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Ribosomally synthesized and post-translationally modified

peptides (RiPPs) form a highly diverse class of natural

products, with various biotechnologically and clinically relevant

activities. A recent increase in discoveries of novel RiPP

classes suggests that currently known RiPPs constitute just the

tip of the iceberg. Genome mining has been a driving force

behind these discoveries, but remains challenging due to a lack

of universal genetic markers for RiPP detection. In this review,

we discuss how various genome mining methodologies

contribute towards the discovery of novel RiPP classes. Some

methods prioritize novel biosynthetic gene clusters (BGCs)

based on shared modifications between RiPP classes. Other

methods identify RiPP precursors using machine-learning

classifiers. The integration of such methods as well as

integration with other types of omics data in more

comprehensive pipelines could help these tools reach their

potential, and keep pushing the boundaries of the chemical

diversity of this important class of molecules.
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Introduction
Small organic molecules from a biological origin, collec-

tively called natural products, comprise a dazzling array of

diverse chemical structures [1]. These molecules play

many different roles in nature, including interspecies

signaling, resource competition and host defense. As

such, bioactive natural products find their way into the

clinic, as a result of their antimicrobial, antifungal,
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anticancer, antiviral or immunosuppressant activities.

The discovery of antibiotics has had a huge impact on

human life span, and in the mid-20th century bacterial

infections seemed like a call from the past. However,

multi-drug resistance and newly emerging infectious

diseases once more impose serious health threats, and

new drugs are now needed more than ever [2,3]. Mean-

while, traditional high-throughput screening (HTS)

efforts lost their power, primarily due to the problem

of replication, the rediscovery of known compounds [4,5].

Next-generation sequencing efforts surprisingly revealed

that the capacity of bacteria to produce natural products

had been grossly underestimated. This has led to a

revolution in drug discovery based on the efficient mining

of the rapidly growing genome sequence data [6]. Numer-

ous tools and databases have been developed to explore,

compare and catalogue biosynthetic gene clusters (BGCs)

and their chemical products [7–11]. The discrepancy

between the low return on investment of HTS and the

apparent massive reservoir of biosynthetic potential is

likely explained by the fact that the compounds are not

produced under laboratory conditions. In other words, the

BGCs that specify these natural products are only acti-

vated in response to specific environmental signals

[12,13], and are therefore referred to as cryptic or silent

BGCs.

The biosynthesis of natural products typically requires a

distinct set of conserved enzymes that is responsible for

their biosynthesis. Their encoding genes can be used as a

basis for the detection of BGCs of that class [14,15].

Completely new biosynthetic pathways and natural prod-

uct classes are much harder to discover with bioinformat-

ics alone, however. A few methods that do not rely on the

detection of known marker domains have been devel-

oped for that purpose, leading to the discovery of new

chemical scaffolds [16–19].

One class of natural products which likely still comprises a

large amount of hidden chemical diversity, is that of the

ribosomally synthesized and post-translationally modified

peptides (RiPPs) [20,21��]. RiPP biosynthesis always

follows the same logic—a precursor peptide is ribosomally

synthesized, biochemically modified and finally cleaved,

resulting in the finished product (Figure 1)—but numer-

ous different precursors and sets of modifying enzymes

acting on them leads to large structural diversity

(Figure 2). Their functions are equally diverse, and
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Figure 1
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Common biosynthetic logic as foundation for genome mining.

(a) RiPP BGCs contain a gene for a precursor peptide and genes encoding modifying enzymes, either of which can be used as a target. The red

lines indicate a method’s main way of identifying a BGC of interest. (b) Template for RiPP biosynthesis. A gene is translated into a precursor

peptide, which has both a leader and a core region. The core is modified by modifying enzymes, and the leader is cleaved off, resulting in the final

product.
include quorum sensing, acting as enzyme co-factors,

roles in cellular development, mediating host–microbe

interactions, but also the much sought-after antibacterial

and antifungal properties that would make them inter-

esting for clinical applications [22].

RiPPs are classified into subclasses or families, each of

which is defined by one or more characteristic modifica-

tions. For example, all lasso peptides have at least a single

crosslink, forming a small loop through which the amino

acid chain is threaded. Given the simple architecture of a

RiPP BGC and the expected ease with which they might

have evolved, it is likely that many more RiPP classes

exist that do not contain the marker genes of known

classes. This is exemplified by the rapid increase of

known RiPP classes, which have nearly doubled between

2013 and 2020 [20,21��]. Discovery of novel RiPPs pre-

sents itself as a promising avenue to identify novel

chemical scaffolds and drug leads. However, the lack
www.sciencedirect.com 
of a single genetic marker among all RiPP classes requires

novel strategies to leverage genomic data to this end. In

this review, we discuss approaches and strategies for

explorative RiPP genome mining aimed at the discovery

of novel RiPP families (Table 1).

