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Chapter 6

Discussion

In this chapter, we will first summarize the results described in the previous
chapters of this thesis. After that, we discuss future directions in the field
of cell migration modeling.

6.1 Summarizing discussion

In Chapter 2, we presented ZebraGEM 2.0, an improved whole-genome
scale metabolic reconstruction for zebrafish. Compared to the previous
version of ZebraGEM [34], ZebraGEM 2.0 has been extended with the
oxidative phosphorylation pathway, Gene-Protein-Reaction assocations
and a more realistic biomass function. Due to the Gene-Protein-Reaction
associations, it can now be used for knock-out studies, respiration experi-
ments, and prediction of minimal feed, of which we have shown several
examples. Furthermore, we analysed changes in metabolism upon Mycobac-
terium marinum infection by integrating gene expression data of control
and Mycobacterium marinum infected zebrafish larvae. The model predicts
a lowered growth rate and reduced histidine metabolism for the infected
larvae. The biosignature of reduced histidine metabolism is also seen in
other studies on human patients, mice and zebrafish [280, 281]. Overall,
this improved model can be used to predict changes in zebrafish meta-
bolism in other experimental conditions based on expression data, which
can point out specific pathways, reactions or metabolites to further study
experimentally. Moreover, the model can be used as a reference framework
for interpreting omics data, for example, by showing RNAseq data on the
metabolic network structure [282].

In Chapter 3, we studied the influence of cell-matrix adhesions on
lymphocyte cell motility type. The type of motility is important for lympho-
cytes, as motility types differ in their effectiveness as immunosurveillance
behaviour. In this chapter, we proposed an extension of the Act model [73]
with cell-substrate adhesions to model lymphocyte motility. The model
includes the adhesions between cell and extracellular matrix and contains
four processes of adhesion dynamics: 1) de novo adhesion formation at the
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actin-rich leading edge of the cell, 2) expansion of already existing adhesion
patches, 3) spontaneous detachment of adhesions, and 4) adhesions break-
ing as the cell retracts. By increasing de novo adhesion formation, as well as
the energy required to break adhesions, cell speed and cell persistence drop,
and further increase results in pivoting behaviour, which is also observed
in B-lymphocytes with sustained attachment areas [143]. However, the
addition of these four processes fails to explain floating cells with no or few
adhesions that are unable to migrate efficiently. Hence, we extended the
model by including an extra feedback from the total adhesion area to the
effectiveness of propulsion. Including this feedback, the model can display
low motility at low total adhesion areas as well as stop-and-go motility
types at sligthly higher de novo adhesion formation rates. Finally, we also
saw that the ratio between the de novo adhesion formation and expansion
of adhesion patches influences the spatial distribution of adhesions and the
persistence of migration: cells with mainly small adhesion at the leading
edge are more persistent than cells with a single or few larger adhesion
patches near the cell center or rear. All in all, the behaviour captured by
this model is very rich and is comparable to behaviours seen in differ-
ent types of lymphocytes. Furthermore, the model show that parameter
values regarding de novo adhesion formation, adhesion patch expansion
and strength of the adhesion affect motility type. The molecular processes
that underlie these parameters, such as which integrins are expressed and
where they localize, or the strength of the matrix-integrin bond, could be
studied experimentally to see if they result in the motility types predicted
by the model. Such studies could deepen our understanding of how molec-
ular defects in the interactions between immune cells and the ECM, e.g., in
multiple myeloma [143] or inherited immune disease, eventually lead to
altered immune cell migration and immunity defects.

In Chapter 4, we used the Cellular Potts model (CPM) to study why cells
are efficient at performing topotaxis. Previous work on active Brownian
particles (ABPs) has shown that part of the topotaxis effect can be explained
by reduced cell persistence in denser pillar grids [75]. However, the active
Brownian particle model cannot explain the extent to which Dictyostelium
discoideum cells perform topotaxis. Using two different methods to model
persistent cell motion, we fill in the gap between active Brownian particles
and Dictyostelium discoideum. One method implements a persistent random
walker model into the CPM and can be viewed as an ABP model with
deformable volume. The other method, the Act model, phenomenolog-
ically models actin polymerization [73]. Both methods resulted in more
efficient topotaxis than ABPs, so deformable volume makes cells more effi-
cient at topotaxis. Furthermore, the actin-based method showed inhibition
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of locomotion upon colliding with pillars, and reoriented in a different
direction than the ABP-based method. This active reorientation leads to
even more efficient topotaxis. We conclude that, for biological cells, cell
volume and active reorientation enhance the persistence driven topotaxis
already predicted by the ABP model. We can further use this model to
explore more cell-steering grid properties, such as alternative pillar shapes
or pillar adhesivity patterns, for applications in tissue engineering. More-
over, studying this model setup provides us with insight in cell motility in
environment crowded by ECM and other cells, and, together with Chapter
3, allows us to explore how the cellular microenvironment can influence
the direction and type of cell motility.

