addition of bone 
morphogenetic protein 4 (BMP4) differentiated these cells further 

towards hepatoblasts followed by a 4-day long stimulation with acidic 
fibroblast growth factor (aFGF) which resulted in immature hepato
cytes. In the last phase of the differentiation protocol, hepatocyte growth 
factor (HGF) was added to the LDM which resulted in cells with a typical 
cuboidal morphology (Acikgöz et al., 2013), that stained positive for 
anti-alpha trypsin (AAT) and hepatocyte nuclear factor 4 alpha (HNF4α) 
(Fig. 1c). 

3.2. Transcriptomic overview of the differentiation process and 
comparison to PHH and HepG2 

To assess the shift in the gene expression profile during the differ
entiation process, gene expression levels of undifferentiated hiPSC were 
compared with the different hepatocyte-differentiation stages and 
compared to HepG2 and the gold standard PHH, all in basal/unexposed 
conditions. General transcriptomic profiles between different cell types 
were compared using a principle component analysis (PCA). A relatively 
small difference was seen when hiPSCs were differentiated towards 
HLCs compared to PHH in the first principal component (PC) explaining 
54.3% of the variance (Fig. 2a), and they remained co-localized with 
HepG2 cells but not PHH. The liver associated genes, such as Hapto
globin (HP), Albumin (ALB) and Orosomucoid 1 (ORM1), were chiefly 
responsible for the relatively small shift towards PHH. In PC2, a signif
icant difference could be seen between hiPSC and HLCs, which was 
mostly accounted for by the enormous upregulation of both immature 
liver specific genes during differentiation, including alpha-fetoprotein 
(AFP), and mature liver specific pre-albumin Transthyretin (TTR), 

Fig. 2. Transcriptomic analysis of the hiPSC-hepatocyte differentiation process benchmarked to PHH and HepG2. A) Principle component analysis (PCA) of 
all genes at basal conditions of the different cell types using log2 transformed counts. The top 5 genes most determining the corresponding principle components are 
depicted on the right, where red arrows represent genes most affecting the principle component on the x-axis and blue on the y-axis. B) Heat map of the log10 FC 
expression levels of differentiation markers during hiPSC-hepatocyte differentiation process, the fold changes are compared to the median expression of each gene. C) 
Pearson correlation matrix on normalized gene expression counts of the different cell types. N = 3. 
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Fibrinogen Beta Chain (FGB) and Fibrinogen Gamma Chain (FGG). The 
biological variation between the different hiPSC progeny steps was 
relatively small as a clear separation of the different cell differentiation 
stages and cell types could be observed. hiPSC-hepatic progeny moved 
along the axis of PC4 and addition of BMP4 in the first 8 days of dif
ferentiation induced a strong BMP6 expression, which was lost from day 
9 onward. In addition, expression of Hemoglobin Subunit Gamma 2 
(HBG2), a gene highly expressed in immature hepatocytes, was signifi
cantly upregulated. The variation between the different PHH donor 
populations was relatively small in all PCs. Interestingly, in PC3, a clear 

separation of HepG2 from all other cells became evident, primarily 
driven by high expression of AFP and Lysozyme (LYZ) in this cell line. 

Next, we evaluated the expression of well-known markers for each 
hiPSC differentiation stage. The stem cell markers POU5F1 and SOX2 
were highly expressed in undifferentiated hiPSC stage, but as expected 
were downregulated by >1000-fold upon differentiation towards HLCs 
(Fig. 2b). At step 1 of differentiation, the definitive endoderm marker 
CXCR4 was more than 50-fold increased. Early hepatocyte markers 
FOXA1 and HNF4α were highly induced in the HLC stage and reached 
expression levels similar to those in PHH (Ghosheh et al., 2016; Godoy 

