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Abstract. In complex, expensive optimization domains we often nar-
rowly focus on finding high performing solutions, instead of expanding
our understanding of the domain itself. But what if we could quickly
understand the complex behaviors that can emerge in said domains
instead? We introduce surrogate-assisted phenotypic niching, a quality
diversity algorithm which allows to discover a large, diverse set of behav-
iors by using computationally expensive phenotypic features. In this work
we discover the types of air flow in a 2D fluid dynamics optimization
problem. A fast GPU-based fluid dynamics solver is used in conjunction
with surrogate models to accurately predict fluid characteristics from
the shapes that produce the air flow. We show that these features can be
modeled in a data-driven way while sampling to improve performance,
rather than explicitly sampling to improve feature models. Our method
can reduce the need to run an infeasibly large set of simulations while
still being able to design a large diversity of air flows and the shapes that
cause them. Discovering diversity of behaviors helps engineers to better
understand expensive domains and their solutions.

Keywords: Evolutionary computation · Quality diversity ·
Phenotypic niching · Computational fluid dynamics · Surrogate
models · Bayesian optimization.

1 Introduction

We design objects with the expectation that they will exhibit a certain behavior.
In fluid dynamics optimization, we want an airplane wing to experience low drag
forces, but also have a particular lift profile, depending on angle of attack and
air speed. We want to understand how the design of our public transportation
hubs, dealing with large influxes of travelers, can cause congestion at maximal
flow rates. We want our buildings to cause as little wind nuisance as possible
and understand how their shape and the wind turbulence they cause are linked.
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In all these cases, it is not easy to design without prior experience and we often
require long iterative design processes or trial-and-error methods.

What if we could quickly understand the possible types of behavior in expen-
sive engineering problems and get an early intuition about how shape and behav-
ior are related? In this work, we try to answer these questions, and in particular,
whether we can discover different high performing behaviors of shapes, designing
air flow simultaneously to the shapes that causes it. An overview of related work
is given in Sect. 2, where we explain quality diversity (QD) algorithms and the
use of surrogate assistance. In Sect. 3 we introduce a new QD algorithm that
performs surrogate-assisted phenotypic niching. Two problem domains are used
(Sect. 4): one inexpensive domain that optimizes the symmetry of polygons,
allowing us to perform an in depth evaluation of various QD methods, and an
expensive air flow domain (Sect. 5).

2 Quality Diversity

QD algorithms combine performance based search with “blind” novelty search,
which searches for novel solutions without taking into account performance [14].
QD finds a diverse set of high performing optimizers [3,15] by only allowing
solutions to compete in local niches. Niches are based on features that describe
phenotypic aspects, like shape, structure or behavior. It keeps track of an archive
of niches and solutions are added if their phenotype fills an empty niche or their
quality is higher than that of the solution that was previously placed inside.

QD became applicable to expensive optimization problems after the intro-
duction of surrogate-assisted illumination (SAIL) [7]. In this Bayesian interpre-
tation of QD, a multi-dimensional archive of phenotypic elites (MAP-Elites) [3]
is created based on upper confidence bound (UCB) [1] sampling, which takes
an optimistic view at surrogate-assisted optimization. A Gaussian Process (GP)
regression [18] model predicts the performance of new solutions based on the
distance to previous examples, which is modeled using a covariance function. A
commonly used covariance function is the squared exponential, which has two
hyperparameters: the length scale (or sphere of influence) and the signal vari-
ance, which are found by minimizing the negative loglikelihood of the process.
For any location, the GP model predicts a mean value μ and confidence intervals
σ of the prediction. σ is added to μ with the idea that a location where the model
has low confidence also has the promise of holding a better performing solution:
UCB(x) = μ(x)+κ ·σ(x). The parameter κ allows us to tune the UCB function
between exploitation (κ = 0) and exploration (κ >> 0).

In SAIL, after MAP-Elites fills the acquisition map which contains “opti-
mistic” solution candidates, a random selection of those candidates is analyzed
in the expensive evaluation function to form additional training samples for the
GP model. This loop continues until the evaluation budget is exhausted. Then
κ is set to 0 in a final MAP-Elites run to create a feature map that now con-
tains a diverse set of solutions that is predicted to be high-performing. SAIL
needs a budget orders of magnitudes smaller than MAP-Elites because it can
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Fig. 1. Surrogate-assisted Phenotypic Niching. An initial sample set is evaluated
(a), then models are trained to predict performance and feature coordinates (b), MAP-
Elites is used to produce an acquisition map, balancing exploitation and exploration
with the UCB of the performance model. Feature models predict the niche of new
individuals (c). New samples are selected from the acquisition map (d). After the
evaluation budget is depleted, the surrogate models are used to generate the prediction
map with MAP-Elites, ignoring model confidence (e).

exploit the surrogate model without “wasting” samples. SAIL, however, is con-
strained to features that are cheap to calculate, like shape features [7] that can
be determined without running the expensive evaluation.

