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Neandertal advice for improving your 
tinder profile: A pilot study using 
experimental archaeology to test the 
usefulness of manganese dioxide (MnO2) 
in Palaeolithic fire-making

Andrew C. Sorensen

The collection of the black minerals comprised primarily of manganese dioxide 
(MnO2 ) by Neandertals in France is a known archaeological phenomenon, with some 
of these blocks exhibiting evidence of having been abraded to produce powder. This 
has generally been interpreted as the production of black pigment that may have been 
applied to the body as a form of symbolic expression. However, Heyes and colleagues 
(2016) demonstrate that MnO2 can reduce the auto-ignition temperature of wood by 
upwards of 100°C and suggest that this special pyrotechnic property of powdered 
MnO2 may have been appreciated by Neandertals. Specifically, they suggest that the 
addition of MnO2 to tinder materials may have aided in fire-making. The purpose 
of the pilot study described here is to test the utility of MnO2 as a tinder enhancer 
during actualistic fire-making experiments. The flint-and-pyrite fire-making method 
was employed to produce sparks that were directed onto fluffed tinder fungus (Fomes 
fomentarius) with and without added MnO2 to determine if and the degree to which 
this material improves the ability of the tinder to capture and propagate sparks into a 
glowing ember. The results of this pilot study lend support to the hypothesis of Heyes 
and colleagues by demonstrating that MnO2 improves the spark capturing efficiency of 
tinder material over untreated tinder, thereby reducing the time and energy required 
to produce fire using the percussive fire-making method. However, it was also 
observed that the incorporation of pyrite (FeS2 ) dust into the untreated tinder over the 
course of the experiments appeared to improve its ability to capture sparks, lending 
to the idea that pyrite powder added to tinder prior to making fire could also expedite 
the process and largely negates the need for collecting MnO2 for this purpose.

Keywords: Fire-making, Neandertals, manganese dioxide, tinder, Palaeolithic, 
experimental archaeology

1. Introduction
The ability to make fire is an exclusively human trait. Yet, the origins of fire pro-
duction technology remain largely a mystery. Sporadic evidence for hominin fire 
use is known from at least 1.5 Mya (Berna et al. 2012; Gowlett and Wrangham 2013; 
Hlubik et al. 2017), with this practice appearing in the archaeological record with 
more frequency after around 400‑300 kya with the appearance of Neandertals at 
the dawn of the Middle Palaeolithic (Roebroeks and Villa 2011a; Shimelmitz et al. 
2014). It is still unclear, however, if this apparent increase in fire use is due to their 
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having developed the ability to make fire from scratch. 
The tools used to perform this task – so‑called flint 
‘strike‑a‑lights’ used to percuss fragments of pyrite to 
produce sparks – do not appear until much later in the 
Palaeolithic, first among late Neandertals in France 
(Sorensen and Rots 2014; Rots 2015; Sorensen et al. 
2018), and then among Upper Palaeolithic modern 
humans in Western Europe (Weiner and Floss 2004; 
Slimak and Plisson 2008; Sorensen et al. 2014). This is 
especially true after the Last Glacial Maximum ca. 20 
kya when archaeological instances of fire‑making tools, 
though still rare, begin to appear with more regularity 
(Stapert and Johansen 1999; Winiarska‑Kabacińska 
2009; 2010; Pyżewicz 2015; Osipowicz et al. 2018).

The idea that Neandertals could make fire 
remains contentious, with some authors arguing that 
they very likely possessed this capability (Roebroeks 
and Villa 2011b; Sorensen 2017), while others suggest 
fire‑making rests solely in the realm of modern 
humans (Sandgathe et al. 2011a; 2011b; Dibble et al. 
2017; 2018). Claims of direct evidence of fire‑making 
by Neandertals in the form of dozens of Mousterian 
of Acheulean Tradition (or MTA) bifaces in France 
possessing microwear related to the production of 
fire have been put forward recently by Sorensen 
et al. (2018) and lend strong support to the former 
argument.

Prior to these findings, a novel study by Heyes 
et al. (2016) sought to test the pyrotechnic properties 
of manganese dioxide (MnO2), a black mineral found 
in abundance at some late Neandertal sites in France, 
often exhibiting traces of having been ground into 
powder (figure 1). The traditional interpretation of this 

evidence has been that the powder was likely used as a 
pigment for body painting (Soressi and d’Errico 2007). 
Heyes et al. challenged this traditional interpretation 
on the grounds that 1) for use as black pigments, other 
materials (charcoal, soot) were more readily available 
for less search costs, and 2) through compositional 
analyses of the manganese blocks. Concerning this 
latter point, Heyes et al. found that adding powdered 
MnO2 to wood turnings lowered the ignition tempera-
ture of this material by upwards of 100°C, ultimately 
suggesting that MnO2 may have been collected by 
Neandertals to aid in fire‑making by acting as a tinder 
enhancer. It remains difficult to prove definitively 
that Neandertals were using MnO2 for this purpose, 
however, and further investigation is warranted.

