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Chapter 4

Topotaxis on silicon and in silico:
Obstacle-induced contact-inihibition of

locomotion explains topotactic cell
navigation in dense microenvironments

Leonie van Steijn, Joeri A.J. Wondergem, Koen Schakenraad,
Doris Heinrich, Roeland M.H. Merks

Abstract

During biological development, cancer metastasis and in the immune
system, cells navigate through dense environments filled with obstacles
such as other cells and the extracellular matrix. Recently, the term ‘topotaxis’
has been introduced for the navigation of cells along topographic cues
such as density gradients of obstacles. Experimental and mathematical
efforts have analysed topotaxis by looking at the migration of single cells
in pillared grids, in which topographic gradients can be defined precisely
as a pillar density gradient. We have previously introduced a model based
on active Brownian particles (ABP) which has shown that ABPs perform
topotaxis, i.e., drift, on average, to lower pillar densities, due to the decrease
in effective persistence time when pillars are closer together. Whereas
topotactic drifts of up to 5% of the instantaneous cell speed have been
observed experimentally, the ABP model could only predict topotactic
drifts of up to 1%. We hypothesized that the discrepancy between the ABP
and the experimental observations is in 1) the deformable cell volume, and
2) the cell-pillar interactions. Here we introduce a more detailed model
of topotaxis, based on the Cellular Potts model. To model persistent cells
we use two methods: the Act model by Niculescu et al., and a method
similar to the ABP model. After fitting our model parameters to yield
the same motion as experimentally found for D. discoideum on an empty
field, we study how topotaxis is performed. For starved D. discoideum, our
model predictions are close to the experimental results, especially when we
correct for the fact that our simulated cells have a higher speed. However,
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topotactic efficiency is different between the two persistence methods, with
the Act model outperforming the ABP persistent model. We found that the
Act model shows a larger reduction in effective persistence time in pillar
grids than the vector model. Lastly, we also modeled the slow and less
persistent vegetative D. discoideum cells, for which our model predicted a
small topotaxis drift. Here, both model variants predicted similar topotaxis,
contrasting with the starved cell results.

Popular summary

Cell motility is an important function in development and immunity. Know-
ing how the environment influence cell motility is useful in developing
methods to interfere during disease or in tissue engineering. One of the
ways the environment affects cell motility is by the presence of obstacles.
Previous work has shown that single cells move from a high density of
obstacles to a lower density of obstacles, a process called topotaxis. A
previous mathematical model, modelling cells as particles showed that the
velocity at which cells move from high to low obstacle density, the topotac-
tic drift, can in part be explained by reduced persistence: i.e. the closer the
obstacles are together, the quicker the particle looses its direction, resulting
in a bias towards less obstacle dense areas. However, the experimentally
found topotactic drift was higher.

In this work, we look at cell motility in obstacle gradients with a more
realistic cell model with deformable cells and compare those to an experi-
mental setup. We used two different methods to model the persistence of
cells: one which models the cytoskeleton and with active reorientation after
collisions, the other similar to the previous mathematical model and with
passive reorientation after collisions. We fitted our model to experimental
cell motion. Both models as well as the experiments show more topotactic
drift in steeper obstacle gradients. The model with active reorientation
shows a better match in topotaxis efficiency and outperforms the model
with passive reorientation. This is due to a larger loss of persistence when
collisions feed back to cell motility.

Next steps would be to investigate more complex environments. In-
teresting directions would be the integration of multiple environmental
cues, such as chemotaxis, in the model, and exploration of how obstacle
shape influences topotaxis, so that we get a better understanding of cell
navigation in the body.
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4.1 Introduction

Motile cells within the body encounter many obstacles such as other cells
and extracellular matrix, as they move through a tissue. How cells react
to the density of obstacles is of importance for many processes, such as
cancer cells invading from a dense tumor into looser packed tissues [180,
181], immune cells moving through tissues with different porosity [182,
183] or pathogens such as Plasmodium that migrate through different tissue
throughout their life cycle [184, 185]. It has been shown that cell can use
the topography of the environment as a way to orient themselves [186, 187,
188]. So far, topotaxis has only been shown in in vitro environments, but it
will also likely play a role in in vivo systems.

To study topotaxis quantitatively, a collection of in vitro models have
been developed to provide well-defined topographic cues to migrating cells.
In [186], cells are allowed to move on a subcellular-patterned array coated
with fibronectin. Cells follow the gradient in nanopattern, from dense
to sparser patterning. In [187], cells were put on polyurethane acrylate
nanohairs. These hairs were either vertical, or bent in a specific direction.
Cells on top of these hairs moved with a bias towards the bent direction, but
without bias on straight hairs. Also larger scale cues are known: in [188],
cells were placed on micropatterned substrates. The patterns were either
disconnected cell-sized triangles in a line, connected cell-sized triangles in
a line and a belt. They showed that cells in disconnected triangles hardly
moved from one spot to another, whereas cells in the other two patterns
did. Cells in the belt moved without preferential direction over the belt, but
the cells on the connected triangles moved with a bias in the direction of the
triangles. The rearrangement of actin and formation of the lamellipodium
were key players in this bias or ratcheting. An extensive review of other
cues in ‘ratchettaxis’ has been done in [189].

Wondergem et al. showed another setup in which topotaxis arises from
a cell-size cue [74]. They let starved Dictyostelium discoideum cells move
on a grid with micropillars placed with increasing pillar spacing in one
direction. As in previous work with isotropic pillar lattices [190][191], the
size of these micropillars were in the order of Dictyostelium cell size, in
contrast to [186] and many of the structures described in [189]. They found
that, on average, cells move to the side with larger pillar distance, with a
velocity of about 5% of their instantaneous speed.

Because Dictyostelium cells are persistent walkers [192], we hypothe-
sized that pillars alter this persistent motion. Once a cell bumps into a pillar,
it cannot continue and will have to change its direction, and hence change
its persistence. This first hypothesis on this form of topotaxis was tested
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by Schakenraad et al. [75]. They tested whether this topotaxis could be
explained by altered persistence lengths, similar to durotaxis on a stiffness
gradient [193] where cells on softer substrates change direction more often
than on stiffer substrates, or bacterial chemotaxis [194] where cells per-
form more tumbles in lower concentration of the chemoattractant. Using a
model with Active Brownian Particles, which also perform persistent mo-
tion, Schakenraad et al. showed that indeed topotaxis can be derived from
altered persistence lengths due to pillar spacing. However, the ABP model
could explain only a topotaxis of 1% of the intrinsic cell speed, significantly
lower than the 5% found in Dictyostelium experiments. Here we propose a
refined model for topotaxis giving a better match with the experiments.

This previous work shows that topotaxis in gradient pillar density can
partially be explained by changed effective persistence lengths. However,
what are the remaining factors that can explain the gap in topotactic drift
between ABPs and Dictyostelium cells? Some candidates are easy to point
out: ABPs are point-particles, whereas cells have a deformable and non-
zero volume. We can therefore expect cells to have a minimum pillar
distance through which they can move, as well as larger than zero area
of interaction between the cells and pillars. This cell-pillar interaction
points to another candidate: how cells reorient after collision. Where
ABPs only change their target direction by thermal fluctuation, cells can
actively reorient themselves. A well studied example of cell reorientation
is Contact Inhibition of Locomotion (CIL), where cells reorient themselves
after collision with another cell.

In this work, we model a persistently moving, deformable cell with
volume using the Cellular Potts model and test two different schemes
for cell persistence. The first scheme used the Act model which models
internal cell skeleton rearrangements [73]. This allows for emergent, active
reorientation as the cell cannot extend further into a pillar and will polarize
elsewhere, similar to CIL. As a control, the second scheme resembles the
ABP model and shows no CIL, as we explicitly assign a direction to a cell
together with a persistence time, which results in passive reorientation
upon collision. Before we look into topotaxis, we search for parameter
settings that match experimental Dictyostelium cells on an empty field so we
can quantitatively compare our model results with the experimental results
of persistently moving starved and less persistently moving vegetative
Dictyostelium cells.

