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Chapter 2

Predicting metabolism from gene expression
in an improved whole-genome metabolic

network model of Danio rerio
Leonie van Steijn, Fons J. Verbeek, Herman P. Spaink,

Roeland M.H. Merks*

Abstract

Zebrafish is a useful modeling organism for the study of vertebrate de-
velopment, immune response, and metabolism. Metabolic studies can be
aided by mathematical reconstructions of the metabolic network of ze-
brafish. These list the substrates and products of all biochemical reactions
that occur in the zebrafish. Mathematical techniques such as flux-balance
analysis then make it possible to predict the possible metabolic flux dis-
tributions that optimize, for example, the turnover of food into biomass.
The only available genome-scale reconstruction of zebrafish metabolism
is ZebraGEM. In this study, we present ZebraGEM 2.0, an updated and
validated version of ZebraGEM. ZebraGEM 2.0 is extended with gene-
protein-reaction associations (GPRs) that are required to integrate genetic
data with the metabolic model. To demonstrate the use of these GPRs,
we performed an in silico genetic screening for knockouts of metabolic
genes and validated the results against published in vivo genetic knockout
and knockdown screenings. Among the single knockout simulations, we
identified 74 essential genes, whose knockout stopped growth completely.
Among these, 11 genes are known have an abnormal knockout or knock-
down phenotype in vivo (partial), and 41 have human homologs associated
with metabolic diseases. We also added the oxidative phosphorylation
pathway, which was unavailable in the published version of ZebraGEM.
The updated model performs better than the original model on a prede-
termined list of metabolic functions. We also determined a minimal feed

*Published as Leonie van Steijn et al. “Predicting Metabolism from Gene Expression
in an Improved Whole-Genome Metabolic Network Model of Danio rerio”. Zebrafish 16.4
(2019), 348–362
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composition. The oxidative phosphorylation pathways were validated by
comparing with published experiments in which key components of the
oxidative phosphorylation pathway were pharmacologically inhibited. To
test the utility of ZebraGEM2.0 for obtaining new results, we integrated
gene expression data from control and Mycobacterium marinum-infected
zebrafish larvae. The resulting model predicts impeded growth and altered
histidine metabolism in the infected larvae.

2.1 Introduction

The zebrafish (Danio rerio) has become a widely used model organism for
the study of vertebrate metabolism [76, 77]. Its genome has been sequenced
and annotated [78] and the CRIPSR-Cas technique has made it easier than
ever to study the role of specific metabolic genes [79]. For example, ze-
brafish have been used to test the toxicity of drugs on liver metabolism and
the effect of liver metabolism on internal drug concentration [80]. Zebrafish
have also been used in studies of metabolic diseases such as diabetes, obe-
sity, and fatty liver disease, often combining sequencing with visualization
of gene expression [76].

Mathematical and computational techniques make it possible to use
such metabolic gene expression data to predict the flux of metabolites
through single cells or even whole organisms. Genome-scale metabolic
reconstructions, or metabolic maps for short, are models that consist of
two parts: a metabolic network of the organism and the genes underlying
this network. This network reconstruction is based on the genes coding for
metabolic proteins present in the genome and sometimes requires manual
curation to fills in gaps in the network [81].

Metabolic maps make it possible to predict how metabolites flow through
a network of biochemical reactions, finally resulting in resources for growth
or the availability of energy. Because in one network, an infinite number
of alternative flow distributions are equally likely, a sensible prediction
can only be made under the assumption of an objective, for example, opti-
mal biomass production or optimal production of ATP, and a number of
constraints on the possible fluxes. Most techniques assume flux balance,
meaning that all biochemical concentrations are in equilibrium. Additional
constraints can be given by known or assumed concentrations of enzymes,
leading to a maximum flux through the reaction.

Mathematical techniques to make these predictions include Flux-Balance
Analysis (FBA) [18] and derivate methods as Flux Variance Analysis, [20]
Minimization of Metabolic Adjustment, [82] and Expression flux [83].These
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predict the production rate of biomass or of a certain metabolite, for a
given substrate, and sometimes supplemented with expression data. These
predictions are valuable for finding suitable substrates for microorganism-
based production in bioreactors. Another feature of these methods used
to predict the flux through genome-scale metabolic models is the ability to
study the effects of gene knockouts or gene expression on metabolism by
constraining or removing reactions in the reaction network [28, 84]. This
gives insight into the metabolic routing or rerouting of an organism and
can be helpful in acquiring the aspired phenotype of an organism, but it
can also give insight into the metabolic fluxes of different cell types.

With the increasing presence of metabolic data of healthy and diseased
zebrafish, and the availability of genetic data, a genome-scale metabolic
model of the zebrafish is tremendously useful. So far, genome-scale meta-
bolic models have been proposed mainly for single-cell model organisms,
such as Escherichia coli and Saccharomyces cervesiae, [85, 29, 86] as well as
pathogens such as Salmonella typhimurium [87] and Mycobacterium tuberculo-
sis [88]. For these unicellular organisms, very accurate growth predictions
have been made. Multicellular organisms, particularly vertebrates, are
less well represented in the list of genome-scale metabolic models. So
far, reconstructions have been made for human, [30] mouse, [31] Chinese
hamster, [32] fish, [89, 34] and recently, rat [33]. Whole-organism modeling
is less common for these multicellular organisms, as metabolic functions
are distributed over different tissues. However, modeling specific cell types
has been done, such as erythrocytes [90] and cancer cell lines, [23] as well
as integrating different cell types into a larger model, such as a combined
model, including adipocytes, myocytes, and hepatocytes [91].

Why do we require a specific zebrafish genome-scale metabolic recon-
struction when other vertebrate models exist? Despite the high metabolic
similarity to human and mouse, there are subtle differences between ze-
brafish metabolism and the metabolism of these mammals that affect their
required nutrients. For example, inositol-3-phosphate synthase is an en-
zyme present in humans and mice, but it is absent in zebrafish, preventing
it from converting glucose-6-phosphate into inositol 3-phosphate [37]. This
makes inositol an essential nutrient for zebrafish.

The difference in metabolism aside, the main reason to make a specific
zebrafish genome-scale metabolic model is the genomic structure. The
teleost lineage underwent a whole-genome duplication event after the
radiation from their common ancestor with mammals, which resulted in
numerous genes still having duplicate copies compared to mammals [92].
As a result, there are more paralogous genes in the zebrafish genome than in
mammals. Hence, if one wants to study the effects of genes on metabolism,
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translating a human or mouse genome-scale metabolic reconstruction into
a zebrafish specific model by orthologous genes is not sufficient. Foremost,
this translation is hampered by these paralogs as it does not make the
translation one-to-one, and furthermore, many paralogs have evolved
different subfunctions, increasing the functional difference between the
zebrafish paralogs and the human or mouse orthologs. So to model the
effects of genes on zebrafish metabolism, a zebrafish-specific genome-scale
model is necessary.

Existing genome-scale models for zebrafish are MetaFishNet [89] and
ZebraGEM [34]. MetaFishNet is a metabolic model derived from the
genome of multiple fish species, including zebrafish, and focuses on indi-
vidual pathways. As these pathways are not interconnected or divided into
cell compartments, MetaFishNet is not suitable for whole-cell or whole-
organism modeling using Flux Balance Analysis (FBA) methods, and there-
fore functions mainly as a reference tool, instead of a simulation tool. The
fact that it combines multiple fish genomes also makes it harder to compare
insights gained from this model to in vivo experimental results, as some
pathways are solely based on the genome of one of those five fish species
and do not occur in the other four fish species.