Fig. 3. Effect of oxidative stress on the transcriptomic space of hiPSC, HLC, PHH and HepG2. A) Left panel: PCA of log2 normalized counts of DEM responsive 
genes with all treatments. Right panel: PCA of log2 fold changes of the DEM responsive genes after DEM exposure. The vector plots on the right represent the top 5 
most determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the contribution and PC-orientation of the 10 genes. B) Hier
archical clustering of the log2 fold changes of the top 30 responding oxidative stress genes after DEM exposure. C) Concentration response curves of log2 normalized 
counts for three oxidative stress genes after DEM exposure. Dots and error bars (SE) represent gene expression data, lines represent best BMC model. D) BMC 
accumulation plots of the top 30 responding oxidative stress genes after DEM exposure. Median BMC were extracted from these plots. N = 3. 
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et al., 2015). AFP, a gene that is associated with fetal hepatocytes, was 
highly expressed in HLCs suggesting an immature hepatocyte pheno
type. Late hepatocyte markers, such as ALB, NR1I3 and SERPINA1 were 
strongly induced during the differentiation process, where transcript 
levels for NR1I3 and SERPINA1 levels were comparable to PHH. How
ever, ALB gene expression levels remained still >10-fold lower 
compared to PHH. A key feature of hepatocytes is their ability to 
metabolize drugs. Phase 1 metabolism is mainly regulated by Cyto
chrome P450 (CYP) enzymes. During differentiation some of these en
zymes (e.g. CYP1A1, CYP1B1, and CYP3A5) were strongly induced and 
reached similar or higher expression levels as compared to PHH. Several 
other enzymes including CYP2D6, CYP2E1 and CYP3A4 remained 
significantly less expressed in HLCs as compared to PHH, indicating the 
immaturity of the HLCs. For metabolically functional hepatocytes, 
expression of transporters is necessary, especially SLC47A1 plays an 
important role in xenobiotic clearance (Lundquist et al., 2014). In 
contrast to HepG2, the SLCs were expressed at a similar level in HLCs as 
compared to PHH. Thus, as summarized in Fig. 2C, the gene expression 
profiles of the differentiated hiPSCs correlated increasingly stronger 
with PHH, with hiPSC:PHH correlation of 0.65 and HLC:PHH correla
tion of 0.78. The correlation of HepG2:PHH was 0.76. The variation 
along the different donors of PHH was relatively small as all had a 
correlation of 0.99 with the mean of the PHH. 

3.3. Transcriptomic space of HLCs and other models in oxidative stress 
conditions 

Diethyl maleate (DEM) is an electrophilic compound which conju
gates with cysteine residues in KEAP1 thus activating the activation of 
the NRF2 pathway, and at higher concentration also affecting the levels 
of reduced glutathione, thereby disturbing the cellular redox balance 
and allowing oxidative stress (Kaur et al., 2006). DEM was used as a 
model compound to induce an overall cellular oxidative stress response. 
A selection of DEM upregulated genes was based on having a minimum 
fold change of 4 across dose response of DEM in PHH (see ESM2 for 
complete list). We performed a PCA analysis on the fold changes DEM vs 
DMSO to examine the effect on gene expression of the DEM responsive 
genes (Fig. 3a). Interestingly, at the lowest DEM concentrations all cell 
types co-localized in the PCA plot, indicating similar behavior between 
cell types under mild oxidative stress conditions. A very clear DEM 
concentration-dependent shift in PC1 could be detected for PHH and 
HLCs, and to a lesser extent hiPSC and HepG2. This effect was pre
dominantly caused by increasing expression of heat shock proteins 
(secondary response after oxidative stress) or one of the downstream 
targets of the NRF2 pathway (MAFF). Interestingly, at the highest DEM 
concentration the samples shifted up again on the PC2 axis indicating a 
downregulation of the NRF2 pathway. The DEM concentration- 
dependent shift of PHH moved along the PC1 axis which was mainly 
related to the high expression of the NRF2 target gene oxidative stress 
induced growth inhibitor 1 (OSGIN1) gene. 

