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Abstract
Predicting brain pharmacokinetics is critical for central nervous system (CNS) drug development yet difficult due to ethical

restrictions of human brain sampling. CNS pharmacokinetic (PK) profiles are often altered in CNS diseases due to disease-

specific pathophysiology. We previously published a comprehensive CNS physiologically-based PK (PBPK) model that

predicted the PK profiles of small drugs at brain and cerebrospinal fluid compartments. Here, we improved this model with

brain non-specific binding and pH effect on drug ionization and passive transport. We refer to this improved model as

Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0). LeiCNS-PK3.0 predicted the unbound drug concentrations of brain

ECF and CSF compartments in rats and humans with less than two-fold error. We then applied LeiCNS-PK3.0 to study the

effect of altered cerebrospinal fluid (CSF) dynamics, CSF volume and flow, on brain extracellular fluid (ECF) pharma-

cokinetics. The effect of altered CSF dynamics was simulated using LeiCNS-PK3.0 for six drugs and the resulting drug

exposure at brain ECF and lumbar CSF were compared. Simulation results showed that altered CSF dynamics changed the

CSF PK profiles, but not the brain ECF profiles, irrespective of the drug’s physicochemical properties. Our analysis

supports the notion that lumbar CSF drug concentration is not an accurate surrogate of brain ECF, particularly in CNS

diseases. Systems approaches account for multiple levels of CNS complexity and are better suited to predict brain PK.
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Introduction

Central nervous system (CNS) pharmacokinetic (PK) pro-

filing, though challenging, remains critical for drug

development. Two PK profiles can be distinguished in the

CNS: brain and cerebrospinal fluid (CSF) PK profiles. In

CNS drug development, compounds are selected that

optimize brain PK profile, since brain cells and extracel-

lular fluid (ECF) represent the major site of drug (side-)

effects. Suboptimal drug exposure in brain has resulted in

clinical trial failure and has ultimately contributed to the

high attrition rate of the CNS drugs in development [1].

CSF represents a relatively accessible matrix to sample the

CNS, mainly via lumbar puncturing. While lumbar CSF

drug concentrations predict brain concentrations better than

that of plasma [2], its accuracy as a surrogate of brain PK

has been argued [3], particularly for low passive perme-

ability and actively transported drugs [4].

The major challenge in designing drugs with adequate

brain PK, is the poor understanding of the role of CNS

(patho)physiology in determining brain PK [5]. Up to this

challenge, a mechanistic, systems-based understanding of

key physiological and pathological processes in healthy

and diseased CNS is instrumental in predicting brain

(patho-) pharmacokinetics.

Our group previously published a comprehensive CNS

physiologically-based (PBPK) model that predicts the

unbound concentration–time profiles of small drugs within

the CNS [6, 7]. This model, hereafter referred to as Leiden

CNS PBPK predictor 1.0 (LeiCNS-PK1.0), was developed

using knowledge-based, bottom-up modeling [6, 7], with-

out using in vivo-measured PK profiles for model building.

The mechanistic structure of LeiCNS-PK1.0 allows inter-

species and interpopulation translation and provides a

framework to study the effect of altering a single or
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multiple physiological aspects on CNS PK. Thus, LeiCNS-

PK1.0 can be used to predict mechanistically the effect of

disease-altered CNS physiology on unbound drug exposure

in brain [7]. While LeiCNS-PK1.0 could adequately pre-

dict the CNS PK profiles of rats and healthy humans [6, 7],

several components of CNS physiology, including brain

tissue non-specific binding and pH impact on passive

transport, were represented in a rudimentary manner. This

limited the translatability of LeiCNS-PK1.0 predictions

between species and from healthy to diseased populations.

First, the calculated pH factors did not reflect the neutral

drug fraction of a given compartment, as neutral drug

fraction in each compartment was normalized to that of the

plasma compartment. In addition, it was assumed that the

charged drug molecules do not undergo transcellular or

paracellular passive transport across the blood–brain

(BBB) and blood-cerebrospinal fluid (BCSFB) barriers,

which is not physiologically plausible as charged drugs can

be transported via the passive paracellular route [8].

Accounting for the impact of pH on drug ionization has

been shown to clearly improve the prediction of CNS PK

profiles of drugs with weak acidic and/or basic groups [9].

Drug non-specific binding, on the other hand, lacked a

mechanistic description and physiological plausibility as it

was assumed in LeiCNS-PK1.0 to occur instantaneously

within the ECF and was calculated using the unbound drug

fraction in brain and plasma, brain tissue composition, and

lipophilicity of the drug. Brain unbound drug fraction (fu,b)

as measured in vitro, varies between measurement tech-

niques, requires brain tissue, and might not be available at

early stages of drug development. Brain non-specific

binding has been demonstrated to be one of the major

determinants of brain pharmacokinetics [10], particularly

for lipophilic drugs [11–14]. Hence, LeiCNS-PK1.0

required improvement.

In this paper, we first improve LeiCNS-PK1.0 by read-

dressing the effect of pH on drug ionization, LeiCNS-

PK1.0 assumptions related to passive transport of charged

molecules at BBB and BCSFB barriers, and the time-de-

pendent brain tissue non-specific binding. We refer to this

improved model as Leiden CNS PBPK predictor 3.0 or

LeiCNS-PK3.0. Next, we use LeiCNS-PK3.0 model to

explore the effect of altered CSF dynamics on CSF and

brain ECF PK profiles as well as on predictability of brain

ECF drug concentration by that of lumbar CSF. Changes in

CSF dynamics, CSF volume and flow, are common in CNS

diseases (Table 1) and often alter CSF PK; their effect on

the brain ECF PK profiles remains unexplored [15].

