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A B S T R A C T   

Drug-induced liver injury (DILI) is the most prevalent adversity encountered in drug development and clinical 
settings leading to urgent needs to understand the underlying mechanisms. In this study, we have systematically 
investigated the dynamics of the activation of cellular stress response pathways and cell death outcomes upon 
exposure of a panel of liver toxicants using live cell imaging of fluorescent reporter cell lines. We established a 
comprehensive temporal dynamic response profile of a large set of BAC-GFP HepG2 cell lines representing the 
following components of stress signaling: i) unfolded protein response (UPR) [ATF4, XBP1, BIP and CHOP]; ii) 
oxidative stress [NRF2, SRXN1, HMOX1]; iii) DNA damage [P53, P21, BTG2, MDM2]; and iv) NF-κB pathway 
[A20, ICAM1]. We quantified the single cell GFP expression as a surrogate for endogenous protein expression 
using live cell imaging over > 60 h upon exposure to 14 DILI compounds at multiple concentrations. Using logic- 
based ordinary differential equation (Logic-ODE), we modelled the dynamic profiles of the different stress re
sponses and extracted specific descriptors potentially predicting the progressive outcomes. We identified the 
activation of ATF4-CHOP axis of the UPR as the key pathway showing the highest correlation with cell death 
upon DILI compound perturbation. Knocking down main components of the UPR provided partial protection 
from compound-induced cytotoxicity, indicating a complex interplay among UPR components as well as other 
stress pathways. Our results suggest that a systematic analysis of the temporal dynamics of ATF4-CHOP axis 
activation can support the identification of DILI risk for new candidate drugs.   

1. Introduction 

Drug-induced liver injury (DILI) is one of the most frequently 
encountered drug-related toxicities in drug development and clinical 
usage [2,6]. Despite the higher incidence compared to other drug 
adverse reactions, the underlying molecular mechanisms by various 

drugs causing liver injury remain unclear due to multiple limitations 
such as complexity of the injuries, non-robust findings related to 
host–specific factors from the current in vitro approaches, and lack of 
correlation on liver injury markers between in vivo findings and clini
cally significant DILI [29]. Various key events are involved in DILI, 
including the release of toxic metabolites that damages neighboring 
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non-parenchymal cells, activation of immune cells, formation of lipid 
droplets and release of chemokines to induce macrophage crowns [46]. 
On top of that, A major critical key event during liver toxicity is the onset 
of cell death of hepatocytes. The occurrence of cytotoxic events in DILI 
has been linked to the activation of specific cellular stress response 
pathways [34] including: inflammatory response (IR) pathways medi
ated by the NF-κB transcription factor [20,37], oxidative stress response 
(OSR) pathways mediated by nuclear translocation of NRF2 (NFE2L2) 
[9], DNA damage response (DDR) pathways mediated by TP53 activa
tion [8,18], and the unfolded protein response (UPR) pathway mediated 
by ATF4, ATF6, and XBP1 transcriptional programs [10,21]. Under
standing the dynamics and amplitude of the activation and interaction of 
these cellular stress response pathways in hepatic cells in relation to 
protection against or onset of cytotoxicity could provide better insights 
in critical determinants underlying DILI. 

Numerous advanced in vitro test systems based on 2D and 3D (co)- 
cultures have been employed to study DILI mechanisms [1,29]. Typically, 
experimental approaches with these test systems rely on endpoint mea
surement and do not capture the dynamics of cellular stress responses 
thereby limiting temporal mechanistic insights [14]. Our previous work 
has demonstrated the applicability of bacterial artificial chromosome 
(BAC)-based GFP HepG2 reporter cell lines to study the dynamics of 
cellular stress response activation [48–50]. This technology allows the 
expression of GFP-labeled proteins representing critical components of the 
different stress response pathways under the control of endogenous pro
moter activity, thus allowing high content imaging and quantification of 
the temporal protein expression at the single cell level using multi- 
parametric automated image analysis pipelines [49]. These cellular 
stress response reporters have proven successful in gaining comprehensive 
insight in temporal dynamics of several specific stress response pathway 
components in the first twenty four hours after xenobiotic or cytokine 
exposure [16,37,50]. Here we applied the panel of reporters to uncover 
particular cellular stress response pathways that are of critical significance 
to predict liabilities for DILI-related cytotoxicity. 

Concurrent with the development of in vitro models, recent mathe
matical modelling strategies have been developed to study the dynamics 
of signaling networks. The models capture details and offer mechanistic 
insights into molecular perturbations that link external signals, e.g. 
cellular stress to cellular outcomes [26]. Different areas of application of 
mathematical modelling include neurodegenerative diseases, cardio
vascular diseases and cancer, which were demonstrated to have etiology 
based on the deregulation of signaling networks [19,25,31]. The 
investigation of deregulated signaling pathways in the field of phar
macology and toxicology with mathematical model is also gaining 
popularity and provides a better understanding on how signaling mol
ecules are interacted among multiple pathways and how they are con
nected to liver-specific pathology which are observed at the cellular 
level [23,37,54]. Among the mathematical modelling approaches 
applied to model and analyze signaling networks, logic models offer a 
balance between required model inputs and computational time versus 
mechanistic insights in terms of network connectivity and their re
lationships which are depicted by logical gates AND, OR and NOT 
[32,52]. The simplest form of the logic model is a Boolean network, 
requiring a functional protein interaction network and discretized 
experimental data at quasi- steady-state as input in order to perform 
network inference and contextualization. Yet, this simple logic formu
lation is not suitable for time-course experimental data as generated by 
live cell imaging. To overcome such limitation, variants of logic models 
have been developed. One of the most advanced forms, the logic-based 
ordinary differential equations (Logic-ODE), derive a set of ODEs from 
logical rules and are capable of fitting quantitative time-course experi
mental data [51]. Compared to mechanistic-based ODE models which 
are derived from biochemical reactions, Logic-ODE models require no 
prior information on kinetic parameters and can be optimized with 
minimal parameterization. The optimization time and model calibration 
effort are also less complex for Logic-ODE models which make them 
suitable for large-scale modeling of quantitative time-course data with 
limited prior kinetic and biochemical information. 

Table 1 
List of the tested compounds. Table of the compounds tested in the experiment including the c-max, compound code used in this article, actual concentrations an
notated from dose levels 1 to 8, and the compound classifications. Cmax was adapted from the previous publication [35,50].  