The other model, ZebraGEM, is based on the zebrafish genome and
is a whole-cell and compartmentalized reconstruction. It contains 2911
reactions, of which 2446 are gene-associated reactions based upon 1498
genes and can be used for whole-cell metabolism modeling. It was reported
to fulfill a list of 160 metabolic functions, such as the production of amino
acids and biosynthesis and degradation of secondary metabolites. The
model also predicted that the synthesis of taurine is through a metabolic
pathway dependent on cysteine sulfinic acid decarboxylase, which is in
line with experimental findings [93].

Currently, ZebraGEM cannot be used for modeling large screens of
single gene knockouts or for the integration of gene expression data, as it
lacks GPR. GPRs describe how gene products associated to a reaction work
together, that is, whether they form a complex enzyme, are isoenzymes,
or a combination of these. They provide a logical framework to decide
whether a reaction can take place when one or more of its underlying genes
are knocked out, and hence, they are of great importance when it comes to
modeling gene knockouts.

In this article, we describe the modifications applied to ZebraGEM to fit
our modeling needs and to fit standards of genome-scale metabolic recon-
structions, as well as demonstrate a number of ways in which the updated
model can be used. Briefly, the modifications fall into three categories.
First, we added the GPRs, to facilitate gene knockout and gene expression
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modeling. Second, we renamed components of the model according to
BiGG Models standard names, [94] to ease comparison with genome-scale
metabolic reconstructions of other organisms. Finally, we extended the
model with essential reactions for pathways already present, or changed
the reversibility of reactions already present in the model.

We have validated the renewed model against the metabolic functions
the original model was reported to fulfill. Using the updated model, we pre-
dicted a minimal feed composition and were able to make predictions of mi-
tochondrial function with respiration simulations. Finally, we also proved
the usefulness of the newly added GPRs: we performed a large single-
knockout and double-knockout screening and predicted lethal knockouts,
and we also integrated gene expression data with the model to predict
metabolic differences between control zebrafish larvae and larvae infected
with Mycobacterium marinum.

2.2 Methods

The genome-scale metabolic reconstruction (“metabolic map”) of zebrafish
consists of the following: (1) a metabolic network describing the reactions
that can occur in the organism and (2) the genes that are associated with
those reactions (Fig 2.1). The network on its own can be used for modeling
metabolism, and the associated genes give extra handles to this modeling.
In this section, we give a general overview of the metabolic network com-
ponent and gene component of a genome-scale metabolic reconstruction, as
well as describe the modeling method called FBA. We also briefly address
the representation of this model in a computer file.

2.2.1 Metabolic network

The metabolic network part of a metabolic map can be represented by a
matrix S (2.1 A B). This matrix contains the ratio between reactants and
products, or stoichiometry, for each reaction within the network, and is
called a stoichiometric matrix. The rows represent the metabolites and
the columns represent the reactions. The coefficient at the intersection of
a specific row and column indicates the contribution of that metabolite
to that reaction. Some of the reactions are of a special type, the so-called
exchange reactions. These exchange reactions either have only a reactant or
only a product, and hence do not preserve mass. They represent the influx
and efflux of metabolites in and out of the system.
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FIGURE 2.1: Important components of a genome-scale metabolic recon-
struction are the metabolic network (A, B) and the GPR (C). (A) Graphical
overview of a simplified metabolic network. Reactions within the black
border are part of the system and hence have mass balance. The solid
gray border indicated the cell membrane and the dashed gray border indi-
cates cell organelle membranes. Reactions E1–E3 are exchange reactions
and are not mass balanced, allowing for import and export of metabolites.
Reaction BM is a biomass reaction, taking biomass precursor metabolites
and exporting them to biomass; (B) stoichiometric matrix representation
of the network shown in (A); (C) example of how isoenzymes and pro-
tein complexes are translated into a GPR. GPR, gene-protein-reaction

associations; gpx, gene product x.
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2.2.2 Flux Balance Analysis

The standard method for constraint-based metabolic modeling is FBA
[18]. For a given metabolic network and a given objective function, FBA
computes the optimal flux through the metabolic network that minimizes
or maximizes the objective function. The first assumption upon which FBA
is based, is that an organism will adjust its fluxes such that the internal
metabolites, indicated with c, are in equilibrium, that is

dc
dt

= S · ~f = 0, (2.1)

with ~f the vector representing the fluxes of the reactions in the metabolic
network. Some of these fluxes can be constrained. For example, exchange
reactions can be constrained due to limited availability of the exchanged
metabolite in the environment. Also, irreversible reactions can be con-
strained, as they cannot have a negative flux. This can be formulated as
follows:

ai ≤ fi ≤ bi, (2.2)

with ai and bi indicating the lower bound and upper bound of the flux of
reaction i. Sometimes an exchange reaction has a strictly positive lower
bound, indicating that the system should at least produce that amount of
the exchanged metabolite. These reactions are called demand reactions.

Solving equation 2.1 and 2.2 together can lead to an infinite number
of solutions. Within this solution space, FBA selects for a smaller solution
space based on a predefined objective, for example, that the organism opti-
mizes its metabolic fluxes for a specific reaction or for biomass production.
This optimized reaction, or objective function fobj, can be any reaction in the
metabolic network, but most often, it is a biomass function. The biomass
function lists all the precursor metabolites and energy-carrying metabolites
required for the accumulation of biomass. Unless stated otherwise, we will
use the biomass function as the objective function. The full formulation of
the FBA problem then becomes as follows:

Optimize
fobj (2.3)

such that:

S · ~f = 0,
ai ≤ fi ≤ bi

This forms a linear programming problem and can easily be solved using
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linear programming solver software, for example, GNU linear program-
ming kit (GLPK) or Gurobi. In this work, we have used CPLEX IBM ILOG
CPLEX.

Once the linear programming problem is solved, the solution ~f gives a
flux distribution of the metabolic network for the given constraints. This
gives insight into which pathways are used and their relative contribution
can be computed. By changing the upper and lower bounds in 2.2, one
can test the flux distribution in different scenarios, such as comparing the
growth rate under different sets of substrates.

Some common variations on FBA are parsimonious FBA [95] (pFBA)
and Flux Variability Analysis (FVA) [20], which are multiobjective linear
programming problems. After solving the original FBA problem, they
then optimize a second objective. For pFBA, the secondary objective is
to minimize the total sum of fluxes, that is, min ∑ | fi| , while maintaining
the same constraints as in the FBA problem, together with keeping the
previous objective fobj at its optimum. FVA is a method that explores more
of the solution space, by searching for the minimum and maximum flux of
each reaction. So after doing FBA, a new linear programming problem first
minimizes and then maximizes each fi, while also maintaining fobj at its
optimum and regarding all the previous constraints.

Multiple software packages for FBA exist. These function as an interface
between the user and the linear programming solver. They allow for easy
manipulation of bounds, easy addition and removal of reactions in the
metabolic network, and modification of the GPRs, without having to keep
track of the linear programming problem manually. The software used in
this study is CobraPy [96], combined with the CPLEX solver.