Methods

CNS and plasma in vivo-measured drug
concentrations

Drugs used to validate the model predictions included

acetaminophen, atenolol, methotrexate, morphine, pheny-

toin, raclopride, risperidone, paliperidone, remoxipride,

quinidine, oxycodone, and indomethacin. These drugs were

selected to cover the physicochemical space of small drug

molecules with molecular weights between 100 and

500 g/mol, different ionization rate constants and charge

class at physiological pH, different lipophilicity, and dif-

ferent affinity to active transporters at the BBB and

BCSFB.

Plasma PK data, for the development of the empirical

plasma models, and CNS PK data, for the evaluation of

LeiCNS-PK3.0 predictions, were available for both rats

and humans from the literature. Supplementary table 1

summarizes the sampling location and data references.

For validating the rat version of LeiCNS-PK3.0, only in-

house data were used, where individual unbound PK pro-

files were simultaneously measured in the same animal

under controlled conditions in plasma and in multiple CNS

locations: brain ECF, lateral ventricles (LV), and cisterna

magna (CM) using microdialysis, in addition to total brain

concentrations, which were measured with the brain

homogenate method. Clinical brain PK profiles measured

with microdialysis are quite rare due to ethical restrictions.

In humans, individual unbound PK profiles of brain ECF

and lumbar CSF were available from patients with condi-

tions that do not affect CNS physiology or from healthy,

uninjured sites. Acetaminophen and indomethacin con-

centrations were measured in patients with nerve root

compression. Oxycodone were available from patients

undergoing elective gynecological surgery. Morphine

concentrations were collected using microdialysis from

uninjured brain tissue sites from traumatic brain injury

patients.

Total drug concentrations were corrected using respec-

tive fraction of unbound drug where needed. CSF drug

concentrations were assumed unbound due to the low

protein content of the CSF, i.e. fu,CSF = 1, except for

indomethacin with an fu,CSF of 0.47 [16].

Drug-specific parameters

Drug specific parameters: lipophilicity (logPo/w), acid/base

ionization constants (pKa/pKb), and molecular weight,

were collected from Drugbank [17] and are listed in

Table 2. Calculated logPo/w values by ALOGPS method

[18] were used, unless experimental logPo/w values were
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available, while calculated pKa/pKb values by the MAR-

VIN method provided by CHEMAXON [19] were used.

Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0)

Model development

LeiCNS-PK3.0 (Fig. 1 and Supplementary Fig. 1) consists

of an empirical plasma model, which predicts plasma PK,

and a nine-compartment CNS model. The empirical plasma

model serves as an input that drives the PK of the CNS

model, with both models linked by the cerebral blood flow.

Development of the empirical plasma model and detailed

description of the CNS model structure, physiological

processes, and transport modes are described below. The

physiological parameters of rats and humans are presented

in Supplementary table 2. When multiple values were

found in the literature, the mean value was used.

LeiCNS-PK3.0 is an improvement of the published

LeiCNS-PK1.0 [6, 7] on aspects related to brain non-

specific binding, pH effect on drug ionization, and

assumptions related to transcellular and paracellular pas-

sive diffusion of the charged drug molecules. A compar-

ison of the improved aspects in LeiCNS-PK3.0 compared

to LeiCNS-PK1.0 is presented in Table 3.

CNS compartments

In LeiCNS-PK3.0, different CNS compartments are

accounted for: brain microvessels, brain extracellular fluid

(ECF), brain intracellular fluid (ICF), lysosomes, cranial

cerebrospinal fluid (CSF) compartments: lateral ventricles,

third and fourth ventricles, and cisterna magna, in addition

to the CSF in subarachnoid space (SAS), including lumbar

CSF. A new compartment, brain cell membrane, has been

added to LeiCNS-PK3.0, as the assumed non-specific

binding site in brain.

pH effect on drug ionization

The pH factors (PHF) are defined as the neutral fraction of

the drug concentration of a given compartment. PHF is

determined using adapted Henderson-Hasselbalch equa-

tions utilizing compartment-specific pH (pHcomp) and the

ionization constants of the strongest acidic group (pka) and

the strongest basic group (pkb) of the drug. In case of drugs

missing one group (e.g. risperidone has only a basic group,

but no acidic groups), the relevant neutral fraction of this

missing group is set to 1. PHF is calculated as per the

equations below.

Neutral fraction of acidic group PHFacidicð Þ ¼ 1

1þ 10pHcomp�pka

Neutral fraction of basic group PHFbasicð Þ ¼ 1

1þ 10pkb�pHcomp

Neutral fraction of drug PHFð Þ ¼ PHFacidic � PHFbasic

Brain tissue non-specific binding

In LeiCNS-PK3.0, brain phospholipids, which constitute a

major fraction of brain cell membranes, are assumed as the

non-specific binding site in brain [20–22]. The volume of

the brain cell membrane compartment is 5% of the total

brain volume, which represents the volume fraction of

phospholipids in the brains of rats [23] and humans [24].

