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We analyze the local structure of two-dimensional packings of frictional disks numerically. We

focus on the fractions xi of particles that are in contact with i neighbors, and systematically vary the

confining pressure p and friction coefficient m. We find that for all m, the fractions xi exhibit power-law

scaling with p, which allows us to obtain an accurate estimate for xi at zero pressure. We uncover

how these zero pressure fractions xi vary with m, and introduce a simple model that captures most of

this variation. We also probe the correlations between the contact numbers of neighboring particles.
While soft frictionless spheres experience a critical jamming

transition in the limit of zero pressure, where properties such as

elastic moduli, contact number, density, characteristic frequen-

cies and length-scales exhibit power-law scaling,1–5 the situation

is more delicate for frictional systems. The approach to the

jamming transition is still governed by the pressure, p, but

a range of densities and packing properties can exist depending

on the value of the friction coefficient m, the mobilization (ratio

of frictional to normal forces) of the frictional contacts and the

packing history.6–10 In particular, in d dimensions, the contact

number at jamming, zc, can take on a range of values between d +

1 and 2d, in contrast to frictionless sphere packings which always

reach their respective isostatic contact number ziso
0 ¼ 2d at

jamming. The proximity to the isostatic contact number governs

the scaling near jamming—for frictionless spheres, properties

such as elastic moduli scale with distance to jamming. However,

for frictional packings these properties only scale with distance to

the isostatic limit ziso
m¼ d + 1, and in general not with distance to

jamming,5–7 although this depends on whether fully mobilized

contacts are treated as frictional or slipping.8

We recently studied the case of frictional spherical disks in two

dimensions, and focussed on packings that were equilibrated very

gently.6–8 This eliminates preparation history and mobilization as

unknowns: for given pressure p and friction coefficient m, packings

with well defined statistics are obtained. The gentle equilibration

procedure also allows us to approach the isostatic limit for fric-

tional systems, zc ¼ ziso
m ¼ d + 1 when m / N and p / 0—here

jamming has many of the critical features observed for frictionless

systems.6,7 One additional surprise is that for finite values of m,

such gently equilibrated packings still reach a generalized isostatic

limit.7,8 The mobilization m ¼ |ft|/mfn of the contacts becomes an

important variable, and in particular we find that a substantial

number of contacts get fully mobilized, i.e., their frictional forces

ft satisfy the bound |ft| # mfn, where fn denotes the normal force.

Such contacts cannot resist tangential perturbations, and hence

they contribute only d � 1 constraints per contact to mechanical
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stability instead of d. Then the isostatic bound is changed to

z $ (d + 1) + 2nm/d, where nm is the mean number of fully mobilized

contacts per particle. If these fully mobilized contacts are seen as

slipping, the critical nature of the vibrational density of states at

jamming is restored for all values of m.8

Here we probe the fractions xi(p) of particles that have i

contacts for these frictional packings. These fractions are the

simplest characteristics of the contact network beyond the

average contact number z. It is thus natural to ask how

the fractions xi depend on p and m. We find that, for given m, the

fractions xi(p) exhibit scaling with p similar to the scaling of the

total contact number z. This allows us to extrapolate these

fractions to p / 0, and this is the case on which we focus our

attention. As is shown in Fig. 1, the fractions xi vary substantially

with m, and reach well-defined values in the limits where m / 0 or

m / N. We find a number of simple but unexpected relations

between the various xi, and introduce a simple model that, given

z(m), gives a good prediction for xi(m).

Packings

Following ref. 11, the numerical systems under consideration are

two dimensional packings of 1000 spheres with 20%
Fig. 1 Variation of the fractions xi(p¼ 0, m) of particles with i¼ 2, 3, .,

6 contact neighbors as function of the friction coefficient m. The full

curves are predictions from a simple model (eqn (1)) with fixed variance

s2 ¼ 0.6.
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polydispersity in the diameter of the particles in a square box

with periodic boundary conditions. The grains interact through

3d Hertz–Mindlin forces, i.e. with the normal force fij between

particles i and j proportional to d3/2
ij , with dij the overlap of the two

particles. The Young modulus of the grains is set to 1, which

determines the pressure unit, and the Poisson ratio is set to zero,

while the unit of length is the average grain diameter. The

construction and equilibration of the packings have been

described in detail elsewhere.7,11 Rattlers, particles which have no

appreciable interactions with any of the other particles, are

always left out of the analysis of the packings and contact

statistics. For each value of m ˛ [10�3, 103] and p ˛ (10�6, 10�3), 30

configurations were generated independently.
Scaling of fractions xi with pressure

As is shown in Fig. 2a–c, xi(p, m) scales linearly with p1/3, which

allows us to extrapolate their values for finite p to the (un)jam-

ming limit at p ¼ 0. This scaling is the same as the scaling of the

total contact number z with p, which for the Hertzian interac-

tions employed here is consistent with the scaling that the excess

contact number Dz :¼ z � zc scales with the square-root of the

excess packing fraction. This relation is well known for fric-

tionless systems,1,12 but also appears to hold for frictional

systems6,13—our data here suggests that it also holds for the

individual contact fractions, irrespective of the value of m.