Compound name Cmax (µM) Compound code Concentration level (µM) Classification 

1 2 3 4 5 6 7 8  

Valproate 242.2 VPA 121.4 606.9 1213.8 2427.5 4855.1 7282.6 9710.2 NA DILI 
Diclofenac 10.1 DIC 10.1 50.5 101 202 404 606 808 1010 DILI 
Paracetamol 140 PCM 69.5 347.4 694.7 1389.5 2778.9 4168.4 5557.9 6947.3 DILI 
Ciproflaxin 6.6 CIP 3.3 16.4 32.9 65.8 131.6 197.4 263.2 328.9 DILI 
Nitrofurantoin 6 NIT 6 30 59.9 119.9 239.7 359.6 479.4 599.3 DILI 
Tolcapone 22 TOL 22 109.9 219.9 439.7 879.4 1319.1 1758.8 2198.5 DILI 
Azathioprine 0.3 AZA 0.3 1.7 3.4 6.8 13.6 20.4 27.2 34 DILI 
Troglitazone 6.4 TGL 6.4 31.8 63.5 127.1 254.2 381.3 508.4 635.5 DILI 
Nefazodone 3.9 NEF 3.9 19.7 39.5 79 158 236.9 315.9 394.9 DILI 
Ketoconazole 6.6 KET 6.6 33 65.9 131.9 263.8 395.7 527.5 NA DILI 
Omeprazole 4.7 OME 4.7 23.5 47 94 188 282.1 376.1 470.1 DILI 
Phenytoin 22 PHE 10.9 54.3 108.6 217.3 434.6 651.9 869.2 1086.5 DILI 
Amiodarone 0.8 AMI 0.8 4 8.1 16.1 32.3 48.4 64.6 80.7 DILI 
Cyclosporine A 0.2 CYA 0.2 1 2 4 8 12 16 20 DILI/DIKI 
Carmustine 6.0 CAR 3 15 30 60 120 180 240 300 DIKI 
Verapamil 0.5 VPL 0.5 2.5 5.1 10.2 20.4 30.5 40.7 50.9 Negative control 
Buspirone 0.02 BUS 0.02 0.1 0.2 0.3 0.6 1 1.3 1.6 Negative control 
Melatonin NA MEL 2.6 12.9 25.8 51.7 103.3 155 206.6 258.3 Negative control 
N-Acetylcysteine NA NAC 100 500 1000 2000 4000 6000 8000 10,000 Negative control 
Ascorbic acid 70 ASC 70 349.8 699.5 1399 NA NA NA NA Negative control 
Famotidine NA FAM 0.8 4.1 8.1 16.3 32.6 48.9 65.2 81.5 Negative control 
vancomycin NA VAN 1.4 6.9 13.8 27.6 55.2 82.8 110.4 138 Negative control 
CDDOMe NA CDDO 0.1 0.5 1 2 4 6 8 10 Positive control OSR 
DEM NA DEM 2 10 20 40 80 120 160 200 Positive control OSR 
Tunicamycin NA TUN 0.001 0.1 0.2 2.4 9.6 19.2 37.5 62.5 Positive control UPR 
Thapssigargine NA THAP 0.000001 0.001 0.01 0.05 0.5 1.2 12 48 Positive control UPR 
Brefeldin A NA BFA 0.0001 0.01 0.0193 0.0518 0.1 0.1931 0.3728 0.7197 Positive control UPR 
CDDP 2 CDDP 1 2.5 5 10 15 20 25 50 Positive control DDR 
Etoposide 5.0 ETO 0.5 1 2.5 5 10 25 50 100 Positive control DDR 
Mitomycin-C 7.5 MIT 0.8 3.8 7.5 15 30 45 60 75 Positive control DDR  
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Given the advantages of the Logic-ODE modelling framework and the 
capacity of BAC-GFP reporter cell lines to comprehensively depict the 
temporal activation dynamics of stress response pathways, we applied a 
combinatorial approach to delineate the regulatory mechanisms orches
trating the stress response signaling pathways activated during DILI epi
sodes in relation to cytotoxicity. Quantification over time of the GFP 
activity of critical cellular stress signaling molecules combined with cell 
viability collected from time-lapses of our large panel of BAC-GFP HepG2 
reporters encompassing 4 mains stress responses (oxidative stress, 
unfolded protein response, DNA damage response, and Inflammation 
response) were used to contextualize the model. The parameterization of 
our Logic-ODE model unraveled two aspects of DILI: i) regulation of stress 
response activation is compound dependent, and ii) the ATF4-CHOP axis 
of the UPR is the pathway that correlates most with DILI-related cyto
toxicity. Small interference RNA-mediated perturbation of main compo
nents of the UPR pathway supported our mathematical model and 
indicated the central UPR transcription factor ATF6 as a counter-regulator 
of drug-induced cell death caused by DILI compounds. 

2. Material and Methods 

2.1. Chemical and reagents 

All chemicals were purchased from Sigma-Aldrich – The 
Netherlands; except for cisplatin (Ebewe – The Netherlands) and 
nefazodone (Sequoia Research Products – Pangbourne, United 
Kingdom). All compounds were dissolved in DMSO; except for 
mitomycin-C (DMSO-PBS), N-acetylcysteine (PBS) and for cisplatin 
which was already manufactured as a solution. TNFα was purchased 
from R&D System (Abingdon, United Kingdom). All compounds in 
DMSO were maintained as 500-fold stock such that the final exposure 
did not exceed 0.2% v/v DMSO. PowerUp SYBR green real time PCR 
master mix was purchased from ThermoFisher. All primers were 
purchased from Sigma-Aldrich - The Netherlands. 

2.2. Cell lines 

Human hepatoma (HepG2) cells were purchased from ATCC - 
Germany (clone HB8065) and maintained in DMEM high glucose 
(Fisher Scientific – Bleiswijk, The Netherland) supplemented with 10% 
(v/v) FBS (Fisher Scientific- Bleiswijk, The Netherlands), 250 U/ml 
penicillin and 25 µg/ml streptomycin (Fisher Scientific – Bleiswijk, 
The Netherlands) in humidified atmosphere at 37 degrees Celsius and 

5% CO2 /air mixture. All the BAC-GFP HepG2 reporter cell lines were 
previously established and characterized [48]. The cells were used 
between passage 14 and 20. For live cell imaging, the cells were seeded 
in Greiner black µ-clear 384 well plates, at 8000 cells per well. 

2.3. Compound exposure and live imaging 

Two days after seeding in either 384 well plate or 96 well plate (for 
RNA interference experiments), the cells were stained with 100 ng/ml 
live Hoechst 33342 in complete DMEM high glucose overnight. At the 
day of exposure (three days after seeding), the medium containing 
Hoechst was refreshed with complete DMEM containing 0.2 µM propi
dium iodide (PI) and Annexin-V-Alexa 633 (AnV). The compounds were 
added as such that the final concentration was as it is shown in Table 1. 
The plates were thereafter imaged no longer than 1 h after exposure. For 
inflammatory reporters (HepG2 ICAM1 and HepG2 A20), TNFα final 
concentration at 10 ng/ml was added 8 h after the compound exposures 
and the plates were imaged no longer than 1 h after the TNFα addition. 
The plates were imaged for 65–72 h using a Nikon TiE2000 confocal 
laser microscope (laser: 647 nm, 540 nm, 488 nm, and 408 nm), 
equipped with automated stage and perfect focus system. During the 
imaging, the plates were maintained in humidified atmosphere at 37 
degrees Celsius and 5% CO2 /air mixture. The imaging was done with 
20x magnification objective and performed every 1.5 h. Each plate only 
contained one reporter cell line exposed to the set of compounds and 
with 3 replicates per concentration. 

2.4. RNA interference 

siRNAs against human DDIT3 (CHOP), ATF4 (ATF4), ATF6 (ATF6), 
EIF2AK3 (PERK), HSPA5 (BIP), and XBP1 (XBP1) were purchased from 
Dharmacon (ThermoFisher Scientific) as siGENOME SMARTpool re
agents, as well as in the form of individual siRNAs. CHOP-GFP HepG2 
cell suspension was transiently transfected with the mixture of siRNAs 
(50 nM) and INTERFERin (Polyplus) in DMEM high glucose and 
seeded in Greiner black µ-clear 96 well plates, at 25000 cells per well. 
The medium was refreshed 24 h post-transfection and compound ex
posures were performed 48 h afterward. siGENOME non-targeting 
pool #1 (siNo1) and mock condition were used as the control. 

2.5. Real time - quantitative PCR 

RNA from exposed cells was isolated using the RNeasy kit (Qiagen) 
according to the manufacturer’s protocol. cDNA synthesis was per
formed using the RevertAid H Minus First Strand cDNA synthesis kit 
from ThermoFisher Scientific. The RT-qPCR was performed with the 
mixture of cDNA and PowerUp SYBR green master mix (Thermo
Fisher) for 40 cycles. The RT-qPCR and the analysis was done with 
High Resolution Melt Module for QuantStudio 6 Flex Real-Time PCR 
system (Applied Biosystems) for quantifying the expression of DDIT3, 
HSPA5, XBP1, ATF4, ATF6, EIF2AK3, and GAPDH. GAPDH expression 
was used as the housekeeping gene control and the fold change is 
calculated with the 2− ΔΔCt method. The primer sequences for the RT- 
qPCR are listed as followed: 

DDIT3 (R: AGGCACTGAGCGTATCATGT; F: CTTGAACACTCTCTC 
CTCAGGT) 
HSPA5 (R: GAACGTCTGATTGGCGATGC; F: TCAACCACCTTGAAC 
GGCAA) 
XBP1 (F: CTGAGTCCGCAGCAGGTG; R: GTCCAGAATGCCC 
AACAGGA) 
ATF4 (F: GGCCAAGCACTTCAAACCTC; R: GAGAAGGCATCCTC 
CTTGCT) 
ATF6 (F: AATATATGCTAGGGTTAGAGGC; R: TTCTCTGACACAACT 
TCATC) 

Table 2 
List of crosstalk interactions and interactions linking to apoptosis with their 
accommodated references.  