CLwo and CLow (mL min-1) describe the diffusion clear-

ance of a given drug between brain ECF and ICF on one

side and brain cell membrane on the other side. At steady

state, the ratio of the drug concentration in the brain cell

Table 1 Cerebrospinal fluid dynamics in different CNS disease conditionsa

Aginga Alzheimer’s disease Hydrocephalus Traumatic brain injurya

CSF volume 400% 150%b 150%b 115%

[51] [52] [53] [54]

CSF production 66% 46%a 60%b

[55] [56] [57]

CSF flow 150% Normal CSF flowa 370% and reverse flow directiona

[58] [59] [32]

CSF clearance Reduced CSF absorptionc 65%b 20–60%a

[60] [61] [62]

aCompared to adults (\ 60 years)
bCompared to elderly (60 ? years)
cA study in rats
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membrane to the drug concentration in the brain ECF and

ICF is equal to the octanol–water partition coefficient (Poct-

water).

Bulk fluid flow

Bulk fluid flow refers to the drug clearance between CNS

compartments due to fluid flow, irrespective of the con-

centration gradients. In LeiCNS-PK3.0, bulk flows include

cerebral blood flow between the brain microvessels and the

central compartment of the empirical plasma model, ECF

bulk flow from brain ECF to LV, and the CSF flow from

the cranial CSF to the absorption sites in SAS.

Passive transport

Passive transport in the CNS involves paracellular and

transcellular transport. Transcellular transport refers to the

permeability of the drug through phospholipid bilayer of

the membranes of the BBB endothelial cells, BCSFB

Fig. 1 LeiCNS-PK3.0 model structure. LeiCNS-PK3.0 is composed of a whole body empirical plasma model and a CNS PBPK model. Both

models are connected via cerebral blood flow

Table 3 Comparison of the improved aspects in LeiCNS-PK3.0 versus LeiCN-PK1.0

Aspect LeiCNS-PK1.0 LeiCNS-PK3.0

pH factor (PHF) Defined as the ratio of the neutral fraction of a drug of a given

compartment to that of plasma

Defined as the neutral fraction of a drug in a given

compartment

Calculated using Henderson-Hasselbalch equations with pH of the

compartment, pH of plasma, and the drug-specific ionization constant

Calculated using adapted Henderson-Hasselbalch

equations using compartment specific pH and the

drug-specific ionization constant

Brain tissue

non-specific

binding

Using binding factor Mechanistic description

Instantaneous According to diffusion clearance between aqueous

and lipid phases

Binding occurs within the brain ECF to a hypothetical compartment Binding occurs to the phospholipids of the brain

cell membrane

Relies on total brain-to-plasma concentration ratio (Kp). Kp is calculated

using drug lipophilicity (logP), unbound drug fraction in brain (fu,b)

and plasma (fu,p), and brain and plasma tissue composition

Relies on drug lipophilicity and the volume of

brain phospholipids

Passive

paracellular

transport

Paracellular route is restricted to neutral drug only Paracellular route is available for both neutral and

charged drug
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epithelial cells, brain parenchyma, and lysosomes. Para-

cellular transport describes the aqueous diffusion of the

drug molecules between the cells of the BBB and BCSFB

via the openings of the tight junctions. Further details on

the equations required to calculate aqueous diffusion and

transmembrane permeability are reported in the supple-

mentary information and in [6].

In LeiCNS-PK3.0, neutral drug molecules are trans-

ported through both transcellular and paracellular routes,

whereas charged drug molecules are transported via para-

cellular routes only. Anions, cations, and zwitterions are

assumed to undergo paracellular diffusion at the same rate.

Asymmetry factors

In LeiCNS-PK3.0, physiological processes that are not

explicitly addressed such as active transport across the

BBB and BCSFB, and metabolism, are accounted for using

asymmetry factors (AF). AF were calculated using the

LeiCNS-PK3.0 equations at steady state and Kpuu, the ratio

of the unbound drug concentration in a given tissue to that

of plasma. Kpuu values were available from the literature or

calculated using influx and efflux clearances of a given

compartment [25].

Kpuu ¼
Clin
Clout

where Kpuu is the ratio of unbound concentration of a given

tissue compartment to that of plasma at steady state, Clin is

the total influx clearance into the tissue compartment, and

Clout total efflux clearance out of the tissue compartment.

Influx and efflux clearances can be estimated using avail-

able unbound drug concentration–time profiles. In humans,

Kpuu values are not often available and can be calculated as

described in the decision tree presented in [7]. If in vivo-

measured Kpuu values are unavailable, AF can be derived

from in vitro estimates such as efflux ratio and cell uptake

values as we described previously [7, 26].

Equations for calculating AF are provided in the sup-

plementary materials. Influx AF (AFin) and efflux AF

(AFef) are calculated at BBB, BCSFBLV, and BCSFBTFV,

where three scenarios are possible depending on the value

of Kpuu. Kpuu equal to 1 suggests an equilibrium of drug

concentration across BBB/BCSFB, and thus AFin and AFef
are equal to 1. Kpuu smaller than 1 suggests active efflux at

BBB/BCSFB; in this case AFin is set to 1, while AFef is

calculated using the relevant equation and the associated

Kpuu value. Kpuu larger than 1 suggests active influx at

BBB/BCSFB, AFef is set to 1, and then AFin is calculated

[7].