Taking the bait: how to prioritize regions of
interest
Marker-based genome mining has been the main strategy

for the high-confidence detection of BGCs from known

classes of RiPPs. For many RiPP classes, modifying

enzymes are split into core and accessory types, depend-

ing on the type of modification installed. RiPP BGCs are

then detected by targeting the core modifying enzymes of

one class, and many tools like antiSMASH [14], BAGEL

[23], PRISM [24] and RODEO [25�,26–30] have imple-

mented this strategy. The rules for each RiPP class result

in the high-confidence detection of BGCs from known

RiPP classes. For the detection of novel RiPP classes,
Current Opinion in Biotechnology 2021, 69:60–67
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Figure 2

Nisin A

Lyciumin A Thiovarsolin B Gymnopeptide B

Freyrasin
Pleisocin
(segment R1)Microcin J25

Current Opinion in Biotechnology

Examples of the rich chemical diversity of RiPPs.

RiPP precursors are highly diverse in sequence and can be modified in many ways. Several old and new examples are shown here: nisin A

(lanthipeptide) [66], lyciumin A (lyciumin) [58], thiovarsolin B (thioamitide) [31��], gymnopeptide B (borosin) [58], microcin J25 (lasso peptide) [67],

plesiocin segment R1 (omega-ester containing peptide/graspetide) [68] and freyrasin (ranthipeptide) [27]. Abu-S-Ala: beta-methyllanthionine. Dha:

dehydroalanine. Dhb: dehydrobutyirine.
however, these rules need to be broken, even if this will

result in more false positives.

A method exploring this principle, RiPPer, allows a user

to find novel BGC architectures based on a single

enzyme query [31��]. Candidate precursors are priori-

tized based on their conservation among the candidate

BGCs of interest. The authors themselves use an

enzyme involved in thioviridamide maturation to find

the thiovarsolins, expanding the thioamitide class. Argu-

ably, any enzyme can be used in such a strategy, as long

as it is frequently associated with RiPP biosynthesis.

For enzymes like YcaO and LanD, this has long been

known to be the case [32,33]. The discovery of lanthi-

nidins as intermediates between lanthipeptides and

linaridins suggests that the exchange of domains

between different RiPP classes may be more common

than previously thought [34,35]. Another versatile

enzyme is the radical S-adenosyl methionine (RaS)

enzyme, involved in the maturation of RiPPs [36].

Exploration of RaS genes in novel contexts has recently

led to the identification of new RiPP classes, including

the spliceotides [37�], ryptides [38], rotapeptides [39]

and WGK peptides [40�]. In rare cases, overlap in

domains can even lead to the discovery of novel non-

RiPP BGCs using RiPP modifying enzymes. LanB
Current Opinion in Biotechnology 2021, 69:60–67 
enzymes, vital for the maturation of type I lanthipep-

tides, have also been found in new genetic contexts,

which led to the identification of the pearlins [41].

A key identifier for many different RiPP families is the

RiPP Recognition Element (RRE). RREs can be

encoded in small peptides or fused to modifying

enzymes, and are required for the recognition of the

precursor peptide. Although their secondary structure is

conserved, RREs have highly diverse sequences, and

could until recently only be effectively identified using

HHPred [42,43], a highly sensitive but compute-inten-

sive algorithm that compares families of sequences and

their secondary structures to each other. RRE detection

can be sped up using HMMer instead of HHPred,

although novel RiPP classes will then only be detected

if their RREs are similar on the sequence level. To

detect an RRE-like secondary structure, HHPred can

be used with a smaller database aimed specifically at

RREs, rather than the large uniclust database which is

used by default [44]. Both methods have been imple-

mented in RRE-Finder [45�]. With this tool, several

RREs were detected fused to enzymes not known to be

involved in RiPP biosynthesis. RREs are not a high-

confidence marker, as they are not contained in all

RiPPs [46], and sometimes the domain is vestigial
www.sciencedirect.com



Discovering novel RiPP natural product classes Kloosterman, Medema and van Wezel 63

Table 1

Tools currently available for RiPP genome mining

Name BGC identification

target

Method description Possibilities of identifying novel

classes

Reference

antiSMASH Core enzymes Identifies RiPP BGCs with core enzymes

per class. Identifies precursor peptides with

RODEO’s SVMs.