2.2.3 Genes and constraint-based modeling

The second part of the metabolic map is the associated genes. These genes,
responsible for the enzymatic reactions in the metabolic network, are repre-
sented using GPR. In its simplest form, the GPR links each enzyme with a
biochemical reaction. If two enzymes catalyze the same reaction, the GPR
becomes a logical expression. If they are isoenzymes, for example, they can
both independently catalyze the reaction, an “OR” function is used. If the
two enzymes form a complex such that both must be present to catalyze the
reaction, an “AND” function is used. More complex GPRs can be described
by nested logical expressions (2.1 Fig. 1C). In case multiple, equivalent
logical expressions are possible, the disjunctive normal form is used, that is,
a summation of all possible isoenzymes. Using the GPRs, gene knockouts
or gene expression data can be integrated into constraint-based models. A
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standard way of integrating gene knockouts is to set each occurrence of the
knocked-out gene in a GPR to False and evaluate the GPRs. If any of these
GPRs also evaluates to false, then constrain the corresponding reaction to
0 flux by setting its upper and lower bound to 0. Gene expression data
can be integrated into constraint-based modeling in alternative ways [97,
25, 98, 99]. Although details vary, these methods either penalize fluxes
over reactions with no or low expression and minimize the penalty or
they set the lower and upper bound of fluxes depending on the expression
level. The gene expression data integration method used in this study is
Gene-centric flux (GC-flux) [100]. In this study, the linear programming
problem is slightly altered from the original stoichiometric matrix-based
linear programming problem. Using the GPRTransform package [101],
we split up each reaction into multiple versions of the same reaction, one
for every possible isoenzyme. The sum of the fluxes of all the reactions
containing a certain gene in their GPR is then constrained by the expression
level of that gene. Although many choices exists for how the expression
level gives an upper bound, the simplest one is to take the expression level
itself. So if we rephrase Equation 2.3 with the altered stoichiometric matrix
S′, the new programming problem becomes as follows:

First optimize
fobj (2.4)

such that,

S · ~f = 0,
ai ≤ fi ≤ bi

∑
r∈Rg

|~fr| ≤ Eg∀g ∈ G

Here Rg denotes the reactions belonging to gene g, Eg the expression
of that gene, and G the total gene set. Basically, this algorithm distributes
the gene expression among the different enzyme complexes, and hence
the related reactions, of that gene, assuming that each molecule of a gene
product can only take part in one complex at a time. The GC-flux algorithm
originally also minimized the length of the flux vector, to obtain the most
parsimonious flux distribution that optimizes the objective. We did not
minimize the flux vector length, but applied FVA together with computing
the relative flux range change (RFRC) to compare between the different
gene expression data sets. With FVA, we determine for each fi its minimum
and maximum value that still allow for the objective to be optimized. To
compare the flux ranges between different conditions, we compute the



26 Chapter 2. Predicting metabolism in a metabolic model of Danio rerio

RFRC of reaction i as follows [102]:

RFRCi =
c2,i − c1,i

1
2 (r2,i + r1,i)

,

with cn,i the center, 1
2 ( fi,max + fi,min) of the flux range of reaction i in condi-

tion n, and rn,i the range width fi,max − fi,min.

2.2.4 Data standards for representation of metabolic maps

To facilitate exchange of computational models, such as metabolic models,
in systems biology, the Systems Biology Markup Language (SBML) has
been developed [103]. Different elements of a metabolic map, such as
metabolites, reactions, genes, and GPRs, are represented by their own class
in SBML. For this, we use the fbc package, the Flux Balance Constraints
extension of SBML. This package is especially designed to describe these
genome-scale metabolic reconstruction elements, and has specified guide-
lines on how an entity should be represented in an SBML file [104]. 41
The original model was already an SBML file, but predates the fbc pack-
age’s release. Therefore, we adapted the model to fit with the fbc package
guidelines.

Metabolite, reaction, and gene nomenclature

Aside from the file structure, there are also standards for the names of
metabolites and reactions. This facilitates comparison and interfacing with
metabolic maps of other organisms. We renamed the metabolites, reactions,
and genes. Genes were renamed with their Entrez id [105]. The metabolites
and reactions were renamed using, if possible, the data standard from
BiGG Models, a knowledgebase of genome-scale metabolic network recon-
structions [94]. Metabolites without BiGG name were renamed to their
corresponding identifier in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) to facilitate easy lookup [106, 107, 108]. Reactions without BiGG
name were not renamed, as no standardized names exist for these reac-
tions yet, making up 689 of not-renamed reactions. The reactions that did
not need renaming can be categorized into three groups. The first group
includes transport reactions of metabolites without BiGG name. These
reactions can be identified by the description of the reaction. The second
group consists of reactions involved in the exchange of fatty acids between
metabolites. The third group contains reactions involved in oxidation and
reduction of metabolites using NADH/NAD+ or NADPH/NADP+. The
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second and third group kept their original annotation, linking the reaction
to a KEGG entry.

2.3 Results

In this section, we first describe the alterations in the model. These in-
clude alterations to the metabolic network, as well as the part of the model
describing the relationships between genes and reactions. After that, we
present the results validating our updated model. We first tested the meta-
bolic expansion of the model by checking it for a list of metabolic functions,
determining a minimal feed, and predicting mitochondrial function in
respiration simulations. Next, we tested the GPRs in the model by doing
knockout simulations. Finally, we apply the model to predict metabolic
changes due to infection with M. marinum.

2.3.1 Reaction network

The alterations to the metabolic network encompassed the following five
issues: (1) improvement of the biomass function and addition of reactions to
enable synthesis of biomass precursor metabolites; (2) addition of oxidative
phosphorylation; (3) correction of starch metabolism; (4) correction of the
reversibility of reactions and their catalyzed or spontaneous nature; and (5)
validation of the list of metabolic functions ZebraGEM was reported to be
able to fulfill. Figure 2.2 summarizes the update in ZebraGEM, categorized
into subsystems following the subsystem reaction associations from Virtual
Metabolic Human (VMH), a human- and microbe-specific database on
metabolism and metabolism modeling [109, 110]. The subsystems are
sorted according to the number of reactions changed in each subsystem.
Changes are of three types: “reaction added,” “reaction deleted,” and
“reversibility changed.”

Biomass function and biomass precursors

FBA and related modeling approaches [18, 25, 111, 112] assume that an
organism or cell channels the metabolic fluxes to optimize a metabolic
function, called the objective function. This objective function is often a
biomass function, describing the relative amounts of precursor metabolites
required for biomass production. Realistic biomass functions improve
the realism of model predictions [113]. In the absence of exact data for
zebrafish, we based the updated biomass function upon data from other
vertebrates.
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FIGURE 2.2: Subsystem overview of the adaptations made to ZebraGEM.
For each subsystem, the total number of reactions, including the removed

and added reactions, is noted in between brackets.
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The biomass function coefficients were taken to be the average of the
coefficients of biomass function of a human genome-scale reconstruction
(Recon 2 [30]) and a mouse genome-scale reconstruction (iMM1415 [31]), so
far the only other vertebrates with genome-scale reconstructions, together
with Chinese hamster [32] and rat [33]. If a metabolite was a precursor in
only one of Recon 2 and iMM1415, the coefficient was taken directly from
the model in which the metabolite was present. If a metabolite was not
present in both models, the coefficient was the average of a third, human
three-tissue model, which had a biomass function for each tissue type [91].