The calculated AF values are listed in Table 2. The AF

factors of atenolol and methotrexate were exceptionally

high, which can be attributed mainly to their very low Kpuu

values. Atenolol (Kpuu = 0.037) is a low passive perme-

ability molecule and recent evidence show that atenolol

might undergo active transport at the BBB [27].

Methotrexate (Kpuu = 0.018, 0.0066, 0.0024 for ECF, LV,

and CM, respectively) is a substrate of PGP [28], BCRP

[29], and MRP4 [30], which are three main transporters at

the BBB and BCSFB. At CNS physiological pH,

methotrexate acts as an anion, whose negative charge could

reduce its passive permeability as a result of the interaction

with negatively charged phospholipids of the cell mem-

branes. The combined low passive permeability and pres-

ence of active transport contribute to the low Kpuu of both

drugs.

Empirical plasma PK models

Rat plasma PK models were developed using non-linear

mixed effects modeling, where one-, two-, three- com-

partment models were compared. Interindividual variabil-

ity was tested using an exponential model for every PK

parameter. Residual unexplained variability was included

using either proportional or combined proportional/additive

error models.

The final model was selected based on likelihood ratio

test with p\ 0.05, equivalent to a decrease of the objective

function value of 3.84; visual predictive check (VPC) plots

to compare the model fit to drug concentrations in plasma;

precision of the parameter estimates denoted by the %rel-

ative standard errors; and the basic goodness of fit plots

that include individual/population predictions versus

observations and conditional weighted residuals versus

population prediction/time.

Human plasma PK models were either available from

the literature or developed in a similar fashion as described

for rats.

LeiCNS-PK3.0 evaluation

LeiCNS-PK3.0 model performance was evaluated using

visual prediction check plots (VPCs), where the median

and 95% prediction interval of 200 model simulations were

plotted against and compared to in vivo-measured unbound

drug concentrations. The model simulations accounted for

interindividual variability and residual variabilities of the

plasma PK model, as described above. The relevant g of

interindividual variability and e of residual unexplained

variabilities were randomly sampled from a normal distri-

bution with a mean of 0 and a variance of x2 and r2,

respectively, and transformed as required.

Next, prediction errors were calculated using the indi-

vidual measured drug concentrations and their corre-

sponding time-matched simulations median. Average fold

error (AFE) was calculated to evaluate the model’s bias,
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while absolute average fold error (AAFE) was calculated to

compare the typical PK profile simulated by the model to

the typical PK profile of the measured PK data. A typical

profile is the profile predicted assuming no interindividual

variability, i.e. when etas are set to zero. AFE and AAFE

were calculated using relative accuracy calculated for each

drug. AFE and AAFE values approaching 100% denote

accurate model predictions.

Relative Accuracy of a given drug (RAdrug) at a given

compartment was calculated as follows:

RAdrug ¼
1

M

XN

i¼1

Xm

j¼1

log10
MedPi;j

Obsi;j

� �

M ¼
XN

i¼1

m

where Obsi,j is jth observation of the ith individual; MedPi,j
is the median value of the 200 simulations corresponding to

Obsi,j; M is the total number of observations of all indi-

viduals; m is the number of observations of the ith indi-

vidual; and N is the total number of individuals.

%AFE of a given compartment was calculated as:

AFE ¼ 1

D

XD

d¼1

RAdrug

%AFE ¼ 100� 10AFE

where D is the number of drugs used for evaluation.

%AAFE of a given compartment was calculated as:

AAFE ¼ 1

D

XD

d¼1

RAdrug

�� ��

%AAFE ¼ 100 � 10AAFE

In addition, the mean absolute relative accuracy

(MARA) was calculated to evaluate the variability of

individual drug concentrations around the median of

LeiCNS-PK3.0 simulations within a given compartment.

MARA was based on absolute relative accuracy of a given

drug (ARAdrug) at a given compartment, which was cal-

culated as:

ARAdrug ¼
1

M

XN

i¼1

Xm

j¼1

log10
MedPi;j

Obsi;j

� �����

����

MARA ¼ 1

D

XD

d¼1

ARAdrug

%MARA ¼ 100� 10MARA

where Obsi,j is jth observation of the ith individual; MedPi,j
is the median value of the 200 simulations corresponding to

Obsi,j; M is the total number of observations of all indi-

viduals; m is the number of observations of the ith

individual; N is the total number of individuals; and D is

the number of drugs used for evaluation.

Symmetric mean absolute prediction errors (SMAPE)

were calculated to benchmark LeiCNS-PK3.0 with

LeiCNS-PK1.0. A SMAPE value closer to 0% implies a

more accurate model.

SMAPE %ð Þ ¼ 100

M

XN

i¼1

Xm

j¼1

2 � Obsi;j �MedPi;j

� �

Obsi;j þMedPi;j

����

����

where Obsi,j is jth observation of the ith individual; MedPi,j
is the median value of the 200 simulations corresponding to

Obsi,j; M is the total number of observations of all indi-

viduals; m is the number of observations of the ith indi-

vidual; and N is the total number of individuals.