For the starved parameter settings, the two different persistence schemes
results in different topotaxis, with the active reorientation model having
more efficient topotaxis. Our models slightly overpredict topotaxis com-
pared to the experimental results, but the main difference is cell speed,
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which is much higher in the simulations than in the experiments. On a
relative level, the model topotaxis and experimental topotaxis match very
closely, with the active reorientation model being a closer match. Trying
to explain the difference in speed, we test the effect of interaction between
pillar and cell, by changing the adhesion energy between them. However,
when simulated cell speed approximates experimental cell speeds, the
cells are largely sticking to the pillars, which we do not observe in the
experiments. Finally, we also predict a minute effect of the pillar grid on
vegetative Dictyostelium, that is only visible for very steep pillar gradients,
and is independent of persistence scheme.

4.2 Results

We characterized topotaxis for in vitro starved D. discoideum cells, and de-
veloped a Cellular Potts model with persistent cell motion with active or
passive reorientation upon collisions. Before we compared topotaxis mea-
sured in experiments and topotaxis measured in simulations, we made sure
to match the motility of simulated cells to in vitro starved cells. Futhermore,
we also matched the motility of simulated cells to in vitro vegetative D.
discoideum cells. After that, we characterized topotaxis in our starved as
well as vegetative simulations.

4.2.1 Model

We used the Cellular Potts model to simulate Dictyostelium discoideum cells.
The Cellular Potts model is a 2D lattice based model in which a cell is
represented by a number of lattice sites. The lattice is updated per site,
allowing for deformable cells, and a set number of lattice updates is called
a Monte Carlo Step (MCS), the time unit we use in this model. We can set a
goal cell area and cell perimeter, so we can control cell size and shape to a
desired extent.

In order to obtain persistent cell motion, we used two extensions of
the CPM. The first, the Act-model, is based on an actin-inspired feedback
mechanism that results in cell polarization [73]. It is controlled by two
parameters: λAct, which determines the weight of the Act-model and can
also be interpreted as the maximum protrusive force of the actin network,
and maxAct, the maximum activity value, also interpretable as the lifetime
of an actin subunit within the actin network. By altering these two parame-
ters, a large variety of persistent random walkers can be achieved in this
model. Furthermore, due to the feedback mechanism, the cell can loose
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its polarization upon collision and repolarize in a different direction, i.e. it
has contact inhibition of locomotion. We indicate this model as the active
reorientation model.

The second extension is based on the previous ABP model and has a
directional vector at its center. The cell is more likely to move in a certain di-
rection if that movement aligns with the directional vector. The directional
vector changes over time by a scaled random noise term. This extension is
also controlled by two parameters: λpersistence, which determines the weight
of this extension and how strictly cells should align to their directional vec-
tor, and τ, the persistence time of the directional vector. Combinations of
these two parameters result in a large variety of persistent random walkers
as well. Notably, this model extension has no CIL as the cell will only
reorient once its directional vector has changed. We will further indicate
this model version as the passive reorientation model.

4.2.2 Matching model parameters to cell motion

In order to match in silico cell motility to in vitro cell motily, we determined
a number of in vitro cell properties for starved and vegetative Dictyostelium
discoideum on a flat PDMS substrate (Figs. 4.1, 4.2). We measured the mean
cell area (Figs 4.1D,4.2B), mean cell speed (Figs 4.1E,4.2C), cell persistence
time (Figs 4.1G,4.2E) and cell diffusion constant (Figs 4.1H,4.2F), see also
Table 4.1. In general, starved D. discoideum cells are highly motile and
perform a persistent walk, whereas vegetative D. discoideum cells are less
motile and less persistent.

From these properties, cell area and cell speed were used to set the
length and time scale in the CPM. With the free parameters λAct and maxAct
for the active reorientation model, and λpersistence and τ for the passive re-
orientation model, we used a hillclimbing algorithm to fit the diffusion
constant and persistence time of simulated cells to the in vitro values in
Table 4.1. The resulting best fits for both starved and vegetative cell motil-
ities and both persistence methods are also shown in Table 4.1, and the
corresponding model parameter values are shown in Table 4.2. Overall, we
have achieved a good match for the starved cells and a reasonable match
for the vegetative cells.

4.2.3 Introducing pillar gradients

With the model performing similar motion to the starved and vegetative
cells, we introduced a pillar grid with gradient [75]. The pillar gradient is
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FIGURE 4.1: Empirical basis of CPM parameter constraints I: starved
D. discoideums

A) Detection of starved D. discoideum motion on flat PDMS was used to
calibrate the CPM simulations. Time-lapse fluorescent confocal imaging
of cells (left) was used to detect cell edges (green, right). Scale bar is
10 µm. B) SEM image of flat PDMS, without engineered topographies
the substrate has nanometer scaled features providing traction to cells.
Scale bar is 1 µm C) Actin polymerization hot spots (visualized through
LimE-GFP, z-projection) are highly anisotropically distributed, associated
with the high persistence of starved D. discoideum. D) Areas measured
for starved cells on flat PDMS. These determined the area (Aσ) parameter
used in the CPM. E) Instantaneous velocity distribution of observed cell
motility. F) Trajectories obtained from live cell imaging. G) The MSD
(black) of starved D. discoideum trajectories is well fit by analytical expres-
sion for persistent random particles (red). The average instantaneous
velocity (〈|v|〉) and persistence time (τp) were used to calibrate the vector-
and actin based CPMs. H) The MSD (black) of starved D. discoideum
trajectories at larger lag-times is well fit by a line (blue). The slope of the
blue line is used to derived the diffusion constant D, which was used to

calibrate the vector- and actin based CPMs.
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FIGURE 4.2: Empirical basis of CPM parameter constraints II: vegeta-
tive D. discoideums

A) Actin polymerization hot spots (visualized through LimE-GFP, z-
projection) in the cell are more isotropically distributed in the vegetative
state, giving rise to slower and less persistent motion than starved D.
discoideum. B) Areas measured for vegetative cells on flat PDMS. These
determined the area (Aσ) parameter used in the CPM. C) Instantaneous
velocity distribution of observed cell motility. D) Trajectories obtained
from live cell imaging, motion detection was performed equal to the
starved state (see Fig 4.1). E) The MSD (black) of starved D. discoideum
trajectories is well fit by analytical expression for persistent random
particles (red, but the parabolic regime for low lag-times is significantly
shorter. The average instantaneous velocity (〈|v|〉) and persistence time
(τp) were used to calibrate the vector- and actin based CPMs. F) The
MSD (black) of starved D. discoideum trajectories at larger lag-times is
well fit by a line (blue). The slope of the blue line is used to derived the
diffusion constant D, which was used to calibrate the vector- and actin

based CPMs.



4.2. Results 89

TABLE 4.1: Cell motility properties for the experimental data and best
fits for the active and passive reorientation models.

Starved
Experimental Active Passive

Length equivalent 1px (µm) - 0.525 0.525
Time equivalent 1 MCS (s) - 0.373 0.574
Speed (µm/s) 0.197±0.001 - -
Area (µm2) 110.4±45.1 - -
Effective diffusion (µm2/s) 1.82±0.68 1.76±0.08 1.87±0.08
Persistence time (s) 91.98±0.98 89.30±2.22 89.89±3.33

Vegetative
Experimental Active Passive

Length equivalent 1px (µm) - 0.524 0.524
Time equivalent 1 MCS (s) - 0.388 0.821
Speed (µm/s) 0.084±0.0004 - -
Area (µm2) 164.6±84.3 - -
Effective diffusion (µm2/s) 0.149±4.89×10−4 0.137±0.007 0.121±0.006
Persistence time (s) 27.41±0.41 25.48±0.35 33.27±1.48

TABLE 4.2: Parameters of the best fits for the starved and vegetative
Dictyostelium cells for both the active and passive reorientation models.

Best fit parameters Starved Vegetative
T 20 20
Area 400 600
λarea 50 50
Perimeter 313 350
λperimeter 1 1
Jcell,medium 20 20
Active model
λAct 129 80
maxAct 37 33
Passive model
λpersistence 159 78
τ 30 7
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TABLE 4.3: Pillar gradient grid parameter values for the experimental
and simulation setup

Experiment Model
Parameter Description (µm) (px) (µm)

R pillar radius 5 10 5.3
h pillar height 18 ±2 N/A
d pillar center distance at origin 16.8 32 16.8

dmin pillar center distance left cap 13.6 26 13.7
dmax pillar center distance right cap 19.9 38 20.0

s gradient steepness 0.01, 0.03 0.01 - 0.11

defined according to the set of pillar centers described by

P =

{
~x ∈ R2

∣∣∣∣ x1 = d
1−e−s (esn − 1) + d

2 and
x2 = d

(
m + 1

2

)
esn, with n, m ∈ Z

}
.

