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Chapter 1

Introduction

Multicellular organisms, including plants and animals, continuously strug-
gle with infections by bacteria, fungi and viruses. In animals, infections are
cleared by the innate and acquired immune system. Despite the successes of
biomedical research in fighting infectious diseases, many disease processes
are still little understood. In this thesis, we will focus on two processes
involved in fighting infections: metabolism, and immune cell motility and
navigation. Specifically, we use mathematical and computational models
to address questions surrounding these processes. In this chapter, we first
explain the link between metabolism and immune cell motility, before
we introduce both the main questions and modeling methods for these
subjects.

1.1 Cell migration and metabolism: linked by infec-
tion

During infection, metabolism shifts from maintenance of the body to fight-
ing the infection. This happens at a single cell scale as well as on tissue
or organism scale. Examples of common global changes are the produc-
tion of heat in inflamed tissues or fever on the scale of the entire body [1].
Some infectious diseases, for example tuberculosis, are associated with
wasting, a rapid and involuntary loss of muscle and fat tissue and a still
little understood metabolic change. As these tissues can serve as energy
storage, the breakdown of these tissues is paired with the release of a large
amount of energy. It is yet unclear which processes would require such
an amount of energy and which changes in metabolism allow for this. A
potential process that is under debate is whether immune cells in tuber-
culosis lesion exhibit the Warburg effect, which is the rapid conversion
of glucose into lactate, despite the availability of oxygen to fully oxidize
the glucose [2]]. Furthermore, it is unclear how wasting is induced: by the
pathogen/infection or by the host [3]]?
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Local changes in metabolism can be seen in many types of immune cells
and occur at different stages of infection clearance; immune cells, such as
leukocytes or cytotoxic T lymphocytes, first have to locate pathogens and
then neutralize them. A number of different metabolic demands are the
production of ATP to fuel cell migration, the production of reactive oxygen
species and other compounds that destroy the pathogen, and cytokine
production to recruit more cells to infected areas [4, 5].

However, some metabolic changes in immune cells will not occur unless
the immune system finds the pathogen within the body. Detection of
pathogens is thought to happen by random encounters of immune cell
and pathogen. Navigation through a tissue is greatly influenced by the
type of motility immune cells display and determines the occurrence of
such random encounters [6, |7]. How immune cells such as lymphocytes
and leukocytes navigate through a tissue is a topic of ongoing research.
The extracellular matrix (ECM), the network surrounding cells within
tissues, is thought to play an important role [8]. As a framework around
cells in tissues, it can function as a scaffold for cells to push off from, as
well as a physical barrier blocking cell movement. Besides that, the ECM
also plays a role in signaling, both by binding signaling molecules and
by its composition and stiffness. By modeling immune cell motility, we
can untangle the roles of the ECM and study the effect of the ECM as a
substrate, an obstacle or its signaling function separately.

1.2 Metabolism

In studying metabolism, there are two main questions: which metabolites
are present and at what rate are they being converted into one another.
Considering the changes in metabolism during infection, and the wide
range of involved processes, we should not be limited to a small set of
metabolites. Metabolomics can study a wide array of molecules using
techniques such as NMR and mass-spectrometry, and thus answer the first
question. Combining metabolomics data with other data and methods
can be used to study reactions rates, so called systems metabolomics [10].
A rough indication of the present enzymes and, by proxy, fluxes, can be
obtained through gene expression and proteomic data [11]]. Detailed flux
information can be derived from metabolomics combined with isotope
labeling. However, this requires good prior knowledge of the metabolic
network [12]]; by extensive calculation of fluxes and the corresponding iso-
tope distributions along the network, one can match fluxes to the measured
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FIGURE 1.1: Visualization of the metabolic network from ZebraGEM

2.0. Light green nodes: reactions. Dark green nodes: metabolites (with

cyan lining: end point metabolites). Orange boxes: cellular compart-
ments. Visualization made using ModelExplorer [E]]
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isotope labeled metabolomics data [13]. This prior knowledge, collected
into a metabolic model, can be used for other modeling efforts as well.

Aside from being a computational tool in isotope labeling, metabolic
models can be used as a predictive tool of how internal and external changes
alter an organism’s metabolism. Current models of metabolism exist vary-
ing in the level of details. Kinetic models are systems of coupled ordinary
differential equations that describe the change of metabolites over time.
Often, they are limited to single pathways for which they can give detailed
time-dependent predictions of metabolite concentrations and metabolite
flows [14]. They come, however, at the cost of large numbers of parame-
ters. These parameters can be obtained through experiments, and a kinetic
S. cerevisiae metabolism model [15] and, more recently, a kinetic model
of E. coli core metabolism [16] have been established. Nonetheless, this
requires extensive studies, as kinetics are influenced by substrate concen-
tration, temperature, pH, and many other factors. Another angle is taken
in constraint-based metabolic models, or stoichiometric models. As the sto-
ichiometry of many metabolic pathways is known, the metabolic network
can be represented by a stoichiometric matrix. Constraint-based metabolic
models explore the properties of the network, and how the network itself
and physical and chemical properties constrain fluxes through that network
[17]. They can predict the most efficient metabolic pathway to create certain
metabolites or alternative pathways in case of disruption by blocking or
limiting certain reactions.