One aspect of the Heyes et al. study that remains 
to be explored is the applicability of MnO2 as a tinder 
enhancer under actualistic fire‑making conditions. In 
their study, the experiments were performed under 
lab conditions using machined wood turnings as the 
tinder material, which could be considered much 
too coarse for use in more traditional fire‑starting 
methods, and matches to ignite the tinder material. 
To add validity to their hypothesis, the utility of 
MnO2 as a tinder enhancer should be tested using a 
fire‑production method known to Palaeolithic peoples, 
specifically the stone‑on‑stone method (Sorensen et al. 
2014; 2018), which can be described as follows. A piece 
of flint (commonly referred to as a ‘strike‑a‑light’) is 
brought together forcefully with a fragment of the 
mineral pyrite (FeS2) to produce sparks. These sparks 
are directed onto and eventually ‘captured’ by a bed of 
generally fibrous or fluffy tinder material, producing 

Figure 1: Examples of manganese 
dioxide (MnO2) blocks collected from 
Middle Palaeolithic layers at Pech de l’Azé 
I (Dordogne, France). Blocks (a) and (c) 
exhibit evidence of grinding, while blocks 
(b) and (d) are unmodified. After Heyes 
et al. 2016.
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a glowing ember that can ultimately be blown into a 
flame and used to start a fire. For the small pilot study 
presented here, a series of six fire‑making experi-
ments using hoof fungus (Fomes fomenatarius) as 
tinder were performed in order to determine if, and to 
what extent, the addition of MnO2 to a tinder material 
improves its ability to capture sparks, thus expediting 
the fire‑making process.

2. Materials and Methods
Fire‑making experiments were performed indoors 
at the Leiden University Faculty of Archaeology 
Laboratory for Artefact Studies using a Grand‑
Pressigny flint crested blade strike‑a‑light and a halved 
pyrite nodule collected from the beach near Cap 
Gris‑Nez (France), where the tip of the strike‑a‑light 
was rubbed forcefully against the broken surface of 
the pyrite to produce sparks (figure 2). Both elements 
of fire‑making set were used throughout the experi-
ments in an effort to control for possible spark produc-
tion variability between different strike‑a‑light/pyrite 
combinations. Moreover, both elements had been used 
previously by the author to make fire, with the surface 
of the pyrite nodule fragment homogenously flattened 
and the end of the strike‑a‑light already rounded from 
use. This was done to ensure that the morphologies 
of these contact surfaces would be largely similar for 
all experiments (as opposed to, for example, using a 
freshly made strike‑a‑light tool whose end would start 
sharp and become increasingly dull over the course 

of the experiments, likely creating variability in spark 
production).

The sparks produced by the flint and pyrite were 
directed onto a bed of tinder made of finely shredded 
Fomes fomentarius (collected by the author in Skåne 
Province, Sweden). Colloquially known as tinder 
fungus or hoof fungus, Fomes fomentarius is a well-
known tinder material that has been used by Stone Age 
(Stapert and Johansen 1999; Pétrequin 2015; Wierer 
et al. 2018) and modern peoples alike in temperate and 
boreal zones across the Northern Hemisphere (see 
Roussel 2005, and sources therein). The tinder was 
processed into a fluffy mass for the experiments by 
scraping the well‑dried velvety amadou portion of the 
fruiting body with a flint flake (figure 3). For each of 
the experiments, 0.3 g of tinder was used either ‘as is’ 
(control) or thoroughly mixed with 0.1 g commercial 
manganese dioxide (MnO2; specifically, pyrolusite) 
powder acquired from Sigma‑Aldrich (product 
reference 310700). The tinder for each experiment 
was placed inside a 4.5 cm diameter and 2.2 cm deep 
ceramic bowl to control for the surface area exposed 
to the sparks (figure 2). The tinder was tamped down 
into the bowl to form a continuous and more or less 
uniformly thick bed (3‑5 mm) to increase connectivity 
between the tinder fibres and ensure consistency 
between experiments.