With SAIL it became possible to use performance functions of expensive
optimization domains. But the strength of QD, to perform niching based on
behavior, cannot be applied when determining those behaviors is expensive. In
this work we evaluate whether we can include surrogate models for such features.

3 Surrogate-Assisted Phenotypic Niching

To be able to handle expensive features, we introduce surrogate-assisted phe-
notypic niching (SPHEN) (Fig. 1 and Algorithm 1). By building on the insight
that replacing the performance function with a surrogate model decreases the
necessary evaluation budget, we replace the exact feature descriptors as well.

The initial training sample set, used to form the first seeds of the acquisition
map, is produced by a space-filling, quasi-random low-discrepancy Sobol [21]
sequence in the design space (Fig. 1a). Due to the lack of prior knowledge
in black-box optimization, using space-filling sequences has become a standard
method to ensure a good coverage of the search domain. The initial set is eval-
uated, for example in a computational fluid dynamics simulator. Performance
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Algorithm 1. Surrogate-assisted Phenotypic Niching
Set budget, maxGens, numInitSamples � Configure
X ′ ← X ← Sobol(numInitSamples) � Initial samples
while |X | < budget do

(f ′,p′) ← Sim(X ′) � Precisely evaluate performance and features
(X , f ,p) ← (X ∪ X ′, f ∪ f ′,p ∪ p′)
(Mp,Mf ) ← Train(X , f ,p) � Train surrogate models
Amap ← MAP-Elites(20, X , P redict(X ,Mf ), P redict(X ,Mp),Mp,Mf ) �

Produce acquisition map based on predicted sample performance and features
X ′ ← Sobol(Amap) � Select new (optimized) samples from acquisition map

end while
Pmap ← MAP-Elites(acq(), 0, feat(), X , f ,p,Mp,Mf ) � Produce prediction map

procedure MAP-Elites(σucb, X , f ,p,Mp,Mf )
Imap ← (X , f ,p) � Create initial map
while gens < maxGens do

P ← Sobol(Imap) � Evenly, pseudo-randomly select parents from map
C ← Perturb(P) � Perturb parents to get children
f ← Predict(C,Mf ) � Predict features
p ← UCB(C, σucb,Mp) � Predict performance (Upper Confidence Bound)
Imap ← Replace(Imap,C, f ,p) � Replace bins if empty or better

end while
end procedure

and phenotypic features of those samples are derived from the results, or, in the
case of simpler non-behavioral features, from the solutions’ expression or shape
themselves. The key issue here is to check the range of the initial set’s features.
Since we do not know what part of the phenotypic feature space will be discov-
ered in the process, the initial set’s feature coordinates only give us a hint of the
reachable feature space. Just because we used a space-filling sampling technique
in the design space, does not mean the samples are space-filling in feature space.

After collecting performance and feature values, the surrogate models are
trained (Fig. 1b). We use GP models, which limit the number of samples to
around 1,000, as the training and prediction becomes quite expensive. A squared
exponential covariance function is used and the (constant) mean function is set
to the training samples’ mean value. The covariance function’s hyperparameters,
length scale and signal variance, are deduced using the GP toolbox GPML’s [19]
conjugate gradients based minimization method for 1,000 iterations.

MAP-Elites then creates the acquisition map by optimizing the UCB of the
performance model (with a large exploration factor κ = 20), using feature mod-
els to assign niches for the samples and new solutions (Fig. 1c). Notably, we do
not take into account the confidence of those feature models. Surrogate assisted
QD works, because, although the search takes place in a high-dimensional space,
QD only has to find the elite hypervolume [23], or prototypes [9], the small vol-
umes consisting of high-performing solutions. Only the performance function
can guide the search towards the hypervolume. Taking into account the feature
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Fig. 2. The genome (a), consisting of 16 parameters that define axial and radial defor-
mations, shape features (b) and performance (c) of polygons in the domain.

models’ confidence intervals adds unnecessary complexity to the modeling prob-
lem. SPHEN’s goal is to be able to only predict features for high-performing
solutions, so we let feature learning “piggyback” on this search. We use a Sobol
sequence on the bins of the acquisition map to select new solutions (Fig. 1d)
that are then evaluated to continue training the surrogate models. This process
iterates as long as the evaluation budget is not depleted. Finally, MAP-Elites
is used to create a prediction map, ignoring the models’ confidence (Fig. 1e),
which is filled with diverse, high-performing solutions.