Next, we investigated the top 30 most responding oxidative stress 
genes after DEM exposure. Genes were selected on the basis of direct 
targets of NRF2 as defined by DoRothEA v2 (Garcia-Alonso et al., 2018). 
Activation of transcription factors was evaluated by gene set enrichment 
analysis of the transcription factor downstream targets (supplemental 
table ESM4), where among NFE2L2 also ATF4, important in the UPR, 
was activated among the models. Hierarchical clustering of NRF2 genes 
based on Euclidean distance identified genes involved in secondary cell 
stress responses (e.g. FOXO3, DNAJB1, TRIB3) in cluster III and genes 
involved in the NRF2 mediated oxidative stress response (e.g. HMOX1, 
SRXN1, KEAP1, MAFG, GCLM, GCLC, NQO1) in cluster II (Fig. 3b). 
Especially in cluster II, HLCs appeared to be more responsive towards 
DEM as compared to the hiPSC, PHH and HepG2. Clustering of the 
models indicated that the oxidative stress gene expression profiles of 
HLCs are similar to hiPSC having higher induction at lower concentra
tions as compared to PHH. 

To further investigate the pathway specific sensitivity of each model, 
a BMC analysis was performed (Fig. 3c) where the BMC was defined as 
the concentration at which the target gene expression increases by 1 
standard deviation above baseline levels. For this analysis, the same 
pathway specific top 30 oxidative stress genes were selected. The cu
mulative BMC plots indicated that hiPSC-derived HLCs were most sen
sitive towards DEM exposure, having a median BMC of 185 μM (Fig. 3d). 
PHH were in general less sensitive than HLCs having a median BMC of 
353, 385 or 995 μM, and there were significant differences between 
donors. HepG2 and undifferentiated hiPSCs appeared to be the least 
sensitive (1476 and 1247 μM, respectively). 

3.4. Transcriptomic space of different liver test systems for the unfolded 
protein stress response 

Tunicamycin (TUN) was used to induce the UPR as it inhibits N- 
linked glycosylation thereby disturbing protein folding of glycoproteins 
leading to ER stress (Wang et al., 2015). A PCA analysis was performed 
to visualize the transcriptomic changes at the different concentrations of 
TUN of the different models. We focused the analysis on TUN responsive 
genes that changed in expression by >4-fold in PHH across the dose 
response (Fig. 4a; ESM2 for list of genes). The PCA analysis, based on 
log2 fold changes TUN vs DMSO control, showed that with lower TUN 
concentrations all models did behave similar (Fig. 4a). Upon increasing 
concentrations of TUN, all cell types moved up in PC2, which was 
mainly caused by high levels of expression of DDIT3, HERPUD1 and 
MANF at increasing concentrations of TUN. These genes are all well 
known to have a role in the adaptive response against ER stress. Inter
estingly, four samples moved to the right on the PC1 axis at the highest 
TUN concentration (100 μM) (HLCs and all three donors of the PHH). 
This shift was caused by, among others, a downregulation of UPR 
responding genes and upregulation of early stress response genes (e.g. 
FOS and EGR1), indicating that HLCs and PHH were more sensitive to
wards ER stress than HepG2 and hiPSC. This illustrated a similar TUN 
dose-response behavior of HLCs and PHH. We also performed hierar
chical clustering (Fig. 4b) analysis, including the 30 UPR related genes 
most affected by TUN exposure. In general, UPR genes were stronger 
upregulated in HLCs. In HLCs and hiPSCs there was a threshold con
centration of TUN when the UPR was started to be induced. Below 1 μM 
the pathway was inactive but at 1, 10 and 100 μM there was a very 
pronounced induction. However, for PHH, this effect seemed to be more 
gradual, starting already at 0.001 μM TUN where there is some upre
gulation of UPR related genes. Dose response curves of three example 
and well-known targets of the UPR response (DDIT3, HERPUD1 and 
HSPA5) demonstrated that basal expression of UPR downstream targets 
was lower in the HepG2 and hiPSC (Fig. 4c). Transcription factor ac
tivity analyses revealed the activation of both UPR related transcription 
factors, but also NF-κB related transcription factors such as RELA and 
NFKB1 (supplemental table ESM4). The BMC accumulation plot of the 
30 most affected TUN modulated genes showed that PHH are the most 
sensitive for UPR with considerable variation between different donors 
(median BMC of 0.02–0.23 μM) (Fig. 4d). Undifferentiated hiPSCs and 
their differentiated HLC progeny were less sensitive than PHH (median 
BMC 0.3 and 0.68 μM, respectively). Of note, UPR target genes were 
only upregulated at much higher concentrations of TUN in HepG2 cells 
(median BMC of 1.84 μM). 