A second robust finding is illustrated in Fig. 2d: the number of

particles that have an odd number of contacts,14 is close to 1/2—

the number of particles with an even or odd number of contacts is

therefore approximately equal, irrespective of pressure or value

of m. We do not have a satisfactory explanation for this.
The extrapolated fractions xi at jamming

In the remainder of this paper we focus on xi(m) at zero pressure.

Since xi has to be zero for i¼ 1, and the fraction of particles with
Fig. 2 Contact fractions xi as a function of pressure. (a–c) For three

representative values of m, the xi scale linearly with p1/3 (equivalent to f1/2

for the Hertzian interaction), and we are able to extrapolate to p ¼ 0.

(d) The sum x3 + x5 z 0.5, for all values of m and p studied.

2936 | Soft Matter, 2010, 6, 2935–2938
7 contacts is negligible for the polydispersities employed here we

focus on i ranging from 2 to 6. As shown in Fig. 1, the variation

of xi with m is greatest for m between 0.1 and 1, with the small and

large m limits apparently well behaved.

The functional forms of xi(m) for i ¼ 3 and 5 are similar, as are

the functional forms of xi(m) for i¼ 2 and 4. This is related to the

observation that x3 + x5 z 1/2. One also notices that, approxi-

mately, xn(m / 0) z xn+1(m / N). In fact, for small m, the

fractions x3 and x5 tend to 1/4, while x4 approaches 1/2—for

large m, x2 and x4 tend to 1/4, while x3 approaches 1/2.

In the limits m¼ 0 or m¼N, we can estimate these fractions by

a very simple argument. Let us first focus on the zero friction

case. Assuming that there are only particles with three, four or

five contacts, the fractions x3, x4 and x5 can immediately be

calculated, since combining the condition that x3 + x4 + x5 ¼ 1

with the isostaticity condition 3x3 + 4x4 + 5x5 ¼ 4 implies

x3 ¼ x5, and hence x3 ¼ 1/4, x4 ¼ 1/2 and x5 ¼ 1/4—a similar

argument holds for x2, x3 and x4 in the limit of infinite friction.

Deviations from this result arise since a small fraction of particles

with respectively six and five contacts arise, weakly breaking the

‘‘three particle species’’ condition underlying this argument

(see Fig. 1).

Simple rate equation model

The ratios x3/x4 ¼ x5/x4 ¼ 1/2 can also be understood in terms of

a simple stochastic model where we imagine distorting a certain

packing, creating and breaking contacts but keeping the overall

contact number and the ratios xi constant. In the case of three

species only, particles with 4 contacts can become 3’s and 5’s,

while 3’s and 5’s can only become 4’s (see Fig. 3). Since the

transition probabilities must all be equal (since always two

particles take place in such an event), and, on average, we require

the fractions xi to be constant, we get, in this simple approxi-

mation, x4¼ 2x3¼ 2x5. This heuristic argument can be written as

a rate equation model, as shown in Fig. 3a. Once we normalize

the rates such that the total decay rate of each species is 2u, we

obtain as steady state x4 ¼ 2x3 ¼ 2x5.

For intermediate values of m, the number of species is four

(if we neglect a small number of z ¼ 6 contacts). A single decay

rate would than imply that {x2 z 1/6, x3 z 1/3, x4 z 1/3,

x5 z 1/6} and z ¼ 3.5—clearly a single rate does not capture the

data. Fig. 3c shows an extended model where we now associate

an individual rate ui to each species i, so that the total decay rate

of that species is 2ui. The solution to this model is xi � 1/ui for

i ¼ 3, 4 and xi � 1/(2ui) for i ¼ 2, 5.
Fig. 3 Rate equation models for the equilibrium contact fractions. (a, b)

A model with a single rate u is sufficient for m / 0 and m / N. (c) For

finite m, we introduce individual rates ui which correspond to the total

decay rate for contact number i.

This journal is ª The Royal Society of Chemistry 2010
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Explicit solutions of rate equation model

We now seek an explicit solution of the four species model for the

contact fractions as a function of the friction coefficient. To

achieve this, we introduce two constraints on the model

beyond the trivial normalization constraints
P

5
i¼2xi ¼ 1 andP

5
i¼2ixi ¼ z(m). First, we constrain our model by the empirical

observation that the number of particles with odd and even

contacts is equal, i.e., x3 + x5 ¼ 0.5. Additionally, we impose the

variance of the contact fraction distribution,
P

5
i¼2xi(z � i)2 ¼ s2.