Interactions1 Reference(s) - PubMed ID2 

BTG2 → NFE2L2 (direct) 22,493,435 
MDM2 → HMOX1 (via AKT1) 12145204, 15,581,622 
MDM2 ┤ DDIT3 (via EP300) 11070080, 24,270,407 
TP53 ┤XBP1 (via MAPK3) 10958792, 23,277,279 
TP53 ┤NFKB1 (via CHEK1) 11152453, 22,152,481 
DDIT3 → MDM2 (via CEBPB) 1547942, 25,720,496 
DDIT3 → NFKB1 (via CEBPB) 1547942, 19,903,813 
NFKB1 → NFE2L2 (via CREBBP) 9660950, 11,154,691 
NFKB1 → TP53 (via IKBKB) 11158290, 19,883,646 
NFE2L2 ┤ NFKB1 (via ABCC2) 18038766, 21,988,832 
NFE2L2 ┤ XBP1 (via SQSTM1 &MAPK3) 20452972, 20154642, 23,277,279 
TP53 → Apoptosis 15951554, 12,667,443 
CDKN1A ┤Apoptosis 12759355, 23,526,443 
DDIT3 → Apoptosis 16131858, 23,720,337 
XBP1 ┤ Apoptosis 26504083, 10,652,269 
NFE2L2 ┤Apoptosis 26285140, 17,562,481 
TNFAIP3 ┤ Apoptosis 30446523, 17,982,095  

1 Positive interactions are indicated by → and inhibitory interactions are 
marked by ┤. 

2 PubMed ID refer to publications that support these interactions. 
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EIF2AK3 (F: AAGTGGAATTTCAGTGTTGG; R: AGGTGCTTTCAATAA 
ATCCG) 
GAPDH (F: CTGGTAAAGTGGATATTGTTGCCAT; R: TGGAATCATAT 
TGGAACATGTAAACC). 

2.6. Image analysis 

The images were manually sorted to exclude images which do not 
fulfill the criteria for analysis: non-biological background (fluorescent 
fibers), loss of nuclear signal, and in-focus images. The quantitative 
image analysis was performed with ImageJ version 1.52p and CellPro
filer version 2.2.0 [24]. Firstly, the nuclei per image were segmented 
watershed masked algorithm on ImageJ and thereafter processed with 
an in house developed CellProfiler module [48,53]. The results were 
stored as HDF5 files. Data analysis, quality control, and graphics were 
performed using the in-house developed R package h5CellProfiler. For 
each reporter, the nuclear Hoechst33342 intensity levels, GFP intensity, 
PI area, and Annexin V area were measured at the single cell level. 

2.7. Data analysis 

The GFP intensity from cell population means of each image was 
calculated based on the single cell results. In addition, for each plate, the 
GFP intensity of DMSO control (or DMEM for cisplatin), was calculated 
to determine the background. The fraction GFP positive cells was 
calculated per plate based on the cells which have GFP intensity higher 
than 2 times of mean value. For ICAM1 and A20, GFP positive cells were 
calculated based on the subtraction of the cells which showed GFP in
tensity higher than the thresholds with the cells showing GFP intensity 
lower than the threshold. For this purpose, the thresholds were derived 
from the GFP intensity value in the TNFα treatment ± 1 times of mean 
GFP intensity in the DMSO control. These values were thereafter 
normalized by subtracting them with the GFP positive cells from the 
TNFα treatment. This calculation allowed us to capture the decrease of 
the A20 and ICAM1 responses due to compound exposures. To quantify 
the fraction PI and AnV positive, the PI images and AnnexinV images 
were masked with 2 pixel dilated nuclei based on nuclear segmentation) 
to exclude the background staining noise. The area of each nucleus and 
the corresponding PI/AnV object were divided to obtain a PI and AnV/ 
nuclei ratio. PI/AnV positive for every cell were defined as a cell with 
>10% of PI/AnV area. 

Normalization methods were applied to GFP intensity values and cell 
count. For the GFP intensity, the value was scaled between 0 and 1 with 
the formula: (X-Xmin_replicate)/(Xmax_replicate - Xmin_replicate, 
where X  = GFP intensity value). For ICAM1 and A20, the value was 
scaled between − 1 to 1 to account for the up and down regulation of the 
TNFα-modulated ICAM1 and A20 regulation upon the exposure of the 
compounds. For cell count, the value was scaled from − 1 to 1 by 
calculating the log10 fold change of the cell count values from each 
observation to the cell count value of the control treatment (DMSO/ 
DMEM) at time point 0. 

All features (normalized GFP intensity, fraction GFP positive cells, 
fraction PI positive cells, fraction AnV positive cells, and normalized cell 
count) were fitted by applying b-splines with 8 degree of freedom. After 
that, 60 discrete equidistant time points were selected to calculate 
means of replicates per time-point A hierarchical clustering was 

performed to define the compound cluster based on the temporal acti
vation of stress response pathways and progressive cellular outcome 
(Annexin V signal, PI signal, and nuclear count) in each compound. First, 
we aggregated the value of every readout of each compound into one 
value by calculating the mean from the full concentration levels. 
Thereafter, euclidean-based distances between all time-course vectors 
were calculated. The mean euclidean-based distance from the all fea
tures was used as inputs for the WardD2-based clustering. AUC values 
were calculated from the time course results for each replicate, com
pound, and concentrations after the b-spline fitting with an in house R- 
script. The correlation analysis was performed with Pearson correlation 
method with the chart.correlation function from the performance analytic 
package [38]. 

2.8. Statistical analysis 

For all reporters and concentrations, three to four independent bio
logical replicates from imaging experiments were performed. A two- 
sample two-sided Student’s t-test was applied to the AUC values from 
the time course results of the knocked-down experiment. Two-sided test 
was chosen accounting the responses upon the siRNA knock-down that 
can be either higher or lower than the control (siControl). The Student’s 
t-test was performed to calculate the significance based on the (uncor
rected) p-value between the siRNA target and siRNA control (siControl). 
The adjusted p-values thereafter were calculated with false discovery 
rate method. 

2.9. Data representation 

All high content imaging results were presented or modified with 
Illustrator CS6, ImageJ version 1.52p, and R (ggplot2 [47] and pheat
map [27]). 

2.10. Mathematical modelling - data processing and normalization 

The mean GFP signals derived from the integrated intensity channel 
within the cellular compartments which the respective molecules are 
active were background subtracted by the GFP signals from their sol
vents. All negative values which resulted from lower GFP signals from 
compound treatment compared to control were set to zero. The back
ground subtracted GFP signals were then normalized to the maximal 
GFP signal per GFP reporter. Concentration of treated compounds were 
log10 transformed and scaled to the maximal values. The measurement 
for Apoptosis derived from Annexin-V signals was already measured in 
percentages and was directly applied as an input for modeling. All 
processed data are in a continuous range between 0 and 1 which is 
compatible with logic modeling. 

2.11. Mathematical modelling – Network topology 

The network topology of mathematical model was derived from the 
canonical pathways of the four stress response pathways connecting to 
all 13 measured GFP reporters [5,20,41,42]. Molecules in the canonical 
pathways which were not measured such as KEAP1 and ATF6 were 
excluded. 11 crosstalk interactions between the four stress response 
pathways were added from Omnipath [45], a collection of curated 

Fig. 1. Time dynamic overview of cellular stress responses and cellular outcomes. A) Actual images of HepG2 reporter cell lines showing the modulation of GFP 
intensity over time. The signal intensities represent the responses from multiple proteins involved in particular stress response pathways. The cells were exposed to 
positive controls for each specific stress response (oxidative stress: DEM; unfolded protein response: tunicamycin; DNA damage response: etoposide; inflammatory 
response: diclofenac). Blue indicate nuclear staining (Hoechst) and green indicate GFP signal. The nuclear images for NRF2 and ATF4 are removed to enhance the 
clarity of GFP responses. B) The temporal dynamic plots of downstream proteins for each stress response showing various responses depending on the exposure 
magnitude. GFP intensity and % GFP positive cells were derived from the normalized value according to the method (Data Analysis Session). C) Time dynamic plots 
of Annexin V positive cells (i), PI positive cells (ii), and log fold change of cell number to the control at time point 0 (iii) as the part of the experimental readouts 
exhibiting the cellular outcomes. Shadow in the plots represent standard error mean (SEM). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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human signaling protein interactions (Table 2). Downstream signaling 
targets of investigated stress response pathways were connected to the 
node ‘Apoptosis’ in the model to reflect the degree of apoptosis 
(Table 2). Additional details on the logic-ODE modeling framework can 
be found in the previous study [50,51]. 