4 Domains

Phenotypic features describe phenomena that can be related to complex
domains, like behavioral robotics, mechanical systems, or computational fluid
dynamics (CFD). Before we apply SPHEN to an expensive CFD domain, we
compare its performance to MAP-Elites and SAIL in a simpler, inexpensive
domain.

4.1 Polygons

To be able to calculate all performance and feature values, we optimize free form
deformed, eight-sided polygons. The polygons are encoded by 16 parameters
controlling the polar coordinate deviation of the control points (Fig. 2a). The
first half of the genome determines the corner points’ radial deviation (dr ∈
[0.01, 1]). The second half of the genome determines their angular deviation
(dθ ∈ [−π/4, π/4]). The phenotypic features are the area of the polygon A and
its circumference l (Fig. 2b). These values are normalized between 0 and 1 by
using predetermined ranges (A ∈ [0.01, 0.6] and l ∈ [1, 4]). The performance
function (Fig. 2c) is defined as the point symmetry P . The polygon is sampled
at n = 100 equidistant locations on the polygon’s circumference, after which the
symmetry metric is calculated (Eq. 1), based on the symmetry error Es, the sum
of Euclidean distances of all n/2 opposing sampling locations to the center:

fP (xi) =
1

1 + Es(xi)
, Es(x) =

n/2∑

j=1

∥∥xj − xj+n/2

∥∥ (1)
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4.2 Air Flow

The air flow domain is inspired by the problem of wind nuisance in the built
environment. Wind nuisance is defined in building norms [10,16] and uses the
wind amplification factor measured in standardized environments, with respect
to the hourly mean wind speed. In a simplified 2D setup, we translate this
problem to that of minimizing maximum air flow speed (uMax) based on a
fixed flow input speed. The performance is determined as the inverse over the
normalized maximum velocity: p(x) = 2

(1+uMax(x))
− 1. However, we only need

to keep uMax within a nuisance threshold, which we set to uMax ≤ 0.12.
The encoding from the polygon domain is used to produce 2D shapes that are

then placed into a CFD simulation. To put emphasis on the architectural nature
of the domain, we use two features, area and air flow turbulence. The chaotic
behavior of turbulence provokes oscillations around a mean flow velocity, which
influences the maximum flow velocity. Both features are not optimization goals.
Rather, we want to analyze, under the condition of keeping the flow velocity
low, how the size of the area and turbulence are related to each other. We want
to produce polygons that are combinations between their appearance (small
to large) and their effect on the flow (low to high turbulence). Concretely, at
the lowest and highest values of area and turbulence, regular intuitive shapes
should be generated by the algorithm such as slim arrow-like shapes for low
turbulence and area, or regular polygons for high turbulence and area. However,
for area/turbulence combinations in between, the design of the shape is not
unique and will possibly differ from intuition.

Lattice Boltzmann Method. The Lattice Boltzmann method (LBM) is an
established tool for the simulation of CFD [13]. Instead of directly solving the
Navier-Stokes equations, the method operates a stream and collide algorithm
of particle distributions derived from the Boltzmann equation. In this contribu-
tion, LBM is used on a 2D grid with the usual lattice of nine discrete particle
velocities. At the inlets and outlets, the distribution function values are set to
equilibrium according to the flow velocity. The full bounce-back boundary con-
dition is used at the solid grid points corresponding to the polygon. Although
there are more sophisticated approaches for the boundaries, this configuration is
stable throughout all simulations. In addition, the bounce-back boundary condi-
tion is flexible, as the boundary algorithm is purely local with respect to the grid
points. As an extension of the Bhatnagar-Gross-Krook (BGK) collision model [2],
a Smagorinsky subgrid model [6] is used to account for the under-resolved flow
in the present configuration. For a more detailed description of the underlying
mechanisms, we refer to [13]. Note that the results of the 2D domain do not
entirely coincide with results that will be found in 3D, caused by the difference
in turbulent energy transport [22].