Here, d is the distance between pillar centers at the center of the grid, and
s a parameter that controls the steepness of the gradient, with higher s
indicating steeper gradients. P defines a pillar gradient in the x-direction
with increasing pillar distance from left to right. The gradient is capped
a both ends with a regular grid of pillar center distance dmin and dmax =
2d− dmin to prevent cells from not being able to pass in between pillars.
All measurements, both for the experimental and simulation setup and
including pillar radius and pillar height, are shown in Table 4.3.

In the experimental setup, the pillar grid is a molded PDMS pillar grid.
Cells are able to navigate between the pillars and resolve collision with
pillars (Fig. 4.3A). Because cells were seeded randomly on the pillar grid,
only s = 0.01 and s = 0.03 were used (Fig. 4.4A,B), as for steeper gradients
too few cells are seeded in the short pillar gradients. Starved D. discoideum
cells were tracked while in the gradient (Fig. 4.4E,F,G).

For the simulations, pillars were modeled as immobile obstacles. Cells
could not move into a pillar, but were allowed to retract from them. Ad-
hesion between cell and pillar can be controlled by the contact energy
parameter Jcell,pillar. We assume that cells show no preference for pillars
nor medium, so the contact energies between cell-pillar and cell-medium
are equal (Jcell,pillar = Jcell,medium = 20), unless stated otherwise. In contrast
to the experiments, repeated simulations were done with single cells only,
starting from the same initial position in the center of the field, see Figs.
4.5,4.7,4.10.

The different ways in which the two persistence models respond to
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obstacles is clarified in Fig. 4.3B,C. For the active reorientation model, we
see CIL: once the cell collides with a pillar, it looses its polarization and will
repolarize in a different direction from before. For the passive reorientation
model, the cell will try to continue into the same direction, even if it is
directed into a pillar, until the direction vector is no longer pointing into
that pillar. The time it takes to resolve a collision is in the order of minutes,
similar to that seen in the experimental setup (Fig. 4.3A).

4.2.4 Starved D. discoideum cells show topotactic drift increasing
with gradient steepness

In order to measure the effect of topotaxis of starved cells, drift in both the
x and y direction (vx and vy) was calculated for cell tracks in the gradient
(Fig. 4.4F,G,H). More specifically, the migratory drift was calculated by
averaging over all x or y displacements of all trajectories. As a control,
the migratory drifts were also calculated for starved cells on flat surface.
Starved D. discoideum cells showed a significant drift in the positive x-
direction (i.e. towards lower pillar densities) for both pillar gradients
s = 0.01 and s = 0.03. This holds compared to both the corresponding vy
as well as compared to vx on flat surface (Fig. 4.4H). Moreover, the cells on
the steeper gradient (s = 0.03) showed a larger vx relative to the cells on
the s = 0.01 gradient.

4.2.5 Reorientation mode of starved cells affects topotactic capac-
ity

We simulated the same gradient pillar grid in our model. Examples of cell
tracks and the pillar grids for different gradients are shown in Figure 4.5.
Cells move within the pillar grid, but only explore a limited space each.
We can see that the active reorientation model on the steep gradient (Fig.
4.5C) does not penetrate into the dense side of the grid as much as the
passive reorientation model does (Fig. 4.5F). The population mean x and y
coordinates over time (Fig. 4.5G,H) show that there is drift along the x-axis,
but not the y-axis, indicating that the simulated cell perform topotaxis in
both models.

Figure 4.6A shows the migratory drift in the x-direction (vx) as a func-
tion of s, for the experimentally measured topotaxis (Fig. 4.4H) and both
reorientation models for the starved parameter set. The experimental ob-
servation of increasing vx with increasing s in starved cells is also seen in
the results of our models (Fig. 4.6A). Both reorientation models extrapolate
this trend of vx increasing with s in a linear fashion. However, there is a
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FIGURE 4.3: Examples of frontal collision of in vitro and simulated
starved cells with a pillar A) in vitro D. discoideum starved cell in a pillar
grid. The arrow indicates qualitatively the direction and magnitude of
motion. Cell cytoplasm is labeled fluorescently. B) Active reorientation
model: Act-levels are colored from red (highest level) to green (Act-
level=0). Once the polarized cell hits the pillar, it looses its polarization.
A new Act-front appears, the cell polarizes again and moves away from
the pillar. C) Passive reorientation model simulation: the arrow is the
preferential direction vector of the cell, starting at its center of mass. Once
the cell collides with the pillar, it can only move away once its directional

vector points away from the pillar (final frame).
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FIGURE 4.4: Large scale topotaxis for highly-motile amoeboid cell mi-
gration (D. discoideum) A) SEM micrograph of the s = 0.01 pillar field.
Scale bar is 100 µm. B) Same micrograph, but for s = 0.03. C) Detailed mi-
crograph of pillars (h = 20µm, d = 10µm). D) Actin polymerization hot
spots visualized for a cell migrating through a pillar field. Fluorescence is
LimE-GFP expressed in LimE null cells [195, 196] after z-projection, scale
bar is 10 µm. E) Bright field image of a pillar field (s = 0.03) overlaid with
the trajectory of a migrating starved D. discoideum cell (free cytoplasmic
GFP in green). Scale bar is 10 µm. F) Trajectory plot of cells moving on
topotaxis field s = 0.01. G) Trajectory plot of cells moving on topotaxis
field s = 0.03. H) Drifts (vx,y) measured in all live cell experiments (flat,
s = 0.01 and s = 0.03) compared. The anisotropicity in pillar positioning
was in the x direction for all non-flat experiments. The topotactic drift
(vx) was found to be significantly higher (p ≤ 0.01) than noise (vy) for all
topotaxis assays. Additionally, the topotactic drift was found to increase

(p ≤ 0.001) with a rising gradient.
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FIGURE 4.5: Trajectories of starved simulated cells and means of x
and y coordinates over time for different gradient steepness parameter
(s)-values. Top row active reorientation model example trajectories: A)
s = 0.01, B) s = 0.03, C) s = 0.09. Middle row passive reorientation model
examples: D) s = 0.01, E) s = 0.03, F) s = 0.09. Starting location is
marked with a black cross and the depiction of a cell. Each trajectory
has its own color. Bottom row mean x and y coordinates over time for
gradient steepness s corresponding to the gradients shown in the rows
above. G) Active reorientation model. H) Passive reorientation model.
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FIGURE 4.6: Topotactic drift and instantaneous speed of starved pa-
rameter set against gradient steepness s. Each orange or blue data point
represent the average of a 1000 simulations. Error bars indicate 97.5%
CI. A) Topotactic drift vx. B) Instantaneous speed 〈|vins|〉. Dotted line
depicts the instantaneous speed of starved cells in absence of pillars. C)

Relative topotactic drift vx/〈|vins|〉).

clear difference in vx when comparing the two reorientation models: the
passive reorientation model shows a lower topotactic drift. Although the
fitted parameters of the methods do not result in the exact same persistent
random walk, we wouldn’t expect such a difference in topotactic drift.
Nonetheless, when directly comparing the topotaxis between simulated
cells and D. discoideum cells, our model predictions are close. For s = 0.01,
the experimental vx is in between the active and passive reorientation mod-
els’ vx, whereas for s = 0.03 both models results in higher vx, albeit that the
passive reorientation model vx is very close to the experimentally measured
vx.

As Figure 4.3 shows, Dictyostelium and simulated cells collide with
pillars. This decreases their speed. We measured the mean instantaneous
speed 〈|vins|〉 of the cells within the pillar grid, shown in Figure 4.6B and
Table 4.4. For both experimental and simulated cells, the speed does indeed
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TABLE 4.4: Instantaneous speed 〈|vins|〉 in µm/s on empty field and
within pillar grid for starved D. dictyostelium cells, starved active reori-
entation model simulations and starved passive reorientation model

simulations. Given error is 97.5% confidence interval.

Field Experimental Act based Vector based
Empty field 0.197±0.00139 0.198±0.00285 0.197±0.001331
s = 0.01 0.087±0.00080 0.152±0.00046 0.156±0.000264
s = 0.03 0.082±0.00082 0.156±0.00047 0.148±0.000274

drop and is not dependent on pillar gradient steepness s. However, experi-
mental cells show a larger decrease in speed than the simulated cells, about
50% decrease compared to cells on an empty field, versus 20% decrease for
the simulated cells. The mean instantaneous speeds of both reorientation
models are not far apart.