Of the biomass precursors, 14 reactants and 2 products originally had
stoichiometry coefficient 0 and were put in the biomass reaction for fu-
ture work. Three of the reactants were cysteine, proline, and tyrosine,
and with addition of reactions to their synthesis pathways, they could be
produced. Nine of the reactants were membrane lipids, like cholesterol,
sphingomyelin, and phosphatidylinositol, which also could be produced
after the addition of reactions involved in their synthesis. We updated
their coefficients in the same way as the other metabolites taking part in
the biomass function. The remaining four metabolites were NAD, NADP,
NADH, and NADPH. These were omitted from the biomass function, fol-
lowing Recon 2, iMM1415 and the human three-tissue model. iMM1415
nor the three-tissue model contained these metabolites in their biomass
function. The resulting coefficients and their origin can be found in Supple-
mentary Table S2.1.

Oxidative phosphorylation and starch metabolism

Oxidative phosphorylation in the model is an essential pathway for respi-
ration. The corresponding reactions and genes were added to the model,
using the human metabolic model Recon 2 as a template. Along with ox-
idative phosphorylation, it was also necessary to update “Ubiquinone syn-
thesis,” as well as to add the reactions CATm and SPODMm, represented
in “reactive oxygen species (ROS) detoxification,” to have a functional
oxidative phosphorylation pathway.

We have also revised glycogen metabolism, using Recon 2 as a template,
as the stoichiometry in the original model led to mass imbalance. The origi-
nal reactions were replaced with those from Recon 2, replacing the genes
within the GPRs for zebrafish orthologs. Changes in glycogen metabolism
are shown in Figure 2.2 under subsystem “Starch and sucrose metabolism”
according to VHM.
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Reaction reversibility and reaction nature

All reactions in the model were checked for reaction reversibility. This
corrected two types of unrealistic behavior. First, ZebraGEM produced
essential nutrients through backward reactions (Supplementary Table S2.2).
This was solved by correcting nonbiological reversible reactions in the
corresponding pathways. Second, several metabolites were tunneled over
membranes, as the same reaction occurred on both sides of a membrane
that involved a membrane metabolite. If at least one of these reactions
was reversible, this could result in spurious transport of the nonmembrane
metabolites, often NAD or NADP. By checking the reversibility of the
reactions with the reaction databases BiGG, VMH, and KEGG combined,
this free transport cycle could be broken. The fraction of reactions with
reversibility changed per subsystem is shown in Figure 2.2. In total, the
reversibility of 543 out of 3023 reactions was changed.

A final check was done to ensure that all reactions in the updated model
do occur in zebrafish metabolism. Reactions without gene regulation were
checked using the KEGG database, a database containing information on
genes and reactions. Their KEGG entries were tested for two conditions: (1)
whether the reaction could occur nonenzymatically, and if not, then (2) it
was checked whether the reaction has an enzyme associated to vertebrates,
thus excluding reactions that occur in bacteria only. If any of these two
conditions was met, the reaction was kept; otherwise, we deleted the
reaction. The subsystems with deleted reactions are also shown in Figure
2.2.

Metabolic functions

The original model was reported to fulfill 160 metabolic functions, ranging
from amino acid metabolism to pyrimidine and purine metabolism. In
our hands, using the downloadable SBML file of the original model in
the supplements, only 92 of these functions were fulfilled (Supplementary
Table S2.4). Twenty-seven of the failed functions required metabolites in
compartments that were absent in those compartments in the model. The
other failed functions were checked manually using From Metabolite to
Metabolite (FMM [114]) and KEGG for missing reactions, or for missing
transport reactions that should be present in zebrafish. The missing reac-
tions and their corresponding genes were added to the model. An overview
of the subsystems with reactions added is shown in Figure 2.2.
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TABLE 2.1: Comparison of the original ZebraGEM model with the up-
dated version.

Number of ZebraGEM ZebraGEM 2.0
reactions 2911 3023
metabolites 2742 2810
unique metabolites 1554 1557
genes 1498 1636
gene regulated reactions 2446 2523
blocked reactions 1572 1678
successful metabolic functions 92 123
failed metabolic functions 41 12
metabolic functions missing metabolites 27 25

Genes and gene-protein-reaction associations

The original model already had 2446 gene-associated reactions coded for by
4988 genes (1498 unique genes). We extended the model by putting these
gene products into a GPR, and added this to the model according to the
SBML guidelines. As a result, the full model can now be read and run using
constraint-based modeling software, and is now suitable for gene knockout
simulations and simulations with gene expression data integration.

In summary, 95 reactions were removed and 140 were added to the
model, and 543 reactions had changed reaction reversibility. The updated
model now contains 3023 reactions with 2810 metabolites, of which 1557
were unique, and 1636 genes. Two thousand five hundred and twenty-
three reactions are gene regulated and 1678 reactions are blocked, that is,
are unable to carry any flux due to dead-end metabolites. A comparison
between the original ZebraGEM model and the updated model is shown
in Table 2.1.

2.3.2 Model validation

To check whether the changes in the model network improved the perfor-
mance of the model, we tested the model predictions as follows: (1) we
checked whether the model performed the metabolic functions reported
in Bekaert [34]; (2) we checked for biological validity of the minimal set of
metabolites required for model growth; (3) we checked whether the model
could reproduce pharmacological interference with respiration. We utilized
the addition of the GPR by doing single- and double-knockout experiments,
and ultimately by gene expression data integration.
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Model metabolic functions

ZebraGEM was published with a list of 160 metabolic functions it was
reported to fulfill (Supplementary table 3 of Bekaert [34]). A metabolic
function on this list consists of one or multiple starting metabolites and one
or more end metabolites, indicating that a metabolic route between these
metabolites fulfills this function. We tested these functions by setting an
import reaction for the starting metabolites and an export reaction for the
end metabolites. The export reaction for the end metabolites was chosen as
the objective function, and a function was deemed successful if the model
imported the starting metabolites and exported the end metabolites. Some
of these metabolic functions could not be tested, as the starting or end
metabolite was not present in the model. Metabolic functions that did not
result in a success immediately were checked by hand to see whether the
model has an alternative path to fulfill the demand for the end metabolite.

Out of the 160 metabolic functions, after the corrections, ZebraGEM 2.0
was able to perform 123 functions successfully and still failed to perform
12 functions. Of the remaining 25 metabolic functions, the starting or end
metabolite was absent in the model and the corresponding function could
not be tested (Table 2.1).

Minimal feed composition

To validate the new biomass function and the changes to the reaction
reversibility, which corrected spurious production of essential amino acids,
we determined a minimal feed composition that would allow for growth.
The model was set to produce 1 arbitrary unit of biomass flux. As the model
objective, we minimized the uptake of metabolites from the environment.
The source metabolites include amino acids, the fatty acids linoleic acid and
linolenic acid, minerals, oxygen, and inositol (Fig. 2.3). We chose glucose
as the sole carbohydrate source.

The updated model predicts that the amino acids arginine, histidine,
and threonine are essential for biomass production, whereas they were
nonessential in the original model (Fig. 2.3). The updated model also
predicts additional uptake of glucose. In the original model, spurious
glucose was produced from imbalanced glycogen reactions, leading to
increased glucose uptake in the updated model. The updated model now
also predicts uptake of oxygen, due to the updated model for oxidative
phosphorylation (data not shown). The ratio between the metabolite species
taken up from the environment has also changed in the updated model,
due to the updated stoichiometry of the biomass function. This is most
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FIGURE 2.3: Minimal required metabolite uptake fluxes for the produc-
tion of 1 arbitrary unit of biomass flux for both the original model and
the updated model. Metabolite excretion fluxes are also shown, but were

not constraining the minimization.

clearly the case for phosphate uptake (Fig. 2.3), which dropped from 71%
of total metabolite uptake to 3%.