The effect of altered CSF dynamics on brain ECF
PK

The effect of altered CSF volume and flow on the drug

exposure in the brain ECF and CSF was studied using

human LeiCNS-PK3.0. Simulations were performed for six

drugs with different physicochemical properties. Test drugs

included methotrexate, acetaminophen, phenytoin, ateno-

lol, raclopride, and risperidone. A fixed 1-compartment

plasma PK model of human was applied across all drugs in

order to isolate the impact of CSF parameters from other

variables. Rat Kpuu values and the associated AF were

adapted for humans. The resulting drug concentration ratio

of brain ECF-to-SAS was compared between the physio-

logical, two- and five-fold CSF volume and flow. SAS in

this setting represents lumbar CSF PK profile, while brain

ECF represents the brain PK profile, assuming no active

transport takes place at the level of the brain cells. Brain

ECF is an intermediate compartment between brain

microvasculature and brain cells and therefore unaltered

drug exposure in brain ECF will imply unaltered drug

exposure in brain cells. Two- and five-folds changes were

selected to reflect the changes of CSF volume and CSF

flow in CNS diseases as reported in Table 1. For example,

the volume of the ventricles increase by 4.57%/year during

healthy aging [31], which in the course of 20 years will

result in the expansion of the ventricles to about 250%. The

CSF flow, measured at the aqueduct of patients with idio-

pathic normal pressure hydrocephalus patients, increases to

370% of its physiological value [32].

Sensitivity analysis

A sensitivity analysis was performed using the human

version of LeiCNS-PK3.0 to identify the main parameters

that define the PK profiles at the brain ECF, brain ICF and

SAS. The sensitivity analysis was carried out using four

Journal of Pharmacokinetics and Pharmacodynamics

123



drugs with distinct physicochemical properties: acet-

aminophen, morphine, methotrexate, and raclopride. The

CNS parameters were varied individually by 1.1, 1.5, and 2

folds, and resulting PK descriptors, Cmax, Tmax, and AUC,

in the selected compartments were compared to those of

the physiological situation, using the sensitivity index

calculated as:

Sensitivity index ¼ log2
Yd

Yo

where Yd and Yo are the pharmacokinetic descriptors

(Cmax, Tmax, and AUC) of the altered and physiological

values, respectively.

Data analysis and software

Plasma PK model parameters were estimated using

NONMEM version 7.4.3 (ICON, Dublin, Ireland) [33].

General data analysis and visualization and LeiCNS-PK3.0

simulations were performed using R version 3.6.1 [34],

where simulations were performed using RxODE package

version 0.9.1-0 [35], using the LSODA (Livermore Solver

for Ordinary Differential Equations) Fortran package.

Algebraic equations were solved using Maxima Computer

Algebra System version 19.01.2x (available from http://

maxima.sourceforge.net). Literature data were extracted

with WebPlotDigitizer version 4.2 (https://apps.automeris.

io/wpd/).

Results

Plasma PK models

The empirical plasma model parameters of the rat and

human are displayed in Table 4. Rat plasma PK model

parameters were estimated with good precision and the

models accurately described the observed plasma drug

concentrations. The plasma PK model of methotrexate,

however, slightly overpredicted the data. Human plasma

models of acetaminophen and morphine were available

from the literature [36], while plasma PK model parameters

of oxycodone and indomethacin were developed.

Model evaluation

The CNS model of LeiCNS-PK3.0 was developed using

bottom-up modeling relying on physiological information

only. Evaluation of the model predictions was performed

using published PK data from different brain regions, and

thus model evaluation is independent from model

development.

Rat LeiCNS-PK3.0 evaluation

Figure 2 and Supplementary Fig. 2a-b depict the VPC

plots of rat LeiCNS-PK3.0 simulations against the mea-

sured drug concentrations of 10 drugs (Supplementary

table 1). LeiCNS-PK3.0 adequately predicted the observed

data in the brain ECF, lateral ventricles (LV), and cisterna

magna (CM), with some exceptions. Methotrexate brain

ECF and quinidine 20 mg LV concentrations were slightly

underpredicted. Phenytoin brain ECF and CM and quini-

dine CM concentrations were underpredicted towards the

end of the simulation. Remoxipride 4, 8, 16 mg predictions

captured the peak of the observations but overpredicted the

remaining observations. LeiCNS-PK3.0 additionally pre-

dicted brain homogenate (BH) concentrations, but less

adequately. The model overpredicted quinidine and

remoxipride 0.7 mg and underpredicted phenytoin 40 mg

observations and raclopride peak concentration.

In addition, LeiCNS-PK3.0 performance was evaluated

by calculating the relative accuracy error and its deriva-

tives: %AFE and %AAFE that assess the model’s bias and

typical PK profile predictability, respectively. Supplemen-

tary Fig. 2C displays a box plot of relative accuracy errors.

%AFE (95% confidence interval) of brain ECF, LV, CM

and BH were 90% (67–120), 77% (41–146), 80%

(56–116), and 64% (6–643), respectively. These values

deviate by a maximum of 35% from the optimum value of

100% and are indeed within two-fold error. %AAFE (95%

confidence interval) were 140% (118–167), 139% (85-

229), and 149% (120–185) for brain ECF, LV and CM,

respectively, which deviate by\ 50% and are within two-

fold error. BH predictions were less accurate, with a

%AAFE of 322% (99–1045).

SMAPEs, besides, were calculated for comparison with

LeiCNS-PK1.0. SMAPE of LeiCNS-PK3.0 (vs LeiCNS-

PK1.0) were 65% (vs 72%), 71% (vs 71%), 70% (vs 69%),

and 105% (vs 91%) for brain ECF, LV and CM and BH,

respectively.