The simulation domain consists of 300 · 200 grid points. A bitmap represen-
tation of the polygon is placed into this domain, occupying up to 64 · 64 grid
points. As the Lattice Boltzmann method is a solver of weakly compressible
flows, it is necessary to specify a Mach number (0.075), a compromise between
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Fig. 3. Air flow around a circular polygon shape at four different time steps. (Color
figure online)

Fig. 4. Enstrophy values during simulation of circles and stars. The running average
of the last 50,000 time steps converges to the final feature output.

computation time and accuracy. The Reynolds number is Re = 10, 000 with
respect to the largest possible extent of the polygon. For the actual computa-
tion, the software package Lettuce is used [11], which is based on the PyTorch
framework [17], allowing easy access to GPU functionality. The fluid dynamics
experiment was run on a cluster with four GPU nodes, each simulation taking ten
minutes. Figure 3 shows the air flow around a circular polygon at four different,
consecutive time steps. Brighter colors represent higher magnitudes of air flow
velocity. Throughout the 100,000 time steps of the simulation, maximum velocity
and enstrophy are measured. The enstrophy, a measure for the turbulent energy
dissipation in the system with respect to the resolved flow quantities [8,12],
increases as turbulence intensity increases in the regarded volume.

Validation and Prediction of Flow Features. The maximum velocity umax

and enstrophy E are measured every 50 steps. We employ a running average
over the last 50,000 time steps. To test whether we indeed converge to a stable
value, we run simulations with different shapes (nine varied-size circles and nine
deformed star shapes) and calculate the moving average of the enstrophy values,
which is plotted in Fig. 4. The value converges to the final feature value (red).

To validate the two measures, we simulate two small shape sets of circles and
stars. Increasing the radius of the circles set should lead to higher umax and E,
as more air is displaced by the larger shapes. The stars set is expected to have
larger umax and E for the more irregular shapes. This is confirmed in Fig. 5.

Next, we investigate whether we can predict the simple shapes’ flow feature
values correctly. Although GP models are often called “parameter free”, this is
not entirely accurate. The initial guess for the hyperparameter’s values, before
minimization of the negative log likelihood of the model takes place, can have
large effects on the accuracy of the model. The log likelihood landscape can
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Fig. 5. Enstrophy and maximum velocity of circles and stars.

Table 1. Parameter settings for MAP-Elites, SAILA, restricted SAILB and SPHEN.

Parameter MAP-Elites SAILA SAILB SPHEN

Generations 4,096 1,024 63 1,024

Descendants 16 32 16 32

Budget (per iteration) - 1,024 (16) 1,024 (16) 1,024 (16)

Resolution (acquisition) - 16 × 16 16 × 16 32 × 32
A Due to the number of feature evaluations, MAP-Elites uses 4,096 · 16 =
65,536 and SAIL uses 16+1,024·32·( 1,024

16
)+1,024 = 2,098,192 evaluations.

B Here, SAIL is restricted to the number of evaluations that was used in
MAP-Elites. Number of generations ( 4,096·16−1,024−16

1,024
≈ 63).

contain local optima. We perform a grid search on the initial guesses for length
scale and signal variance. Using leave-one-out cross validation, GP models are
trained on all but one shape, after which we measure the accuracy using the mean
absolute percentage error (MAPE), giving a good idea about the magnitude of
the prediction error. The process is repeated until all examples were part of the
test set once. The MAPE on uMax was 2.4% for both sets. The enstrophy was
harder to model, at 4.9% and 10.3% for the respective sets, but still giving us
confidence that these two small hypervolumes can be modeled.

5 Evaluation

We evaluate how well SPHEN performs in comparison to SAIL and MAP-Elites
when we include the cost of calculating the features, how accurate the feature
models are when trained with a performance based acquisition function, and
whether we can apply SPHEN to an expensive domain.

5.1 Quality Diversity Comparison

We run QD optimization without (MAP-Elites) and with surrogate model(s)
(SAIL, SPHEN) on the polygon domain (Sect. 4.1). This allows us to check
all ground truth performance and feature values in a feasible amount of time.
The shape features should be easier to learn than the flow features of the air
flow domain. The working hypothesis is that we expect SPHEN to perform
somewhere between SAIL and MAP-Elites, as it has the advantage of using a
surrogate model but also has to learn two phenotypic features. But in the end,
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Fig. 6. Predicted and true SPHEN maps on symmetry domain, trained in 32 × 32
resolution (left), then reduced to 16 × 16 resolution to remove holes (right).