As our simulated cells move at a higher speed, we would also expect a
higher topotactic ddrift. Therefore, aside from comparing absolute topotac-
tic velocities, we also looked at the relative topotactic velocity: vx/〈|vins|〉,
(Fig. 4.6C). For s = 0.01, the relative vx of the experimental data is very
similar to that of actively reorienting simulated cells, whereas for s = 0.03,
the experimental vx lies between the value of the two reorientation modes,
and is closest to the passive reorientation model predictions. We conclude
that our models make good prediction for relative topotaxis. Furthermore,
the similar mean instantaneous speeds but different topotactic drifts for the
active reorientation and passive reorientation model yield different relative
topotactic drifts. The active reorientation model’s relative topotactic drift
is on average twice as large as the passive reorientation model’s. This
indicates that the persistence method itself causes part of the difference in
topotaxis drift, and could be due to CIL in the active reorientation model.

4.2.6 Pillar adhesion changes velocity within the grid

To study what could give rise to the discrepancy between the instanta-
neous velocity of the experimental and simulated cells, we turned to the
interaction between cells and pillars. For the model results in Fig 4.6, we
assumed that cells neither adhere to nor are repulsed by the pillar surface,
i.e. Jcell,medium = Jcell,pillar. However, we can test this assumption and vary
the contact energy Jcell,pillar. To test whether the adhesiveness of cells to pil-
lars affects topotaxis, we simulated cell movement in a grid with gradient
s = 0.03 for different contact energies. We let Jcell,pillar range from −60 to 60,
where Jcell,pillar = 20 is neutral with respect to Jcell,medium = 20. Examples
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of cell tracks under a subset of this Jcell,pillar range are shown in Fig. 4.7.
Clear is that for very low Jcell,pillar (Fig. 4.7A,B,D,E), cell displacement is
reduced, and more extremely so for actively reorienting cells than pas-
sively reorienting cells. High Jcell,pillar (Fig. 4.7C,F) does not seem to affect
cell displacement much compared to neutral Jcell,pillar (Fig. 4.5B,E). A first
glance on topotactic drift (Fig. 4.7G,H) shows that the active reorientation
model loses it’s drift at low Jcell,pillar, but not at high Jcell,pillar. The passive
reorientation model is also affected by pillar adhesiveness, but still displays
a drift at low Jcell,pillar.

We further quantified the topotactic drift more precisely. Figure 4.8A
shows the topotactic drift as a function of Jcell,pillar − Jcell,medium for starved
cells. There is an effect of decreasing the adhesion energy Jcell,pillar to
negative values, which decreases the topotactic drift. For very negative
energy differences, actively reorienting cells eventually do topotaxis in
the other direction. However, closer inspection of the cell tracks shows
that cells move to the two initial pillars on their left side and get stuck
there, see Fig. 4.7A. Increasing Jcell,pillar with respect to Jcell,medium does not
seem to have an effect on vx, suggesting that the topotactic drift saturates
with increasing Jcell,pillar. Again, we see a difference in the topotactic drift
between the two persistence methods (Fig 4.8A).

Aside from collision with pillars, cell-pillar adhesion is now an extra
interaction that can influence cell speed. Looking at the 〈|vins|〉, we see
again differences between the two persistence methods (Fig. 4.8B). For the
actively reorienting cells, 〈|vins|〉 drops quickly when lowering Jcell,pillar, is
maximal around Jcell,pillar = 10 and slightly decreases for further increase
in Jcell,pillar. The large drop in 〈|vins|〉 confirms the observation on the
examples of cell tracks (Fig 4.7A), as cells like to adhere more and more to
the pillars and hardly displace. For the passively reorienting cells, 〈|vins|〉
doesn’t decrease as dramatically as for actively reorienting cells for negative
Jcell,pillar. Also the optimum in 〈|vins|〉 isn’t as clear and appears for higher
Jcell,pillar = 20.

When we compare the results to the experimental data, we can make
two observations. First is that the model prediction is close to the vx of
D. discoideum cells for Jcell,pillar − Jcell,medium = −30. Second is that for
Jcell,pillar − Jcell,medium = −30, 〈|vins|〉 is still higher for the simulated data
than the experimental data, resulting in underestimation of the relative
topotactic velocity. The values of Jcell,pillar for which the instantaneous
speeds are indeed similar between model and experiment are Jcell,pillar −
Jcell,medium = −80 and −50 for the passive reorientation model and active
reorientation model respectively, and are already extreme in limiting cell
displacement in general.
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FIGURE 4.7: Trajectories of starved simulated cells and mean x and
y coordinates over time for different pillar adhesion energy Jcell,pillar.
Top row active reorientation model example trajectories: A) Jcell,pillar =
−60, B) Jcell,pillar = −30, C) Jcell,pillar = 50. Middle row passive reorienta-
tion model example trajectories: D) Jcell,pillar = −60, E) Jcell,pillar = −30,
F) Jcell,pillar = 50. Starting location is marked with a black cross and the
depiction of a cell. Each trajectory has its own color. Bottom row mean
x and y coordinates over time of a 1000 independent simulations. G)

Active reorientation model. H) Passive reorientation model.
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FIGURE 4.8: Topotactic drift and instantaneous speed of starved pa-
rameter set against adhesion preference Jcell,pillar − Jcell,medium. For all
points Jcell, medium = 20. Each data point represent the average of a 1000
simulations, error bars indicate 97.5% confidence interval. Line with
shaded area represents the experimental data with 97.5% confidence in-
terval. A) Topotactic drift vx. B) Instantaneous speed 〈|vins|〉. C) Relative

topotactic drift vx/〈|vins|〉.
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Overall, we conclude that adhesion energy between cell and pillar can
indeed lower the velocity of cells. However, the drop in speed is paired
with a drop in displacement as well, and the values at which it occurs at
are not in agreement for when vx coincides with the experimental vx.

4.2.7 Effective persistence decreases sooner in active reorienta-
tion model than in passive reorientation model

In Schakenraad et al. [75], topotaxis was explained as a change in effective
persistence length leff = v0,eff · τeff and effective diffusion Deff due to the
presence of pillars, which they verified by simulating a regular grid for a
range of different pillar distances d. To further delve into the difference in
topotaxis efficiency between the active and passive reorientation model, we
also looked into the effective persistence length and effective diffusion over
a range of pillar distances. We obtain τeff by fitting the MSD with Fürth’s
equation with translational diffusion (Eq. 4.10, see Methods section) and
Deff by fitting the MSD at larger time lags with a straight line, similarly to
how we obtained them for fitting the empty field data, and obtain v0,eff by
computing 〈|vins|〉.

Figure 4.9 shows the effective parameters of the fitted random persistent
walk of both models using the starved parameter setting. The two persis-
tence methods react differently to the presence of pillars in regular grids.
The effective diffusion coefficient, persistence time and persistence length
show a similar trend (Fig. 4.9ABD): they increase as pillar distance increases
and saturate to the corresponding values of the empty field measurements.
However, this happens more rapidly for the passive reorientation model
than for the active reorientation model. The difference in persistence length
is mostly due to the difference in persistence times between the two mod-
els, as the differences in velocity are minor (Fig. 4.9C). As τeff is the only
measure we determine by fitting Eq. 4.10, we checked whether Eq. 4.10
fits the MSD well. Except for both models on d = 13.1µm and the active
reorientation model with d = 14.7µm, the fits seem good. For d = 13.1µm,
the active reorientation model’s MSD indicated subdiffusive behaviour: i.e.
the cells get stuck between the pillars, whereas the passive reorientation
model’s MSD did show long term diffusive behaviour but its fit was off
for the shorter time scale. The fit for the active reorientation model at
d = 14.7µm seems to overestimate the persistence time. Nonetheless, at
larger d the fits are good and τeff is decreased more in the active reorienta-
tion model. So although the two models behave similarly in an empty field,
their behaviour in regular pillar grids is very different, and the persistence
of the active reorientation model is more affected by the presence of pillars.
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FIGURE 4.9: Normalized effective parameters of the persistent random
walk in regular pillar lattices for the active and passive reorientation
model with the starved parameter settings. A) Effective diffusion coef-
ficient Deff normalized by the diffusion coefficient of starved simulations
on an empty field as a function of the distance d between pillar centers.
B) Effective persistence time τeff normalized by the persistence time of
starved simulations on an empty field as a function of d. C) Effective
instantaneous velocity veff normalized by the instantaneous velocity of
starved simulations on an empty field as a function of d. D) Effective
persistence length leff = veffτeff normalized by the persistence length of

starved simulations on an empty field as a function of d.
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4.2.8 Model predicts small topotactic drift for vegetative cell topotaxis,
but independent of persistent mode

Although no experimental data is available on topotaxis in vegetative
cells in these pillar gradients, we are still interested in whether vegetative
cells could perform topotaxis. The largest difference in motility between
starved and vegetative cells is the lower speed and lower persistence time
in the vegetative cells (Table 4.1), and hence, a lower persistence length of
about 2.3 µm. The minimum distance between pillars in our pillar grids is
significantly larger than that. Hence, we would not expect the persistence
of the cell to be altered much in the presence of pillars and therefore deem
it unlikely that persistence driven topotaxis contributes much to topotaxis
of vegetative cells.