3.5. Transcriptomic space of hiPSC-HLCs and other models in DNA 
damage conditions 

Cisplatin (CPT), a clinically relevant anticancer agent, was used to 
induce a DNA damage response (DDR). CPT induces intra and inter- 
strand DNA adducts, eventually resulting in single and double 
stranded DNA breaks and subsequent induction of a DDR (Kritsch et al., 
2017). Selection of CPT upregulated genes was based on PHH-gene 
expression after CPT exposure having a minimal fold change of 4 
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across dose response (see gene list ESM2). PCA analysis of the log2 fold 
change of CPT vs DMSO showed that the response of HLCs was most 
similar to PHH (Fig. 5a). A clear dose response shift could be observed 
towards high PC2 and low PC1 values. High expression of typical TP53 
downstream targets (MDM2 and BTG2) contributed to this shift. The 
concentration response shift of HLCs and PHH moved more along the 
PC1 axis compared to hiPSC and HepG2, predominantly caused by 
increased expression of ATM dependent genes (e.g. CDK5R1 and 
H2AFX). Interestingly, at the highest concentration of CPT, all 3 PHH 
donor samples showed a major shift in the PC2 transcriptomic space. A 
reduction of the typical DNA damage response genes was observed. This 

indicates a clear tipping point where PHH switch from adaptation to 
DNA damage towards adverse regulated cell death programs. Appar
ently, this tipping point is only reached at higher concentrations of CPT 
in the other models. The hierarchical clustering on the 30 most 
responsive downstream targets of TP53 after CPT exposure revealed that 
the gene induction pattern of HLCs, HepG2 and PHH were similar 
(Fig. 5b), while hiPSC were most distinct. The log2 normalized counts of 
three DDR genes, BTG2, GADD45A and MDM2, demonstrated that 
although the expression profiles were similar for HLCs and PHH, basal 
expression levels of TP53 downstream targets were much lower in HLCs 
(Fig. 5c). Furthermore, the tipping point at which PHH switch from 

Fig. 4. Effect of the unfolded protein response on the transcriptomic space of hiPSC, HLC, PHH and HepG2. A) Left panel: PCA of the unfolded protein genes 
(log2 normalized counts) with all treatments. Right panel: PCA of log 2-fold changes of the TUN responsive genes after TUN exposure. The vector plots on the right 
represent the top 5 most determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the contribution and PC-orientation of the 10 
genes. B) Hierarchical clustering of the log2 fold changes of the top 30 UPR related genes after TUN exposure. C) Concentration response curves of log2 normalized 
counts for three UPR genes after TUN exposure. Dots and error bars (SE) represent gene expression data, lines represent best BMC model. D) BMC accumulation plots 
of the top 30 responding UPR related genes after TUN exposure. Median BMC were extracted from these plots. N = 3. 
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adaptive to adverse signaling is clearly visible at the highest concen
trations. As expected, transcription factor activity analysis revealed 
TP53 activity for primarily the hiPSCs and to a lesser extend in the other 
non-dividing models (supplemental table ESM4). The BMC accumula
tion plot of the 30 TP53 downstream target genes demonstrated that 
cells with high proliferative potential (hiPSC and HepG2) respond 
already at lower concentrations of CPT (Fig. 5d), likely related to 
replicative stress in the proliferating cells caused by CPT-induced DNA 
damage. 