Human LeiCNS-PK3.0 evaluation

Figure 3 displays the VPC plots of the human LeiCNS-

PK3.0 simulations against the measured concentration–

time profiles of four drugs (Supplementary table 1). The

plots show that LeiCNS-PK3.0 adequately predicted the

brain ECF and SAS concentrations. Acetaminophen and

indomethacin SAS concentration were underpredicted to

some extent. %AFE (Supplementary Fig. 3) of brain ECF

and SAS were 92% and 56%, respectively. %AAFE of

brain ECF and SAS were 109% and 179%, respectively.

All error values were within the two-fold error limit.
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Effect of altered CSF dynamics on brain ECF
and CSF pharmacokinetics

PK profiles of brain ECF and SAS compartments at dif-

ferent CSF flow and volumes are shown in Fig. 4a, b for

acetaminophen and Supplementary Fig. 4 a-e and 5 a-e for

methotrexate, phenytoin, atenolol, raclopride, and risperi-

done. Changes in CSF volume and flow altered SAS but

not brain ECF PK profile and hence changed the brain

ECF-SAS ratio. Within the SAS, decrease in CSF volume

Fig. 2 Model evaluation of the rat LeiCNS-PK3.0 model. Visual

predictive checks plots compared in vivo measured drug concentra-

tion (black dots) in multiple CNS locations to the median (solid line)

and 95% prediction intervals (colored band) of 200 model simula-

tions. ECF brain extracellular fluid, LV lateral ventricles, CM cisterna

magna, BH brain homogenate (Color figure online)

Fig. 3 Model evaluation of the human LeiCNS-PK3.0 model. Visual

predictive checks plots compared in vivo measured drug concentra-

tion (black dots) in multiple CNS locations to the median (solid line)

and 95% prediction intervals (colored band band) of 200 model

simulations. ECF brain extracellular fluid, SAS subarachnoid space

(Color figure online)
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or increase in CSF flow results in an earlier Tmax, higher

Cmax, and a faster clearance. The observed changes of Tmax

and Cmax at the SAS compartment was the same for all

drugs regardless their physicochemical properties.

Sensitivity analysis

LeiCNS-PK3.0 sensitivity analysis was performed to

identify the CNS model parameters that influence the PK

profiles at the brain ECF, brain ICF, and SAS. The iden-

tified parameters were drug- and CNS compartment-de-

pendent. Brain ECF and ICF PK profiles were sensitive to

active transport at BBB as reflected by brain-to-plasma

Fig. 4 Pharmacokinetic profiles of acetaminophen at brain extracel-

lular (ECF) fluid and subarachnoid space (SAS) at physiological and

a two- and b five-fold altered cerebrospinal fluid (CSF) volume and

flow. Changing CSF dynamics affects SAS pharmacokinetics and not

brain ECF pharmacokinetics. ECF brain extracellular fluid, SAS
subarachnoid space
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unbound drug partitioning (Kpuu,ECF), volume and surface

area of brain cells, width of BBB and tight junction pore,

and pH of brain ECF and ICF. The SAS PK profile was

sensitive to active transport at BCSFB given by the CSF-

to-plasma unbound drug partitioning (Kpuu,CM), CSF flow,

and SAS volume. LeiCNS-PK3.0 sensitivity analysis

results are shown in Supplementary Fig. 6.

Discussion

LeiCNS-PK3.0 simulations showed that altered CSF

dynamics resulted in a shift in the drug concentration ratio

of brain ECF-to-SAS CSF, where SAS CSF PK profiles but

not brain ECF PK profiles were affected. This observation

is independent of the drug’s physicochemical properties, as

it is assumed in the model that transport into and out of the

SAS CSF is mediated by CSF flow and does not involve

barrier transport. This implies a context-specific surrogacy

of lumbar CSF-to-brain ECF PK profiles and thus this

relationship is not suitable for interpopulation or inter-

species translation. LeiCNS-PK3.0 simulations, thus,

reproach the classical assumption of the prediction of

lumbar CSF drug concentration to brain ECF drug con-

centrations [2], which is in line with previous findings [3].

LeiCNS-PK3.0 performance

LeiCNS-PK3.0 is an improved and a more mechanistic

version of LeiCNS-PK1.0 [6, 7], where the physiological

processes of non-specific binding and pH effect on drug

ionization and passive transport across BBB and BCSFB

have been addressed. LeiCNS-PK3.0 predictions are based

exclusively on plasma PK, CNS physiological parameters,

drug physicochemical properties, and in vitro measure-

ments. LeiCNS-PK3.0 predicts brain non-specific binding

using a drug property, i.e. lipophilicity, which is either

measured at the early stages of drug development or pre-

dicted with QSAR approaches. This makes lipophilicity

more efficient to use compared to the formerly-used brain

unbound drug fraction (fu,b), which requires brain tissue.

LeiCNS-PK3.0 predictions are predominantly unbiased

as indicated by the below 35% %AFE. The model, how-

ever, slightly underpredicts drug concentrations of human

SAS, but within the two-fold error margin. Drug concen-

tration–time profiles of rat brain ECF, LV, and CM and of

human brain ECF and SAS were adequately predicted.

%AAFE errors, which indicate the model prediction of

typical PK profiles, were within the two-fold error limit,

with human brain ECF predictions deviating less than 10%.

LeiCNS-PK3.0 predicted BH PK profiles less ade-

quately which could be the result of the unaccounted for

physiological processes such as brain metabolism, active

transport at the brain cells, specific binding of drugs to

target receptor, etc. BH predictions of raclopride, a known

dopamine D2 receptor substrate [37], displayed the largest

error among other drugs. %AAFE of BH without including

raclopride was 223% compared to 322% with raclopride.