Focuses on known classes. Can

identify novel classes if they share

core enzymes.

Blin et al. [14]

BAGEL Core enzymes Identifies RiPP BGCs with core enzymes

per class. Identifies precursor peptides with

BLAST and a known precursor database.

Focuses on known classes. Can

identify novel classes if they share

core enzymes.

Van Heel et al. [23]

RiPP-PRISM Core enzymes Identifies RiPP BGCs with core enzymes

per class. Identifies precursor peptides with

HMMer and a motif search.

Focuses on known classes. Can

identify novel classes if they share

core enzymes.

Skinnider et al.

[15,24]

RODEO Core enzymes Identifies RiPP BGCs with core enzymes

per class. Identification of precursor

peptides with SVMs.

Focuses on known classes. Can

identify novel classes if they share

core enzymes (e.g. ranthipeptides).

Custom queries possible.

Tietz et al. [29],

Schwalen et al. [28],

Hudson et al. [27],

DiCaprio et al. [30],

Walker et al. [25�],
Georgiou et al. [26]

RiPPer Any enzyme Identifies RiPP BGCs with any query

enzyme. Prioritizes candidate precursor

peptides with prodigal-short and BLAST-

based clustering.

Can identify novel classes if a query

is selected that is associated with

RiPP biosynthesis in a class-

independent manner, with a higher

chance of false positives

depending on the query used.

Santos-Aberturas

et al. [31��]

RRE-Finder RiPP Recognition

Elements (RREs)

Identifies RREs with HMMer or HHPred-like

pipeline. Can identify novel RRE-fusions,

depending on the cutoffs used.

Can identify novel RRE-fusions

with exploratory mode or with

precision mode and lower cutoffs,

at the cost of more false positives.

Kloosterman et al.

[45�]

RiPPMiner Precursor peptides Identifies and classifies precursors with a

single SVM.

Can detect precursors of novel

classes if they are similar from the

perspective of the classifier.

Agrawal et al. [53]

NeuRiPP Precursor peptides Identifies precursors with a neural network. Can detect precursors of novel

classes if they are similar from the

perspective of the classifier.

De Los Santos [55]

DeepRiPP Precursor peptides Identifies and classifies precursors and

BGCs with a neural network

(NLPPrecursor). Predicts products and

estimates novelty based on genetic context

and known modifications (BARLEY).

Compares metabolomics and matches

MS/MS spectra to predicted products

(CLAMS).

Focuses on known classes. Can

detect precursors of novel classes

if they are similar from the

perspective of the precursor

classifier.

Merwin et al. [56��]

decRiPPter Precursor peptides Identifies and classifies precursors with a

single SVM. Uses genetic context to

prioritize novel RiPP BGCs. Forms

candidate RiPP families based on precursor

and BGC similarities.

Can detect precursors of novel

classes if they are similar from the

perspective of the classifier.

Comparative genomics is used to

prioritize hits.

Kloosterman et al.

[54��]

DEREPLICATOR NA Clusters peptide natural products based on

MS/MS spectra.

Focuses on finding spectra of

known peptidic natural products.

Can find novel RiPPs if part of the

RiPP can be related to previously

identified products.

Mohimani et al. [62]

VarQuest NA Matches peptide natural products to their

variants with unknown modifications based

on MS/MS spectra.

Focuses on finding spectra related

to known peptidic natural

products. Can find novel RiPPs if

part of the RiPP can be related to

previously identified products.

More flexible with regards to

unknown modifications than

DEREPLICATOR.

Gurevich et al. [64]

MetaMiner Core enzymes Identifies RiPP BGCs with antiSMASH.

Predicts products based on genetic context

and known modifications. Matches

predicted products to MS/MS spectra.

Can identify RiPP subclasses with

novel modifications using a blind

modification search.

Cao et al. [65�]
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[47]. Still, these results show that RREs can serve as

excellent beacons leading to the discovery of novel

RiPP classes.