After mathematical of modelling cell motility, we turn to analyzing cell
tracks of leukocytes in in vivo zebrafish in Chapter 5. Here, we studied the
role of TLR2 and MYD88, both part of the TLR-signalling cascade, on leuko-
cyte migration upon tail wounding in zebrafish larvae. Neutrophils and
macrophages of both tlr2-/- larvae and myd88-/- larvae were compared with
those of wildtype siblings. There was no difference in number of leuko-
cytes and leukocyte basal migration between unchallenged mutant and
wildtype larvae. However, upon tail-wounding, both tlr2-/- and myd88-/-

larvae showed less recruitment of neutrophils and macrophages at 2 to 6
hours post wounding than their wildtype siblings. We further analysed
cell track data of cells distant from the wound to study how leukocyte
migration is changed in the mutants. Besides analyzing the speed, net
displacement and meandering index, we also analyzed the mean velocity
towards the tail end and the mean squared displacement from which we
derived persistence times. For distant neutrophils there was no difference
in speed, but the directional movement toward the wound and persistence
of motility were reduced in the mutants compared to wild type neutrophils.
For macrophages, there was a similar difference in directionality, but on
top of that, the tlr2-/- and myd88-/- macrophages had lowered speed. From
this extensive cell track analysis, we conclude that TLR2 and MYD88 play
a role in the directionality of leukocyte migration upon wounding.

6.2 Future work

6.2.1 Combining signals in cell migration

In this thesis, we came across a number of cues that guide cells or influence
cell motility, as seen in Chapters 3 and 4. Cells in vivo encounter many of
these cues at the same time. There have been some efforts in understanding
combined cues. Li et al. used a 3D model of breast cancer cell migration



158 Chapter 6. Discussion

with interstitial fluid flow, autochemotaxis and ECM fibres to study how
these cues are combined in cell motion [283]. They showed that the flow
of self-secreted chemoattractant and the alignment of the ECM fibres with
the fluid flow resulted in synergistic motility: cell displacement was higher
when fluid flow and ECM alignment with fluid flow were increased to-
gether than the sum of cell displacement when only one of the two effects
(increased fluid flow; increased ECM alignment with fluid flow) were ap-
plied. In an experimental topotaxis setup, the effects of chemotaxis and
topotaxis on directed migration of Dictyostelium discoideum were studied
[74]. Here, the sum of drift in the case of aligned chemotaxis and topotaxis
and in the case of opposed chemotaxis and topotaxis is equal to twice the
drift of topotaxis. Thus, the chemotactic and topotactic drifts can be added
up vectorially. We still need more insight in how cues work together to be
able to grasp cell motility in vivo. Model studies can aid in this endeavour
by explicitly integrating multiple cues at the same time. An interesting
aspect to study here is the interplay of the molecular machinery of cell
locomotion and the different signalling cues.

6.2.2 A stroll in the cellular landscape

Aside from the chemical signaling in chemotaxis and haptotaxis, more stud-
ies now also focus on the structure of the environment. While cells move
through a tissue, they encounter non-motile cells, ECM, interstitial fluid,
which vary through different tissues; bone tissue is structured differently
from lymph nodes. In seperate models from Hecht et al. and Tweedy et
al. [284, 285] chemotaxing cells within a maze were studied and both mod-
els showed that the interplay between chemotaxis and the environmental
structure can result in directional cues. In the model from Hecht et al.,
cells could get stuck in a dead end of a maze which was permeable for a
chemoattractant. Secretion of a chemorepellant which could not penetrate
through the maze walls could resolve this. In the model of Tweedy et
al., cells rapidly consumed the chemoattractant, guiding the cells away
from chemoattractant depleted dead ends. Both studies contribute to the
questions that arise: to what extent is cell motility shaped by the structural
organization of the environment? And how can we find out about that? In
the example of synergy between autochemotaxis, fluid flow and aligned
ECM fibres [283], the model was used to test the different combinations of
fibre and flow alignment and showed that they have a synergistic effect
on directed cell motility. To extract this information from in vivo or in vitro
experiments is a lot harder. The lack of knowledge on the exact shape of the
environment could then skew the perceived effectiveness of chemotaxis.
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Another example of where knowledge of the shape of the environment
plays a role in interpretation of cell motility is a recent study on T cell
motility in liver [286]. Cell tracking data showed that these T cells dis-
play superdiffusive behaviour, which is often associated with Lévy walks
and optimal fouraging. However, the data lacked the infrequent large
displacements, which are a key characteristic of Lévy walks. They hy-
pothesized that T cells performed Brownian random walks, but that the
channeled structure of the liver shaped their motion such that it became
superdiffusive. To test this, they extracted the liver structure from imaging
data and modeled the motion of Brownian walkers inside this structure.
This sufficed to reproduce the superdiffusive behaviour, confirming their
hypothesis that liver structure shapes cell motility.