3.6. Transcriptomic space of HLCs and other liver test systems in TNFα- 
mediated inflammatory signaling 

Tumor necrosis factor alpha (TNF) is a natural ligand of p55, TNF 
receptor I, and involved in the acute phase reaction of the systemic 
inflammation response. Here, we used TNF to induce an inflammation 
NF-kB signaling response in our test systems. A PCA analysis on a set of 
the TNF responsive genes (see ESM2) across all test system showed a 
very distinct TNF response of the HLCs as compared to PHH, HepG2 and 
hiPSC (Fig. 6a). For HLCs (and to a lesser extent, HepG2), there was a 

Fig. 5. Effect of the DNA damage response on the transcriptomic space of hiPSC, HLC, PHH and HepG2. A) Left panel: PCA of the CPT responsive genes (log2 
normalized counts) with all treatments. Right panel: PCA of log2 fold changes of the CPT responsive genes after CPT exposure. The vector plots on the right represent 
the top 5 most determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the contribution and PC-orientation of the 10 genes. B) 
Hierarchical clustering of the log2 fold changes of the top 30 DNA damage response (DDR) related genes after CPT exposure. C) Concentration response curves of log2 
normalized counts for three DDR genes after CPT exposure. Dots and error bars (SE) represent gene expression data, lines represent best BMC model. D) BMC 
accumulation plots of the top 30 responding DDR related genes after CPT exposure. Median BMC were extracted from these plots. N = 3. 
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concentration-dependent shift along the PC2 axis, mainly caused by 
increased expression of typical inflammation markers like TNFAIP2, 
ICAM1 and CCL2. TNF exposure only led to a mild transcriptomic shift in 
the HepG2 and hiPSC. For PHH, a concentration-dependent shift along 
the PC1 axis was found which was mostly determined by JUNB, DDIT4 
and CSK. These genes are known to play a role in stress response 
signaling but not necessarily inflammation or NF-κB signaling pathway. 
The unique TNF response of every model was also evident from the hi
erarchical clustering of the log2 fold changes of the 30 most responsive 
NF-ĸB targets after TNF exposure (Fig. 6b). It was evident that HLCs 

were by far the most sensitive to TNF exposure, as already at low con
centrations a strong upregulation of typical inflammatory genes 
including ICAM1, CCL2/20, CXCL1/2, TNFAIP3, CXCL5, VCAM1 and 
SOCS3 was seen. Surprisingly, this change was not caused by an 
increased expression of the TNF-receptor family members. Only 
expression of TNFRSF21 (associated with the fetal liver) was signifi
cantly increased in the HLCs model as compared to PHH. TNF concen
tration responses of three proto-typical NF-κB downstream target genes 
(ICAM, RELB and TNFAIP3) demonstrated that while the basal expres
sion levels of these genes in HLCs was low, there was a very strong 

Fig. 6. Effect of the inflammation response on the transcriptomic space of hiPSC, HLC, PHH and HepG2. A) Left panel: PCA of the TNF responsive genes (log2 
normalized counts) with all treatments. Right panel: PCA of log2 fold changes of the TNF responsive genes after TNF exposure. The vector plots on the right represent 
the top 5 most determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the contribution and PC-orientation of the 10 genes. B) 
Hierarchical clustering of the log2 fold changes of the top 30 NFκB related genes after TNF exposure. C) Concentration response curves of log2 normalized counts for 
three NFκB target genes after TNF exposure. Dots and error bars (SE) represent gene expression data, lines represent best BMC model. D) BMC accumulation plots of 
the top 30 responding NFκB related genes after TNF exposure. Median BMC were extracted from these plots. N = 3. 
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induction after TNF exposure (Fig. 6c). This effect was virtually absent in 
the undifferentiated hiPSCs. In HepG2 and PHH, there was higher basal 
gene expression of inflammatory targets, but only a mild induction after 
exposure to TNF. Besides, variation was seen in upregulation of in
flammatory genes between the different PHHs, where for instance CCL2 
was dose-dependent upregulated in two of the PHHs but not in the third 
PHHs potentially due to the difference in initial inflammation state. 
Transcription factor activity analysis showed the activation of various 
NF-κB subunits among all models except for hiPSCs (supplemental table 
ESM4). The BMC accumulation plot for the 30 most responsive NF-ĸB 
targets indicated that both HepG2 and HLCs were very sensitive towards 
TNF exposure but hiPSC not at all (Fig. 6d). 