The solution to the resulting set of equations is

x2 ¼
�
ðz� 4Þ2þ s2 � 1=2

�.
4

x3 ¼
�
� ðz� 3Þ2� s2 þ 5=2

�.
4

x4 ¼
�
� ðz� 4Þ2� s2 þ 5=2

�.
4

x5 ¼
�
ðz� 3Þ2þ s2 � 1=2

�.
4

(1)
Fig. 4 Contact fractions as a function of m in the extrapolated limit p / 0.

The curves show the model solution from eqn (1), with a variance s2¼ 0.5.

Fig. 5 (a) Ratio of the observed contact pair fraction qij to the prediction qij
th

labeled by the i and j of the pair. Contact pairs with very dissimilar i and j are f

qij
th, rescaled by the ratio at m¼ 0.32. Contact pairs with large mean contact nu

number show an upward trend.

This journal is ª The Royal Society of Chemistry 2010
To obtain definite predictions from this set of equations, we need

to determine the variance s2. In the extreme limits, and under the

simplifying assumption that only three species with fractions 1/4,

1/2, 1/4 arise, we find s2 ¼ 0.5. We can show that for two species,

s2 ¼ 0.5 is a lower bound. For three species, it is possible to have

a lower s2, for example close to x3¼x5¼ 0, x4¼ 1. However, at the

equilibrium point of the rate equation model, x2 ¼ 1/4,

x4¼ 1/2, x5¼ 1/4, s2¼ 0.5, while in the vicinity of this point, s2 is

larger. When more species are introduced (as is the case for

stronger polydispersity or in higher dimensions), we expect s2 to

rise as well for the vast majority of packings. Note that for d ¼ 3,

the limiting contact numbers are z¼ 4 for infinite friction and z¼ 6

for vanishing friction, and hence the range of species will be

different. There may be interesting exceptions for large size ratios;

however, we do not expect to describe appolonian packings here.

If we fix s2 ¼ 0.5 over the whole range of friction coefficients, we

obtain the prediction shown in Fig. 4. There are no additional fit

parameters to this solution, and the agreement is quite good. We

have numerically studied the actual variance of s2 from the data,

and find that for our data, which have 20% polydispersity, it varies

between 0.57 and 0.65—when we fix s2 ¼ 0.6, the fit becomes

significantly improved, as shown in Fig. 1.
Correlations

The rate equation model derives from its implicit assumption

that the contact numbers of particles and their neighbors are

uncorrelated. Based on this assumption, we can calculate the

theoretical fraction qij
th of contacts between particles with i and j,

given xi and xj. Since the total fraction of contacts for particles

with i contacts is given by ixi/z, the uncorrelated prediction

for qij is

qth
ij ¼

2ijxixj

z2
for isj; qth

ij ¼
ijxixj

z2
for i ¼ j (2)

Fig. 5a shows the ratio qij/qij
th of the observed fraction of

contacts and the uncorrelated prediction.15 For intermediate

values of i and j the prediction is quite reasonable, as qij/qij
th
from eqn (2) for all contact pairs with sufficient statistics. The curves are

avored. (b) Ratio of the observed contact pair fraction qij to the prediction

mber reduce in frequency as z drops, while pairs with small mean contact

Soft Matter, 2010, 6, 2935–2938 | 2937
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remains bounded between 0.5 and 1.6 or so. Contact pairs with

very dissimilar i and j are favored—this is likely an effect of

polydispersity, since small particles with few contacts prefer to sit

next to larger particles with more contacts. A detailed study of

this is left for the future.

In Fig. 5b we have divided out the ratio at an intermediate m,

to more clearly see the variation of qij with m. This shows that the

fractions corresponding to particles with xi that are abundant

(such as q44 for small m and q33 for large m) do not vary strongly

with m. There appears to be a correlation between the relative

over-representation of contacts and the over-abundance of the

species of particles (i.e., for large m, there are many particles with

2 or 3 contacts, and q23 is over abundant, while there are very few

particles with 4 and 5 contacts, and the ratios q44, q45 and q55 are

even less likely)—we have no clear explanation for this.
Outlook

Various studies concerned with predicting the local packing

geometry have appeared recently.9,16–19 Here we focus directly on

the contact fractions for frictional packings, through probing which

contact fractions are invariant under rearrangements. Simple

arguments allow us to estimate the contact fractions xi, which can

be seen as fingerprints of the system. Since frictional systems depend

on history, we expect the fractions and their variation to be a useful

step in identifying the effects of preparation history beyond average

values such as overall contact number and density.
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