We use our model to predict whether vegetative cells topotax or not.
We can see the lower motility of vegetative cells reflected in the example
trajectories of our simulated vegetative cells (Fig. 4.10) where cells only
move in the order of magnitude of 1-3 cell lengths on the same time scale
as in Figs. 4.5,4.7. Still, there is a visible increase in the mean x coordinate
but not mean y coordinate (Fig. 4.10), so vegetative Dictyostelium cells can
likely perform topotaxis as well.

With the lowered displacement of vegetative cells, also vx is an order of
magnitude smaller than that of starved cells (Fig. 4.12A). For s = 0.01, the
topotactic drift does hardly exceed the drift in the y-direction, (student’s t-
test p = 0.01 for actively reorienting cells, p = 0.67 for passively reorienting
cells) which indicate how small the topotaxis effect is in a shallow gradient.
As the vx confidence intervals for the starved cell simulations are much
smaller compared to those of the experimental starved cells, we expect
that it will probably be very hard to measure topotaxis in the experimental
system with vegetative cells. The topotactic drift does still increase for
higher s , similar to the starved cells. Unlike for the starved cells, the
different persistence methods results in similar vx (Fig. 4.12A) and similar
vins (Fig. 4.12B) and hence also in similar relative topotactic velocity (Fig.
4.12C) for the vegetative cell parameter set. Interestingly, the relative
topotactic drift of vegetative cells lies in the range of those of starved vector
persistent cells (Fig. 4.6C).

As we did see topotaxis occurring in the vegetative cells, we also looked
into the behaviour of these cells in regular grids. We again checked their
effective diffusion, effective instantaneous velocity, effective persistence
time and effective diffusion length as a function of distance between pillar
centres, similar to previously done for the starved cells. Again, we obtained
τe f f by fitting Eq. 4.10 to the MSD. For the vegetative cells, we observed
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FIGURE 4.10: Trajectories of vegetative simulated cells and means of
x and y coordinates over time for different gradient steepness s. Top
row: active reorientation model trajectory examples: A) s = 0.01, B)
s = 0.03, C) s = 0.09. Middle row: passive reorientation model. Trajectory
examples: D) s = 0.01, E) s = 0.03, F) s = 0.09. For the trajectory plots:
starting location is marked with a black cross and the depiction of a cell.
Each trajectory has its own color. Bottom row mean x and y coordinates
of 1000 independent simulations. G) Active reorientation model. H)

Passive reorientation model.
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that for the active reorientation model, Eq. 4.10 is not a good descriptor of
the MSD for low pillar distance d = 13.1µm to d = 16.2µm. Hence, we only
show the results in Figure 4.11 for d > 16.2µm. The effective parameters
are more similar between the persistence methods than observed for the
starved parameter set (Fig. 4.9). Only on the smallest displayed pillar dis-
tances d, we see that the effective persistence time of the active reorientation
model is more affected than of the passive reorientation model. Compared
to the differences between the persistence methods for the starved cells,
this difference here is smaller in both relative and absolute manner. Overall,
these effective parameters do not indicate a clear difference between the
persistence methods for vegetative cells.

4.3 Discussion

In this paper we have measured topotaxis by Dictyostelium discoideum cells
in a pillar gradient as well as simulated topotaxis in a similar grid using
the Cellular Potts model. Persistent Dictyostelium motion was modelled
through two distinct persistence modules in our model: the Act model, and
a vector-based persistence of which the direction changes over time. We
fitted our model parameters to match Dictyostelium motion on an empty
field before we simulated topotaxis in a pillar grid.

For starved cells, we saw that, for shallow gradients, increasing the
gradient steepness increases topotaxis, both in the experiments and the
simulations. This is in agreement with [75]. The topotactic velocity of both
persistence methods follows a linear trend in gradient steepness, but the
actively reorienting cells are more efficient in topotaxis than the passively
reorienting cells, regardless of having similar instantaneous velocity.

We further looked into the cause of difference between the active and
passive reorientation model and found that the effective persistence length
on regular pillar grids is more affected by short pillar distances in the active
model than in the passive model. The difference in effective persistence
length arises from the difference in persistence time. We conclude that the
active reorientation model is more likely to change orientation upon colli-
sion than the passive reorientation model, explaining the lower effective
persistence time and effective persistence length.

Aside from the difference between our two models, the instantaneous
velocity is a major point of difference between the experimental and sim-
ulation results. By lowering the adhesion energy between cell and pillar,
we were able to lower the instantaneous velocity of the simulated cells.
However, this also resulted in reduced displacement, to the point that
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FIGURE 4.11: Normalized effective parameters of the persistent ran-
dom walk in regular pillar lattices for the active and passive reorien-
tation model with the vegetative parameter settings. A) Effective diffu-
sion coefficient Deff normalized by the diffusion coefficient of vegetative
simulations on an empty field as a function of the distance d between
pillar centers. B) Effective persistence time τeff normalized by the persis-
tence time of vegetative simulations on an empty field as a function of d.
C) Effective instantaneous velocity veff normalized by the instantaneous
velocity of vegetative simulations on an empty field as a function of d. D)
Effective persistence length leff = veffτeff normalized by the persistence

length of vegetative simulations on an empty field as a function of d.
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FIGURE 4.12: Migratory drifts and instantaneous speed of vegetative
parameter set against gradient steepness s. Each data point represent
the average of a 1000 simulations. Error bars indicate 97.5% CI. A) Mi-
gratory drifts vx (lighter colors) and vy (darker colors). B) Instanta-
neous speed 〈|vins|〉. C) Relative drifts vx/〈|vins|〉 (lighter colors) and

vy/〈|vins|〉 (darker colors).
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cells are sticking to the pillars. Hence, pillar adhesivity is unlikely the
only mechanism to explain the velocity difference between experiment and
simulation.

For the vegetative simulations, our model predicts that cells do undergo
topotaxis distinct from directional noise, albeit an order of magnitude
smaller than the starved cells, with the exception of the shallowest gradient.
Also, both persistence modes resulted in similar outcomes, suggesting that
there is a difference in topotaxis by quick and persistent cells and slower,
less persistent cells.

4.3.1 Topotaxis and the changing effective persistence length

The physical principle underlying topotaxis presented in Schakenraad et
al. [75] states that the change in effective persistence length caused by the
pillar grid causes ABP to turn towards regions where they display higher
effective persistent length. This idea is similar to that of how durotaxis, i.e.
motion up a stiffness gradient, arises [193, 146].

When we compare the efficiency in topotaxis of both the D. discoideum
cells and the CPM simulations to the ABP simulations, both the cells’ and
CPM simulations’ relative topotactic velocities well exceed the 1% topotac-
tic velocity of ABPs, the passive reorientation model at the shallowest
gradient excluded. For the models, we can explain this difference by the
difference in effective persistence length in a pillar grid. In our model, the
effective persistence length is decreased more at small pillar distances than
the ABP model. As this is true for both reorientation models, we conclude
that this is an effect of the dynamic volume of our simulated cells.

Furthermore, when comparing the persistence length of the active and
passive reorientation models, the difference in persistence length between
the two models could explain the difference in relative topotaxis. Interest-
ing to note here is that the change in persistence length can be ascribed to
the change in persistence time and not change in velocity. We can interpret
this as actively reorienting cells changing direction more drastically upon
colliding with a pillar. We hypothesize that, for the active reorientation
model, the new direction after collision is more uniformly distributed along
the directions not pointing towards the pillar center, i.e. contact inhibition
of locomotion, whereas reorientation direction for the passive reorientation
model is more skewed towards the previous direction. This reorientation
effect can likely be exaggerated by looking at concave obstacle shapes.

