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Chapter 1

Introduction

Multicellular organisms, including plants and animals, continuously strug-
gle with infections by bacteria, fungi and viruses. In animals, infections are
cleared by the innate and acquired immune system. Despite the successes of
biomedical research in fighting infectious diseases, many disease processes
are still little understood. In this thesis, we will focus on two processes
involved in fighting infections: metabolism, and immune cell motility and
navigation. Specifically, we use mathematical and computational models
to address questions surrounding these processes. In this chapter, we first
explain the link between metabolism and immune cell motility, before
we introduce both the main questions and modeling methods for these
subjects.

1.1 Cell migration and metabolism: linked by infec-
tion

During infection, metabolism shifts from maintenance of the body to fight-
ing the infection. This happens at a single cell scale as well as on tissue
or organism scale. Examples of common global changes are the produc-
tion of heat in inflamed tissues or fever on the scale of the entire body [1].
Some infectious diseases, for example tuberculosis, are associated with
wasting, a rapid and involuntary loss of muscle and fat tissue and a still
little understood metabolic change. As these tissues can serve as energy
storage, the breakdown of these tissues is paired with the release of a large
amount of energy. It is yet unclear which processes would require such
an amount of energy and which changes in metabolism allow for this. A
potential process that is under debate is whether immune cells in tuber-
culosis lesion exhibit the Warburg effect, which is the rapid conversion
of glucose into lactate, despite the availability of oxygen to fully oxidize
the glucose [2]. Furthermore, it is unclear how wasting is induced: by the
pathogen/infection or by the host [3]?
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Local changes in metabolism can be seen in many types of immune cells
and occur at different stages of infection clearance; immune cells, such as
leukocytes or cytotoxic T lymphocytes, first have to locate pathogens and
then neutralize them. A number of different metabolic demands are the
production of ATP to fuel cell migration, the production of reactive oxygen
species and other compounds that destroy the pathogen, and cytokine
production to recruit more cells to infected areas [4, 5].

However, some metabolic changes in immune cells will not occur unless
the immune system finds the pathogen within the body. Detection of
pathogens is thought to happen by random encounters of immune cell
and pathogen. Navigation through a tissue is greatly influenced by the
type of motility immune cells display and determines the occurrence of
such random encounters [6, 7]. How immune cells such as lymphocytes
and leukocytes navigate through a tissue is a topic of ongoing research.
The extracellular matrix (ECM), the network surrounding cells within
tissues, is thought to play an important role [8]. As a framework around
cells in tissues, it can function as a scaffold for cells to push off from, as
well as a physical barrier blocking cell movement. Besides that, the ECM
also plays a role in signaling, both by binding signaling molecules and
by its composition and stiffness. By modeling immune cell motility, we
can untangle the roles of the ECM and study the effect of the ECM as a
substrate, an obstacle or its signaling function separately.

1.2 Metabolism

In studying metabolism, there are two main questions: which metabolites
are present and at what rate are they being converted into one another.
Considering the changes in metabolism during infection, and the wide
range of involved processes, we should not be limited to a small set of
metabolites. Metabolomics can study a wide array of molecules using
techniques such as NMR and mass-spectrometry, and thus answer the first
question. Combining metabolomics data with other data and methods
can be used to study reactions rates, so called systems metabolomics [10].
A rough indication of the present enzymes and, by proxy, fluxes, can be
obtained through gene expression and proteomic data [11]. Detailed flux
information can be derived from metabolomics combined with isotope
labeling. However, this requires good prior knowledge of the metabolic
network [12]; by extensive calculation of fluxes and the corresponding iso-
tope distributions along the network, one can match fluxes to the measured
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FIGURE 1.1: Visualization of the metabolic network from ZebraGEM
2.0. Light green nodes: reactions. Dark green nodes: metabolites (with
cyan lining: end point metabolites). Orange boxes: cellular compart-

ments. Visualization made using ModelExplorer [9].
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isotope labeled metabolomics data [13]. This prior knowledge, collected
into a metabolic model, can be used for other modeling efforts as well.