Fig. 7. Comparison of MAP-Elites, SAIL and SPHEN based on performance evalu-
ations (PE) and performance/feature evaluations (PFE). Experiments were repeated
five times to produce the mean percentage of map filled and mean performance values.
Prediction errors are included on the right and example prediction maps at the bottom.
The experiments include a version of SAIL that is restricted to the number of PFE
used in MAP-Elites.

since the ultimate goal is to be able to use QD on expensive features, SPHEN will
be our only choice. The parameterization of all algorithms is listed in Table 1.
The initial sample set of 16 examples as well as the selection of new samples (16
in every iteration) is handled by a pseudo-random Sobol sequence. The mutation
operator adds a value drawn from a Gaussian distribution with σ = 10%.

Due to the expected inaccuracy of the feature models, misclassifications will
decrease the accuracy of the maps. Figure 6 shows a prediction map at a reso-
lution of 32× 32 and the true performance and feature map. Holes appear due
to misclassifications, which is why we train SPHEN on a higher resolution map
and then reduce the prediction map to a resolution of 16× 16. Most bins are
now filled. In this experiment all prediction maps have a resolution of 16× 16
solutions.

The mean amount of filled map bins and performance values for five repli-
cates are shown in Fig. 7. SAIL and SPHEN find about the same number of
solutions using the same number of performance evaluations (PE). Notably, the
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mean performance of SPHEN’s solutions is higher than that of SAIL. However,
in domains with expensive feature evaluations we need to take into account the
performance or feature evaluations (PFE). SAIL now needs more than two mil-
lion PFE to perform almost as well as SPHEN, which only needs 1,024, which
is over three orders of magnitude less and still more than an order of magni-
tude less than MAP-Elites. Since in expensive real world optimization problems
we cannot expect to run more than about 1,000 function evaluations, due to
the infeasibly large computational investment, the efficiency gain of SPHEN is
substantial. If we lower the number of PFE of SAIL to the same budget as
MAP-Elites and give it more time to search the iteratively improving surrogate
model before running out of the budget of 65,536 PFE (see Table 1), SAIL still
takes a big hit, not being able to balance out quality and diversity. The exam-
ple prediction maps are labeled with the number of PFE necessary to achieve
those maps. Although we do not sample new training examples to improve the
feature models specifically, their root mean square error (RMSE) ended up at
0.012 and 0.016 respectively. Finally, we test SPHEN to the three alternative
algorithms on the null hypothesis that they need the same number of PFE to
reach an equally filled map or equal performance. Significance levels, calculated
using a two-sample t-test, are shown in Fig. 7. In all cases, the null hypothesis
is improbable (p < 0.05), although for the comparison of filled levels to SAIL it
is rejected with less certainty.

We conclude that we do not need to adjust the acquisition function. SPHEN
and SAIL search for the same elite hypervolume, which is only determined by
the performance function.

5.2 Designing Air Flow

After showing that SPHEN can learn both performance as well as feature models,
we now run SPHEN in the air flow domain (Sect. 4.2). The objective is to find
a diverse set of air flows using a behavioral feature, turbulence, and one shape
feature, the surface area of the polygon. We want to find out how the size of the
area and turbulence are related to each other and which shapes do not pass the
wind nuisance threshold. We use the same parameters for SPHEN as were listed
in Table 1, but allow 4,096 generations in the prediction phase. The enstrophy
and velocity are normalized between 0 and 1 using a predetermined value range
of E ∈ [0.15, 1.1] and uMax ∈ [0.05, 0.20].

The resulting map of solutions in Fig. 8 shows that turbulence and surface
area tend to increase the mean maximum air flow velocity, as expected. A small
selection of air flows is shown in detail. RMSE of the models is 0.06, 0.01 and
0.10 respectively and Kendall’s tau rank correlation to the ground truth amounts
to 0.78, 1.00 and 0.73 (1.00 for A, B, C and D).

Due to the chaotic evolution of turbulent and transient flows, a static snap-
shot of the velocity field provides only limited information about the flow struc-
tures. Therefore, dynamic mode decomposition (DMD) is used to extract and
visualize coherent structures and patterns over time from the flow field [4,20].
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Fig. 8. A diversity of shapes and air flows that shows which designs conform to the
wind nuisance threshold. The dominant DMD mode shows the structure of the air flow
around nine selected shapes. A, B, C and D are within the wind nuisance threshold.