4. Discussion 

PHH are regarded as the gold standard for hepatotoxic liability 
testing, but suffer from lack of availability, poor in vitro metabolic sta
bility, and variability. Therefore, hiPSC-hepatic progeny is being eval
uated as an alternative for chemical safety testing. Given that chemicals 
cause cell injury that triggers cellular stress response pathways, a 
question that has yet to be answered is how hiPSC-hepatic progeny 
compares to PHH in the context of cellular stress response activation. 
Using transcriptomic approaches, here we systematically assessed four 
critical stress pathways involved in cell injury repair in hiPSC, hiPSC- 
HLCs, PHH and HepG2 cells. Our data indicate that the cellular stress 
response of HLCs is clearly different from undifferentiated hiPSC and 
more resembles that of liver (PHH and HepG2) cell type responses. The 
sensitivity score, which was calculated as an EC50 over the stress 
pathway BMC accumulation plot, was within a 3-fold difference 
compared to PHH donors, HLCs being more sensitive to oxidative stress 
and cytokine signaling, and PHH being more sensitive for ER stress. 

We found that untreated HLCs were transcriptionally quite distinct 
from PHH. The overall transcriptomic similarity between HLC and PHH 
was as close to that of HLC and undifferentiated hiPSC, an observation 
that was previously also reported by another group (Xu et al., 2018). 
However, HLCs are remarkably similar to PHH when comparing cellular 
stress response pathway activation. This suggests that HLCs have gained 
a differentiation status that reflects the responses observed in PHH. This 
is consistent with a previous proteomic study that compared the prote
omic profiles of HLCs and PHH (Hurrell et al., 2018) and also sensitivity 
to hepatotoxic drugs (Boon et al., 2020; Kang et al., 2016). This indicates 
that despite their relative immaturity, HLCs respond similarly to liver 
toxicants as gold standard in vitro models like PHH. Therefore, at least 
for compounds that do not require bioactivation, HLCs might be a pre
dictive model for hepatotoxicity. 

For this study, we included one model compound per stress pathway 
to activate either an oxidative stress, DNA damage, ER stress or 
inflammation conditions. Our study demonstrates clear dose-response 
differences at the individual gene level between the different cell 
models. PHH were in particular sensitive for the onset of the UPR genes 
as a consequence of ER stress when compared to the other models. While 
the three individual PHH donors showed average BMCs for UPR genes of 
around 0.1 μM, this was seven times higher for HLCs. Overall, individual 
UPR genes were activated throughout all model systems, although at 
different concentration levels. HERPUD1, DDIT3 and HSPA5, three bona 
fide UPR genes, were already activated at around 0.1 μM in PHH being 
most sensitive, while HLCs showed activation starting at 1 μM. Despite 
difference in sensitivity, HLCs showed in general higher upregulation of 
UPR specific genes compared to PHH. The UPR is of prominent impor
tance in both DILI responses in PHH as well as in the rat liver in vivo 
(Fredriksson et al., 2014) and in liver disease settings (Lebeaupin et al., 
2018). 

