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Abstract

The rampant increase of public bioactivity databases has fostered the development of computational chemogenomics
methodologies to evaluate potential ligand-target interactions (polypharmacology) both in a qualitative and
quantitative way. Bayesian target prediction algorithms predict the probability of an interaction between a compound
and a panel of targets, thus assessing compound polypharmacology qualitatively, whereas structure-activity relationship
techniques are able to provide quantitative bioactivity predictions. We propose an integrated drug discovery pipeline
combining in silico target prediction and proteochemometric modelling (PCM) for the respective prediction of
compound polypharmacology and potency/affinity. The proposed pipeline was evaluated on the retrospective
discovery of Plasmodium falciparum DHFR inhibitors. The qualitative in silico target prediction model comprised
553,084 ligand-target associations (a total of 262,174 compounds), covering 3,481 protein targets and used protein
domain annotations to extrapolate predictions across species. The prediction of bioactivities for plasmodial DHFR led to a
recall value of 79% and a precision of 100%, where the latter high value arises from the structural similarity of plasmodial
DHFR inhibitors and T. gondii DHFR inhibitors in the training set. Quantitative PCM models were then trained on a dataset
comprising 20 eukaryotic, protozoan and bacterial DHFR sequences, and 1,505 distinct compounds (in total 3,099 data
points). The most predictive PCM model exhibited R20 test and RMSEtest values of 0.79 and 0.59 pIC50 units respectively,
which was shown to outperform models based exclusively on compound (R20 test/RMSEtest = 0.63/0.78) and target
information (R20 test/RMSEtest = 0.09/1.22), as well as inductive transfer knowledge between targets, with respective R20 test

and RMSEtest values of 0.76 and 0.63 pIC50 units. Finally, both methods were integrated to predict the protein targets and
the potency on plasmodial DHFR for the GSK TCAMS dataset, which comprises 13,533 compounds displaying
strong anti-malarial activity. 534 of those compounds were identified as DHFR inhibitors by the target prediction
algorithm, while the PCM algorithm identified 25 compounds, and 23 compounds (predicted pIC50 > 7) were
identified by both methods. Overall, this integrated approach simultaneously provides target and potency/affinity
predictions for small molecules.
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Background
In recent years it has been demonstrated that drugs
exert their therapeutic effect by modulating more than
one target, in fact six on average [1]. Therefore, the early
evaluation of the bioactivity profiles of lead compounds
is essential for the success in developing new drugs, al-
though efficacy is sometimes attained by the inhibition
of single targets, e.g. viral proteins. Similarly, under-
standing drug polypharmacology can help in anticipating
drug adverse effects [2].
In parallel, the availability of public bioactivity databases

has enabled the application of large-scale chemogenomics
techniques to, among others, predict protein targets for
small molecules, and to predict their affinity on therapeut-
ically interesting targets [3]. These techniques capitalize
on bioactivity data to infer relationships between the com-
pounds, encoded with numerical descriptors, and their
targets, which can be represented as labels in a classifica-
tion model or explicitly encoded by e.g. protein or amino
acid descriptors [4].
In silico target prediction algorithms assess potential

compound polypharmacology through the computa-
tional evaluation of the (functionally unrelated) targets
modulated by a given compound, or its selectivity to
species-specific targets, as they predict the probability of
interaction of that compound with a panel of targets [5].
Initially, target prediction models were developed using
Laplacian-modified Naïve Bayesian classifiers [6] and the
Winnow algorithm [7]. Later, Keiser et al. [8] developed
a model which related biological targets based on ligand
similarities and ranked the significance of the resulting
similarity scores using the Similarity Ensemble Approach
(SEA), followed by Wale and Karypis [9] who applied
SVM and ranking perceptron algorithms to rank targets
for a given compound. More recently, Koutsoukas et al.
[10] compared the performance of both the Naïve
Bayesian and Parzen-Rosenblatt Window classifiers, con-
cluding that the overall performance of both methods is
comparable though differences were found for certain
target classes.
The ligand-target prediction methods described above