Thanks to the updated biomass function, inositol is now also an essen-
tial metabolite for growth in the model. Inositol is thought to be essential
for zebrafish as no gene for inositol-3-phosphate synthase has been found.
Inositol essentiality has been experimentally confirmed in other fish species,
even in fish species with de novo synthesis of inositol [115, 116, 117]. The
model currently does not require the essential fatty acid linolenic acid to
grow, as the lipid metabolism in the model uses a generic fatty acid and
the correct conversion of linolenic acid into this generic fatty acid is not
present in the model. Further improvements connecting and specifying the
used fatty acid in the lipid metabolism subsystem are required; see also in
the Discussion.

Respiration

We next tested if ZebraGEM 2.0 correctly predicts oxidative phosphoryla-
tion. The mitochondrial oxidative function of zebrafish can be tested in
vivo by measuring the oxygen consumption rate, which has been done in
zebrafish embryos [118]. In Gibert et al. [118], the consumption rate of oxy-
gen has been measured under the addition of three different compounds
disrupting oxidative phosphorylation. We have simulated the effects of
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FIGURE 2.4: Overview of oxidative phosphorylation, with the site of
action of the disrupting compounds rotenone, Antimycin A, oligomycin,
and FCCP. The model reaction names are next to the corresponding
enzyme, except for Htim, which represent, the proton leak and hence has

no corresponding enzyme.

these compounds using the updated ZebraGEM model with pFBA. The site
of action of these compounds and the model reactions active in oxidative
phosphorylation are shown in Figure 2.4.

The mitochondrial oxidative function can be tested in vivo by measuring
the oxygen consumption rate, which has been done on zebrafish embryos
[118]. In this study, the consumption rate of oxygen has been measured
under the addition of four different compounds disrupting oxidative phos-
phorylation. Without any compound the basal respiration is measured.
Adding oligomycin, an ATPase inhibitor, the respiration related to ATP pro-
duction can be derived. Under the addition of FCCP, a proton uncoupler,
the maximal respiration rate is measured. Finally, rotenone, a complex I
inhibitor, and Antimycin A, a complex III inhibitor, are added such that the
non-mitochondrial respiration can be measured. However, only rotenone
was used in the last step in the zebrafish embryo study [118].

First, the basal respiration rate is determined. In the experimental setup,
this was done by measuring the oxygen consumption flux of embryos
in the absence of disrupting chemicals. In our simulations, we optimize
the model for biomass production with pFBA. Because the cellular envi-
ronment within zebrafish is unknown, we used 1000 randomly created
environments. For each of these environments, we sampled the upper
bounds of metabolite uptake from selected ranges, such that the uptake
was the constraining factor in biomass optimization. We used the same
random environments for simulations of disruptive compounds.

Second, in Gibert et al. [118] the maximal respiration rate was measured
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FIGURE 2.5: Oxygen exchange for the four modeling conditions shown
in box plots.

after exposure to the proton uncoupler FCCP. This uncoupler allows for
proton flux over the inner mitochondrial membrane, bypassing ATPase.
We simulated this by blocking the model reaction ATPS4m (Fig. 2.4), the
model equivalent of ATPase, and again optimizing for biomass production
with pFBA. The experimental results show a 29% increase in respiration
compared to basal respiration. Our FCCP simulations, Figure 2.5, second
column, show a 10-fold increase in mean value compared to our basal
respiration simulations mean value.

After that, a new assay was performed in Gibert et al. [118] exposing
the embryos alternatively to oligomycin, an ATPase inhibitor, and rotenone,
a complex I inhibitor. By comparing the respiration rate after oligomycin
addition, the respiration related to ATP production can be derived. We sim-
ulated the effect of oligomycin by again blocking ATPS4m, together with
limiting the flux through the uncoupling reaction that transports protons
over the inner membrane (Htim, Fig. 2.4). The latter constraint is necessary
as proton gradients cannot develop in FBA. The Htim flux upper bound
was set equal to the Htim flux from the basal respiration simulations to
reflect the maximal buildup of proton gradient. The experimental results
show that ATP turnover-related respiration contributes about 60% to basal
mitochondrial respiration; in our simulations, this would be about 90%.
This is due to a side effect of blocking ATPS4m together with the limit on
Htim. As the proton back flow is limited, ubiquinone cycling is also lim-
ited. Ubiquinone is required for the reaction catalyzed by dihydroorotate
dehydrogenase, an essential part of pyrimidine synthesis. With limited
pyrimidine synthesis, the biomass production is also limited. As the up-
per bound for Htim is often 0, the model does not grow at all, and hence
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requires no oxygen.
The final compound rotenone can be used to measure the nonmito-

chondrial respiration, as the electron transport chain is blocked and no
oxygen is consumed by complex IV. We modeled the effect of rotenone by
blocking the reaction associated to complex I: NADH2_u10m (Fig. 2.4). The
experimental results show that nonmitochondrial respiration contributes
to about 40% of basal respiration. Our simulations show a different picture,
as the oxygen consumption flux is larger in the rotenone simulation than
in the basal simulation. (Fig. 2.5, column 4). The rotenone simulation
should represent respiration where the entire electron transport chain has
been blocked, resulting in nonmitochondrial respiration. However, by only
restricting the flux of NADH2_u10m, the electron transport chain is not
entirely blocked in the model, allowing for respiration similar to the basal
case. An extra compound that can be used to study nonmitochondrial
respiration is Antimycin A, which inhibits complex III. Although not used
in Gibert et al. [118] we tried simulating the effects by blocking the complex
III corresponding reaction CYOR_u10m. However, in this case, the model
fails to grow at all.

Overall, the model is able to simulate the qualitative behavior of basal,
FCCP-influenced, and oligomycin-influenced respiration. It is impossible to
use FBA to describe the proton gradient. Our choice to describe the proton
gradient with Htim flux from the basal simulation proved too strict, and
choosing a higher Htim upper bound could improve the model outcome.
The rotenone/Antimycin A simulations also exposed some problems with
the model that are still open, such as alternative electron transport routing
and total biomass dependency on the reaction CYOR_u10m.

Gene knock-out simulations

Next, we validated the utility of the GPRS by performing an in silico screen
for gene knockouts. To simulate a gene knockout, we set gene activity to
“false” in each GPR that contains the gene. The other genes in the GPRs
were set to “true,” and the logical expression of the GPR was evaluated. If
the GPR evaluated as “false,” the flux through the associated reaction was
blocked. Using FBA, we optimized biomass production in the presence of
the additional constraint. The procedure was repeated for each gene. We
also screened for double gene knockouts. In this case, each pair of genes
in the network was set to “false” and the same procedure was applied for
double knockouts. The resulting knockout biomass production rate was
expressed as a fraction of the wild-type biomass production rate, that is,
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we divide to optimal biomass production rate in the knockout case over
the optimal biomass production rate in the “wild-type” control.