In contrast to the UPR pathway, HLCs were more sensitive to TNF- 
mediated NF-kB target gene expression than the three PHH donors 
and more comparable to HepG2 cells. Clearly, differentiated HLCs were 
distinct from hiPSCs, as only very minimal TNF-mediated NF-kB target 

gene activation was observed in hiPSCs. As various liver diseases involve 
inflammatory signaling through NF-kB, including non-alcoholic fatty 
liver disease (NAFLD), liver fibrosis and cancer (Brenner et al., 2013) as 
well as DILI (Fredriksson et al., 2011), HLCs can be a good model to 
study TNF-mediated signaling responses, although this does not reflect 
the multicellular system including Kupffer and stellate cells mediating 
inflammatory signaling. If HLCs are combined with multiple liver- 
specific cell types in a 3D structure, this may further improve its rele
vance for the study of inflammatory signaling (Ouchi et al., 2019). The 
limited sensitivity of the PHH to TNF could be related to the prior dis
ease status, and that for instance the colon metastases had already 
affected the level of local or systemic cytokine levels that influence the 
PHH prior to isolation. On top of that, it is likely that the hepatocyte 
harvesting method also contributes to a pre-inflammatory state of the 
PHH. 

Similarly, HLCs were also more sensitive for DEM-induced oxidative 
stress compared to PHH, and even more so than hiPSCs and HepG2, 
which showed an 8-fold lower sensitivity for NRF2 target gene induc
tion. A study by Kang et al. showed similar differences where HLCs were 
more comparable to PHH in oxidative stress induction by acetamino
phen than the less sensitive HepG2 model (Kang et al., 2016). In the 
liver, high metabolic activity of hepatocytes results in elevated levels of 
ROS due to biotransformation and xenobiotic metabolism and therefore 
the necessity of a cellular defense mechanism through strong activation 
of the NRF2-mediated anti-oxidant response (Marí et al., 2010). In that 
respect, the differentiation of hiPSCs towards HLCs lead to a sensitivity 
towards oxidative stress comparable to PHH making them suitable for 
the evaluation of chemical-induced oxidative stress response signaling. 

On the other hand, HLCs were the least sensitive cell type for CPT- 
induced DDR-mediated TP53 activation. While for all three PHH do
nors, the activation of TP53 target genes, such as MDM2, CDKN1A and 
BTG2 was initiated at around 10 μM, in HLCs this was about 2 times 
higher. These HLC responses are in sharp contrast to the high sensitivity 
of undifferentiated hiPSCs, responding already at 3 μM, and therefore 
illustrates the strong difference of the DDR in hiPSCs and differentiated 
liver progeny. Indeed, a study by Shimada et al. showed strong sensi
tivity towards DNA damage in hiPSCs compared to a differentiated state 
indicating a shift in the regulatory network of DNA damage signaling 
during differentiation (Shimada et al., 2019). 

Sensitivity towards the analyzed stress pathways is an important 
feature for a hepatotoxicity model. We believe that in this respect a 
model cannot be too sensitive. Especially for DNA damage as a muta
genic effect will always increase the chance for a malignancy and sen
sitive models have in this respect less false negatives. For the in vitro to 
in vivo translation, the retrieved BMCs should be benchmarked to the 
BMCs of compounds of which the pathological outcome is known. Be
sides stress pathway sensitivity, metabolism is another important 
feature for a hepatotoxicity model. HepG2 cells as cultured in a 2D 
monolayer have a very low phase I and phase II drug metabolism. 
Bioconversion characteristics can therefore not be studied in this simple 
model (Hiemstra et al., 2019), and PHHs and HLCs are in this case the 
preferred model. 

In conclusion, despite limitation in full hepatocyte maturation, 
which caused a quite distinct overall basal transcriptomic space of HLC 
in comparison to PHH, HLCs did gain specific adaptive cellular stress 
response networks that mimic those of PHHs. We envision that the use of 
HLCs in hepatotoxicity screening will steadily increase and when dif
ferentiation protocols are further optimized, HLCs might be more reli
able to uncover stress response activation to assess chemical safety as 
well as to understand the modulation of cellular stress responses in 
hiPSC-derived liver disease models. 
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