generally predict the likelihood of interaction with a target,
and they do not predict compound affinity or potency (e.g.
Ki or IC50). On the other hand, quantitative bioactivity pre-
diction techniques, e.g. proteochemometric modelling
(PCM) [3], predict the potency or affinity for compound-
target pairs, normally in the form of pIC50 or pKi values.
PCM combines information from compounds and related
targets, e.g. orthologs, in a single machine learning model
[3,11], which enables the simultaneous modelling of chem-
ical and biological information, and thus the prediction of
compound affinity and selectivity across a panel of targets.
Nonetheless, the effects of a compound at the cellular or
the organism level are poorly understood in this case, as
these methods cannot account for the interactions of a
compound with other unrelated targets, which are not cap-
tured in the PCM model.
Given the limitations of both purely qualitative and

purely quantitative bioactivity modelling approaches, in
the current work, we propose an integrated drug discovery
approach, combining in silico target prediction for the
qualitative large-scale evaluation of compound bioactivity,
and PCM for the quantitative prediction of compound po-
tency. The proposed approach was evaluated on the dis-
covery of DHFR inhibitors for Plasmodium falciparum (P.
falciparum), the causative agent of the most dangerous
form of malaria [12]. Whilst there are multiple anti-
malarial drugs on the market, resistance to anti-malarial
drugs is on the rise [13,14], and there are only 21 com-
pounds in clinical or pre-clinical trials [15].
In order to combat the lack of novel drugs for malaria,

big pharmaceutical companies have generated a wealth
of phenotypic data, namely the GlaxoSmithKline (GSK)
TCAMS dataset, as well as the Novartis-GNF Malaria
Box [16,17]. Both datasets contain phenotypic readouts,
describing how effective the compounds present in the
datasets are in inhibiting the growth of P. falciparum.
Nonetheless, none of them contain annotations about
the P. falciparum target(s) involved, making it a chal-
lenge to elucidate the mode of action (MoA) of the com-
pounds in the dataset, and hence, making the dataset
difficult to interpret. This renders these datasets a very
suitable case study for the algorithms we are presenting
in this work.
In the context of malaria drug discovery, previous

studies have applied machine learning algorithms to pre-
dict whether plasmodial proteins are secretory proteins
based on their residue composition [18], and to predict
the bioactivities of compounds against particular plas-
modial targets [19,20]. These approaches, though, did
not account for the polypharmacology of anti-malarial
compounds.
To overcome the limitations of these methods, we

now integrate both in silico target prediction and PCM
in a unified drug discovery approach. As illustrated in
Figure 1, the target prediction algorithm used in this
study, trained on approximately 553,084 bioactivity
data points spanning 3,481 targets, used a domain-
based similarity metric between targets to extrapolate
target predictions from one species to another. Non-
plasmodial targets were then extrapolated to plasmodial
targets. Besides, the PCM model was trained on a dataset
composed of 20 eukaryotic, protozoan and bacterial DHFR
sequences, and of 1,505 different DHFR inhibitors and a
total of 3,099 data points. To exploit the complementarity
of the two prediction methods, in silico target prediction
was used to predict MoA hypotheses for the anti-malarial
compounds in the GSK TCAMS phenotypic dataset,



Figure 1 Schematic overview of in silico target prediction and domain-based extrapolation workflow. The conventional in silico target prediction
approach [10] is extended in this study by using protein domain annotations to extrapolate from non-plasmodial target predictions to protein
target predictions in P. falciparum. This concept is generally applicable across organisms, in particular to those for which little bioactivity data is
currently available.
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whereas PCM was employed to quantify compound po-
tency (pIC50).

Methods
Exploratory principal component analysis (PCA) of PCM
and target prediction datasets
A PCA was performed for compounds contained in the
PCM dataset, as well as for those annotated on P. falcip-
arum and T. gondii in the target prediction dataset. The
Spearman’s rank correlation coefficient was calculated
for all pairs of compound descriptors, based on both
physicochemical descriptors and Morgan fingerprints,
thus defining a square correlation matrix. The PCA ana-
lysis was performed on this matrix in order to avoid the
direct application of PCA on binary descriptors, i.e.
Morgan fingerprints. Visualization was performed using
R and Vortex [21].