Especially those shapes at the extrema of area and turbulence align with
the aerodynamic expectations as detailed in Sect. 4.2. At low turbulence inten-
sity, the shapes tend to be slim and long with respect to the flow direction
(shapes A and B). High turbulence levels at small shape areas are achieved if
the shapes are oriented perpendicularly to the flow (shape E). Pentagons or
hexagons evoke high turbulence levels at large areas (shapes H and I). How-
ever, impressively, there is an enormous variety of nuances in between these
extrema with non-intuitive shapes, enabling the designer to determine a shape
for given flow parameters down to a lower turbulence bound for each area value.
Furthermore, the algorithm also suggests known tricks to manipulate the flow.
Side arms are an appropriate measure to vary the turbulence intensity in the
wake (shapes C, D, E, and G). Indentations or curved shapes redirect the flow
and extract kinetic energy similar to turbine blades [5], which can be observed
in shape D. Conclusively, for the highest and lowest area and turbulence val-
ues, SPHEN matches the expectations while for the shapes in between SPHEN
exceeds expectations by introducing unusual shape nuances, which encourage
further investigation.

5.3 Discussion

In the polygon domain, both surrogate-assisted algorithms are able to find a
large variety of solutions. When features do not have to be modeled, they show
similar performance, although SAIL converges much sooner. However, when tak-
ing into account the number of feature evaluations, SPHEN clearly outperforms
SAIL as well as MAP-Elites. Modeling features does not lower the performance
of a prediction map. In terms of solution performance, both surrogate-assisted
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algorithms are outperformed by MAP-Elites in the simple domain, but SPHEN
clearly beats MAP-Elites by requiring less evaluations. The feature models
become more accurate even when sampling only to improve the performance
model.

When designing diverse air flows, one SPHEN run took 23 h, producing 494
different air flow profiles. With SAIL, obtaining the same result would have
taken over five years. Although MAP-Elites outperformed SAIL in the simple
polygon domain, and might have outperformed it in the air flow domain as well,
it still would have taken two months to calculate with uncertain result. Figure 8
shows that we can find structure in the air flows that can appear in this problem
domain. We can efficiently combine variations (area) of the object we want to
design as well as their effect on the environment (turbulence). Even when only
using two phenotypic features, the nuances between the variations give us an
idea which shapes do not pass the wind nuisance threshold and which ones do,
and could continue the design process based on our new intuition.

6 Conclusion

In this work we showed that expensive phenotypic features can be learned along
with an expensive performance function, allowing SPHEN, an evolutionary QD
algorithm, to find a large diversity of air flows. In an inexpensive domain we
showed that, when we take into account the number of feature evaluations,
SPHEN clearly outperforms state of the art algorithms like MAP-Elites and
SAIL. The result clears the way for QD to find diverse phenotypes as well as
behaviors in engineering domains without the need for an infeasible number of
expensive simulations. This is made possible because only the elite hypervol-
ume needs to be modeled. Fluid dynamics domains count as some of the most
complicated. Although often solved in ingenious ways by engineers relying on
experience, QD can add automated intuition to the design process. Variations of
the object we want to optimize as well as variations in the effects on the object’s
environment can be seen “at a glance”, which is what intuition is all about.

The most urgent future work is to study whether we can make adjustments to
the acquisition function, taking into account feature models’ confidence intervals
to improve SPHEN. Furthermore, the solution diversity should be analyzed in
higher-dimensional feature spaces and applied to 3D shapes.

We showed what expected and unexpected behavioral patterns can emerge in
complicated problem domains using surrogate-assisted phenotypic niching. Our
main contribution, automatic discovery of a broad intuition of the interaction
between shape and behavior, allows engineers to think more out-of-the-box.
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9. Hagg, A., Asteroth, A., Bäck, T.: Prototype discovery using quality-diversity. In:
Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D.
(eds.) PPSN 2018. LNCS, vol. 11101, pp. 500–511. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99253-2 40

10. Janssen, W., Blocken, B., van Hooff, T.: Pedestrian wind comfort around buildings:
comparison of wind comfort criteria based on whole-flow field data for a complex
case study. Build. Environ. 59, 547–562 (2013)
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13. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.:
The Lattice Boltzmann Method: Principles and Practice (2017)

14. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

15. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 211–218 (2011)

16. Wind comfort and wind danger in the built environment (in Dutch). Norm NEN
8100 (2006)

17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., D’Alché-Buc, F., Fox, E.,
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