A study combining modeling and imaging showed that the crowded
environment of the lymph node plays a dominant role in T cell motion
[72]. Both liver and lymph node show limited space for the cell to move
in. This brings us to the point of the dimensionality of 3D environments.
Obstacles in the form of cells, cell layers and ECM fibres can reduce the
3D space to 2D or 1D space for cells to move in. Some of this structure is
immutable, such as mineralized ECM in bones, but cells can also alter parts
of this structure; they can degrade or rearrange the ECM. Understanding
the interplay between immutable and mutable structures in cell migration
is useful for further understanding of immune cell patrolling as well as
immune cell penetration in tissues such as tumours and granulomas.

6.2.3 Exchange between in vivo and in vitro motility parameters

The previous paragraphs point to a discrepancy between observed motility
and the inherent motility. This also makes it hard to directly translate
motility parameters between in vivo and in vitro data. Currently, Bayesian
inference methods are being used to extract data on chemotaxis fields from
cell track data from the lymph node [275]. However, the underlying model
does not take the spatial structure of the lymph node into account. This
could result in wrong estimates of the inferred chemotaxis fields or motility
parameters.

Incorrect estimates often bring novel insights. In Chapter 4, we matched
the CPM parameters such that our modeled cells had the same motility as
Dictyostelium cells on a 2D substrate. The subsequent topotaxis experiments
showed a discrepancy in speed between the Dictoystelium cells and the
simulated cells. This teaches us that our model still lacks some elements
that do play a role in the experiment. This points to further research on what
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those elements are and, in the long run, contributes to our understanding
of cell motion.

In Chapter 4, we used a simple hill-climbing algorithm to optimize
two parameters to obtain experimental cell motion. In this case it was a
straightforward answer to a straightforward question. However, the role
of machine learning in this field is currently growing [287, 288]. When we
want to increase the accuracy of inference methods, we must turn to more
detailed models, which inevitably come with more parameters. Machine
learning can aid in exploring the right areas of parameter space. Vice versa,
computational modeling can also aid in quantifying the uncertainties in
parameter estimations from in vivo or in silico data, by generating training
and test data sets [288].

6.2.4 Patroling and more: other tasks of immune cells

So far, we have mainly discussed cell motility. However, cell migration is
of course only a small aspect of the complex behaviour of cells. Leukocytes,
such as neutrophils and macrophages play a role in clearing out pathogens,
and hence, must also direct part of their energy to digestion of pathogens.
Furthermore, they also relay and amplify their own recruitment by produc-
ing cytokine and chemokines, which also requires a portion of their energy.
Hence, we can view the different tasks they have to fulfill from a metabolic
viewpoint.

When we want to understand the possible trade-offs in immune cell
motility, pathogen clearance and cell signaling, we can of course make use
of multiscale models. Integrating metabolism in motility models such as the
CPM or other agent-based modeling frameworks allows us test hypotheses
on infection clearance on a tissue scale. Recent work by Graudenzi et al.
combined the CPM and FBA framework by computing the growth rate for
indivual cells in the CPM using FBA [289]. We can also think of combining
constraint-based metabolic models with the CPM through the Hamiltonian
of the CPM. We can compute the energy available for movement depending
on the leukocyte state (migrating, phagocytizing, or signalling) and use
that energy budget for energetically unfavourable moves, instead of the
Boltzmann probability.

Advancements in single cell experimental techniques help in this ap-
proach. Sequencing data of isolated cells can function as a basis for the
metabolic component of these models. Data from cells known to be in
different states, such as infection state, or recruited/recruiting, would be of
great value here.
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Overall, this thesis presents a number of models that can be used as
building blocks for multiscale modeling, where combining metabolism and
cell migration models can give us further insight in how immune cells fight
infections.




