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ABSTRACT
The identification of Human Papillomavirus as the etiological factor for cervical cancer provides 
an opportunity to treat these malignancies by vaccination. Although therapeutic vaccination 
against viral oncogenes regularly induces a specific T cell response, clinical effectivity remains 
low. Three factors are particularly important for clinical outcome: the balance between cytotoxic 
T cells and regulatory immune subsets, the balance between cytotoxic T cells and tumor cells 
and finally the killing efficiency of cytotoxic T cells within the tumor. To improve these three 
factors, therapeutic vaccination is combined with other treatments. Here, we review those 
studies that are based on understanding the inhibitory mechanisms that prevent unleashing 
the full power of therapeutic vaccine-induced T cells and utilize combinatorial interventions 
based on these insights.

HIGHLIGHTS
Understanding of escape from immunotherapy allows targeting of the mechanism(s)

Combination treatment must increase the level of intra-tumoral cytotoxic T cells

Conventional treatment synergizes with therapeutic cancer vaccination
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INTRODUCTION
The goal of many immunotherapeutic interventions for cancer is to induce CD8+ cytotoxic T 
lymphocytes (CTLs) that can recognize and kill cancer cells expressing defined tumor-specific 
antigens (TSAs). Four major classes of TSAs have been characterized; differentiation antigens, 
overexpressed antigens, mutated antigens (neo-antigens) and viral antigens ((1), Melief, et al. 
submitted). Since central tolerance can be induced to self-antigens, therapeutic vaccinations 
preferably target mutated and viral antigens. Since the diversity in mutated antigens is large, 
therapeutic vaccination for these antigens is possible (2-4) but remains challenging (1). Viral 
antigens however are shared between patients and are often indispensable for the transformed 
state of malignant cells. Of the known human cancer viruses, most immunotherapeutic 
interventions, apart from adoptive T cell transfer of malignancies induced by EBV, have been 
conducted in premalignant disorders and cancer caused by high risk HPV. Therefore this review 
will focus on therapeutic interventions for treatment of high risk HPV-induced cancers.

HPV infections are associated with several malignancies, such as ano-genital cancers and 
a subset of head and neck cancers. Of these malignancies cervical cancer is the most prevalent 
with the highest morbidity rate (5). Although many subtypes of HPV have been identified, 
HPV16 is responsible for approximately 50% of all cervical cancers (6). The second most 
prevalent subtype is HPV-18, present in an additional 10-15% of all cervical malignancies (6). 
The two well-known HPV oncogenes E6 and E7 are constitutively expressed by HPV-associated 
tumors, and are critical for the induction and maintenance of cellular transformation (7), 
creating ideal targets for therapeutic vaccination (8, 9). Current approaches for therapeutic 
vaccinations include live-vector-based, nucleic acid-based, cell-based, and peptide- and 
protein- based vaccination (9). Recent reviews have focused on the latest clinical progress in 
therapeutic interventions for HPV induced lesions (9-11). From these reviews it is clear that 
a variety of therapeutics can induce an HPV-specific CD4 and/or CD8 T cell response but that 
clinical responses are still rare, except in patients with pre-malignant lesions (12, 13), and are 
scarcely observed in patients with advanced gynecological lesions. For instance, we have shown 
that synthetic long overlapping peptides of the oncogenes E6 and E7 of HPV16 (HPV16-SLP) 
induce clinical responses in mice and in patients with premalignant lesions (12, 14). Patients 
with a complete response had a stronger and broader HPV-specific T cell response ((12, 15), van 
Poelgeest, Welters, et al., submitted). When this vaccine is applied in patients with advanced 
or recurrent HPV16-induced gynecological carcinoma there is no apparent effect on survival 
(16, 17), indicating that a more potent therapeutic modality is needed to treat this group of 
patients (18). To become clinically successful, combination of vaccination with one or more 
treatment modalities that can boost the vaccine-induced T cell response and down- modulate 
the regulatory mechanisms in the tumor micro-environment is needed (18).