2.12. Mathematical modelling – Optimisation 

The customised version of logic modelling software suite CellNOptR 
was applied to convert network topology into a logic model description 
[44]. The R-package for modeling logic-based differential equation 
(logic-ODE) CNORode was applied to perform the optimisation. The 
optimisation was run on a clustered computer (Quad-Core Intel Xeon 
E5530 16 GB Memory) in 3 successive rounds for 3 h each to ensure 
convergence. The best results from 5 independent runs were chosen for 
further subsequent analyses. 

2.13. Mathematical modelling – Post-optimization analysis 

Optimized parameters were log10 transformed and subsequently 
clustered and plotted as heatmaps using the function heatmap.2 from the 
package ggplots with Euclidean distance in log10 scale as a distance 

measure. A local parameter sensitivity analysis was performed by per
turbing the parameter values by 10% in both directionalities and 
calculating the mean of apoptotic changes across all drug concentrations 
being investigated. 

3. Results 

3.1. The temporal cellular stress response activation by DILI compounds 

We first mapped the long term temporal dynamics (until 60 h) of 
cellular stress response activation upon exposure to a set of 14 com
pounds known to induce DILI. In addition we included 7 compounds that 
do not induce DILI together with additional 8 positive reference com
pounds that activate specific stress response pathways. We used a panel 
of fluorescently tagged protein HepG2 reporter cell lines covering 4 
different stress response pathways: i) oxidative stress response (OSR) 
[HMOX1, SRXN1, NRF2]; ii) unfolded protein response (UPR) [BIP, 
XBP1, CHOP, ATF4]; iii) DNA damage response (DDR) [BTG2, P21, 
MDM2, P53]; and iv) inflammation response (IR) [ICAM1, A20]. The 
different reporter cell lines were first treated with a concentration range 
of all the selected reference compounds to assess the feasibility to 
determine GFP induction over pro-longed time (Fig. 1A). Automated 

Fig. 2. Compound clustering based on the temporal dynamics of the stress responses and cellular outcomes. A) Examples of temporal dynamic plots represented by 
each block of the heatmap in (B). The magenta box (i) shows the actual dynamic plot of the heatmap region boxed in magenta (GFP intensity – CHOP – nitro
furantoin); the dark green box (ii) shows the actual plot of the heatmap region boxed in dark green (GFP intensity – TP53 – etoposide); the dark blue box (iii) shows 
the actual plot of the heatmap region boxed in dark blue (Cell number – Cellular outcomes – troglitazone). Shadow in the plots represent standard error mean (SEM). 
Compound concentration is annotated with number 1–8 (colored with white till dark purple in 8 different color scales) showing 1 is the lowest concentration and 8 is 
the highest concentration. B) The heatmap showing the temporal dynamic of cellular response based on the normalized GFP intensity and cellular outcomes based on 
cell number, fraction AnV positive, and fraction PI positive. The heatmap exhibits 6 different areas based on their responses: 1. DDR; 2. UPR; 3. No-response; 4. OSR; 
5. Low-to-mild response; 6. Progressive cellular outcomes. C) Hierarchical clustering of compounds based on the temporal dynamics of normalized GFP intensity 
responses and cellular outcomes. The color and number annotates the corresponding area grouped in the heatmap (B). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Correlation analysis of the cellular responses and cellular adverse outcomes A) Correlation matrix of each cellular response (GFP intensities) and cellular 
outcome (fractions AnV and PI positive). Each point in the correlation plot represents the AUC value derived from the normalized GFP intensity of each compound at 
each concentration level. The upper part of the matrix indicates the coefficient correlation value and the lower part shows the actual correlation plot. The correlation 
analysis shows three cellular responses (NRF2, ATF4, and CHOP) with higher correlation coefficient values towards progressive cellular outcomes (Annexin V and PI 
responses). Significance is depicted with * = p-val ≤ 0.05; ** = p-val ≤ 0.01; *** = p-val ≤ 0.001. B) The correlation plot from the correlation matrix with the highest 
correlation coefficients to cellular outcomes (black boxes in A). Graph i, ii, and iii show the correlation between ATF4, CHOP, and NRF2 to Annexin V responses while 
graph iv, v, and vi show the correlation between ATF4, CHOP, and NRF2, to PI responses. 

L.S. Wijaya et al.                                                                                                                                                                                                                               



Biochemical Pharmacology 190 (2021) 114591

8

image analysis pipelines allowed the quantification of total GFP in
tensity at the single cell level in the nucleus for the NRF2 (NFE2L2), 
ATF4, CHOP (DDIT3), XBP1, TP53, P21 (CDKN1A), and MDM2 reporter 
cell lines and in the cytoplasm for the SRXN1, HMOX1, BIP (HSPA5), 
BTG2, ICAM1, and A20 (TNFAIP3) reporter cell lines. TNFα was added 8 
h post-exposure to the IR reporter cell lines (A20 and ICAM1) in order to 
induce a NF-κB-mediated inflammatory response. Each cellular stress 
response reporter exhibited different temporal- and concentration- 
dependent response patterns for the model compounds (Fig. 1B). 
Treatment with diethyl maleate (DEM) increased expression of SRXN1- 
GFP within the first 20 h, followed by a stable protein level in the 
remaining 40 h of imaging. Consistent with the previous study [54], the 
response of CHOP-GFP, a well-known effector molecule of the UPR 
response, reached a peak between 10 and 20 h after tunicamycin 
exposure followed by a decrease of the protein level depending on the 
concentration of the compound. The dynamics of P21-GFP induction by 
etoposide exhibited a rapid increase in the first 20 h and remained high 
during the entire exposure period. The onset and amount of expression 
of the different reporter proteins correlated positively with the com
pound concentrations. Conceptually, IR reporter cell lines were used to 
monitor whether xenobiotic treatment would impact on TNFα-mediated 
temporal dynamics of A20-GFP protein expression. Diclofenac inhibits 
TNFα-mediated NF-κB activation [13,37,50]. We observed that 
increasing diclofenac concentrations (up to approximately 400 μM) 
synergized with TNFα and enhanced A20-GFP levels, while very high 
concentrations of diclofenac reduced the expression of A20-GFP. Besides 
the measured average cellular GFP intensity, the percentage of cells that 
was committed to the cellular stress response (% GFP positive cells) was 
also quantified. The temporal dynamics of GFP positive cells showed a 

similar pattern as protein expression dynamic measured by the GFP 
intensity (Fig. 1B, right panel). 

Our live cell imaging of the reporter cell line panels allowed a 
comprehensive temporal mapping of stress response activation. This 
mechanistic assessment was complemented with the quantification of 
the adverse cellular outcomes which was measured as the fraction of cell 
death using both propidium iodide (PI) and annexin V (AnV) as markers 
of necrosis and apoptosis, respectively. Most prominent cell death was 
observed in one of the DILI compounds, nefazodone (Fig. 1C i and ii). 
The onset and rate of cell death was both time and concentration 
dependent. At high concentrations of nefazodone (>150 µM), approxi
mately 50% of the cells died within 24 h, while at lower concentrations 
(less than150 µM), less than 50% of the cells died at later time points (up 
to 60 h). As another indicator of cell health, based on nuclear Hoechst 
33342 staining, the cell number was also quantified over time (Fig. 1C 
iii). At high concentrations, the cell number decreased over time, pro
portionally to the increase of the cell death, consistent with the decrease 
in cell number caused by cell death. Overall, long term live imaging of 
our reporter cell lines enabled us to delineate the temporal dynamics of 
stress response pathways as well as the corresponding adverse cellular 
cytotoxicity outcomes when exposed to xenobiotic. 