Target prediction
Training dataset
Bioactivity data were extracted from ChEMBL16 [22]
according to the protocol described by Koutsoukas et al.
[10]. The extracted data contained approximately 4 million
bioactivities covering approximately 8,000 biomolecular tar-
gets, of which approximately 4,000 targets were proteins
[22,23]. Compound-target pairs were selected according to
the following criteria: (i) Ki, Kd, IC50 or EC50 bioactivity
values equal to or lower than 10 μM, and (ii) targets anno-
tated with a confidence score of 8 (homologous single pro-
tein target assigned) or 9 (direct single protein target
assigned). Subsequently, ligand structures were processed
with the ChemAxon standardizer version 5.12.0 [24], with
the following options: “Remove fragment”, “Neutralize”,
“Aromatize”, “Clean2D”, “Tautomerize” and “Remove expli-
cit hydrogens”. After standardization, the entries with
ligands annotated against multiple targets were detected
based on their canonical SMILES and removed using cus-
tom Perl scripts, resulting in a training set of 553,084
instances (262,174 compounds) covering 3,481 protein tar-
gets (Additional file 1: Supplementary Information SI 1).
The bioactivity data of P. falciparum (1,513 instances –
1,379 compounds covering 41 protein targets) was omitted
from this dataset for training purposes. InterPro [25] do-
main annotations were retrieved for all protein targets
using the Uniprot database [26].

P. falciparum dataset
The P. falciparum dataset was built using the same cri-
teria as described above, resulting in a set comprising 41
P. falciparum targets and 1,379 compounds. In addition,
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all annotated and reviewed P. falciparum targets from
Uniprot were downloaded, resulting in a total of 148 P.
falciparum protein targets. Finally, InterPro domain an-
notations were retrieved for all protein targets using the
Uniprot database (Additional file 2: Supplementary In-
formation SI 2).

GSK TCAMS dataset
Approximately 2 million compounds present in GSK’s
screening collection have been tested in vitro by GSK for
inhibitors of P. falciparum’s intraerythrocytic cycle based
on growth inhibition assays [17]. Briefly, assays were
performed on both the reference laboratory strain 3D7,
as well as on the multidrug resistant strain Dd2, where
parasite growth was evaluated using LDH activity [17].
19,451 compounds were identified as primary hits inhi-
biting the 3D7 strain growth by more than 80% at 2 μM
concentration, of which 13,533 compounds displayed
80% or higher inhibition of parasite growth in at least 2
of the 3 assay runs in independent follow-up experi-
ments. Hence, these 13,533 compounds were considered
as confirmed inhibitors (confirmation rate > 70%) and
used in the present study.

Descriptors
A circular fingerprint implementation, Molprint2D [27,28]
was used for encoding molecular structures, since this
method has previously been shown to capture structural as-
pects related to bioactivity better than most other descrip-
tors in comparative studies [29]. This descriptor is based on
count vectors of heavy atoms present at a topological dis-
tance from each heavy atom of a molecule [28]. For the
present study, the pybel implementation was used [30].

Target prediction algorithm
A multiclass Laplacian-modified Naïve Bayesian classifier,
as described by Nigsch et al. [7] and later implemented by
Koutsoukas et al. [10] was implemented to classify the
bioactivity dataset and to be able to predict targets for
novel compounds. For the query molecule x, consisting of
a set of n Molprint2D features fi, the likelihood to be ac-
tive against a protein target ωα was calculated using the
following equation:

Sωα xð Þ ¼
Xn
i¼1

log
Ni;ωα þ 1

Ni � p ωαð Þ þ 1

� �
þ log

Yd

i¼1
p f ið Þ

p xð Þ

0
@

1
A

ð1Þ

where Sωα xð Þ is the logarithmic likelihood score (propor-
tional to the likelihood of bioactivity), Ni;ωα is the total
number of occurrences of feature fi in protein class ωα

and Ni is the total number of occurrences of feature fi in
the entire training set. Furthermore, p(ωα) is the prior
probability of protein class ωα. The prior probability
quantifies how likely a compound is active against pro-
tein target ωα in the absence of any feature information.
It can be calculated as follows:

p ωαð Þ ¼ Nωα

N
ð2Þ

where Nωα is the number of instances (i.e. bioactivities)
in class ωα and N is the total number of instances. The
predictive performance of this model was assessed in
terms of average class-specific recall and precision.
Only target classes with 20 or more data points in the
P. falciparum dataset were considered as suitable for
testing due to a sufficient number of data points,
resulting in a total of 16 target classes.