PRECLINICAL MODELS AS A GUIDE FOR NEW COMBINATORIAL 
THERAPIES
Preclinical models have provided key mechanistic insights into anti-tumor responses and 
immune-escape mechanisms utilized by tumors, that have been vital for the development of FDA 
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approved immunotherapies (19). In case of HPV-induced cervical cancer, several preclinical 
models have proved their usefulness for the development of HPV targeting vaccination and 
continue to be useful to study local immune regulation, vaccination efficacy and treatment 
combinations. Because these preclinical studies are too numerous to discuss, we focus on those 
that are based on understanding of the inhibitory mechanisms that prevent unleashing of the full 
power of therapeutic vaccine-induced T cells and utilization of combinatorial interventions 
based on these insights.

BREAKING LOCAL IMMUNE REGULATION
The ratio between CD8 T cells and Foxp3+ regulatory CD4 T cells (Tregs) is an independent 
prognostic factor in cervical cancer (20, 21) (figure 1). Enhancing the clinical effect of vaccination 
often focuses on the induction of CD8 T cells, resulting in an improved CD8 T cell/Treg ratio. 
Preclinical mouse models offer the possibility to evaluate intratumoral T cell responses in detail 
shortly after vaccination. As in patients, the percentage of systemic antigen-specific CD8 T cells 
is usually low, but after immunotherapy up to 40% of all tumor infiltrating CD8 T cells can be 
vaccine specific (22, 23), resulting in a favorable CD8 T cell/Treg ratio. Additionally, depletion 
of Tregs by an anti-CD25 antibody prior to E7/Hsp70 DNA vaccination in tumor bearing mice 
enhances the number of vaccine-induced CD8 T cells and results in enhanced survival (24). 

In addition to a favorable CD8 T cell/Treg ration, macrophage infiltration is related to 
disease progression in cervical intraepithelial neoplasia (25), and infiltration of mature M1 
macrophages is an independent prognostic factor for survival in cervical cancer (20), suggesting 
that re-education of macrophages rather than depleting them by therapeutic intervention would 
be an attractive immunotherapeutic option. In vivo studies indicate that HPV transformed 
TC-1 tumors are highly infiltrated with Tumor Associated Macrophages (TAM). Macrophage 
depletion reduces tumor growth, correlates with enhanced tumor infiltration of tumor 
specific CD8 T cells (26), and improves responses to chemotherapy (27), together confirming 
the immunosuppressive function of these cells. However, stimulation with IFN-γ and CD40L can 
reverse a M2 phenotype to a M1, pro-inflammatory macrophage phenotype (28). Interestingly, 
anthracyclin-type chemotherapeutics and low-dose local radiotherapy were recently shown to 
reprogram macrophage differentiation to support intra-tumoral recruitment of CD8 T cells 
(29, 30). Additionally, our own data indicate that E7 long peptide vaccination induces tumor 
infiltrating cytokine producing CD8 T cells that modify intra-tumoral macrophage subsets 
required for tumor regressions (31). Together, these studies argue for a M1 macrophage-
skewing, rather than a macrophage-depleting strategy in clinical practice. 