3.2. Comprehensive mapping of DILI compound based on temporal 
cellular stress response activation. 

Next, we quantified the effect of all 30 compounds (DILI, non-DILI, 
positive references; Table 1) on the activity of all 13 GFP cellular 
stress reporters. To establish simplified concentration temporal response 
maps for comparison, the 60-hour temporal dynamics (response) based 

Fig. 4. Network topology and optimized Logic-ODE model. A) Network topology derived from literature knowledge. B) Model fitting costs represented by mean 
squared error (MSE). C) Clustering of edge parameter ‘k’ in the optimized Logic-ODE model. D) Clustering of node parameter ‘tau’ in the optimized Logic-ODE model. 

L.S. Wijaya et al.                                                                                                                                                                                                                               



Biochemical Pharmacology 190 (2021) 114591

9

on GFP intensity, fraction of AnV and PI positive cells, and cell counts 
(features) for each reporter cell line were transformed into an individual 
map with blue to red color depicting the extend of the responses for 
every single compound (Fig. 2A). The color intensity indicates the 
magnitude of the response whether induced or positive (red) or 
repressed and negative (blue). A comprehensive heatmap displaying the 
overview of the stress responses and adverse cellular outcomes for each 
compound exposure was thereafter created from each individual map 
(Fig. 2B). Based on all the individual compound stress response and 
adverse cellular outcomes maps, a hierarchical clustering analysis was 
performed from which we identified five sub-groups of compounds 
activating a set of reporters in a similar fashion. Within these groups, we 
also identified set of compounds that also induce cell death classified in 
area 6 (Fig. 2B). Fig. 2C is a simplification of the clustering where the 
main branches in the tree structure show how certain DILI compounds 
cluster together with the model compounds based on specific reporter 
activation (branch 1: etoposide; branch 2: tunicamycin; branch 4: DEM). 
Interestingly, most negative controls and solvent controls are clustered 
together in the third area/branch. Also cyclosporine A and acetamino
phen cluster in this third branch, likely due to limited overall impact on 
cellular stress response activation and/or limited bioactivation to toxic 
reactive metabolites and cytotoxicity onset. 

As expected based on the clustering with the model compounds, the 
different branches in the dendrogram were associated with specific 
stress response clusters of the heatmap (Fig. 2B): branch 1 with DDR 
activity; branch 2 with UPR activity, and for several compounds 

(nefazodone, troglitazone, nitrofurantoin, and CDDO) also OSR activity; 
branch 3 without substantial activity in any of the reporters; branch 4 
with OSR activity alone; branch 5 with low-to-intermediate activity of 
multiple cellular stress response pathways and limited effect on cellular 
outcome. Compounds within clusters 1 and 2 clearly led to adverse 
cellular fates (cell death induction associated with a reduced cell count). 
Modulation of IR activity was not a strong determinant for the clustering 
of DILI compounds; indeed, diclofenac, the reference DILI compound for 
modulation of TNFα-induced IR clustered together with low-to- 
intermediate stress response-inducing compounds in the fifth cluster. 
This was associated with activation of other stress pathways by diclo
fenac. We also find consistent observations from the results derived from 
the fraction GFP positive cells (data not shown). 

3.3. UPR- and OSR-related reporter activities correlate with the onset of 
cell death 

As a next step we aimed to systematically determine the correlation 
between reporter activities with cytotoxic responses. In order to reduce 
the dimensionality of the dataset, the dynamic response of every cell line 
was summarized as one unique data point: the area under the curve 
(AUC) value. The AUC was calculated for each compound, each con
centration, each reporter cell line and cellular outcomes. Thereafter, a 
correlation analysis was performed to determine the correlation coeffi
cient between all parameters (cellular responses) in the matrix (Fig. 3A). 
As expected, the correlation analysis showed high correlation between 

Fig. 5. Parameter sensitivity analyses and simulated time-course dynamic of apoptosis from the optimized Logic-ODE model. A) Top 3 parameters per compound 
based on the average percent changes of apoptosis after perturbing the optimized parameter values by 10%. B) Time course simulations of apoptotic profiles after 
perturbing the optimized parameters value of ‘ATF4_k_DDIT3′ interaction upon nitrofurantoin (NIT) treatment. Continuous lines refers to the simulated apoptotic 
profiles from the Logic-ODE models while the strings of upward and downward triangles are predicted apoptotic profiles after increasing and decreasing the 
parameter values, respectively. Simulations from different nitrofurantoin concentrations are labeled with the corresponding color codes. 
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reporters of the same stress response pathway (e.g. BTG2-GFP and TP53- 
GFP (R2 = 0.94); CHOP-GFP and ATF4-GFP (R2 = 0.85)). Also, AnV and 
PI showed a high correlation (R2 = 0.93) indicating concordance be
tween both readouts. Cross-pathway correlation analysis revealed 
interesting relationships. For example, we also observed that NRF2-GFP 
levels showed higher correlations with ATF4-GFP (R2 = 0.64) and 
CHOP-GFP (R2 = 0.55) than with SRXN1-GFP (R = 0.35), despite the 
fact that SRNX1-GFP expression is dependent on NRF2 activity [48]. 
Across all pathways, ATF4-GFP, CHOP-GFP and NRF2-GFP reporter 
activity had the highest correlation with cell death (AnV and PI) with the 
most negative correlation with the cell count. We further focused on the 
correlations of these three proteins with the cell death outcomes by 
plotting all individual AUC values (Fig. 3B). The high correlation co
efficients between ATF4, CHOP, and NRF2 with cell death features were 
mainly caused by a selected set of compounds including nitrofurantoin, 
nefazodone, and troglitazone at middle-to-high concentrations. These 
compounds were also shown to induce UPR and OSR with high cell 
death responses as demonstrated in Fig. 2B. Altogether, these findings 
suggest that there is a high correlation between the activation of UPR 
and OSR stress response pathways and the cell death responses. 

3.4. Logic-ODE modeling captures relationships between UPR, OSR and 
cell death outcomes 

To investigate the signal transduction of stress response pathways 
which governs cell death upon toxic compound treatments, we applied a 
mechanistic modeling analysis using the Logic-ODE approach. First, we 
built a minimal topological model based on the canonical structure of 
the four stress response pathways with crosstalk interactions previously 
described in a curated human signaling network compendium ‘Omni
path’ (see Methods). We subsequently fitted the model to normalized 
experimental data from the time-resolved dose–response GFP reporters 
where all parameters were optimized for each individual compound (see 
Material and Methods). Model structure, model fit quality, and opti
mized parameters of the Logic-ODE models are shown in Fig. 4. The 
majority of the Logic-ODE models (17 out of 21 compounds – Fig. 4B) 
fitted reasonably well to our current model topology Fig. 4A with fitting 
costs represented by mean square error (MSE) of less than 0.003. The 
model of nefazodone for instance had the highest fitting cost (close to 
0.01), but still fitted relatively well to the complete GFP dataset (data 
now shown). 

As a next step, we proceeded with subsequent parameter analysis and 

Fig. 6. Effect of different UPR regulatory components on GFP-CHOP induction caused by tunicamycin. A) HepG2 CHOP-GFP cells were depleted from different URP 
regulators followed by treatment with tunicamycin (10 µM) and dynamic imaging. Shown are images from different timepoint that represent the effect of the in
dividual knock downs. B) The fold change of mRNA level of each gene at the baseline condition compared to siRNA control after the knock down with the cor
responding siRNA. The error bars show standard deviation (SD) from 3 to 4 replicates. 
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in silico prediction from the fitted model. In the framework of logic-ODE, 
an interaction between two molecules is defined as an ‘edge’ where each 
molecule/protein in the model is referred as a ‘node’. The higher the 
parameter values for edges and nodes, the more influential the respec
tive connections and molecules become. According to the model opti
mization results, the clustering of the edge parameters ‘k’ (Fig. 4C), 
which represent the speed of interactions, and the node parameters 
‘tau’, which represent the responsiveness of a molecule to an activation 
(Fig. 4D), both showed that the DILI compounds are mostly clustered 
together (dendrograms not shown). Ascorbic acid (ASC), buspirone 
(BUS) and verapamil (VPL), while labelled as negative controls for DILI, 
still activate stress response pathways and apoptosis, hence their pa
rameters clustered together with the ones of DILI. Among the ‘k’ pa
rameters (Fig. 4C), two main clusters are observed (see dendrograms). 
Parameters on the cluster to the right, which comprise the interaction 
linking CHOP and NRF2 towards apoptosis, are active in almost all 
models of DILI compounds, highlighting the potential roles of UPR and 
OSR pathways in modulating the onset and/or predicting the liability of 
apoptosis. Similarly, the clustering of ‘tau’ parameters (Fig. 4D) dem
onstrates that the node ‘Apoptosis’ is clustered together with the nodes 
from the ATF4-CHOP axis of the UPR as well as to the OSR nodes. These 
findings underline the potential regulatory role of these two stress 
response pathways in determining cell fate upon treatment with DILI 
compounds. 