Domain-based extrapolation to P. falciparum targets
For each analyzed compound, the top n ranked pre-
dicted targets were compared to all 148 P. falciparum
targets in terms of their InterPro domain composition.
P. falciparum targets with an InterPro domain Tanimoto
similarity above a variable cut-off were considered as
predicted, but were not ranked. The cut-off value varied
between 0.5 and 1, where 1 means that only orthologous
proteins are considered. The target prediction and
domain-based extrapolation pipeline are illustrated in
Figure 1. The domain extrapolation extends the target
prediction approach [10,31] by using InterPro protein
domain annotations to extrapolate from predicted non-
plasmodial targets to P. falciparum targets. This is con-
ceptually similar to a previously reported study for
extrapolating bioactivities between species [32], and its
application to M. tuberculosis [33].
The inclusion of plasmodial DHFR (CHEMBL1939)

bioactivity data was expected to drastically improve the
performance, and this was tested in the following way. A
2-fold cross validation (CV) was performed: the instances
annotated on plasmodial DHFR were split into 2 half sub-
sets, where one subset was added to the training set and
the other half was used as a test set (and vice versa).

Proteochemometric modelling
Dataset
IC50 values with a confidence score of 8 or 9 for 20 DHFR
sequences (Table S3) were retrieved from ChEMBL16 [22]
and this initial dataset comprised 5,827 data points. In the
cases where a compound-target combination had more
than one annotated bioactivity value, the set of bioactiv-
ities was replaced by its mean value. This procedure is ro-
bust, because the standard deviation of the differences was
smaller than 0.1 pIC50 unit in more than 90% of the cases
(Additional file 3: Figure S1). This resulted in a dataset in-
cluding 3,099 distinct compound-target combinations.
The matrix completeness of the dataset, calculated as the
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number of compound-target combinations present in the
dataset over the total number of possible compound-
target combinations, was 10.3%. Compounds included in
the PCM dataset were not present in the target prediction
dataset.

Descriptors
Chemical structures were standardized and cleaned with
the function StandardiseMolecules of the R package camb
using the default parameters [34] and PaDEL descriptors
(1-D and 2-D). Morgan fingerprints were calculated in the
same environment. The function AA_Descs was used to
calculate amino acid descriptors (3 Z-scales). To describe
the target space, the residues in the binding site of human
DHFR (PDB ID: 1OHJ [35]) within a sphere of 10 Å cen-
tered around the ligand were selected. The corresponding
residues for the other 19 proteins were obtained from a
sequence alignment realized with Clustal Omega [36]. The
dataset is available in Additional file 4 (Supplementary
Information SI 3).

Proteochemometric modelling
All descriptor values were centered to zero mean and
scaled to unit variance. The dataset was split into six
subsets, five of which were used to train models, and the
sixth, test set, was withheld to assess the predictive ability
of the models [37]. The hyperparameter values for all PCM
models were optimized by 5-fold cross validation [38]. To
assess both model predictive ability and performance, the
pIC50 values for the test set were predicted, thus providing
the external validation by calculating RMSEtest and R20 test

between the observed and the predicted pIC50 values:

R2
0 test ¼ 1−

XN

i¼1
yi−ŷ

r0
i

� �2
XN

i¼1
yi−�yð Þ2

ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y−ŷð Þ2
N

s
ð4Þ

where N represents the size of the test set, yi the ob-
served, ŷi, the predicted, and �y the average pIC50 values
of those datapoints included in the test set, and ŷi

ro = sŷ,

with s ¼
X

yiŷi=
X

ŷ2i . Both internal (RMSEint and R2
int)

and external validation (RMSEtest and R2
0 ext) were

assessed according to the criteria proposed by Tropsha
et al. [39,40] and calculated using the Validation func-
tion of the R package camb [34].
In order to assess whether the combination of compound

and target information in a single PCM model constitutes
an advantage with respect to one-space (ligand space and
target space) models, two validation scenarios were ex-
plored. Firstly, a Family QSAR model [41] was trained ex-
clusively on compound descriptors. High performance of
this model is expected in cases where the bioactivities of
the same compound on different targets are highly corre-
lated. Secondly, the Family QSAM [41] model was trained
on target descriptors only. In this case, high performance
would indicate that the activities of a diverse set of com-
pounds are correlated on a panel of targets. Thus, com-
pound activities would largely depend on the target, and to
a much lesser extent on the ligand structures.
Additionally, an inductive transfer PCM model (PCM