Out of the 1636 genes in the model, 74 single knockouts completely
blocked biomass production. For further 30 genes, single knockout re-
duced biomass production rates. Out of these 30 single knockouts, 13
single knockouts resulted in a biomass production rate ranging from 0.4038
to 0.8 of the optimal biomass production rate and 17 have a slightly reduced
biomass production rate ranging from 0.8 to 0.95 of the optimal rate. A
further 42 single knockouts resulted in a very minor reduction in biomass
production, ranging from 0.95 to 0.9998 of that of the wild type. All these
genes are listed in Supplementary Table S2.3A. The model was robust to
single knockout of the 1490 other genes in the model, yielding a biomass
production rate identical to that of the wild type. The genes resulting in a
nonoptimal phenotype were mostly involved in oxidative phosphorylation
(37 of 146), followed by cholesterol metabolism (14), nucleotide intercon-
version (8), and synthesis (11). We see a good correlation of the essential
and partial-essential genes and the pathways for biomass precursors that
we added to the biomass function as well as oxidative phosphorylation.

To validate our single-gene knockout simulation results, we searched
the literature for mutagenesis screens in zebrafish screening for visible
defects (Fig. 2.6) [119, 120, 121, 122, 123, 124, 125, 126]. Thirty-six of all
our model genes had at least one record in these screens. Out of these
36 genes, 6 knockouts were among the 74 knockouts with fully blocked
biomass production (paics, tyms, cdipt, rrm1, and cad). One knockout (atp5po)
resulted in a reduced biomass production rate of 0.509 of the wild-type rate.
For the remaining 29 knockouts from these in vivo screens, ZebraGEM 2.0
did not predict a reduced biomass production. These genes without model
phenotype are also included in Supplementary Table S2.3A.

We next used ZebrafishMine to extract single-gene knockdown non-
normal phenotypes from the Zebrafish Information Network (ZFIN) [127].
Around 232 genes present in ZebraGEM 2.0 had a knockdown phenotype
in ZFIN. Of those 232 genes, 18 genes also had reduced biomass production
in the single knockout simulations (Supplementary Table S2.3A and Fig.
2.6), 8 had no growth, 1 had rate 0.647 of wild-type rate, 5 had a rate in the
range 0.8–0.95 of wild-type rate, and 4 had a rate ranging from 0.95 to 0.9998
of wild-type rate. The low number in overlap between model knockout
phenotypes and in vivo phenotypes can be caused by open problems within
the model.

On the other hand, not every gene has been extensively studied in
zebrafish, which might also explain part of the model knockouts with
reduced biomass production rate, but no record in the zebrafish literature.
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Mutagenesis 
screens

ZFIN knockdown

Model phenotype

15

FIGURE 2.6: Venn diagram of genes present in the model that result in
a phenotype in the single knockout simulation (model phenotype), are
present in the genetic screen studies (screens) [119, 120, 121, 122, 123, 124,
125, 126], and have a knockdown abnormal phenotype registered in the

Zebrafish Information Network (ZFIN) (knockdown).
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For this reason, we also used ZebrafishMine to check the remaining 123
genes that have a phenotype in the model for diseases associated with
their human orthologs. Of these 123 genes, 69 have a metabolic disease
associated to their human ortholog, with the exception of sod2 and got1 that
are associated with microvascular complications of diabetes and low serum
levels of aspartate aminotransferase, respectively (Supplementary Table
S2.3A). Of the remaining 54 genes without associated disease, there is still
the possibility that they point to problems in the model, or that they are
associated with rare mutations that have not been studied yet. Twenty-five
of these genes were related to oxidative phosphorylation, which might
indicate the latter.

In total, 228 genes appeared in Refs. [119, 120, 121, 122, 123, 124, 125]
and ZFIN with a non-normal phenotype, but showed no phenotype in
the single-gene knockout simulation. We categorized the effects of the
knockout of these genes. One hundred and seven genes were involved in
blocked reactions only, so knocking those out results in no change in the
model. For 59 genes, the corresponding reactions of the genes would divert
flux from the biomass production; thus, if wild-type model is optimized for
biomass production, those reactions are already minimized to 0 flux. Next,
there were also 42 genes that are redundant in our model: knocking those
out does not block any reaction. It could be that subfunctionalization on
the level of enzyme kinetics causes the in vivo phenotype, which cannot be
represented with FBA modeling. Finally, there are 20 remaining genes that
do not fit any of the three categories mentioned. Their associated reactions
might be redundant within the network or do not contribute to biomass
production.

For the double knockouts, we looked at two sets of genes pairs. First,
we looked for pairs of genes with lower growth rates, which do not involve
genes with phenotype in the single knockout simulation. The gene pairs
with lowered growth rate (44 in total, 22 of which show no growth at all) are
shown in Supplementary Table S2.3B, and are often paralogous genes. We
also checked gene pairs involving at least one gene with a lowered growth
rate in the single knockout experiment, which resulted in no growth, and
found 36 pairs, also shown in Supplementary Table S2.3B. Lethal double
knockouts are mainly involved in lipid metabolism, amino acid metabolism,
and the citric acid cycle. In contrast to the single knockout simulation, the
gene pairs that are lethal only in double knockouts do not account for much
of the newly added reactions, with the exception of gene pairs involved in
oxidative phosphorylation.
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FIGURE 2.7: Volcano plots of the gene expression data set for both 4 and
5 dpi. Total data set on the left, the model subset on the right. Dashed
lines indicate cut-off values: − log10(p) > 1.301, | log2( f oldchange)| > 1.

dpi, days post infection.

2.3.3 Integration of expression data

Thanks to the GPRs, ZebraGEM 2.0 can predict metabolic changes driven by
changes in gene expression. We demonstrate this application of ZebraGEM
2.0 with a published dataset of infection with the fish tuberculosis bacterium
M. marinum [128]. Briefly, zebrafish larvae were injected in the yolk with
M. marinum at 2 h postfertilization [128]. Gene expression in infected and
control larvae was measured at 4 and 5 days postfertilization using RNA
deep sequencing. This yielded a data set containing the expression of 31,388
genes.

Of these 31,388 genes, 1608 genes are present in ZebraGEM 2.0. Al-
though this is a small fraction of the total gene set, it covers 98% of the
model genes. From these 1608 genes present in ZebraGEM 2.0, we selected
genes with differential expression in the infected and control groups at
4 and 5 days postinfection (dpi). Genes were considered “differentially
expressed” if they had a fold change or a fold change , together with an
adjusted p-value threshold (Fig. 2.7). We thus identified 24 metabolic genes
in ZebraGEM 2.0 that were differentially expressed both at 4 dpi and 5 dpi
(Tables 2.2, and 2.3).

We next predicted the metabolic changes caused by differential ex-
pression of these 24 expressed genes. We made use of GC-flux [100]. The
GC-flux algorithm constrains the rate of the metabolic reaction in the model
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TABLE 2.2: Number of differentially expressed genes in the total gene
expression dataset and the subset of genes present in the model.

Total gene set Model gene set
4 dpi 408 35
5 dpi 1714 106

both dpi 226 24

TABLE 2.3: List of genes differentially expressed at both 4 and 5 dpi that
are present in the model.