Aside from being a computational tool in isotope labeling, metabolic
models can be used as a predictive tool of how internal and external changes
alter an organism’s metabolism. Current models of metabolism exist vary-
ing in the level of details. Kinetic models are systems of coupled ordinary
differential equations that describe the change of metabolites over time.
Often, they are limited to single pathways for which they can give detailed
time-dependent predictions of metabolite concentrations and metabolite
flows [14]. They come, however, at the cost of large numbers of parame-
ters. These parameters can be obtained through experiments, and a kinetic
S. cerevisiae metabolism model [15] and, more recently, a kinetic model
of E. coli core metabolism [16] have been established. Nonetheless, this
requires extensive studies, as kinetics are influenced by substrate concen-
tration, temperature, pH, and many other factors. Another angle is taken
in constraint-based metabolic models, or stoichiometric models. As the sto-
ichiometry of many metabolic pathways is known, the metabolic network
can be represented by a stoichiometric matrix. Constraint-based metabolic
models explore the properties of the network, and how the network itself
and physical and chemical properties constrain fluxes through that network
[17]. They can predict the most efficient metabolic pathway to create certain
metabolites or alternative pathways in case of disruption by blocking or
limiting certain reactions.

The most commonly used method with constraint-based modeling is
Flux Balance Analysis (FBA) [18]. The main assumption of this method is a
steady state of internal metabolites; hence, flux balance. As the concentra-
tion of metabolites, c, is governed by dc

dt = S · f , with S the stoichiometric
matrix corresponding to the metabolic network and f the fluxes through
that network, this assumption can be written as dc

dt = S · f = 0. This gives
a system of linear equations. However, usually this system of equations
is underdetermined, resulting in a multidimensional solution space with
an infinite number of solutions (Figure 1.2). This brings us to another
important assumption: the organism optimizes metabolism for a certain
metabolic objective. This metabolic objective depends on the research ques-
tion, but frequent objectives are maximization of biomass production (i.e.
growth), maximization of energy production (i.e ATP production), or maxi-
mal production of a specific desirable compound like a drug compound. In
addition, metabolites flowing in and out of the system are limited, resulting
in additional constraints. With these two assumptions and the constraints,
the model then gives the following linear programming problem (LP) that
can be solved computationally:
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Optimize
fobj

such that:

S · f = 0,
ai ≤ fi ≤ bi

The solution of that LP problem is a set of reaction fluxes that ascertain
steady state and optimize the objective.

The main limitation of FBA is that it predicts fluxes in equilibrium with
available nutrients. However, in most natural systems, nutrient availability
varies over time. Extending the FBA with a simple system of ordinary
differential equations, one can do dynamic FBA [19], and account for
the fluctuations of nutrients and growing organisms, described by the
following equations:

dc
dt

= S · f B,
dB
dt

= fBB, (1.1)

where B denotes the biomass of the organism and fB is the growth rate
per unit biomass obtained from computing the fluxes. One example of
where dynamic FBA is applied, is the modeling of small populations of
bacteria. Although dynamic FBA is a dynamic model, the time scale is
coarser than for kinetic metabolic models, hence allowing for the use of
FBA as an intermediary step. Another limitation of FBA is that it gives
only a single solution from the usually large solution space. The outlines
of this solution space can be explored by using flux variability analysis
(FVA, Figure 1.2). Here, aside from optimizing the objective, each single
reaction in the network is minimized and maximized [20], which draws the
contours of the solution space.

Lastly, for many organisms, and especially multicellular ones, data on
nutrient availability is hard to obtain or even define, and finding the right
constraints is impossible. However, other data can be collected much easier,
such as gene expression data, or proteomics and metabolomics data. These
data can be integrated into the constraints-based modeling framework as
additional constraints. Multiple methods on how to incorporate experimen-
tal data in constraints-based modeling have been developed, depending
on the specific type of data; gene expression profiles [21, 22], proteomics
data [23, 24] and metabolomics data [23, 25, 22, 26].

Essential to the integration of gene expression data is that the genes are
represented in the model. Most of these constraint-based models, especially
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FIGURE 1.2: Solution space of constraints based models. Constraints on
the fluxes (r1,2,3) result in a convex subspace that represents feasible flux
distributions. Optimizing a certain objective, as in FBA, gives an optimal
solution space (blue face) of which LP solvers give a single point (black
point). By individually minimizing and maximizing each flux within the
optimal solution space (FVA), one can draw the contours (red projections

on r2 and r3 axis) of the optimal solution space.