Prioritizing BGCs of interest without the use of a query

domain is much more challenging, but has the potential to

identify completely novel machinery. These approaches

are particularly important for eukaryotic BGCs, for which

few BGC markers are known [48,49]. Bacteria, fungi, plants

and other eukaryotes each produce their own unique RiPP

subclasses. The discovery of RiPPs across these branches of

life is thereforemostly independent from oneanother, from

a bioinformatic point of view. Most of the subclasses have

been found in bacteria, although increasingly more sub-

classes are being uncovered for fungal and plant RiPPs, and

likely many more exist with still unknown modifying

enzymes [49]. The bioinformatics discovery of these could

relyonquery-independentstrategies.Theconservedgeno-

mic location and co-regulation of BGCs, for example, has

been exploited to prioritize regions of interest in fungi,

resulting inthediscoveryofanovelRiPP[19,50,51].Similar

methodscanbeexploitedforothereukaryotesaswell,when

sequencing of many of their large genomes becomes viable.

ClusterFinder [17], and more recently, DeepBGC [16],

both detect BGCs without being confined to specific

domains. Such methods have not been developed and

trained with a specific focus on RiPP BGCs, but could be

highly valuable when combined with precursor detection

(see below).

Finding the needle: new methods for the
detection of precursor peptides
The first step in RiPP biosynthesis is the translation of the

precursor gene. Since these genes are small, they are

notoriously hard to detect by gene-finding algorithms.

Often, the precursor genes are found nearby their modi-

fying enzymes, which limits the search space. BAGEL4,

for example, identifies precursor peptides by BLASTing

all small ORFs against a large database of previously

characterized precursors peptides [23]. Precursor gene

detection is even more important when they are not

encoded near the genes encoding their modifiying

enzymes, such as for animal RiPPs and cyanobactins

[49,52].

Machine-learning based classification of precursor pep-

tides is quickly gaining traction as a viable way for their

detection with high accuracies and low false discovery

rates (FDR). Support Vector Machines (SVMs) are espe-

cially popular. Rather than the peptide sequence itself,

SVMs use features calculated from the sequence, such as

charge, hydrophobicity, or abundance of amino acids or

amino acid pairs.

Depending on the features selected, a wealth of

information can be extracted from the peptide
Current Opinion in Biotechnology 2021, 69:60–67 
sequence, to precisely separate precursors and

non-precursors. This method is used by RODEO

[25�,26–30], which uses a different SVM per RiPP

class to detect precursors in detected BGCs. RiPP-

MINER [53] and decRiPPter [54��] are available as

standalone tools and use a single SVM to identify

precursor peptides regardless of class.

Neural networks bypass the need for feature selection by

taking in the raw sequence of the peptides as a vector.

Two tools have been developed that use neural networks

to identify and classify precursors: NeuRiPP [55] and

NLPPrecursor [56��]. The tools use different network

architectures: NeuRiPP’s most successful architecture is

the parallel convoluted neural network (CNN), while

NLPPrecursors uses a Universal Language Model

Fine-Tuning (ULMFiT) neural network to detect

encoded precursor peptides. The latter is a neural net-

work architecture used for language processing that has

shown to be highly effective in building models from

training sets with low amount of data.

Both neural networks, as well as the SVMs from RiPP-

MINER and decRiPPter, can detect precursors of many

different classes using only a single model. Interestingly,

both NeuRiPP and decRiPPter can identify RiPP

precursors that are not included in the training data,

suggesting that they should allow the detection of pre-

cursors of currently undiscovered families of RiPPs.

Apparently, some properties are common to RiPP pre-

cursors regardless of their class. These are not directly

obvious from their sequence, but are still picked up by

the classifiers. How suitable precursor classifiers are for

detection of novel RiPP classes likely depends on the

selected features and model architecture. A standardized

test with curated databases could be a valuable addition

to benchmark and compare classifiers. By leaving out

RiPP classes during the training process and testing

how well they are still detected, the approximate

‘explorativeness’ of a classifier can be measured. This

process could also give valuable insights into how RiPP

precursors from different classes relate to one another,

from the perspective of the classifier and the features it is

trained on. Some classes of RiPP precursors may be more

similar than others, which would mean that some classes

are more easily discovered with our current training data

than others.

Another interesting feature that has been reported in

increasingly more studies is the presence of multiple core

regions in a single precursor peptide. The encoding of

multiple copies of the same core region allows for the

efficient production of several RiPP variants, while only

needing a single leader peptide. These repeats are found

often in eukaryotic RiPPs [49,57,58], and could provide a

handhold for their identification without prior knowledge

of their primary sequence.
www.sciencedirect.com
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Assembling the whole: the integration of
–omics
Exploiting the capabilities of a precursor classifier to

detect novel RiPP classes is a promising route that has

only been partially explored. However, any precursor-

based approach faces a difficult challenge with regard to

the ratio of false positives to true positives, as the number

of small ORFs far exceeds the number of expected RiPP

precursors. Integration of these tools into larger pipelines

and combination of –omics datasets could help these tools

reach their potential.