UNLEASHING THE FULL POTENTIAL OF CYTOTOXIC T CELLS
T cell responses in patients with advanced gynecological lesions are often weak and therefore not 
sufficient to induce a robust anti-tumor response. To enhance the magnitude and functionality 
of HPV specific immune responses, vaccination is frequently combined with danger signals and 
immune stimulating antibodies. 
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vaccination by combination therapies. 
A) Although vaccination can 
enhance the number of CD8 T 
cells, combination with treatment 
modalities that can boost the vaccine-
induced T cell response or modulate 
intratumoral regulatory mechanisms 
is needed (18). B) Improving 
the balance betweencytotoxic T cells 
and immunosuppressive subsets 
may be achieved via enhancement 
of the cytotoxic T cell response, 
depletion of Tregs or Myeloid Derived 
Suppressor Cells and skewing or 
depletion of macrophages (24, 26, 
29-33). Improved killing of tumor 
cells by cytotoxic T cells may be 
achieved through enhanced T cell 
function or the synergistic action of 
conventional debulking treatments and  
T cells (23, 44, 50-56).
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Boosting T cell responses 
The addition of TLR ligands to long peptide vaccination resulted in significantly enhanced 
anti-tumor responses ((32) and reviewed by (33)) while in an orthotopic murine model for 
cervical cancer the intravaginal (IVAG) application of TLR3 and 9 agonists promoted attraction 
of E7-specific CD8 T cells to the tumor site (34). IVAG application of the TLR9 ligand CpG 
enhanced CCR5 and CXCR3 levels on CD8 T cells, suggesting that the expression of these 
receptors allowed an improved attraction of CD8 T cells into the tumor (34). IVAG application of 
the TLR7 agonist Imiquimod induced IFN-γ mediated, local induction of CXCL9 and CXCL10, 
which enhanced infiltration of CXCR3+ vaccine-induced CD8 T cells. Imiquimod was shown 
to be effective in the treatment of VIN (35) and is currently combined with vaccination (36). 

Checkpoint blockade
Immune checkpoint blockade has emerged as a promising strategy to attack tumors (37). 
By releasing the brakes on T cells, immune checkpoint blockers enhance the tumor-specific 
T cell responses. Since a combination of blocking the immune checkpoint molecule CTL-
associated antigen 4 (CTLA-4) and vaccination with GM-CSF – transduced tumor cells can 
alter the balance between regulatory T cells and effector T cells (38, 39), the combination of an 
HPV targeting vaccine with CTLA-4 blocking seems an attractive approach in the therapeutic 
treatment of HPV induced malignancies but preclinical and clinical data for HPV induced 
malignancies using this approach are limited. Due to serious side effects (40), systemic treatment 
with CTLA-4 blocking antibodies is not preferred. However, similar to local anti-CD40 agonist 
antibody (41), the controlled local delivery of anti-CTLA4 can be equally effective as systemic 
treatment (42). In fact, local treatment with CTLA-4 antibodies via secretion by the tumor 
results in an enhanced CD8/Treg ratio in HPV transduced tumors (43), however we have not 
found any study that combines HPV vaccination with CTLA-4 targeting. 

The role of another immune checkpoint protein, programmed cell death protein 1 (PD-1) 
and its ligand PD-L1, is studied more extensively in HPV-induced cancer. In HPV-associated 
head and neck cancer, PD-1-expressing tumor-infiltrating T cells are a favorable prognostic 
biomarker. In vitro assays for a small group of patients suggest that PD-1 blockade enhances 
the IFN-γ production by CD8 T cells (44), while in vivo data indicate that E7 polypeptide 
vaccination combined with PD-L1 blockade significantly enhanced survival when compared 
to untreated or single treated tumor-bearing mice (44). Furthermore, PD-1 blocking synergizes 
with cyclophosphamide to enhance the anti-tumor capacity of E7-specific vaccination with 
short peptide vaccination combined with agonistic CD40 antibodies and GM-CSF in Incomplete 
Freund’s Adjuvant (45). The effectiveness in patients, however, remains to be tested.