Gene symbol Gene name
acsl5 acyl-CoA synthetase long-chain family member 5
ampd3b adenosine monophosphate deaminase 3b
anpepb alanyl (membrane) aminopeptidase b
asah2 N-acylsphingosine amidohydrolase 2
dpys dihydropyrimidinase
elovl8b ELOVL fatty acid elongase 8b
enpp7.1 ectonucleotide pyrophosphatase/phosphodiesterase 7, tan-

dem duplicate 1
ftcd formimidoyltransferase cyclodeaminase
gch2 GTP cyclohydrolase 2
ggt1b gamma-glutamyltransferase 1b
mboat2a membrane bound O-acyltransferase domain containing 2a
neu3.3 sialidase 3 (membrane sialidase), tandem duplicate 3
neu3.4 sialidase 3 (membrane sialidase), tandem duplicate 4
pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
ptgs2a prostaglandin-endoperoxide synthase 2a
sat1a.2 spermidine/spermine N1-acetyltransferase 1a, duplicate 2
slc13a3 solute carrier family 13 (sodium-dependent dicarboxylate

transporter), member 3
slc26a3.2 solute carrier family 26 (anion exchanger), member 3, tan-

dem duplicate 2
slc7a7 solute carrier family 7 (amino acid transporter light chain,

y+L system), member 7
tdo2a tryptophan 2,3-dioxygenase a
tyms thymidylate synthetase
ugt1ab UDP glucuronosyltransferase 1 family a, b
uroc1 urocanate hydratase 1
zgc:92040 zgc:92040
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based on the expression levels of the genes coding for the corresponding
enzymes. GC flux distributes the gene expression of a single gene over all
reactions associated with that gene, such that the total sum of those reaction
fluxes cannot exceed maximum flux associated with the gene expression
value. We performed this analysis for control and infected larvae at 4 and 5
days dpi.

After the model was constrained with the gene expression data, a
method called FVA was applied [20]. FVA predicts the minimum and maxi-
mum possible flux ranges for each reaction, given an objective function; in
this study, we used biomass production rate. To compare the flux ranges
between control infected at 4 and 5 dpi, we used the RFRC [102]. The
RFRC is a measure that indicates how much the flux ranges differ between
the control and infected simulations. When the RFRC is greater than 1 or
smaller than −1, the centers of the compared flux ranges are separated by
more than the averaged width of those flux ranges, with negative values
indicating that the infected case has a range lower than the control case.

An important reaction with an absolute RFRC greater than 1 is the
biomass function BIO_L_2 and it appears in the list for both 4 and 5 dpi.
The RFRC of BIO_L_2 is negative in both cases, −18.371 for 4 dpi and
−17.421 for 5 dpi, suggesting that infection reduces biomass production
rate. When comparing the maximal growth rates, the growth rate of the
infected simulation was 83% of the control growth rate at 4 dpi, and at
5 dpi, the infected group reached 84% of the growth rate of the control.
Further examination of the list with reactions with absolute RFRC greater
than one (Supplementary Table S2.5) shows that affected reactions (with )
at 5 dpi (46 reactions in total) are also affected at 4 dpi (56 reactions in total).
Most of these 46 reactions were essential reactions involved in biomass
precursor production and their knockouts are lethal (Supplementary Table
S2.3A). The fluxes of the biomass precursor reactions co-vary, because they
contribute, often in parallel, to the biomass reaction. If one of the fluxes is
reduced, biomass production rate is also reduced. Due to flux balance, all
the other biomass precursor fluxes must be reduced as well.

To gain insight in which genes give rise to such restricting reactions,
and hence are limiting growth in our simulations, we identified the genes
that restricted biomass production by comparing the flux corresponding
to each gene with the expression level of each gene (Table 2.4). In total, 17
genes restricted biomass production in at least one of the four cases (con-
dition x dpi). Aside from essential biomass precursor reaction-associated
genes (essential genes for the model), 9 genes out of 17 are not essential
to the model. Among these are si:ch1073-100f3.2, slc5a9, and tha1, all as-
sociated to monosaccharide transporters. The differential expression of
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TABLE 2.4: Genes with gene expression restricting biomass production
in the model with their fold change and their essentiality within the
model, according to lethal phenotypes (essential) and reduced growth

phenotypes (semiessential) in Supplementary Table S2.3A

Gene FC 4dpi FC 5dpi Essentiality
acacb 0.522 0.036 essential
arg1 -0.402 -0.837 semi-essential
atp5s 0.358 0.088 semi-essential
bdh2* -0.403 -0.810 semi-essential
cox6a2 -0.437 -0.633 essential
ftcd -1.061 -1.353 semi-essential
galk1 -0.173 -0.669 -
galk2 -0.314 -0.315 -
gart -0.262 -0.016 essential
gck 1.871 -4.162 -
hkdc1 -0.529 -1.469 -
nme4 -0.548 -1.147 -
nme6 -0.548 -0.267 -
si:ch1073-100f3.2* -0.492 -0.277 semi-essential
slc2a11a 0.068 -1.014 -
slc5a9 -0.788 -0.791 -
tha1* 0.489 0.686 -

Genes marked with an asterisk are not restrictive for 5 dpi. Bold face genes
have differential expression for 5 dpi, bold and italic font both 4 and 5 dpi.

FC, fold change.

slc2a11a, also associated to a monosaccharide transporter, together with
limited availability of flux for the other monosaccharide transporters, puts
a large restriction on the model. The low number of only four genes with
differential expression (namely ftcd at both 4 and 5 dpi, and gck, nme4, and
slc2a11a at 5 dpi only) points toward a drawback of this data integration
method: it only looks at the mean values of each case, but ignores whether
these means are significantly different.

We observed that there was a reduction in growth rate in the infected
case, and could ascribe this to a number of restricting genes. However,
growth reduction might not be the only difference in metabolic activity;
which metabolic pathways are contributing to biomass production can also
differ between control and infected. To see if there was also a shift in which
metabolic pathways contribute to biomass production, the flux ranges were
normalized with the biomass flux. The RFRC was then again computed
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with the normalized ranges, and only for 4 dpi were there reactions with
|RFRC| > 1. These reactions are HISD, IZPN, URCN, and EX_his__L_e,
and are involved in the pathway converting histidine into glutamate. The
high |RFRC| of these reactions can be directly linked to the differential
expression of uroc1.

Overall, the addition of GPRs to ZebraGEM 2.0 together with GC-flux
allowed us to integrate gene expression data into ZebraGEM 2.0, providing
us with novel insights into potential metabolic changes due to M. marinum
infection. First of all, there is a reduction in growth in the infected cases.
This can be attributed to differences in the expression of some essential
genes as well as monosaccharide transporter genes. When looking at
qualitative changes in metabolism, histidine metabolism is reduced at 4
dpi, due to reduced expression of uroc1. Together with the restrictive gene
ftcd (Table 2.4), which is also involved in the histidine pathway, this could
make the histidine pathway an interesting starting point for more research
on changes in metabolism upon M. marinum infection.

2.4 Discussion

In this work, we have presented ZebraGEM 2.0, an improved version of
the genome-scale metabolic reconstruction ZebraGEM [34]. We have made
the model available through an xml-file, see Supplementary Materials S2.6.
The improvements were the addition of GPRs, significant changes to the
stoichiometry by the addition of oxidative phosphorylation and check-
ing the reversibility of reaction, and adhering to the existing standards of
genome-scale metabolic reconstructions. To validate the new model, we
have shown that it performs better than the previous version on a prede-
termined list of 160 metabolic tasks. We also determined a minimal feed.
ZebraGEM assigns more nutrients to be essential, which is in agreement
with what is known about zebrafish nutrition. To test the added GPRs, we
did an in silico knockout screening, and found a large agreement between
genes causing a phenotype in the model and genes that are known to have
a phenotype in vivo in zebrafish or in human.