In this perspective, we can also look at the vegetative simulations. As
the persistence length and persistence time for vegetative cells is very short,
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the differences in how the models reorient upon collision becomes negli-
gible. We also observed hardly any difference in the effective parameters
within regular grids between the two persistence methods, except for small
distances between pillars. The lack of difference in these parameters is
likely why the resulting topotaxis is so similar between the models.

The reorientation of cells upon obstacle collision has also been subject
of other studies [197, 198, 199]. In an experiment with fish keratocytes,
actin flow was disturbed upon collision with an obstacle, making the
keratocyte change direction [197]. Modelling studies also indicate that
intercellular molecular dynamics are important in cell reorientation upon
collision. In Nishimura et al. [198] the change in actin retrograde flow
plays an important role in the formation of a new protrusion after collision
with a wall, allowing the cell to move away from the wall. In Campbell
et al. [199] many different cell behaviours after collision were observed in
a immersive-boundary method with reaction-diffusion equations on the
cell surface. They observed 1) ‘freezing’ when the cell did not have new
pseudopods for a short while after collision, 2) ‘doubling back’ when the
cell return in the direction it came from and 3) ‘tug of war’ were the new
pseudopods competed for leading the cell’s new direction.

4.3.2 Dictyostelium on silicon and in silico

We saw a disparity between the instantaneous speed of the D. discoideum
cells and the simulated cells when they were within the pillar grid. This
difference is unlikely to be caused by cells adhering to the pillars. Some
other mechanisms could be at play, such as dimensionality, curvotaxis and
chemotaxis. We will shortly address each of them.

Dimensionality

Our Cellular Potts model is a 2D model. However, the experimental cells
crawled in a 3D pillar grid and hence can use the third dimension while
moving around the obstacles. Experimental observation show that D.
discoideum cells sometimes crawl up a pillar, mainly displacing their center
of mass vertically. They can also move through narrower pillar distances
than our CPM simulation by spreading their volume vertically. Although
vertical displacement is not modeled directly in the CPM, the weight of
the area and perimeter constraint can be seen as a measure of 3D flexibility.
A possibility would be to extend our models into a 3D CPM, or use other
computational methods, such as in [199]. Furthermore, how our results
translate to 3D matrix environments is still unclear. As shown in [200], cells
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migrate very differently in 1D and 3D matrix environment compared to
2D matrix environments, so translating topotaxis from our experiments to
more complex structures is non-trivial.

Curvotaxis

Aside from the dimensionality difference, there is another aspect to the
experimental setup. The interpillar distance is slightly curved, as the pillars
are broadening at their feet. It has been shown that cells are responsive
to substrate curvature on the cell-scale [201, 202, 203], and tend to move
towards concave “valleys". The interpillar spaces with concave curvature
fit this description, and could alter the speed of Dictyostelium cells.

Chemotactic sensing

More guiding principles can be at play. Dictyostelium discoideum cells are
known to secrete cAMP when starved, but can also degrade cAMP when
in high concentrations [204]. This chemical functions as a chemoattractant.
Usually, this will lead to multiple cells to find each other and aggregate.
In a modeling study it has been shown that these aggregates can avoid
obstacles through the perturbations in the chemical field caused by such
obstacles [205]. However, not many studies have been done on how this
affects single Dictyostelium cells and whether they can sense their own
secreted cAMP. Nonetheless, multiple studies have shown how chemical
sensing of the environment can guide cell movement around large obstacles
[206], or through mazes [207]. Self-secreted chemoattractant can also trap
cells within containing environments such as dead ends in mazes [208].
The effect of chemical sensing in a field with a high density of obstacles as
well as its effect in topotaxis is still open for study.

Concluding, our model is a much closer match to the behaviour of
Dictyostelium discoideum cells in pillar grid with a distance gradient than
the previous, analytical ABP model. The deformable cell volume within
our models allows for more efficient topotaxis as it lowers the effective
persistence length, especially when pillar distance is close to the cell length.
We also showed that how cells interact upon collision plays an important
role in the effective persistence length and hence, topotaxis.

4.4 Materials, Methods, and Model

For this study, we have used an experimental setup with live cells and a
computational model. Experimental data from cells on a flat surface were
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used to set the model parameters. Topotaxis measurements were done in
both the experimental as well as the computational setup.

4.4.1 Live cell experiments

Cell culture and experiment preparation

For all migration experiments, Axenic D. discoideum (Ax2) with a cytoplas-
mic green fluorescent protein (GFP) insertion was used (strain HG1694,
obtained from Dr. G. Gerisch, MPI for Biochemistry, Germany). Cells were
grown at 20 °C in HL5 medium, supplemented with 20 µgml−1 gentamicin
(Gentamycin solution, Merck, Netherlands) as a selection antibiotic. The
cells were cultured in 100 mm petri dishes (100 mm TC-treated culture dish,
Corning, USA) and confluency was kept below 70% during culturing. For
visualizing actin polymerization, a LimE-GFP in lim0 cell line was used
[195]. These cells were cultured similarly, but with two selection antibiotics,
10 µgml−1 Gentamycin and 10 µgml−1 Blasticidin, necessary to maintain
the double mutation (LimE-GFP and Lim0).

In preparation for imaging experiments, cells were harvested by pipet
induced flow and collected in a conical tube. To remove the culture medium
the cells were centrifuged at 1500 rpm for 3 min. In case of vegetative ex-
periments, resulting cell pellets were thrice washed using non-fluorescent
buffer (3.6mM KH2PO4, 2.9mM Na2HPO4, PH 6.7) and, after resuspension,
transferred onto (un)structured polydimethylsiloxane (PDMS) surfaces
placed inside an imaging chamber (see Sec. 4.4.1). In case of starved ex-
periments a pulsation procedure was started before imaging instead. Cell
pellets were thrice washed with 17 mM K-Na-phosphate buffered saline
(PBS, pH 6.0) and placed on a shaker for 1 hour. Then, to induce cAR1 ex-
pression, cells were pulsed with 150 nM cyclic adenosine-monophosphate
(cAMP, Merck, The Netherlands) applied in 6 minute intervals over 4 hours
while shaking. After pulsation, any residual cAMP was removed by cen-
trifugation and resuspension. Cells were left to shake in a conical tube with
PBS for another 30 min before being loaded onto PDMS surfaces in imaging
chambers. For both experiments cells were left to adhere for 1 hour after
insertion into the imaging chamber, leading to a 6-7 hour starvation period.
Cell seeding concentrations were kept below 1 · 10−4 µm−2 to limit cell-cell
interaction and enable studying migration of individual cells.

Obstacle and flat PDMS surfaces

PDMS (Sylgard 184 Silicon Elastomer Kit, Dow Corning, USA) was mixed
1:10 resulting in a 1.72 MPa stiffness for all surfaces [209]. Flat surfaces were
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prepared by spin-coating pre-mixed PDMS onto polished Silicon wafers
(Siegert Wafer, Germany) and then baked for 4 hrs at 110 °C. Before spin-
coating, wafers were silanized by Trichloro(1H,1H,2H,2H-perfluorooctyl)
silane deposition under vacuum (50 mbar) for 1 hour to ensure proper
PDMS detachment later. Before use, PDMS was cut, peeled off, and washed
with ethanol (70%). For migration experiments PDMS was cast around a
250-500 µm thickness, for limE-GFP imaging, PDMS was cast ultra-thin
(<50µm) enabling 100x (WD= 130µm) imaging.

Pillar obstacle fields were prepared using a molding process. The pillar
molds were prepared by two-photon direct laser writing (DLW) using the
Photonic Professional GT (Nanoscribe, Germany). First, a negative of the
topotaxis pillar lattices (s = 0.01-0.03, see Section 4.4.2) were designed
using Inventor (Autodesk, USA) and, via a stereolithography format (.stl),
imported to DeScribe (Nanoscribe, Germany) to prepare for DLW. Then,
two-photon crosslinking was performed using the IP-S resin (Nanoscribe,
Germany) deposited on a silicon wafer. Different laser powers and scan
speeds were chosen for bulk and edges of the structure, 27% and 42% (of
140 mW), 10 and 40 mm/min respectively. To remove excess resin, molds
were developed for 45 min in polyglycidylmethacrylate (PGMA). After
blow drying with nitrogen, wafers were silanized as described previously.
To produce the pillar field casts, PDMS was deposited over the wafer (with
mold on top), baked, cut, peeled off, and washed with ethanol (70%).