IT) was trained to assess whether the performance of
PCM models arises from explicit learning (EL), where
the knowledge is extracted from target descriptors, or
inductive transfer (IT). In IT the knowledge acquired
when predicting compound bioactivities on a given tar-
get is exploited to predict the bioactivity of those com-
pounds on another target [41]. In the PCM IT model,
targets were described with identity fingerprints (IFP),
which are calculated as follows:

IFP i; jð Þ ¼ δ i−jð Þ i; j∈1;…;N targets

� � ð5Þ

where δ is the Kronecker delta function and Ntargets the
number of distinct targets. The performance of the
models was assessed on a per target basis by training ten
PCM models, each on a different subset of the whole
dataset. Subsequently, RMSEtest and R2

0 test values were
calculated on subsets of the test set grouped by target.

Machine learning implementation
Support Vector Machines (SVM) [42], Gradient Boost-
ing Machines (GBM) [43], Gaussian Processes (GP) [44],
and Random Forest (RF) [45] models were built with the
R package camb [34,46]. The target prediction algorithm
was implemented in Perl.

Results and discussion
Exploratory analysis of PCM and target prediction
datasets
A PCA (Figure 2) was performed for the compounds an-
notated to be active against plasmodial DHFR and those
active against T. gondii DHFR. The first two principal
components explain 72.73% of the variance. In the two
dimensions visualized for the descriptor space used here,
the plasmodial inhibitors cover a substantial portion of
the chemical space occupied by the T. gondii DHFR in-
hibitors. However, there are still a number of clusters of
T. gondii DHFR inhibitors that occupy novel space not
covered by plasmodial inhibitors. Compounds from
these clusters contain bicyclic ring systems (shown in
red boxes in Figure 2). On the other hand, there are also
clusters of plasmodial inhibitors that occupy space not
covered by T. gondii inhibitors: these plasmodial inhibi-
tors do not contain bicyclic rings, but instead contain
unfused rings (5 scaffolds identified shown in green



Figure 2 PCA of the compounds annotated as actives against plasmodial DHFR (green) as well as T. gondii DHFR (red). Overall, plasmodial DHFR
inhibitors cover a substantial portion of the chemical space occupied by T. gondii DHFR inhibitors. However, some clusters of T. gondii DHFR
inhibitors are located in additional chemical space not covered by the plasmodial inhibitors (red boxes). These clusters contain compounds with
bicyclic ring systems. By contrast, plasmodial inhibitors only contain unfused rings (green boxes). These observations explain why recall is low
(~35%) when plasmodial DHFR inhibitors are excluded from the training set: T. gondii inhibitors do not cover all relevant chemical space,
particularly the space occupied by compounds with unfused ring systems.
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boxes in Figure 2). In addition to the previous analysis, a
PCA was also performed for the compounds present in
the PCM dataset (Additional file 3: Figure S2), where the
first two principal components explained 51.77% of the
variance. Clusters contain compounds whose bioactiv-
ities on several targets are included in the dataset, thus
indicating that compounds are overall structurally simi-
lar across the 20 DHFR sequences considered.

Application of target prediction for MoA prediction
The performance of the target prediction algorithm was
assessed for varying values of n, which represents the
top number of non-plasmodial predictions considered
for extrapolation (Additional file 3: Figure S3). It can be
seen that performance varies widely across target classes:
for most targets, including all aminopeptidases, calcium-
dependent protein kinase 1, protein kinase Pfmrk,
glucose-6-phosphate-1-dehydrogenase, dihydroorotate
dehydrogenase, dUTP pyrophosphatase and enoyl-acyl-
carrier protein reductase, performance is low, with both re-
call and precision values below 30%. For a small number of
targets, however, the performance is much higher, with
recall values up to ~60% and precision values up to 100%.
Further investigation revealed that the targets for which the
prediction algorithm performed well (plasmepsin 1 and 2,
histone deacetylase, DHFR and to a lesser extent, falcipain
2) were plasmodial orthologs of non-plasmodial protein tar-
gets. This finding is in agreement with previous studies,
which have used orthologous proteins to extrapolate the
prediction of bioactivities between target classes across spe-
cies such as P. falciparum and M. tuberculosis [47,48].
However, these previous studies have not combined target
prediction with PCM for MoA analysis, which is precisely
the novelty of the approach presented here.