3.5. ATF4-CHOP and NRF2 branches are predicted to be main regulators 
of cell death outcomes 

Next, we performed a sensitivity analysis to evaluate the effect of 
node and edge parameters on the apoptosis outcome once their 
parameter values are varied (e.g. a higher edge parameter ‘k’ implies a 
reaction rate increase). A local parameter sensitivity analysis was per
formed by perturbing the optimized parameter values by 10%, and we 
monitored the mean of percent apoptosis changes in response to these in 
silico perturbations. Fig. 5A shows top 3 parameters which are most 
sensitive towards the modulation of apoptotic level in each compound 
and we found that they are mostly the components of the UPR pathway, 
especially the ATF4-CHOP-Apoptosis axis. Other parameters having a 
strong regulatory role in apoptosis include components of the OSR 
pathway, especially NRF2, and also via crosstalk interactions between 
stress response pathways in several compounds such as diclofenac (DIC) 
and omeprazole (OMZ). 

Among these top sensitive parameters identified from sensitivity 
analyses, the parameter ATF4_k_DDIT3 was the most sensitive one for 
nitrofurantoin (NIT). We displayed the predicted time-course dynamic 
of apoptosis onset after perturbing the optimized parameter values by 
10% (upwards and downwards) for each NIT concentration (Fig. 5B). 
The effect of the perturbation on apoptosis is strongest at higher doses 
and at later time points. Also, the predicted apoptotic profiles do not 
always exhibit proportional alteration of responses after perturbing 
parameter values the same range. Here, decreasing of parameter values 
has a more dominant effect on apoptosis at high doses, potentially due to 
the saturation of apoptotic signal (see lines of triangles pointing down
wards in Fig. 5B). Altogether, these analyses from the Logic-ODE model 
suggest that the UPR was the most crucial stress response pathway that 
controls the apoptosis in response to the investigated DILI compounds, 

followed by NRF2 activation. Altogehter, the output from our unbiased 
modelling approach is consistent with the correlation analysis based on 
AUC values (Fig. 3). 

3.6. Functional assessment of UPR components in the control of 
cytotoxicity induced by DILI compounds 

Finally, given the strongest predictivity of UPR pathway activation 
and apoptosis, we aimed to determine which UPR components are 
critical determinants for the onset of cell death by DILI compounds. For 
this, we performed a set of experiment of RNA interference-based 
depletion of several key UPR components (EIF2AK3, ATF4, DDIT3, 
XBP1, HSPA5, and ATF6). We selected compounds that induced UPR 
cellular stress reporter activities clustered in three different groups 
based on their temporal dynamics and pattern of UPR stress reporter 
activation in association with various degrees of cellular outcomes. For 
these experiments we selected one concentration per compound based 
on our initial screening data and that ranged between 20 and 100 Cmax, 
depending on the potency for induction of cytotoxicity. The CHOP-GFP 
HepG2 cell line was utilized for evaluating the effect of the knock down 
of the above mentioned UPR regulators (Fig. 6A). We use the CHOP-GFP 
HepG2 cell line because this protein shows the clearest response among 
other UPR reporter cell lines. The knock down efficiency of every 
different UPR component was also determined at the mRNA level and 
showed to be higher than 70% (Fig. 6B). Firstly, we focused on tunica
mycin and cyclosporin A, as both compounds cause a rapid activation of 
all the UPR reporters which is sustained for prolonged time at high 
concentrations (Fig. 7A). siCHOP fully inhibited the CHOP-GFP induc
tion by both tunicamycin and cyclosporin A, as expected, which did not 
affect the onset of cell death (Fig. 7B and C – dark green). On the con
trary, siHSPA5 caused an enhanced CHOP-GFP induction by tunicamy
cin and cyclosporin A (Fig. 7B – dark blue), which was associated with 
increased cell death in the case of TUN (Fig. 7C – dark blue). Both 
siELF2AK3 and siATF6 treatment enhanced cell death by tunicamycin 
and cyclosporin A (Fig. 7C, light green and light blue), which was also 
associated with differential modulation of CHOP-GFP induction dy
namics compared to siControl (Fig. 7B, light green and light blue). 
Minuscule differences on the cell death responses of the siRNA knocked 
down were noticed in the DMSO treatment (data not shown). 

Next, we determined the effect of depletion of the individual UPR 
target genes on DILI compounds that demonstrated a sustained and 
strong concentration-dependent induction of ATF4-GFP and CHOP-GFP 
without impacting on XBP1-GFP and BIP-GFP expression, including 
nitrofurantoin, diclofenac, nefazodone, and troglitazone (Fig. 8A). 
Troglitazone caused activation of all four UPR reporters, suggesting 
stronger cell stress responses (Fig. 8A). Depletion of in particular ATF6 
sensitized cells towards nitrofurantoin- and diclofenac-induced cell 
death (Fig. 8B), without particularly impacting on the induction of 
CHOP-GFP (Fig. 8C). Nefazodone already caused quite some induction 
of cell death under siControl conditions, yet a trend was observed that 
siATF6 also promoted cell death by nefazodone (Fig. 8B). On the con
trary, troglitazone also caused substantial cytotoxicity under control 
conditions (Fig. 8B), which was not impacted at all by depletion of any 
UPR modulator, suggesting critical other cellular effects that drive cell 
killing by troglitazone, such as likely mitochondrial damage [36,39,40]. 

Finally, we focused on omeprazole and azathioprine (both 100X 

Fig. 7. Role of individual UPR components in progressive cellular outcomes caused by tunicamycin and cyclosporin A. A) Temporal dynamics plot of the UPR 
components upon the compound exposures expressed by the (min–max) normalized integrated GFP intensity. Shadow in the plots represent standard error mean 
(SEM). B) HepG2 CHOP-GFP cells with indicated depletion of UPR components were exposed to either 10 µM tunicamycin (left) and 20 µM cyclosporine A (right). 
Area under the curve of cell death fraction measured from 0 to 60 h in the most affecting knocked down condition (siATF6, siELF2AK3, and siHSPA5). The error bars 
show standard deviation from 3 to 4 replicates. Significance is depicted with * = p-val ≤ 0.05; ** = p-val ≤ 0.01; *** = p-val ≤ 0.001. C) Temporal dynamics of 
CHOP-GFP upon the exposure of compounds in the UPR perturbed cells showing increase and sustained of CHOP expression (siATF6, siEIF2AK3, and siHSPA5). 
Shadow in the plots represents standard error mean (SEM). 
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Cmax) which both induced a slightly delayed onset of the activation of 
ATF4-GFP and CHOP-GFP at around 10 h, with omeprazole demon
strating the strongest response. Also some activation of XBP1-GFP 
(omeprazole only) and BIP-GFP (azathioprine only) was observed 
(Fig. 9A). Only for omeprazole depletion of ATF4 and ATF6 sensitized 
cells to enhanced cell death in association with stronger induction of 
CHOP-GFP; for azathioprine depletion of UPR modulators did not 
stimulate onset of cell death (Fig. 9B and C). 

Overall these data indicate differential temporal dynamics and se
lective activation of different UPR reporters by compounds with DILI 
liabilities. Moreover, in particular ATF6 stands out as an important 
adaptive modulator to repress onset of cell death for various DILI 
compounds that strongly activate the ATF4-CHOP axis of the UPR. 

4. Discussion 

In this study, we have demonstrated the feasibility to integrate the 
temporal dynamics of stress response pathway activation and the cor
relation with the progressive cellular outcomes utilizing combined 
experimental and computational approaches. Here, we have established 
comprehensive maps of the temporal dynamic activation of cellular 
stress response pathways including OSR, UPR, DDR, and IR as well as 
cell death information caused by various DILI compounds. These data
sets were used for builindg a Logic-ODE modelling to uncover the most 
critical cellular stress pathways that are predictive for DILI outcome. The 
major finding was that the UPR on ATF4-CHOP axis is most strongly 
associated with DILI compound induced cytotoxicity. The role of UPR 
involvement in DILI-induced cytotoxicity was further established by 
RNA interference experiments, and identified ATF6 as the most critical 
determinant of DILI compound induced cytotoxicity. 