Chemo-immunotherapy
Certain chemotherapeutics can enhance the anti-tumor effect of therapeutic vaccination. 
A number of trials reported that combining chemotherapy with immunotherapy improved 
clinical responses (46). A significant number of preclinical studies for HPV-induced malignancies 
indicate that especially cisplatin works well with T cell-inducing vaccinations. While others 
have recently reviewed immunogenic effects of cisplatin and the molecular pathways underlying 
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this immunogenicity (47, 48), we focus here on the coordinated collaboration between cisplatin 
and vaccination. Cisplatin-immunotherapy can induce a type 1 interferon and TLR4 dependent 
activation and migration of antigen-loaded dendritic cells into tumor-draining lymph nodes 
where they stimulate CD8 T cells (22). In fact, for a subset of therapeutic vaccines it has been 
described that cisplatin can enhance the systemic or local vaccine-induced T cell response 
(22, 49, 50), while for other vaccines it has no effect on the induction, activity, localization, or 
migrating capacity of vaccine-induced T cells (23, 51), but differences are primarily observed 
in the tumor microenvironment. Tumors of mice treated with cisplatin and vaccination 
generally have a decreased tumor cell density compared to single treated tumors (23, 51). 
This is explained by the reduced proliferative capacity of tumor cells (23) and the enhanced 
tumor cell death upon combined treatment (figure 1), (23, 50-52). This enhanced cell death 
is explained by the increased sensitivity of tumor cells for CTL-mediated killing as result of 
cisplatin-induced enhanced sensitivity of tumor cells for granzyme B mediated killing (51-53) 
and the enhanced sensitivity of tumor cells for cisplatin-induced apoptosis by T cell produced 
TNFα (23). Various preclinical in vivo and in vitro studies indicate synergistic mechanisms 
between specific chemotherapeutics and triggering of one of the members of the TNF receptor 
family (23, 54, 55). Accordingly, the combined treatment with an adenoviral vector expressing 
E7 with gemcitabine and cisplatin enhanced the intratumoral expression of a variety of 
proinflammatory chemokines, supported a favorable M1/M2 macrophage ratio and inhibited 
(treatment-induced) accumulation of systemic Tregs, B cells, and myeloid derived suppressor 
cells (MDSCs; indicated as Gr-1+/CD11b+) (49). Furthermore, also radiated tumor cells have 
an increased sensitivity to E7 vaccine-driven CTL-mediated killing (56), implying that similar 
mechanisms as those induced by cisplatin are involved in the enhanced anti-tumor responses.

Surprisingly, other chemotherapeutics such as oxaliplatin and doxorubicin did not enhance 
vaccine induced anti-tumor responses but did also not weaken the effect of HPV vaccination 
(22, 23). Together indicating that although chemotherapy does not impair vaccine induced anti-
tumor immunity, combining vaccination with cisplatin would be the most favorable choice to 
test in patients. 

NEW APPROACHES TRANSLATED INTO THE CLINIC
A huge body of preclinical and clinical studies indicates that therapeutic vaccination against 
HPV- induced malignancies is improved by combination therapy. Since the full power of 
a therapeutic T cell response will only be unleashed when immunosuppression by (tumor-
induced) immune inhibitory cells is abolished, clinical efficacy of the combination therapies 
will be determined by the effect of the combined treatments on the tumor microenvironment 
and immune cell subsets. Understanding the role of individual components in these interactions 
allows targeting of the relevant mechanisms by therapy and will guide the road ahead to improved 
clinical responses and decreased toxicity in patients with advanced gynecological lesions.
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ANNOTATED REFERENCES
References and recommended reading
• of special interest
•• of outstanding interest 

• Ref 12
This study demonstrates for the first time that therapeutic vaccination with a highly immunogenic 
vaccine can result in complete and durable clinical responses in a significant number of patients 
with HPV16-induced premalignant lesions.

•• Ref 20
This study shows that in addition to a high CD8 T cell/Treg ratio, the presence of matured 
M1 macrophages improves patient survival, indicating that macrophage polarization may be an 
attractive component of immunotherapy for cervical cancer. 

•• Ref 22
In this study the authors show that cisplatin-immunotherapy induces a type 1 interferon and 
TLR4 dependent activation of and migration of antigen-loaded dendritic cells into tumor-
draining lymph nodes where they stimulate CD8 T cells. This study shows that chemotherapy 
allows an adjuvant-free priming of CD8 T cells by vaccination. 

•• Ref 23
This study shows that vaccine-induced T cells migrate to the tumor and produce Tumor Necrosis 
Factor which strongly enhances the sensitivity of tumor cells for cisplatin, resulting in tumor 
cell death and enhanced survival of mice treated with timed vaccination and cisplatin treatment.

•• Ref 47
This review extensively describes the literature on cisplatin-induced anti- 
tumor immunomodulation. 

• Ref 48
This review extensively describes the literature on the molecular pathways involved in 
the immunogenic effects of platinum-based chemotherapeutics. 
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