PDMS inserts were hydrophilicitized by 15 min of UV/Ozone exposure
(UVO-42, Jelight Company, U.S.A) and placed inside an imaging slide (0.8
sticky-Slide I Luer, Ibidi, Germany), to be used immediately. Before loading
cell suspensions, imaging slides were washed with ethanol and then PBS.

To determine quality of the mold, each pillar field was imaged using a
nanoSEM (FEI/Thermo Fisher, The Netherlands) scanning electron micro-
scope (SEM). Samples were imaged at 10kV, with a spot size of 4.0. Before
imaging, PDMS structures were coated with 2-8 nm Pt/Pa using a plasma
magnetron sputter coater (208HR, Cressington, Watford, UK) to enhance
conductance.

Live-cell imaging and tracking

Cells were imaged every 8-10 seconds for experiments on flat PDMS and
every 20 seconds for topotaxis assays. Measurements lasted for 1-3 hours
and were performed with either 10x or 20x air objectives (Plan Fluor, Nikon)
on a Nikon Eclipse Ti microscope equipped with a confocal spinning disk
unit operated at 10,000 rpm (Yokogawa). The cytoplasmic GFP was excited
at 488nm by a solid-state diode laser (Coherent, U.S.A.) supported in an
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Agilent MLC4 unit (Agilent Technologies, U.S.A.), at reduced intensity (25%
of 2.4mW) controlled by an Acousto-Optic Tunable Filter. Emission was
filtered by a quad-band fluorescence filter (TR-F440-521-607-700, IDEX LLC,
Rochester, New York, U.S.A.). Images were captured using an exposure
time of 200ms by an Andor iXon Ultra 897 High Speed EM-CCD camera
(Andor Technology, U.K.). Images of higher magnification were produced
with the same setup but using different objectives: Figure 4.4e with 40x air
(PlanFluor, Nikon), limE-GFP Figures 4.4d and 4.3a with 60x water (Plan
Apo VC, Nikon) and 4.1c and 4.2a with 100x oil (CFI plan Apo, Nikon).

Image tracking was performed using ImageJ (http://imagej.nih.gov/ij/).
Microscopy time-lapse images were contrast and brightness adjusted, and
ran through a Gaussian filter (σ = 2) to enable optimal cell body recog-
nition. The ImageJ plugin CellEvaluator was used to determine the x, y-
coordinates of the center-of-mass of each cell body in each frame [210]. By
linking all these x, y-positions together, cell trajectories were obtained.

Empirical measurement of cell area

Fluorescence microscopy of cell migration experiments on flat PDMS were
used to fit the cell surface area (Aσ) parameter in the CPM. Frames used
for area analysis were chosen sufficiently far apart ( f−1 = δt = 200 s) to
avoid correlations. The two-dimensional projection of the cell body was
determined using Sobel edge detection, applied to cytoplasmic GFP images
obtained using the 20x air objective (0.657 µm/pix). Brightness and contrast
were adjusted to rescale pixel intensities (i.e. only use the range of 16-Bit
intensities of GFP signal detected). Image analysis was performed using
Matlab, and the Image Processing Toolbox (Matlab v2019a, MathWorks,
U.S.A.) in particular. First, edges were detected (Sobel) using an appropriate
threshold, then the resulting binary edge-image was dilated, holes were
filled, borders cleared and the image eroded (equal to the initial dilation).
Then all groups of non-zero, adjacent pixels forming a cell were identified
and properties (using regionprops) like area extracted.

Amoeboid movement on flat and pillar surfaces

We analysed cell migration trajectories, measured on flat and pillar PDMS,
with an in-house Matlab code (version 2019b, The Mathworks, U.S.A.). The
empirical instantaneous velocities (vinst), persistence times and diffusion
constants of cell movement measured on flat PDMS were used to fit the
CPM model for both cell types. These were calculated from the cell trajec-
tories obtained in combination with the known frame rate ( f−1 = δt = 20
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s) between images. Dying or otherwise immotile cells (see [74]) and insuffi-
ciently long trajectories (flat N < 100, topotaxis N < 30) were discarded
for analysis. N was chosen higher for the flat data set, to prevent noise in
mean-squared displacement (MSD) values at long-lag times.

The displacement (r) of the cell between frames is given by r̄(t) = R̄(t +
δt)− R̄(t), where R̄(t) are the vectors described by the x, y-coordinates of
the cell center in each image. Then, the instantaneous velocity (v(t)) and
MSD were calculated for each trajectory by,

v(t) =
|r̄(t)|

δt
and 〈r̄(τ)2〉 = 1

N − k

N−k

∑
i=1

(R̄(ti + τ)− R̄(ti))
2. (4.1)

Here, τ = kδt is the lag time, N the number of points in a trajectory, and k
the frame number (k = 1, 2, . . . N − 1). The MSDs were averaged over all
trajectories, and subsequently fit to Fürths formula for persistent random
motion. From this fit the characteristic persistence times (τr) and effective
diffusion constants (De f f ) for both vegetative and starved D. discoideum
cells moving on flat PDMS were extracted and used to fit the CPM.

For flat and topotaxis assays, migratory drift (vx,y) was calculated by
averaging over all displacements of all trajectories,

〈vx,y〉 =
1

n− 1

n−1

∑
i=1

(R̄(ti + δt)− R̄(ti)) (4.2)

where n is the total number of displacements measured.

4.4.2 Model

The model is based on the 2D Cellular Potts model and hence models cells
as flexible and dynamically shaped objects in two dimensions. Cell per-
sistence is obtained using two methods: one phenomenologically models
actin dynamics, the other has a set preferential direction for the cell to move
in that changes over time. We fit the parameters of these methods such that
the simulated cells perform the same persistent random walk as measured
experimentally in the starved and vegetative Dictyostelium discoideum cells
on the flat PDMS surfaces. After fitting the parameters, we use the found
parameter settings in our simulations with a pillar grid. The grid either con-
tains a gradient in pillar spacing in the x-direction, or is regularly spaced.
In the gradient grid, we measure the average step size in the x-direction
and speed of the cell. For the regular grids, we determine the effective
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persistence time, persistence length, speed and diffusion coefficient. In
each of our simulations, we simulate a single cell.

Cellular Potts model of persistently moving cells

The model of cell movement is based upon the Cellular Potts model (CPM)
[68] with either of two extensions for modeling persistent cell movement
(see Section 4.4.2). The CPM represent cells on a regular square lattice
Λ ⊂ Z2. Each lattice site, ~x ∈ Λ, is associated with a spin value σ(~x) ∈
{−2, 0, 1}, or cell ID that uniquely identifies the lattice site with the cell
(σ = 1), the medium (σ = 0), or a pillar (σ = −2). The cell is represented as
a collection of lattice sites marked with σ = 1.

Cell motion is modelled by updating the grid through random copy
attempts. In a copy attempt a lattice site x is selected randomly, as well as
one of its neighbours y. If σ(x) 6= σ(y), the copy attempt can change the
energy of the system. Whether a copy attempt is accepted depends on the
energy change associated with it. The energy of the cell is described by the
HamiltonianH, that contains cell-medium and cell-pillar interactions and
two cell constraints: the cell area and the cell perimeter [70].

H = ∑
u,v

Jσu,σv(1− δσu,σv) + λarea(aσ − Aσ)
2 + λperimeter(pσ − Pσ)

2 (4.3)

The first term in the Hamiltonian describes the adhesion energy of the cell.
Here, Jσu,σv describes the interaction energy between two neighbouring
lattice sites u, v of types σ(u), σ(v). As Jpillar,medium = 0, we only take the
adhesion energy between cell and medium or cell and pillar into account.
The second term describes the area constraint and penalizes deviation of
the cell area aσ from its target area Aσ. The third term is the perimeter
constraint and penalizes deviation in cell perimeter pσ from the target
perimeter Pσ. The λ’s indicate the weight of both constraints.