Altogether, ZebraGEM 2.0 is now suitable to be used with gene expres-
sion, which we demonstrated by integrating a gene expression data set of
M. marinum-infected and noninfected embryos. In this study, our simu-
lations predicted a lowered growth rate for the infected embryos due to
changes in essential gene expression as well as monosaccharide transporter
gene expression, and a change in histidine metabolism.
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Here, we will discuss further improvements and limitations of Ze-
braGEM 2.0, and briefly discuss the future work.

2.4.1 Blocked reactions

Blocked reactions are reactions that cannot carry any flux due to absence
of some or all pathways carrying metabolites toward or away from the
reactions. Currently, 1675 out of 3018 (55.5%) of the reactions remain
inactive in ZebraGEM 2.0. This number is high in comparison with similar
metabolic reconstructions: in Recon 2, 2123 out of 7440 (28.5%) reactions
are blocked [30], and in iMM1415, 1294 out of 3726 (34.7%) reactions are
blocked [31]. Even if the blocked reactions are currently nonfunctional, we
have decided to leave them in ZebraGEM 2.0. This prepares the model for
future improvements that can unblock these reactions.

To unblock these reactions, we will need to add a number of missing
exchange reactions. These allow the model to import metabolites and ex-
crete waste metabolites. Due to flux balance, the whole metabolic pathway
is blocked if excretion or further processing of a metabolite is impossible.
One example of such a missing exchange reaction is the exchange reaction
for urea; after we added it to the model, it allowed for the production and
incorporation into biomass of arginine. For our current needs, further addi-
tion of exchange reactions was not needed. Besides that, improvements in
the import and export reactions are complicated by three facts. First, there
is the food composition, which is not predetermined for free-feeding larvae
and adult fish; a solution here would be to add all possible exchange reac-
tions and open or close them depending on fodder composition. Second,
there is the unknown factor of exchange with the environment by other
means than diet, such as excretion and uptake of metabolites through the
skin. Third, there is exchange among cells and tissues of metabolites, such
as the uptake of nutrient from the yolk in developing embryos.

Further unblocking of reactions will be achieved by identifying uncon-
nected parts of the network and add the missing metabolic pathways. Such
gap-filling can, in part, be automated by finding the minimal set of addition
to the network [129, 130, 131], or using novel topology-based methods that
can pinpoint missing essential reactions [132]. Such automized gap-filling
should be done with care, because the gaps often require reactions that
have no or little literature that clearly supports those reactions.
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2.4.2 Lipid metabolism

ZebraGEM 2.0 and its predecessor have applied a number of simplifica-
tions in the description of lipid metabolism. First, a generic fatty acid is
used in most lipid metabolism reactions. Also, the essential lipid linolenic
acid has no reaction in the model converting it into this generic fatty acid
and hence is not processed further by the model. To further improve the
description of lipid metabolism in ZebraGEM 2.0, future description of
lipid metabolism should include specific reactions for each type of fatty
acid. This improvement would make linolenic acid essential, but because a
single reaction would be part of the metabolism of a range of fatty acids,
it comes at the cost of increased model size. Most likely, this will double
the number of reactions, as the ~600 reactions involved in lipid metabolism
will be multiplied by the number of specified fatty acids. This will increase
simulation time significantly for some of the modeling techniques, like
FVA. The Chinese hamster model iCHOv1 [32], a human platelet model
[133], and a human erythrocyte model [90] have parts of lipid metabolism
with specified fatty acids and can serve as examples.

An additional factor in lipid metabolism is that many of the associated
metabolites are located in the compartment “membrane.” This compart-
ment accounts for the plasma membrane, Golgi membrane, endoplasmic
reticulum membrane, lysosome membrane, nuclear membrane, and the
outer mitochondrial membrane all at once. This compartmentalization into
a single compartment does not take into account the required transport
processes and associated metabolic processes for such metabolites that take
place within the cell. Another effect of this membrane compartment is the
tunneling of NADH and NADPH over the membrane due to imbalanced
reaction reversibility, as discussed in Reaction Reversibility and Reaction
Nature section. We have currently solved this issue by checking reaction
reversibility, but a future improvement of the compartmentalization of
membrane metabolites into specific membrane parts would solve these
problems more accurately.

Improving lipid metabolism is also of interest when looking at the
growth conditions of zebrafish. Embryos rely on the abundance of lipids
present in the yolk as their source of energy, and as zebrafish are often used
for experiments in their embryonal stages, insight into lipid metabolism
is relevant. Fraher et al. determined changes in lipid composition of both
the yolk and the developing embryo [134]. This study provides interesting
information upon which estimates for lipid exchange between embryo and
yolk can be made, which can further improve metabolic modeling studies
of embryonic stages.
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2.4.3 Biomass function and quantitative simulations

The current biomass function is not based upon any data on zebrafish cell
composition, but on human and mouse models. Although the metabolites
of which a cell consists vary little between animals, as all cells are built
from amino acids, nucleic acids, and fatty acids [113], the ratios between
the required metabolites can vary as much as 30 million fold [91]. The
ratios of biomass precursor metabolites can have a large impact on the
model predictions. Therefore, data of zebrafish cell composition, possibly
for different cell types, will be of high value for increasing model prediction
accuracy. So far, there has been detailed study of lipid composition only
[135].

Genome-scale metabolic modeling focuses only on metabolism and
hence has a limited scope. For example, 20 genes with a non-normal
phenotype in Refs. [118, 119, 120, 121, 122, 123, 124, 125] or ZFIN had
no phenotype in ZebraGEM 2.0. They could not be ascribed to blocked
reactions, no knockout effect due to the gene being redundant in the model,
or the associated reaction diverting flux from the biomass optimization.
The optimization for biomass production rate does likely not reflect all the
required metabolic outputs of a cell. Alternative objective functions would
include specific protein synthesis for antibody producing B-lymphocytes,
ATP synthesis for muscle cells, or ROS production upon infection. In
addition, bacterial metabolism also plays a role during infection. Therefore,
results of in silico knockout experiments will deviate from the results of in
vivo experiments.

A generic problem of flux balance analysis is that it does not consider
kinetics and thermodynamics. Gene mutations or knockouts can change
the kinetics of metabolic reactions, causing for instance accumulation of
toxic compounds. Thermodynamics can also affect the rate of reactions and
has been combined with constraint-based methods before [136]. Finally,
these genes can cause a phenotype in vivo by other means than metabolism,
that is, they could be involved in signaling and genetic regulating processes
as well, and those aspects are not part of this model.

Last but not least, when using data integration methods, one has to
be careful with the distribution of experimental values. As we saw now
with our data-integrated simulations, most of the restricting genes were
not significantly differentially expressed, which could lead to pinpointing
incorrect causes of altered metabolism. The algorithm we used, as well
as many others take only a single value for the expression of genes, often
just the average; the original distribution underlying that average has to
be considered, especially when comparing different situations. Extending
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data integration methods for constraint-based metabolic modeling with
methods from robust optimization can offer a framework in which such
distributions can be taken into account.

Despite these limitations, the improved model combined with the ze-
brafish embryo data results in the prediction of lowered growth in the case
of Mycobacterium infection. Furthermore, we showed that metabolism of
histidine synthesis was decreased in infected zebrafish embryos. Further
improvements on the model as well as the data integration methods and
analysis can lead to new applications of ZebraGEM 2.0, such as elucidating
yolk and embryo metabolism or exploring the causes of metabolic diseases.
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