in recent years, are so called whole-genome scale metabolic reconstructions
and, hence, contain all metabolic genes, or at least all suspected metabolic
genes, of an organism. The corresponding metabolic reactions then form
the metabolic network. By including all metabolic reactions, these model en-
compass an organism’s metabolic network. The relation between reactions
and genes is described by gene-protein-reaction associations (GPR) [27].
Many organisms are already captured in such whole-genome scale meta-
bolic reconstructions. Most of those organisms are unicellular organisms,
such as a multitude of E. coli strains [28] and S. cerevisiae [29]. Multicel-
lular organisms, and of special interest for studying immune response,
vertebrates, are less well represented. To current date, whole-genome scale
metabolic reconstruction of human [30], mouse [31], Chinese hamster [32],
rat [33], zebrafish [34, 35], and cod [36] have been assembled. Although
the metabolic diversity among vertebrates is limited in comparison to the
zoo of reconstructions of unicellular organisms, organism specific models
are still preferable. Essential nutrients differ among organisms, think of
vitamin C that is essential for humans but not for most other vertebrates,
and inositol, which zebrafish are unable to produce themselves [37]. Fur-
thermore, genetic structure between vertebrates is sufficiently different to
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justify separate reconstructions, as GPRs become dramatically different.

1.3 Cell migration

The metabolic demands of immune cells are diverse and change during the
infection. Powering cell migration is an important demand from the begin-
ning of infection. Immune cells have to be able to find the pathogen. Both
how they manage to propel themselves and how they navigate through
tissues play a role in their ability of finding the pathogen. Here, we shortly
discuss how immune cells move, how to analyze cell motility and distin-
guish different types of motilities, and finally, how cell motility is modeled.

1.3.1 Amoeboid motion

Most eukaryotic cells move by reorganizing their internal structure, the
cytoskeleton, and hence their shape. This type of motion is called amoeboid
motion. Amoeboid cell motility is driven by actin polymerization (Figure
1.3). Actin filaments are polarized and polymerization occurs mainly at
one end. Due to thermal fluctuations of the cell membrane, actin subunits
can be added in the space between an existing filament and the membrane.
When an actin subunit is added to the actin filament, its attached ATP is
hydrolyzed. This releases energy and combined with the elongation of
the actin filament, this results in a force that can be used to push the cell
membrane forward [38].

The polymerizing actin is organized in a network, an actin front. The
size and shape of this network can be seen in the deformation of the cell.
Actin fronts pushing out the cell membrane form a flat structure called a
lamellipodium. Lamellipodia vary in size and stability. Very broad and
stable lamellipodia are seen in keratocytes and these cells often cover very
straight trajectories [39]. Other cells, for example the cellular slime mold
Dictoystelium, have multiple, forking lamellipodia which they sometimes
retract, and hence, change direction more often than keratocytes [40].

With so many regulating compounds, cells can also swiftly react to
external signaling. The best known example of this is chemotaxis, where
cells migrate towards or away from a compound such as food, oxygen or
signaling molecules. Membrane located receptors influence in migration
direction by relaying their signals to the actin polymerization regulating
factors [41] such as the Arp2/3 complex which influences branching of
actin filaments [42], and the antagonistic small GTPases Rac1 and RhoA
which determine cell polarization [43]. Another cue that relays to the
actin machinery is durotaxis, where the cell responds to the stiffness of the
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FIGURE 1.3: Schematic view of actin polymerization within a lamel-
lipodium Red: actin filaments and actin monomers. Blue: cell nucleus.
Green: cell-matrix adhesion complexes. Shaded gray: substrate with
extracellular matrix. Actin filaments are polymerized at the front (right)
of the cell. This generates a force that can push the cell membrane out-
wards. Actin filaments attached to the ECM can transfer the force more

efficiently to outwards motion.

extracellular matrix through focal adhesions, protein complexes connecting
the cytoskeleton to the ECM [44]. In this thesis, we argue that topotaxis,
guidance by topographical cues in the environment, could also work by
changing the actin polymerization, simply by putting obstacles in the way
of cells.

1.3.2 Analysing immune cell motility

There are many determining characteristics in cell motility. Hence, de-
scribing cell motility by just a single characteristic is insufficient to fully
capture the behavior of a motile cell. The most simple characteristic of cell
motion is speed. Defining an instantaneous speed requires some considera-
tions. Using a short time frame to define instantaneous speed can measure
fluctuations of the cell membrane which do not contribute to actual cell
displacement, and overestimates cell speed. On the other hand, measuring
instantaneous speed with too large time steps disregards actual short ex-
cursions of the cell, and underestimates cell speed. Hence, choosing a time
frame for computing the instantaneous velocity requires some considera-
tion. For experimental data, there are additional constraints in the feasible
spatial and time resolution.