The experimental program was divided into three 
series (A‑C) of two experiments, with one experiment 
using tinder treated with MnO2 and another using 

Figure 2: Materials and 
gesture used for fire-making 
experiments. The flint crested 
blade (right hand) was pressed 
firmly against the flat broken 
face of the halved pyrite 
nodule (left hand) and then 
forcefully pulled upwards to 
produce showers of sparks 
that fell into the small ceramic 
bowl containing the tinder.
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untreated tinder, for a total of six experiments (1‑6). 
Each experiment was comprised of 20 sets of five 
strokes (of the flint against the pyrite) that produced 
sparks (100 total), with the number of strokes per set 
in which sparks were captured recorded. The total 
number of strokes needed to achieve five spark‑pro-
ducing strokes per set was also recorded. These data 
were analysed and plotted using Microsoft Excel.

3. Results
A total of six fire‑making experiments were performed 
for this small pilot study: Experiments 1, 3 and 5 
used F. fomentarius tinder treated with MnO2, and 
Experiments 2, 4 and 6 used untreated tinder (table 1). 
On average, it took 144.7 strokes of the flint strike‑a‑
light against the pyrite to produce sparks 100 times 
(range: 131‑158 total strokes).

Of these 100 spark‑producing strokes for each 
experimental series, Experiments 1, 3 and 5 using 
tinder treated with MnO2 achieved 40, 34 and 27 
spark captures, respectively (average: 33.7). For 
Experiments 2, 4 and 6 using untreated tinder, 19, 6 
and 17 sparks were captured, respectively (average: 
14). Overall, this suggests a 140.7% increase in the 
rate of spark capture for tinder treated with MnO2 
over untreated tinder.

Each experiment was broken into 20 sets of five 
spark‑producing strokes. Of these 20 sets, experi-
ments using tinder treated with MnO2 (1, 3 and 5) 
were able to capture at least one spark in 100%, 90% 
and 95% of the sets, respectively, while experiments 

using untreated tinder captured at least one spark in 
only 60%, 25% and 55% of the sets, respectively.

Figure 4 plots the number of sparks captured 
per set of five spark‑producing strokes over 20 sets 
in order to determine if there were any changes in 
tinder effectiveness over time. The trendlines show 
that the tinder treated with MnO2 had higher and 
relatively consistent spark‑capturing capacities 
over the course of the fire‑making experiments 
(i.e., between 1.3 and 2.4 sparks captured per set) 
compared to experiments using untreated tinder. 
These, on the other hand, exhibit trendlines sug-
gesting an increase in spark‑capturing efficacy over 
the course of the experiments, with no sparks being 
captured early on followed by increasing numbers of 
sparks being captured in later sets approaching the 
spark‑capture rates of the MnO2-treated tinder (i.e., 
between 0.7 to 2.2 sparks captured per set near the 
ends of the experiments).

Another way to visualize this improvement in 
untreated tinder over time is seen in figure 5. Here, 
the sets of five spark‑producing strokes are combined 
into four groups of five sets (i.e., Group 1 = Sets 1‑5, 
Group 2 = Sets 6‑10, etc.), with the bars presenting 
the percentage of individual sets per group having 
captured at least one spark. Again, we see that the 
ability of the MnO2‑treated tinder to capture sparks 
remains high throughout the experiments (80‑100% 
of sets capturing sparks per grouping), while the 
untreated tinder captured no sparks in any of the 
experiments during the first five sets, but captured 
progressively more sparks during subsequent sets, ul-

Figure 3: Photos of hoof fungus (Fomes fomentarius) used as tinder in the fire-making experiments, both in its natural state still 
adhering to a tree (a) and during processing (b), where the velvety, upper portion of the fruiting body interior (the amadou) was 
scraped into a fluffy mass using a flint flake.
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timately reaching a 100% success rate in line with the 
MnO2‑treated tinder in two of the three experimental 
sets (Series A and C in figure 5).

4. Discussion
Fire was very likely an important aspect of the day‑to‑
day lives of Neandertals, as it is among all hunter‑gath-
erer societies of today, and any means to improve the 
success rate of fire‑starting events would have been 
viewed favourably by these peoples. Possessing the 
ability to produce fire when and where it was needed 
would have been extremely advantageous, allowing 

Neandertals to cook their food (Henry et al. 2011; 
Barkai et al. 2017), to produce tools (Wragg Sykes 2015; 
Kozowyk et al. 2017; Aranguren et al. 2018) and to very 
effectively control their environment (see Clark and 
Harris 1985 for an overview of the many advantages 
fire affords). This includes both the means to regulate 
their microclimate by warming up their bodies and 
living spaces, but also to shape the landscape to their 
benefit, perhaps using fire to clear areas to make way 
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Figure 4: Line graphs plotting the number of sparks captured 
per set of five spark-producing strokes during fire-making 
experiments using tinder mixed with manganese dioxide 
(MnO2) and untreated tinder (Control).
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Figure 5: Bar graphs indicating the rate of spark capturing 
success over the course of the fire-making experiments using 
tinder mixed with manganese dioxide (MnO2) and untreated 
tinder (Control). Each group is comprised of five sets of five 
spark-producing strokes, with the rate of success measured 
as the percentage of sets within a group where at least one 
spark was captured.
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for preferred plant species or to attract hunted prey 
species (see Scherjon et al. 2015 for an overview).