Target prediction performance for plasmodial DHFR
The predictive performance of the target prediction
algorithm was further investigated for the plasmodial
target DHFR, where all 145 instances annotated on plasmo-
dial DHFR were used as a test set. The top n predicted
non-plasmodial targets were considered (n varied in the 1–
12 range), after which these targets were extrapolated to
plasmodial targets (section “Domain-based extrapolation to
P. falciparum targets” in Materials and Methods). For n in
the 1–3 range, the recall values are 0%, 2.8% and 14,5%, re-
spectively, whereas for n in the 4–7 range, the recall values
are around 35%. The 2-fold CV resulted in a recall value of
79%. These results indicate that despite the fact that the
training set did not contain any plasmodial bioactivity data,
the model is still able to predict compounds active against
plasmodial DHFR with 100% precision, based on bioactivity
data for orthologous proteins across other species. The high
precision value arises from the structural similarity of plas-
modial DHFR inhibitors and T. gondii DHFR inhibitors in
the training set (the average MOLPRINT2D pairwise simi-
larity between the T. gondii inhibitors and the plasmodial
inhibitors was 16%, whereas the average pairwise similarity
within the plasmodial dataset and the T. gondii dataset was
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19% and 18% respectively). These results show the added
benefit of incorporating domain-based extrapolation for
target prediction purposes.
In addition, we found that varying the domain Tani-

moto similarity cut-off between 0.5 and 1 did not alter
the performance. Hence, in order to maintain high pre-
cision, a stringent domain Tanimoto similarity cut-off
of 1 (i.e. requiring a 100% overlap in domain presence
and absence between two proteins) was chosen and the
top n predicted non-plasmodial targets considered was
set to 4 for further analysis. Further investigation of the
extrapolation from non-plasmodial targets to plasmodial
targets revealed that only one protein class (T. gondii
DHFR) was responsible for the extrapolation of predicted
activities to plasmodial DHFR. As described earlier, there
are clusters of T. gondii DHFR inhibitors that do not con-
tain any plasmodial DHFR inhibitors (scaffolds identified
in these clusters are shown in red boxes - Figure 2 and
clusters of plasmodial inhibitors that occupy space not
covered by T. gondii inhibitors (5 scaffolds identified shown
in green boxes in Figure 2). Hence, for these clusters there
is no overlap in scaffolds between both datasets. These ob-
servations explain the low recall of the model at this stage:
plasmodial DHFR inhibitors located outside the space
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Table 1 PCM, Family QSAR and Family QSAM performance
on the PCM dataset

R2CV RMSECV R20 ext RMSEext

GBM PCM 0.75 0.64 0.79 0.59

GP PCM 0.75 0.65 0.76 0.63

RF PCM 0.74 0.66 0.77 0.62

SVM PCM 0.76 0.63 0.77 0.62

Family QSAM 0.07 1.24 0.09 1.22

Family QSAR 0.61 0.80 0.63 0.78

Inductive Transfer 0.72 0.68 0.76 0.63

Abbreviations: QSAM Quantitative Structure-Activity Modelling, QSAR Quantitative
Structure-Activity Relationship, GBM Gradient Boosting Machine, GP Gaussian
Process, RF Random Forest, SVM Support Vector Machine.
PCM, with R20 test and RMSEtest values of 0.79 and 0.59 pIC50 units, outperforms
both Family QSAR, with R20 test and RMSEtest values of 0.63 and 0.78 pIC50
units, respectively, and Family QSAM, with with R20 test and RMSEtest values of
0.09 and 1.22 pIC50 units, respectively.
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prediction of the GSK TCAMS phenotypic dataset in
order to optimize recall values.