The trajectory of cells can be described as a random walk: they regularly
stop and move into a new direction. Random walk theory has brought forth
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FIGURE 1.4: Mean squared displacement curve of diffusive, superdif-
fusive and subdiffusive processes

a number of characteristics and methods that we can apply to study cell
motility. The first measure we discuss is the mean squared displacement
(MSD). It is a measure of the deviation of the position of a random walker,
particle or cell from a reference position over time, defined by:

MSD(t) = 〈|x(t)− x0|2〉, (1.2)

where the mean is taken either over a number of cells or over multiple time
points. The MSD can be interpreted as the area explored by a population of
cells in a given time and is closely related to the concept of diffusivity.

By computing the MSD of a large number of cell trajectories, informa-
tion can be extracted from the curve of the MSD. If the MSD increases
linearly over time, the observed cells are performing a Brownian random
walk. Einstein and Sutherland derived independently that the MSD of
Brownian walkers is given by

MSD(t) = 2nDt, (1.3)

with n the dimension in which the walk takes place, and D the diffusion
constant of the walker [45, 46]. Hence, from a linear MSD, we can straight-
forwardly compute the diffusivity of the cells.

Brownian walkers do not show any correlation in their step directions.
However, some cells are able to maintain their direction for some amount
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of time. This is called persistence. One can recognize persistent random
walkers when the MSD curve shows a more than linear increase with
respect to time, i.e. MSD(t) ∝ tα with α > 1 (figure 1.4). This is called
superdiffusion. The time scale at which α > 1 is an interesting matter.
For persistent random walkers, α > 1 on short time scales, but on longer
timescales the walker still perform a Brownian walk and α = 1. The
diffusivity is then no longer related to the slope of the MSD curve only.
Instead, for persistent random walkers a different expression gives us the
MSD, the so called Fürth’s equation [47]:

MSD(t) = 2v2
0τt− 2(v0τ)2(1− e−t/τ), (1.4)

with v0 an intrinsic cell velocity and τ the cell persistence time, i.e. the
time frame in which the cell keeps moving in the same direction. The
effective diffusivity of these walkers in two dimensions is given by 1

2 v2
0τ.

So, the cell can explore more area by increasing its intrinsic velocity, or by
increasing its persistence time. Random walks with α > 1 on all time scales
are called superdiffusive. A good example are Lévy walkers [48], which
have fractal-like property.

A less than linear increase in MSD with time (α < 1) is also possible
and is called subdiffusion (Figure 1.4). Usually, subdiffusion is caused by
some physical constraint on the cell, like limited space in which the cells
can move around or forces keeping the cell in place.

Cell persistence can also be measured by the meandering index. This
index is defined as the net displacement divided by the total displacement
of a cell:

‖xT − x0‖
∑T

i=1‖xi − xi−1‖
,

with T the duration in time steps of the cell trajectory. A high index cor-
responds to straighter trajectories, and a low index to more convoluted
trajectories. An important factor is the time resolution, similar to the com-
putation of cell speed. Too low resolution will overestimate the index, and
higher resolutions will most likely always result in a lower index.

Finally, we can define the ’directional bias’ as the population mean
velocity in a direction of interest. If the mean is equal to zero, there is no
bias in that direction, and if the mean is significantly different from zero,
there is. Directional bias can arise by factors such as chemotaxis and other
forms of taxis.
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1.3.3 Modeling amoeboid motion

In analysis of cell tracking data, a common question is the characterization
of the type of cell motility observed in the data: which random walk
recapitulates the same statistical properties as the cell tracking data [49, 50,
51, 52]? These types of analyses show that T cells display a Brownian walk,
persistent random walk, Lévy walk or subdiffusive walk, depending on
the tissue they reside in [53, 54, 55, 56, 57], but they give no insight in what
mechanisms underlie those different types of motility.

Mechanistic models have focused on how the cellular components
such as actin, myosin, Arp2/3 and other actin network regulating factors,
focal adhesion complexes, and feedback from Rac and Rho signaling and
phosphoinositide contribute to cell polarization and cell locomotion [58, 59,
60, 61, 62]. We cannot possibly describe all the work, and hence direct the
reader to some reviews on this topic [63, 64].