The three elements necessary for producing 
fire using the stone‑on‑stone method are a piece of 
flint (or another siliceous raw material), pyrite and 
tinder. If one of these is lacking, including suitable 
tinder, then fire‑production is extremely difficult, 
if not impossible. The fine nature of the individual 
fibres comprising typical tinder materials and the 
high connectivity between these fibres allows for the 
easier capture and propagation of sparks produced 
during fire making. The short‑lived nature and rel-
atively low temperature of the sparks produced by 
pyrite (760‑870°C, compared to >1200°C for sparks 
produced using flint and high‑carbon steel; Bois 2004) 
often prove to be inadequate for igniting more coarse 
fibered, subpar tinder materials. The addition of MnO2 
to a tinder material appears to aid in the capture 
and propagation of a spark through a few different 
mechanisms. Heyes et al. (2016) has shown not only 
that the ignition temperature of a tinder material 
mixed with MnO2 is lowered by around 100°C, but also 
that oxygen atoms released during the combustion 
of MnO2 helped to feed the reaction. Moreover, based 
on observations from the current study, it appears 
that the powder, by filling in gaps within the tinder, 
increases the connectivity between the individual 
tinder fibres, thereby allowing an ember to more 
effectively propagate. This latter idea is potentially 
supported by the control experiment trends visible 
in figures 4 and 5 that appear to indicate the addition 
of pyrite powder during the fire‑making process 
similarly improves the effectiveness of the untreated 
tinder over time. These findings suggest that, in lieu of 
MnO2, pyrite powder could also be ground into tinder 
prior to making fire to increase the chances of suc-
cessfully capturing a spark from the onset.

Nevertheless, the incorporation of MnO2 into the 
Neandertal fire‑making kit may have been a novel 
approach to improving the effectiveness of subpar 
tinders in environments where more suitable tinders 
were unavailable, or to expedite the fire‑making 
process during the glacial climatic conditions of 
Marine Isotope Stage (MIS) 4 when the occurrence 
of MnO2 in Middle Palaeolithic archaeological layers 
becomes more regular (Demars 1992; Heyes et al. 
2016). Whether this was the primary purpose for 
collecting MnO2 or simply a secondary use of a 
material already on hand for other reasons is difficult 
to say. However, the small amount of MnO2 needed to 
improve tinder is in contrast to the high abundance of 

MnO2 present in some Middle Palaeolithic archaeolog-
ical layers, suggesting this material likely had multiple 
uses. Nevertheless, the co‑occurrence of abraded MnO2 
blocks (figure 1), fireplaces and a probable fire‑making 
tool in Layer 4 at the French Middle Palaeolithic site of 
Pech de l’Azé I (Soressi et al. 2008; Sorensen et al. 2018) 
lends strongly to the idea that fire‑making was among 
these uses.

5. Conclusion
There are two primary findings of this small exper-
imental study. First, the addition of MnO2 to the F. 
fomentarius increased the effectiveness of this tinder 
material by 140.7% over the untreated control groups, 
overall, and importantly, allowed the tinder to more 
readily capture sparks at the onset of each series of 
fire‑making experiments. Second, it was observed that 
despite the initial poor performance of the untreated 
control tinders, the spark capturing efficiency of these 
tinders increased over the course of the experiments, 
suggesting the gradual incorporation into the tinder 
of pyrite dust produced while attempting to make fire 
also enhanced the overall quality of the tinder. These 
findings largely support the conclusions of Heyes et al. 
(2016) by demonstrating the utility of adding MnO2 to 
tinder to improve its ability to capture sparks from 
the onset of a fire‑making episode, thus decreasing 
the time and effort needed to make a fire. However, 
the improved performance of the untreated tinder 
over the course of the experiments suggests that the 
addition of pyrite powder prior to making fire would 
also improve the initial performance of the tinder, 
making the acquisition and use of MnO2 specifically 
for this task largely superfluous. More experiments are 
currently underway to determine whether or not these 
trends of improved fire‑making efficiency hold for 
other natural tinders of variable quality.
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