PCM model validation
The four algorithms used in this study (GBM, GP, RF
and SVM) displayed similar performance on this dataset
as the ranges of RMSEtest and R2

0 test differences are 0.04
pIC50 and 0.02 units, respectively. The GBM model ex-
hibited the highest predictive ability with R2

0 test and
RMSEtest values of 0.79 and 0.59 pIC50 units respectively.
Both internal and external validation metrics are given
in Table 1.
To ensure that the model’s predictive ability was not the

consequence of spurious correlations in the data, we
trained ten GBM models with an increasingly higher per-
centage of the pIC50 values randomized. Additional file 3:
Figure S4 shows the performance of the ten models, quan-
tified by the RMSEtest and R2

0 test values as a function of
the level of randomization of the bioactivity values. The
intercept was zero or negative when ~40% of the response
variable was randomized (Additional file 3: Figure S4A).
Figure 4 Complementarity between in silico target prediction and PCM. Th
TCAMS dataset to interact with DHFR, representing 3.95% of the total num
PCM model predicted 23 compounds to have a pIC50 value of 7 or greater
of compound polypharmacology and provides quantitative bioactivity pred
Therefore, the relationship established by the PCM
models between the descriptor space and the bioactivity
values is not a consequence of chance correlations [49].

PCM outperforms one-space models and IT on this
dataset
The Family QSAM model, trained on target descriptors
only, displayed poor predictive ability with RMSEtest
and R2

0 test values of 1.22 pIC50 units and 0.09, respect-
ively (Table 1). By contrast, the Family QSAR model,
trained on compound descriptors only, displayed satis-
factory values for the statistical metrics according to
our validation criteria, as the model exhibited RMSEtest
and R2

0 test values of 0.78 pIC50 units and 0.63, respect-
ively (Table 1). Hence, compound descriptors explain a
large proportion of the variance, which may stem from
the high correlation of the bioactivities of identical
compounds against orthologs. Indeed, Additional file 3:
Figure S5 depicts the correlation (RMSE: 0.95 pIC50

units; R2
0: 0.46) between the pIC50 values of the same

compounds on different orthologs.
Furthermore, better performance is obtained for the

GBM PCM model trained on amino acid descriptors
and compound fingerprints, than for the GBM model
trained on target identity fingerprints and compound
fingeprints, with RMSEtest values of 0.59 vs. 0.63 pIC50

units, respectively. This indicates that our selection of
amino acid descriptors captured the binding site infor-
mation of the different orthologs and thus allows explicit
learning on this dataset (Table 1). Overall, these data
suggest that the explicit inclusion of target information
improves bioactivity prediction.

Several high-affinity DHFR Inhibitors are identified by
both target prediction and PCM
The targets for which the target prediction model had a
class-specific F-measure higher than 40% were selected,
leading to a shortlist of 5 proteins, namely: plasmepsin
e target prediction algorithm predicted 534 compounds of the GSK
ber of compounds in this dataset. Out of these 534 compounds, the
. Therefore, the combination of both methods permits the assessment
ictions.
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1 and 2, histone deacetylase, DHFR and falcipain 2
(Additional file 3: Figure S6). Overall, a total of 1,291
plasmodial predictions were made for 1,017 com-
pounds. DHFR is the most commonly predicted target,
which represents 534 (41%) of the total predictions,
followed by plasmepsin 1 (280 predictions – 22%) and
plasmepsin 2 (273 predictions – 21 histone deacetylase
(184 predictions – 14%) and falcipain 2 (20 predictions –
2%). Plasmodial DHFR has previously been proposed as a
candidate target against resistant plasmodial strains [50]. In
addition, the plasmepsin (1 and 2) and falcipain targets have
previously been proposed as potential targets for anti-
Figure 5 Compounds predicted to interact with DHFR by the target predi
value higher than 7 pIC50 units. Compound IDs correspond to the TCMDC
the IDs are accompanied by an upward-pointing arrow were identified by
higher than 7 by the PCM model, but not predicted to interact with DHFR by t
arrow. The 23 compounds predicted to be high-affinity DHFR inhibitors (
[2,3-d]pyrimidine-2,4-diamine ring with an aryl substituent in the 6-positi
between the target prediction algorithm and the PCM model to identify
malarial therapy [51], due to their involvement in the
hemoglobin catabolism that occurs during the erythrocytic
stage of the malarial parasite life cycle (plasmepsin proteins
and falcipain proteins), and to their involvement in erythro-
cyte invasion and erythrocyte rupture (falcipain proteins)
[52]. Finally, plasmodial histone deacetylase has been pro-
posed as a promising target for anti-malarial therapy due
to its key role in regulating gene transcription, and it has
been shown that histone deacetylase inhibitors are potent
inhibitors of the growth of P. falciparum [53]. Hence,
there is sufficient evidence for all 5 predicted proteins for
being a potential target.
ction algorithm, and predicted by the PCM model to have a pIC50
identifier given in the original dataset. The 23 compounds for which
the two methods. The two compounds predicted to have a pIC50 value
he target prediction algorithm, are accompanied by a downward-pointing
upward-pointing arrows) share a common scaffold: a 5-methylpyrido
on. Overall, it can be seen that these data indicate a high agreement
high-affinity DHFR inhibitors.
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In total, 534 compounds of the GSK TCAMS dataset
were predicted to interact with DHFR, representing
3.95% of the total number of compounds in this dataset.
Out of these 534 compounds, the predicted pIC50 values
using PCM was 7 or greater for 25 compounds, between
6 and 7 for 92 compounds, and between 5 and 6 for 420.
None of the 534 compounds was predicted to be inactive
on DHFR (Figure 4). Given that many of the compounds
in ChEMBL are active in the low micromolar range, it is
thus not surprising to obtain most of the predictions in
this range [54].
Interestingly, 23 of the 25 compounds with a predicted