Purely genomic approaches can help prioritize regions of

interest around predicted precursors. Any of the methods

mentioned above could be combined, such as the require-

ment of a novel RRE-enzyme fusion and a predicted

precursor. decRiPPter builds on its precursor predictions

to prioritize regions of interest with a marker-indepen-

dent strategy [54��]. Candidate RiPP BGCs are prioritized

by filters, such as requiring the presence of a transporter

gene or the lack of household genes that are common to

the taxonomic group of organisms studied. Candidate

RiPP families are formed by clustering identified BGCs

based on their precursor sequences and encoded enzy-

matic domains, which resulted in the identification of

42 new candidate RiPP BGC families across 1295 Strep-
tomyces genomes.

Transcriptomic and proteomic data can be used to iden-

tify co-regulated genes and link them to their cognate

bioactivity [59,60]. This principle was previously used to

identify ustiloxin B [51]. More recently, a pipeline that

integrates the use of RNASeq data was used to identify

novel RiPP BGCs in the fungus Trichoderma spp. [61].

The authors used ClusterFinder [17] to identify candi-

date BGCs, in which candidate BGCs were identified

with RiPPMINER [53]. The results were further filtered

by removing gene islands which were not activated, and

clustering the predicted precursors, resulting in the pre-

diction of several candidates.

The integration of metabolomics data could accelerate up

the identification of novel classes. There is a large poten-

tial for the identification of RiPP-like compounds by

automated detection from spectral data. In contrast to

normal proteins, however, RiPPs contain modified amino

acids and are rarely linear. For known RiPP classes, the

modifications can be predicted based on genomic infor-

mation. Predicted peptide fragments containing these

modifications can be matched to the spectra with tools

like DEREPLICATOR [62] (recently updated with NPS

[63]) and CLAMS (available within the DeepRiPP pipe-

line [56��]). DeepRiPP is perhaps the most integrative

pipeline for RiPP discovery. Besides structure prediction

based on the identification of known modifications, it also

combines comparative genomics with comparative meta-

bolomics, to prioritize peaks whose presence/absence
www.sciencedirect.com 
matches that of the BGCs of interest. While DeepRiPP

mostly prioritizes RiPPs of known classes, a similar

pipeline could be conceptualized aimed at the discovery

of novel classes. All of this will depend on whether

compounds are expressed at sufficiently high levels to

facilitate their detection. Elicitors should therefore be

added to activate the expression of cryptic BGCs,

whereby comparative metabolomics combined with tran-

scriptomics or proteomics will allow linkage of BGC

expression profiles to changes in metabolites. This will

allow scientists not only to observe more metabolites than

under one specific growth condition, but also to predict

which metabolites are produced by which BGCs.

A major challenge for automated MS/MS analysis that

remains is dealing with new modifications. VarQuest

[64], an extension of DEREPLICATOR, can identify

peptide variants based on known peptides, even if these

variants contain unknown modifications. MetaMiner

[65�] combines genomics and metabolomics to predict

precursor modifications and find associated spectra,

which can contain unknown modifications. Completely

de novo identification of novel RiPPs with only unknown

modification has yet to be explored by tools like these,

but represents a sizable computational challenge. Even

so, just matching a small sequence of unmodified amino

acids to part of a candidate novel RiPP precursor is a

valuable addition to more explorative RiPP searches.

Identified, novel precursors could then be fed back to

the training data of the precursor classifiers, creating an

iterative process in which the classifiers will become

increasingly specific and tuned toward a larger variety of

RiPP classes.

Conclusions and final perspectives
RiPPs represent a diverse class of natural products within

which new subclasses are being quickly discovered. The

lack of universal genetic markers makes genome-based

mining for novel RiPP BGCs challenging, but the amount

of sequence data and the level of computational power

available allows for many highly interesting strategies. As

more RiPP classes are being discovered, more modifica-

tions are found to be shared between different classes,

which can lead the way to novel variants. Precursor

classification is a powerful addition to the list of available

tools, both for known and novel RiPP identification.

Finally, integrative approaches combining comparative

genomics, eliciting strategies, transcriptomics, proteomics

and metabolomics will help us explore the vast and

diverse chemical space of this promising class of natural

products.
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