Our experimental data demonstrate the different dynamics of the 
proteins involved in the specific stress response pathways by various 
DILI compounds. The different responses were found to be affected by 
the degree and duration of exposure. Mostly, the responses were clearly 
concentration dependent: both activation rate and extend of the 
response increased with the compound concentration. However, for 
some compounds such as cisplatin, nefazodone, and nitrofurantoin, the 
high concentrations paradoxically showed limited activation of partic
ular stress response pathways. This is most likely due to rapid progres
sive adverse cellular responses that may have impacted on general 
transcription and translation machineries and, thereby, affected the 
expression of newly synthesized GFP reporter proteins. Despite this 
general principle of stress responses activation, each compound elicited 
distinct temporal dynamics. Clustering based on those response dy
namics and cellular outcomes showed that the DILI compounds acti
vating UPR induced strong progressive cell death responses. Meanwhile, 
the compounds inducing OSR without the co-activation of other stress 
responses did not lead to the adverse cellular outcome such as the non- 
DILI control compounds. Interestingly, some compounds showing pro
gressive outcomes induced both UPR and OSR, particularly NRF2 nu
clear translocation. The activation of OSR by these compounds might be 
involved in the partial protection of the cells. Of relevance, we found 
moderate correlation between NRF2 and SRXN1 as its downstream 
target. This low correlation is linked to the different temporal dynamics 
of these 2 proteins: the nuclear translocation of NRF2 typically occurs 
early within the first period of compound exposure followed by a 

decrease of this protein while SRXN1 exhibits a rather sustained in
duction over time with a plateau level after twenty hours depending on 
the compound. Furthermore, we found that there is a positive correla
tion between the activation of UPR components ATF4 and CHOP with 
cell death. This is in line with previous studies which showed that UPR- 
activating compounds are mostly classified as the severe DILI com
pounds [7,13]. 

In order to get a deeper mechanistic insight of our experimental 
findings, we applied a Logic-ODE approach to describe the mode of 
stress response pathways regulation upon DILI compound perturbation. 
Unlike traditional mechanistic ODE-based models, this modeling 
approach requires only prior knowledge on signaling network archi
tecture, without information from biochemical reactions or kinetic pa
rameters which are often unavailable. In this work, we demonstrate that 
the Logic-ODE approach allowed us to capture changes in molecular 
responses in both concentration- and time-response fashion from our 
dynamic experimental data which is similar to what traditional ODE- 
based models can deliver[37,54]. With the simplicity of the Logic-ODE 
framework, it was also possible to build customized models for all 
investigated compounds. 

Apart from linking the parameters from Logic-ODE models as fea
tures to predict pathological observations [12], we are the first to 
demonstrate that the model states in the Logic-ODE models could also be 
directly linked to cell phenotype such as apoptosis. This novel imple
mentation allows to mechanistically connect the modulation of stress 
response signals towards cytotoxicity measures. In addition, standard 
modeling analytical techniques such as parameter sensitivity analyses 
could be performed to predict the changes of molecular responses due to 
the modification of model parameters, allowing the sensitive parts of the 
network that control progressive cellular outcomes to be identified. 
Furthermore, as the expected profiles of signaling molecules and cellular 
outcomes can be predicted over the range of concentrations and time- 
course, the Logic-ODE models could further guide the selection of 
compound doses and time-points for a validation experiment which 
demonstrates the highest effects from the respective perturbation that 
can still be observed experimentally. 

Our unbiased Logic-ODE modelling identified the parameters from 
the ATF4-CHOP axis of the UPR pathway with the highest correlation 
with cell death/apoptosis outcome and highest sensitivity across mul
tiple DILI compounds (Fig. 5A). These modeling results were in agree
ment with the correlation plots of individual reporters with adverse 
outcomes (Fig. 3), providing confidence in the Logic-ODE modelling 
approach. A role for the ATF4-CHOP axis in the control of apoptosis is in 
agreement with the literature [11,15,30,33]. Analysis of a large DILI 
compound transcriptomics dataset in primary human hepatocytes has 
confirmed that various DILI compounds induce the activation of the 
ATF4-CHOP axis [13]. However, a systematic assessment on the 
involvement of UPR components in the control of DILI compound- 
induced cytotoxicity has to our knowledge never been performed. 
Neither CHOP nor ATF4 were critical determinants of DILI compound- 
induced cytotoxic outcome, possibly due to other compensating cyto
protective pathways arising upon the depletion of these proteins such as 
increase of receptor-mediated signaling pathways (Niemeijer et al. un
published observations). However, we identified ATF6 as a critical 
determinant of the onset of apoptosis by several DILI compounds that 
also demonstrated a significant activation of the UPR response, 

Fig. 8. Role of individual UPR components in progressive cellular outcomes caused by nitrofurantoin, diclofenac, nefazodone and troglitazone. A) Temporal dy
namics plot of the UPR components upon the compound exposures expressed by the (min–max) normalized integrated GFP intensity. Shadow in the plots represent 
standard error mean (SEM). B) HepG2 CHOP-GFP cells with depletion of indicated UPR components were exposed to 234 µM nitrofurantoin, 808 µM diclofenac, 79 
µM nefazodone and 381 µM troglitazone. Area under the curve of cell death fraction measured from 0 to 60 h in the most affecting knock down condition (siATF4 and 
siATF6). The error bars show standard deviation from 3 to 4 replicates. Significance is depicted with * = p-val ≤ 0.05; ** = p-val ≤ 0.01; *** = p-val ≤ 0.001. C) 
Temporal dynamics of CHOP-GFP (expressed by the (min–max) normalized integrated GFP intensity) upon the exposure of compounds in the UPR perturbed cells 
increase and sustained of CHOP expression (siATF4 and siATF6). Shadow in the plots represents standard error mean (SEM). 
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including cyclosporin A, nitrofurantoin, diclofenac and omeprazole. Yet, 
cytotoxicity caused by other DILI compounds, troglitazone, nefazodone 
and azathioprine, that also demonstrated activation of the UPR pathway 
reporters, was not significantly modulated by depletion of any UPR 
component; although nefazodone showed some trend that mimicked the 
responses from nitrofurantoin and diclofenac. This suggests that despite 
onset of UPR by these latter compounds, that other cellular injuries, e.g. 
mitochondrial toxicity, may dominate the adverse cell fate. Recently, 
activation of the ATF4 pathway by potent mitochondrial respiratory 
chain inhibitors was demonstrated [28], suggesting that a contribution 
of mitotoxicity by some of the DILI compounds in the activation of the 
ATF4-CHOP pathway cannot be excluded. Overall, these findings 
highlight the fact that there are still missing regulatory mechanisms 
within the UPR branches which could not be captured in this particular 
study. 

We observed that in particular, ATF6 depletion resulted in a signif
icant increase of cell death in the majority of the tested DILI compounds. 
This might imply an adaptive protective role of ATF6 in DILI compound- 
induced UPR activation. Moreover, activation of ATF6 is known to 
increased BIP expression (where silencing BIP expression in this study 
also increases cell sensitivity) thereby providing renewed cellular pro
teostasis and cytoprotection [3]. This is in line with previous studies 
reporting that blocking the ATF6 pathway leads to the increase of cell 
sensitivity towards apoptosis during stress [43]. Previously, we estab
lished a key role for ATF6 in modulating the CHOP response of tunica
mycin [54]. In this study we showed that depletion of ATF6 impacts 
considerably on the overall CHOP-GFP expression upon DILI compound 
exposures by increasing and/or stabilizing its expression. This might 
indicate that loss of ATF6 increase the sensitivity of the cells by pro
longing the ATF4-CHOP axis activation. This finding is supported by a 
previous study showing that chronic UPR activation indicated by CHOP 
expression induces cytotoxicity [17]. Despite the concordance to the 
previous studies, the usage HepG2 cell lines as the most high throughput 
liver model in this study involves some limitation. The difference bio
logical properties from primary cells such as proliferation rates, central 
metabolism and biotransformation capacity, could lead to different 
response compared to PHH or in vivo situation. This might be the reason 
of low-mild activation of stress responses in negative control compounds 
such as verapamil. The low metabolic capacity of HepG2 cells lines 
might also arise the over/underestimation of toxic responses resulted by 
the toxic metabolites as observed for acetaminophen. These issues could 
be overcome by culturing the HepG2 in spheroids as it was previously 
reported that in the 3D spheroid culture with higher CYP450 [22] or 
cultured in medium for improved differentiation [4]. 