pIC50 value higher than 7 were already predicted to
interact with DHFR by the target prediction algorithm
(Figure 4) at the exclusion of any other target. The ana-
lysis of chemical scaffolds in the 25 compounds shows
that only 2 scaffolds were identified, as 22 out of the 25
compounds (Figure 5 - excluding compounds 137850,
123550 and 125380), share a common scaffold, namely:
a 5-methylpyrido[2,3-d]pyrimidine-2,4-diamine ring with
an aryl substituent in the 6-position. A methyl group or
an amine group in the 7-position are also present in
some compounds, such as 137637 and 138061, respect-
ively. In all compounds with the common scaffold the
aryl substituent is a phenyl ring with different substitu-
ents in the 3,4,5-positions, e.g. methoxy, hydroxy and
carboxamide, except for compound 137642, which has
2-methyl-thiophene as aryl substituent.
Two additional compounds, 123550 and 125380

(Figure 5), predicted by PCM to display pIC50 values
of 7.11 and 7.07, respectively, represent new scaffolds.
Remarkably, these two scaffolds were neither present
in the PCM nor in the target prediction training set.
Taken together, our results indicate a high agreement
between the target prediction algorithm and the PCM
model to identify high-affinity DHFR inhibitors. Using
both methods simultaneously, it is possible to give
higher priority to the compounds that are identified
by both methods.

Conclusions
In this study, the complementarity of in silico target predic-
tions and proteochemometric modelling (PCM) was evalu-
ated for the retrospective identification of P. falciparum
DHFR inhibitors. The target prediction algorithm exhibited
respective recall and precision values of 79% and 100% for
plasmodial DHFR. The high precision value is explained by
the structural similarity of plasmodial and the T. gondii
DHFR inhibitors, which were part of the training set and
were found to be relevant for extrapolation (the average
MOLPRINT2D pairwise similarity between the T. gondii
inhibitors and the plasmodial inhibitors was 16%, whereas
the average pairwise similarity within the plasmodial dataset
and the T. gondii dataset was 19% and 18% respectively).
We showed that high-affinity inhibitors from the GSK
TCAMS phenotypic dataset are independently identified by
both methods: 534 compounds from the GSK TCAMS
dataset were identified as DHFR inhibitors by the target
prediction algorithm, whereas the PCM algorithm identi-
fied 25 high affinity compounds, 23 of which were already
identified by the target prediction algorithm. The combin-
ation of both methods permits the assessment of com-
pound polypharmacology and provides insight into the
potency/affinity of small molecules.
We presented an approach that can be potentially ex-

tended to other human, bacterial or plasmodial targets.
The inherent capability of PCM to combine bioactivity
data for related targets, even for targets spanning distant
phyla, is likely to improve the mining of currently available
multi-target bioactivity databases. Similarly, domain-based
extrapolation permits in silico target predictions to be ex-
tended to non-mammalian orthologous proteins for which
less bioactivity data is usually available.
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