In this thesis, we are interested in studying the effect of cell-ECM inter-
actions on the type of cell motility using mathematical models. We have a
number of requirements for our model: 1) we want a model that includes
cell-ECM interactions on a subcellular scale, 2) the effects of cell-ECM in-
teraction remain localized within the cell and hence we want our model to
integrate intracellular processes and cell and cytoskeleton plasticity, and
3) the model should be coarse-grained enough that we can simulate suffi-
ciently many cell tracks for statistical analysis. The combination of these
three requirements further requires us to restrict to cell motility models that
take the shape of the cell into account. These types of models can be found
in the modeling framework of phase field models [65, 66, 67] and the Cellu-
lar Potts model [68]. Phase field models are a good tool in understanding
the role of different components in cell motility such as adhesion, contractil-
ity and actin polymerization, yet, they are computationally quite expensive
which makes them less suitable for the generation of cell trajectories. In
this thesis, we use the Cellular Potts modeling framework, described in
detail in Chapters 3 and 4, and shortly introduce it here.

1.3.4 Cellular Potts model

The Cellular Potts model, also known as the Glazier-Graner-Hogeweg
model, is a lattice based model of deformable cells [68]. A single cell
consists of a connected set of lattice sites having spin, or cell ID, denoted
by σ. Cells move by both copying their σ into neighboring lattice sites or
other σ’s being copied into their lattice sites (Figure 1.5). Copy attempts are
done iteratively by a Metropolis algorithm. The algorithm selects a random
lattice site u and one of its neighboring lattice sites v. If σ(u) 6= σ(v), σ(v)
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FIGURE 1.5: Copy attempt in the Cellular Potts model A configuration
of the CPM with a yellow and red cell. A random lattice site u and one of
its neighbors v are chosen. As σ(u) 6= σ(v), lattice site u can obtain σ(v)
causing the red cell to expand and the yellow cell to retract. Whether this

copy attempt is actually successful depends on the HamiltonianH.

can be copied into u. Whether this copy attempt is accepted depends on
the balance of forces described in the Hamiltonian H. If a copy attempt
decreases H, it is always accepted. For copy attempts which increase H,
the Boltzmann probability is used, which allows for stochasticity in cell
movement. In total, the probability of a successful copy attempt is given
by:

P(∆Hv→u) =

{
1 if ∆H < 0
e−(∆H/T) if ∆H ≥ 0

}
, (1.5)

where T denotes a temperature of the system. For the Metropolis algorithm,
a number of consecutive copy attempts equal to the total number of lattice
sites is called a Monte Carlo step (MCS) and is used as a time measure.
Within one MCS, each lattice site is expected to have been updated exactly
once. Rejection-free versions of the Metropolis algorithm, which exclude
sampling over neighbors with identical σ, have modified definitions of the
Monte Carlo step [69], but are more efficient in computation time.

The Hamiltonian describes the balance of forces in the model. Terms
included in the Hamiltonian can be varied to include cellular mechanisms
of interest, such as adhesion energies between cells and between cell and
medium, area constraints to ensure cell area, or perimeter constraints to
influence cell shape. An example Hamiltonian including these terms could
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look like this [70]:

H = ∑
x,y

Jσx ,σy(1− δσx ,σy) + λarea ∑
σ

(aσ − Aσ)
2 + λperimeter ∑

σ

(pσ − Pσ)
2.

(1.6)
Some dissipative processes are not represented in the Hamiltonian di-

rectly, but are accounted for in ∆H as additional work terms. One example
is chemotaxis. A very simple chemotaxis algorithm for the CPM is to
compare concentrations C at u and v such that ∆Hchem = χ(C(v)− C(u)),
where χ denotes the strength of chemotaxis [71]. This influences the proba-
bility of a successful copy attempt by replacing ∆H in Eq. 1.5 by the sum
∆Htotal = ∆H+ ∆Hchem.