Future inclusion of receptor binding and other physiolog-

ical process is anticipated to improve LeiCNS-PK3.0

predictions.

LeiCNS-PK3.0 predictions of human brain intracellular

fluid (ICF) PK profiles are depicted in supplementary

Figs. 8. Both brain ECF and ICF represent the sites of drug

action, which makes their PK profiles of top interest to drug

developers. Brain ICF PK profiles cannot be validated with

in vivo PK profiles, as such data are not attainable. Imaging

techniques do not distinguish intracellular and extracellular

drug. The brain slice method could be used to investigate

the concentration and time dependency of the equilibrium

between the brain ECF, represented by the buffer, and

brain ICF [38]. This in vitro method is, however, limited by

the loss of the whole brain context as a number of physi-

ological processes such as bulk flows are missed, in addi-

tion to the limited duration of tissue viability.

Sensitivity analysis: implications to LeiCNS-PK3.0
assumptions

A number of LeiCNS-PK3.0 parameters were calculated

based on certain assumptions about CNS physiology, some

of which were found by the sensitivity analysis to largely

affect CNS PK. The affected assumptions were: surface of

the brain cells membrane (SABCM), CSF flow, and active

transport.

SABCM was calculated using brain cells volume and

number, assuming that all brain cells are spheres of equal

radii. CSF flow was assumed constant in ventricles and the

subarachnoid space, which does not reflect the physiology.

Active transport was accounted for by calculating AF using

Kpuu whose value is dependent on dosing and measurement

techniques. Improving the mechanistic description of these

parameters should be a priority of future investigations and

will increase the confidence in LeiCNS-PK3.0 predictions.

New non-specific binding model

Brain non-specific binding in LeiCNS-PK3.0 is presented

as a time-dependent process; a diffusion clearance

describes the drug partitioning between brain ECF/ICF and

phospholipids of the brain cell membrane. This is based on

two assumptions. First, phospholipids of the brain cell

membrane play a determinant role in non-specific binding

within brain compared to the negligible role of brain pro-

teins e.g. albumin [23, 39], neutral lipids [20], and other

components of brain cells [22]. The second assumption
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relates to Poct-w representation of biological lipophilicity.

Octanol–water system represents a simplified model of

drug partitioning between aqueous and lipid phases, com-

pared to the phospholipid bilayer of the brain cell mem-

brane. Poct-w, for example, neglects the partitioning of

charged molecules to phospholipids. A number of studies

have demonstrated the correlation of Poct-w and brain non-

specific binding. Poct-w was shown to explain about 52%

(reported as R2) of the variability in experimentally-mea-

sured volume of distribution of unbound drug (Vu,brain) in

brain [14] and about 44–74% (reported as R2) of the

variability in experimentally-measured fraction of unbound

drug in brain (fu,b) [11–13]. This evidence indicates that

Poct-w provides an adequate predictor of brain non-specific

binding.

pH effect on drug ionization and its effect
on drug transendothelial transport

Drug molecules in the CNS ionize depending on the

compartment-specific pH and the drug-specific acid and

base ionization constants. In LeiCNS-PK3.0, it is assumed

that charged molecules can cross the barriers by paracel-

lular diffusion only, ignoring the transcellular transport of

charged species and paracellular route preference to

cationic drugs [8]. Charged drug transcellular and para-

cellular transport rate is, however, negligible compared to

neutral species transport rate and is not expected to criti-

cally influence LeiCNS-PK3.0 predictions.

In vivo studies addressing the impact of CSF
dynamics on brain ECF versus CSF PK profiles

A number of studies have supported the surrogacy of the

CSF PK profiles to those of brain ECF, based on studies

performed in rats, for both actively and passively trans-

ported drugs [2, 40, 41]. These studies are based, however,

on CSF samples collected at the cisterna magna. Cranial

CSF, including CSF at the cisterna magna, is in a relatively

faster equilibrium with brain ECF, as compared to the

distal lumbar CSF. In contrast to what is generally

assumed, it has been shown in both in silico [42] and

preclinical and clinical studies [43] that lumbar CSF does

not reflect the PK profiles of brain ECF or even cisternal

and ventricular CSF. In addition, our LeiCNS-PK3.0 sen-

sitivity analysis suggests that brain ECF and ICF pharma-

cokinetic profiles are insensitive to CSF-related

parameters. In a similar modeling study, the sensitivity

analysis of a permeability-limited CNS PBPK model

demonstrated that multiple factors while affecting the PK

profiles of lumbar CSF, did not affect those of brain or even

cranial CSF [42].