In conclusion, we presented a new and comprehensive analytical 
approach by combining highly granular dynamic experimental data of 
cellular stress response pathway activation with Logic-ODE modeling. 
Our integrated approach indicates that activation of UPR on ATF4- 
CHOP axis is an important predictor for adverse cellular outcomes for 
DILI compounds. We propose that our panel of UPR cellular stress 
response reporters and the temporal dynamic analysis of the UPR on 
ATF4-CHOP axis activation can be a valuable component of a DILI de- 
risking strategy for novel drug candidates. 

Author contributions 

LSW performed all time-course GFP screening and validation ex
periments. PT built Logic-ODE models of stress response, performed 

model optimisation and prediction, AG designed and compiled the 
computational scripts for Logic-ODE modelling, MN, JK, AAM, KS per
formed parts of the screening together with LSW. SW, HY, and LSW 
analyzed the screening results. PB, SS, SLD, JS, HK, JH, ML, JB, JSR and 
BvdW supervised the project. LSW and PT wrote the manuscript. All 
authors read and approved the final manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was part of the Dutch-German ZonMW-BMBF SysBioToP 
project and supported by the Innovative Medicines Initiative (IMI) 2 
Joint TransQST project (grant agreement No 116030) and the EU- 
ToxRisk project funded by the European Commission under the Hori
zon 2020 program (grant agreement number 681002). The IMI Joint 
Undertaking receives support from the European Union’s Horizon 2020 
research and innovation program and EFPIA. The authors thank Hans de 
Bont and Leiden University Cell Observatory for their support & assis
tance in this work. 

References 

[1] Atienzar, Franck A., Eric A. Blomme, Minjun Chen, Philip Hewitt, J. Gerry Kenna, 
Gilles Labbe, Frederic Moulin, et al. 2016. “Key Challenges and Opportunities 
Associated with the Use of in Vitro Models to Detect Human Dili: Integrated Risk 
Assessment and Mitigation Plans.” BioMed Research International 2016. 10.1155/ 
2016/9737920.Bell L, Chalasani N (2009) Epidemiology of Idiosyncratic Drug- 
Induced Liver Injury. Seminars in Liver Disease 29:337–347, https://dx.doi.org/ 
10.1055%2Fs-0029-1240002. 

[2] Bell L, Chalasani N (2009) Epidemiology of Idiosyncratic Drug-Induced Liver 
Injury. Seminars in Liver Disease 29:337–347, https://dx.doi.org/10.1055%2Fs- 
0029-1240002. 

[3] E.A. Blackwood, K. Azizi, D.J. Thuerauf, et al., Pharmacologic ATF6 activation 
confers global protection in widespread disease models by reprograming cellular 
proteostasis, Nat. Commun. 10 (2019) 187. https://www.nature.com/articles/s41 
467-018-08129-2. 

[4] R. Boon, M. Kumar, T. Tricot, I. Elia, L. Ordovas, F. Jacobs, J. One, J. De Smedt, 
G. Eelen, M. Bird, P. Roelandt, G. Doglioni, K. Vriens, M. Rossi, M.A. Vazquez, 
T. Vanwelden, F. Chesnais, A. El Taghdouini, M. Najimi, E. Sokal, D. Cassiman, 
J. Snoeys, M. Monshouwer, W.S. Hu, C. Lange, P. Carmeliet, S.M. Fendt, C. 
M. Verfaillie, Amino acid levels determine metabolism and CYP450 function of 
hepatocytes and hepatoma cell lines, Nat. Commun. 11 (1) (2020 Mar 13) 1393, 
https://doi.org/10.1038/s41467-020-15058-6. PMID: 32170132; PMCID: 
PMC7069944. 

[5] A. Chakrabarti, A.W. Chen, J.D. Varner, A review of the mammalian unfolded 
protein response, Biotechnol. Bioeng. 108 (2011) 2777–2793, https://doi.org/ 
10.1002/bit.23282. 

[6] R. Chan, L.Z. Benet, Evaluation of DILI predictive hypotheses in early drug 
development, Chem. Res. Toxicol. 30 (2017) 1017–1029, https://doi.org/10.1021/ 
acs.chemrestox.7b00025. 

[7] Chen, M., Suzuki, A., Thakkar, S., Yu, K., & Hu, C. (2016). DILIrank : the largest 
reference drug list ranked by the risk for developing drug-induced liver injury in 
humans. 21(4), 648–653. 10.1016/j.drudis.2016.02.015. 

[8] X. Chen, J. Chen, S. Gan, et al., DNA damage strength modulates a bimodal switch 
of p53 dynamics for cell-fate control, BMC Biol. 11 (2013) 73. https://bmcbiol. 
biomedcentral.com/articles/10.1186/1741-7007-11-73. 

[9] I.M. Copple, W. den Hollander, G. Callegaro, et al., Characterisation of the NRF2 
transcriptional network and its response to chemical insult in primary human 
hepatocytes: implications for prediction of drug-induced liver injury, Arch. Toxicol. 
93 (2019) 385–399, https://doi.org/10.1007/s00204-018-2354-1. 

Fig. 9. Role of individual UPR components in progressive cellular outcomes caused by omeprazole and azathioprine. A) Temporal dynamics plot of the UPR 
components upon the compound exposures expressed by the (min–max) normalized integrated GFP intensity. Shadow in the plots represent standard error mean 
(SEM). B) HepG2 CHOP-GFP cells with depletion of different indicated UPR regulators were exposed to 470 µM omeprazole (left) or 34 µM azathioprine (left). Area 
under the curve of cell death fraction measured from 0 to 60 h in the most affecting knocked down condition (siATF4 and siATF6). The error bars show standard 
deviation from 3 to 4 replicates. Significance is depicted with * = p-val ≤ 0.05; ** = p-val ≤ 0.01; *** = p-val ≤ 0.001. C) Temporal dynamics of CHOP-GFP 
(expressed by the (min–max) normalized integrated GFP intensity) upon the exposure of compounds in the UPR perturbed cells showing increase and sustained 
of CHOP expression (siATF4 and siATF6). Shadow in the plots represents standard error mean (SEM). 

L.S. Wijaya et al.                                                                                                                                                                                                                               

https://www.nature.com/articles/s41467-018-08129-2
https://www.nature.com/articles/s41467-018-08129-2
https://doi.org/10.1038/s41467-020-15058-6. PMID: 32170132; PMCID: PMC7069944
https://doi.org/10.1038/s41467-020-15058-6. PMID: 32170132; PMCID: PMC7069944
https://doi.org/10.1002/bit.23282
https://doi.org/10.1002/bit.23282
https://doi.org/10.1021/acs.chemrestox.7b00025
https://doi.org/10.1021/acs.chemrestox.7b00025
https://bmcbiol.biomedcentral.com/articles/10.1186/1741-7007-11-73
https://bmcbiol.biomedcentral.com/articles/10.1186/1741-7007-11-73
https://doi.org/10.1007/s00204-018-2354-1


Biochemical Pharmacology 190 (2021) 114591

17

[10] A.V. Cybulsky, Endoplasmic reticulum stress, the unfolded protein response and 
autophagy in kidney diseases, Nat. Rev. Nephrol. 13 (2017) 681–696. https: 
//www.nature.com/articles/nrneph.2017.129?foxtrotcallback=true. 

[11] Demay Y, Perochon J, Szuplewski S, et al (2014) The PERK pathway independently 
triggers apoptosis and a Rac1/Slpr/JNK/Dilp8 signaling favoring tissue 
homeostasis in a chronic ER stress Drosophila model. Cell Death & Disease 5: 
e1452–e1452, https://www.nature.com/articles/cddis2014403. 
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