The probability of a successful copy attempt depends on the change in
Hamiltonian:

P(∆Hx→y) =

{
1 if ∆H < 0
e−(∆H/T) if ∆H ≥ 0

,

with T denoting “the temperature", a term that allows for noise, as cells
are able to use energy to do energetically unfavourable moves by energy
expenditure. To keep track of time, the model time is expressed in Monte
Carlo steps (MCS). Within a single MCS, the expectation is that each lattice
site has been updated once. Since we only model a single cell in a large
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field, many lattice site neighbouring pairs will not lead to cell movement.
To speed up simulations, we use a rejection-free algorithm ignoring such
unfruitful copy attempts.

Pillars

The pillars in our model have their own σ = −2, as not to be confused
with the σs of the medium or cells. Updates involving a pillar are handled
differently from other updates. As pillars are static, we do not allow a copy
attempt into a pillar site. However, we allow for copy attempts from a
pillar site into a cell. Although, in this case, we do not copy σ(pillar) into
the site, but σ(medium). This allows the cells to retract from the pillars and
can be seen as medium flowing back in from the third dimension which we
do not model explicitly. The interaction energy Jcell, pillar can be adjusted to
represent highly adhesive or slightly repulsive pillar surfaces. In this work,
our base value is set to Jcell,pillar = Jcell,medium, such that pillar adhesion is
neutral in respect to adhesion to the medium, but we also vary Jcell,pillar to
see the effect of adhesion.

We model two different pillar grids: a regularly spaced pillar grid
and a pillar grid with a gradient. The regularly spaced grids are defined
by the distance between pillar centers d and the pillar radius R. We set
R = 10px ≈ 5.25µm in our simulations. The pillar grid with gradient
consist of three different parts: a regularly spaced part on the left of the
field, a part with a gradient in pillar distance in the middle and another
regularly spaced part on the right. The gradient of pillar in the middle is
defined by the following set of pillar centers P,

P =

{
~x ∈ R2

∣∣∣∣ x1 = d
1−e−s (esn − 1) + d

2 and
x2 = d

(
m + 1

2

)
esn, with n, m ∈ Z

}
, (4.4)

where d is the distance between pillar centers at the origin (0, 0), the center
of the field. We used d = 32px ≈ 16.8µm in our simulations and d =
16.8µm in the experimental setup. The parameter s defines the steepness of
the gradient. A lattice site ~x is assigned to a pillar if it is within a distance
R from one of the pillar centers, ~p ∈ P. Hence the set of pillar lattice sites
becomes,

{~x ∈ Λ|(∃~p ∈ P)[|~x− ~p| < R]} (4.5)

with P the set of lattice centers (Eq. 4.4), and R the pillar radius. Again,
we set R = 10px ≈ 5.25µm in our simulations. For the experimental setup
R = 5µm.
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This gives a gradient in the horizontal axis. However, to limit the gaps
between pillars to get too small or too big, we have the two regularly spaced
grids at the left and right of the gradient part of the grid. The pillar spacing
of those two parts is set to dmin = 2R + 6px ≈ 13.65µm on the left and
dmax = 2d− dmin px ≈ 19.95µm on the right in our simulations, and in our
experimental setup dmin = 13.63µm and dmax = 19.93. See also Table 4.3 for
an overview of all grid measurements.

Persistent random walker

Our Hamiltonian on its own does not lead to persistent cell motion. In order
to model persistent cells, we use two different extensions of the Cellular
Potts model. First, we use the Act-extension [73], which models internal
cell skeleton rearrangements and is also capable of describing persistent
cell motion. Secondly, there is the vector-based persistence, which inherits
most of the properties of the persistence model by Schakenraad et al. [75].

Act-extension - Active reorientation The Act-extension for the Cellular
Potts model adds an extra layer to this model that resembles the assembly
of actin machinery [73]. Each lattice site has an extra value, called the Act-
value, which can range from 0 to maxAct, a parameter value. The Act-value
outside the cell is always 0, and can vary inside the cell. If the cell has
recently made an extension, the site of extension will get the Act-value of
maxAct. Each Monte-Carlo step, the Act-values will be decreased by 1, until
they become 0.

The Act-values play a role in the change in Hamiltonian. If there is
a copy attempt extending a lattice site~c from the cell into a lattice site ~m
containing medium, then we look at the geometric mean of the Act-levels
in NB(~c), the Moore neighbours of~c that are within the cell, such that:

∆HAct(~c→ ~m) =
λAct

maxAct
|NB(~c)|

√
∏

y∈NB(~c)
Act(y). (4.6)

Otherwise, if there is an attempt of a cell retracting, then the sign changes,
so ∆HAct(~m → ~c) = −∆HAct(~c → ~m). As a consequence, cell areas with
high Act levels are more likely to extend outwards of the cells and less
likely to retract. This simulates the polarized actin structure of a cell in a
phenomenological way. The two parameters λAct and maxAct can be tuned
to obtain different cell motilities.
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Vector-based persistence - Passive reorientation The vector-based per-
sistence is a hybrid method between [72] and [75]. First of all, the cell has a
direction indicated by θ. Cell movement along this direction is favoured.
For each copy attempt extending the cell, the angle α between the dis-
placement caused by that move and θ is computed, and coupled to the
Hamiltonian as by [72]:

∆Hpersistence = −λpersistence · cos(α). (4.7)

∆Hpersistence is added to the general ∆H. For the updating of θ, we deviate
from [72], and use the differential equation, the same as in [75].

dθ

dt
=

√
2
τ

ξ(t). (4.8)

Here τ stands for the persistence time, and ξ(t) is a stochastic white noise
term, modelled by a Gaussian distribution with mean 0 and variance
σ2 = 2 ∆t

τ . The term ∆t couples the time of equation 4.8 to the MCS, and we
choose ∆t = 0.1τ. At initialization the cell is assigned a θ from a uniform
random distribution. We update θ each MCS. We can tune the cell motility
of this model extension through the parameters τ and λpersistence.

Empty field fitting

In order to quantitatively compare the topotaxis of simulated cells to Dic-
tyostelium discoideum cells, we tried to find parameters such that the actively
reorienting and passively reorienting cells behave similarly to the starved
and vegetative D. discoideum cells on a surface without any pillars (Figs. 4.1
and 4.2). We only changed λAct and maxAct, and λpersistence and τ freely.

The values we fitted our cells to are the surface area, instantaneous
speed, effective diffusion coefficient and persistence time. The surface
area and speed were used to determine the length and time scale of the
CPM, whereas the effective diffusion coefficient and persistence time were
the objective of our fit. We fitted for starved and vegetative D. discoideum.
Starved cells on an empty surface displayed a persistent random walk (Fig.
4.1, Table 4.1). Vegetative cells had a larger area and were less motile (Fig.
4.2, Table 4.1)

Determining model persistence time and diffusion coefficient For de-
termining the persistence time in our models, we first have computed the
mean squared displacement of 1000 simulated cell tracks from 120 MCS
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onwards:

〈r(t)2〉 = 1
1000

1000

∑
i=1

(R(120 + t)− R(120))2 (4.9)

We then fitted to 〈r(t)2〉 the formula

MSD(t) = 4DTt + 2v2
0τrt− 2v2

0τ2
r (1− e−tτr), (4.10)

which describes the active Brownian motion with translational noise [159].
Here τr is the persistence time, v0 the constant speed, and DT is the transla-
tional diffusion caused by thermally induced fluctuation, which is inherent
in the CPM. The corresponding effective diffusion constant is described
by Deff = DT + 1

2 v2
0τr. However, we decided to obtain Deff independently

from Eq. 4.10 by fitting a line through the square displacements over time
starting from t = 2000 MCS and divide its slope by 4.

Scoring the fit For scoring the fit we used a weighted least squares ob-
jective. We used a hillclimbing algorithm with multiple restarts to obtain
a shortlist of possible parameter values. The best fifteen parameter sets
were then scored ten more times to obtain the best parameter set. The
resulting effective diffusion coefficient and persistence time are shown in
Table 4.1. The fits for starved cells are better than the fits for vegetative cells,
most likely due to the discretization of the parameter space. The optimal
parameters are shown in Table 4.2.

Measuring model topotaxis

To measure topotactic drift, we have run multiple simulations for different
values of s, the parameter indicating the steepness of the pillar gradient.
For each parameter value, we did 1000 simulations. To measure topotaxis
we computed the mean velocity in the x-direction at 20s intervals for all
cell tracks while the cell was in the gradient part of the pillar grid. This
gives our migratory drift vx.
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