Preclinical and clinical studies that address the impact of

altered CSF volume and/or flow on brain CSF PK profiles

are rare, due to the associated technical and ethical

restrictions. In addition, changing one CNS parameter in

isolation is more of a hypothetical situation rather than can

truly be realized in in vivo studies. Notwithstanding, a

number of studies have addressed the impact of acetazo-

lamide-induced reduction of CSF flow on brain ECF and

CSF PK profiles. Acetazolamide is a carbonic anhydrase

inhibitor drug, which reduces CSF production and flow by

about 50%. Methotrexate exposure in the ventricular CSF

of three patients was altered following acetazolamide

administration, where the terminal elimination half-life

increased [44] in agreement with the altered simulated

profiles in Fig. 4 and supplementary Fig. 4 of this manu-

script. The PK profile of alovudine measured in rat brain

ECF with microdialysis was not altered in response to

acetazolamide co-administration [45]. The PK profiles of

5-fluorouracil at rat brain ECF and cisterna magna CSF

were altered to different extents following acetazolamide

administration, implying the context dependency of drug

concentration ratio of brain ECF to CSF [46]. It can be

concluded as supported by LeiCNS-PK3.0 simulations and

the in vivo preclinical and clinical studies that the lumbar

CSF to brain ECF drug concentration ratio is context-de-

pendent and this ratio might be altered in response to a

change in CSF dynamics.

Absence of CNS IIV and its implications

LeiCNS-PK3.0 accounts for interindividual variability

(IIV) of the plasma pharmacokinetic parameters, but not

that of the CNS physiology parameters. The impact of the

IIV of CNS parameters on PK profiles is more prominent

when drug transport is dependent on a certain parameter.

For example, acetaminophen’s, a slightly lipophilic and

paracellularly-transported molecule, brain ECF PK profile

is sensitive to the tight junction pore diameter (Supple-

mentary Fig. 6). Thus, IIV of the tight junction pore

diameter might account for the larger observed variability

of brain ECF PK profile compared to that of plasma

(Fig. 2, top panel). Acetaminophen PK profile while

assuming nominal variabilities of 30% and 50% (as coef-

ficient of variation, %CV) on physiological CNS parame-

ters showed slightly wider 2.5th and 97.5th percentiles,

which therefore better described the observed variability of

the PK data (Supplementary Fig. 7).

The variability of the individual observed CNS con-

centrations relative to typical predicted profile was within

three-fold error as indicated by %MARA. For humans,

%MARA errors were 182%, 238% for brain ECF and SAS,

respectively, while for rats these were 207%, 229%, and

216% for brain ECF, LV, and CM, respectively.

Journal of Pharmacokinetics and Pharmacodynamics

123



Identification of variability of CNS model parameters and

associated covariates is crucial for predicting the individual

PK profiles, which remains challenging due to the limited

data, e.g. on CNS physiology and measured drug concen-

trations, required for estimating this level of variability.

Patho-pharmacokinetics require a systems
approach

CNS drug exposure in healthy and diseased conditions is a

function of both physiological and drug properties. In a

healthy CNS, a number of mechanisms contribute to the

rate and extent of the actual drug transport across the BBB,

resulting in a brain ECF PK profile that may substantially

differ from that of plasma. A change in any of the

parameters that govern the PK at brain ECF and ICF, as

identified by the sensitivity analysis, would potentially

result in altered CNS drug exposure. This is particularly

crucial in CNS diseases, in which the complex and multi-

factorial disease-specific pathophysiology would result in a

distinct CNS PK profiles compared to those of a healthy

CNS. In epilepsy, for instance, the increased expression of

active efflux transporters at BBB is associated with a lower

drug exposure in brain and hence resistance to therapy [47].

Furthermore, patients with traumatic brain injury showed

higher morphine concentrations of the injured brain tissue

ECF than those of the uninjured tissue, which is potentially

due to decreased tight junction and active transporters

expression at the BBB [7, 48]. Mechanistic, systems-based

approaches such as PBPK modeling account for drug and

CNS physiological properties in addition to the multidi-

mensional disease pathology and are thus better suited for

adequate PK predictions in healthy and diseased CNS. The

shortage of knowledge on (patho-) physiological parame-

ters and mechanisms remains a major challenge to trans-

lating CNS PBPK models between healthy and diseased

populations.

LeiCNS-PK3.0 applications

LeiCNS-PK3.0 applications include predicting PK profiles

of small drugs in a healthy CNS and in patients with CNS

diseases, e.g. Alzheimer’s, and exploring mechanistically

the impact of CNS disease pathophysiology on CNS PK i.e.

patho-pharmacokinetics. These applications are supported

by mechanistic detailing of different physiological pro-

cesses that for example distinguishes paracellular and

transcellular transports, but also accounts for brain cells

and lysosomes, a feature that was not supported in similar

published CNS models [42, 49, 50]. LeiCNS-PK3.0 is thus

useful at early stages of drug development to support (pre-)

clinical study design and decision-making, e.g. dose

selection and sampling time points.

Conclusion

In conclusion, we improved our published LeiCNS-PK1.0

by accounting for brain non-specific binding and read-

dressing pH effect on drug ionization and passive transport.

LeiCNS-PK3.0 simulations demonstrated that altered CSF

dynamics changes brain ECF-to-SAS drug concentration

ratio and implied a context-dependent PK surrogacy of

lumbar SAS to brain ECF.
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45. Ståhle L, Borg N (2000) Transport of alovudine (30-fluo-
rothymidine) into the brain and the cerebrospinal fluid of the rat,

studied by microdialysis. Life Sci 66:1805–1816. https://doi.org/

10.1016/S0024-3205(00)00504-X

46. Shingaki T, Hidalgo IJ, Furubayashi T et al (2009) The transnasal

delivery of 5-fluorouracil to the rat brain is enhanced by aceta-

zolamide (the inhibitor of the secretion of cerebrospinal fluid). Int

J Pharm 377:85–91. https://doi.org/10.1016/j.ijpharm.2009.05.

009
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