Cell motility in the CPM with the Hamiltonian described by Eq. 1.6 is
limited to random passive fluctuations of the membrane and has low diffu-
sivity. Multiple extensions of the CPM have been developed to simulate
actively moving cells [58, 72, 59, 73]. In this thesis, we mainly use the Act
model to model actively moving immune cells [73]. This extension models
actin dynamics in a phenomenological way: the branching and polymeriz-
ing actin network pushes the membrane outward. This is represented in
the Act model through so called Act values: aside from keeping track of the
σ of each lattice site, each lattice site u now also has an Act value Act(u).
These values indicate how recently that lattice site was added to the cell and
can be viewed as a measure of actin activity. More recently active sites can
be viewed as containing polymerizing actin network pushing against the
membrane, and cell extension from lattice sites with a local neighborhood
of high Act values is favored. Similarly, retraction at such lattice sites is
suppressed, according to:

∆HAct(u→ v) =
λAct

maxAct


|NB(u)|

√
∏

y∈NB(u)
Act(y)− |NB(v)|

√
∏

y∈NB(v)
Act(y)

 .

(1.7)
Here, λAct is a parameter determining the strength of this process in relation
to the other terms in the Hamiltonian. Once a lattice site is added to a cell,
that site will obtain the maximum Act value maxAct. This initiates a feed-
back loop where further extension at the same edge of cell remains favored,
resulting in cell polarization. The use of the geometric means in Eq. 1.7
ensures that neighborhoods where all Act values are high are favored and
neighborhoods with ‘holes’ are nullified. A biological interpretation for this
is that actin subunits contribute to growth of the actin network by attaching
to the already existing network. By using the geometric mean, attachment
of actin subunits to the existing network is enforced.
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By tuning the parameters maxAct and λAct, the stability and strength
of the cell front can be tuned. This results in persistent random walks
with a variety in persistence times, and different motility behaviors can be
observed, such as Dictoystelium-like motion and keratocyte-like motion.

1.4 Thesis overview

This thesis is organized as follows. In Chapter 2, we present ZebraGEM 2.0,
an improved whole-genome scale metabolic reconstruction for zebrafish.
The improvements include the addition of GPRs and the oxidative phos-
phorylation pathway, and make it possible to use the model for knock-out
studies, simulating respiration experiments and predicting changes in
metabolism based on gene expression data. We specifically study zebrafish
metabolism upon infection with Mycobacterium marinum integrating gene
expression data from control and infected zebrafish larvae.

The following chapters will focus on cell motility in response to the
environment and revolves around the question how environmental input
shapes and guides cell motility. Chapter 3 explores the different types
of lymphocyte motility that can arise by the interactions between cell
and extracellular matrix. We introduce an extension of the Act model
with adhesion dynamics that can both show cell motion on a short time
scale as well as derive statistical properties of cell motility. We observe a
range of motility modes: 1) Brownian walks, 2) stick-and-slip walks where
cells alternate between sufficient adhesion and too little adhesion to gain
traction, 3) highly persistent walks, and 4) short-term persistent long-term
subdiffusive walks.

In Chapter 4, we focus on a different role of the environment, namely
how obstacles in the environment can guide cell movement. Immune cells
have to navigate within tissues around the other cells in the tissue as well
as the extracellular matrix. A model system for the role of obstacles in cell
motility has previously been set up to study Dictyostelium discoideum cells in
a gradient in density of cell sized pillars [74]. The Dictyostelium discoideum
cells display actin-driven amoeboid motility, very similar to immune cells,
and are shown to be guided by this gradient in pillar density from areas
with high pillar density to area with low pillar densities. This process is
called topotaxis: cell movement guided by topographical cues. Previous
work on Active Brownian particles, which perform a persistent random
walk, similar to the Dictyostelium cells, has shown that part of the topotaxis
effect can be explained by altered cell persistence in the pillar grid [75].
However, the extent to which Active Brownian particles perform topotaxis
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is lower than measured in Dictyostelium cells. We hypothesize that the
amoeboid motility of Dictyostelium discoideum is better captured by the Act
model and show that both deformable cell shape and active reorientation
upon collision make cells more efficient at topotaxis.

The final chapter on cell motility is Chapter 5, but this also marks
our return to zebrafish. Here, leukocyte trajectories from a tail-wounding
assay in zebrafish larvae are analyzed. Two mutants in the TLR-signalling
pathway are studied and we show that leukocyte migration towards the
wounded area is significantly lowered in the mutant compared to wild
type.

Finally, we conclude this thesis in Chapter 6, where we discuss the
results of this thesis and propose ideas for future work.