The most commonly used method with constraint-based modeling is
Flux Balance Analysis (FBA) [18]]. The main assumption of this method is a
steady state of internal metabolites; hence, flux balance. As the concentra-
tion of metabolites, c, is governed by % = S f, with S the stoichiometric
matrix corresponding to the metabolic network and f the fluxes through
that network, this assumption can be written as % =S f = 0. This gives
a system of linear equations. However, usually this system of equations
is underdetermined, resulting in a multidimensional solution space with
an infinite number of solutions (Figure [I.2). This brings us to another
important assumption: the organism optimizes metabolism for a certain
metabolic objective. This metabolic objective depends on the research ques-
tion, but frequent objectives are maximization of biomass production (i.e.
growth), maximization of energy production (i.e ATP production), or maxi-
mal production of a specific desirable compound like a drug compound. In
addition, metabolites flowing in and out of the system are limited, resulting
in additional constraints. With these two assumptions and the constraints,
the model then gives the following linear programming problem (LP) that
can be solved computationally:
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Optimize
f obj

such that:

5-f=0,
a; < fi <b;

The solution of that LP problem is a set of reaction fluxes that ascertain
steady state and optimize the objective.

The main limitation of FBA is that it predicts fluxes in equilibrium with
available nutrients. However, in most natural systems, nutrient availability
varies over time. Extending the FBA with a simple system of ordinary
differential equations, one can do dynamic FBA [19], and account for
the fluctuations of nutrients and growing organisms, described by the
following equations:

dc dB
Tosp g, an

where B denotes the biomass of the organism and f3 is the growth rate
per unit biomass obtained from computing the fluxes. One example of
where dynamic FBA is applied, is the modeling of small populations of
bacteria. Although dynamic FBA is a dynamic model, the time scale is
coarser than for kinetic metabolic models, hence allowing for the use of
FBA as an intermediary step. Another limitation of FBA is that it gives
only a single solution from the usually large solution space. The outlines
of this solution space can be explored by using flux variability analysis
(FVA, Figure[L.2). Here, aside from optimizing the objective, each single
reaction in the network is minimized and maximized [20], which draws the
contours of the solution space.

Lastly, for many organisms, and especially multicellular ones, data on
nutrient availability is hard to obtain or even define, and finding the right
constraints is impossible. However, other data can be collected much easier,
such as gene expression data, or proteomics and metabolomics data. These
data can be integrated into the constraints-based modeling framework as
additional constraints. Multiple methods on how to incorporate experimen-
tal data in constraints-based modeling have been developed, depending
on the specific type of data; gene expression profiles [21} 22|, proteomics
data [23] 24] and metabolomics data [23} 25,22 26].

Essential to the integration of gene expression data is that the genes are
represented in the model. Most of these constraint-based models, especially
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r3

™ T2

FIGURE 1.2: Solution space of constraints based models. Constraints on

the fluxes (r12,3) result in a convex subspace that represents feasible flux

distributions. Optimizing a certain objective, as in FBA, gives an optimal

solution space (blue face) of which LP solvers give a single point (black

point). By individually minimizing and maximizing each flux within the

optimal solution space (FVA), one can draw the contours (red projections
on rp and r3 axis) of the optimal solution space.

in recent years, are so called whole-genome scale metabolic reconstructions
and, hence, contain all metabolic genes, or at least all suspected metabolic
genes, of an organism. The corresponding metabolic reactions then form
the metabolic network. By including all metabolic reactions, these model en-
compass an organism’s metabolic network. The relation between reactions
and genes is described by gene-protein-reaction associations (GPR) [27].
Many organisms are already captured in such whole-genome scale meta-
bolic reconstructions. Most of those organisms are unicellular organisms,
such as a multitude of E. coli strains [28] and S. cerevisiae [29]. Multicel-
lular organisms, and of special interest for studying immune response,
vertebrates, are less well represented. To current date, whole-genome scale
metabolic reconstruction of human [30]], mouse [31], Chinese hamster [32]],
rat [33]], zebrafish [34} 35], and cod [36] have been assembled. Although
the metabolic diversity among vertebrates is limited in comparison to the
zoo of reconstructions of unicellular organisms, organism specific models
are still preferable. Essential nutrients differ among organisms, think of
vitamin C that is essential for humans but not for most other vertebrates,
and inositol, which zebrafish are unable to produce themselves [37]. Fur-
thermore, genetic structure between vertebrates is sufficiently different to
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justify separate reconstructions, as GPRs become dramatically different.

1.3 Cell migration

The metabolic demands of immune cells are diverse and change during the
infection. Powering cell migration is an important demand from the begin-
ning of infection. Immune cells have to be able to find the pathogen. Both
how they manage to propel themselves and how they navigate through
tissues play a role in their ability of finding the pathogen. Here, we shortly
discuss how immune cells move, how to analyze cell motility and distin-
guish different types of motilities, and finally, how cell motility is modeled.

1.3.1 Amoeboid motion

Most eukaryotic cells move by reorganizing their internal structure, the
cytoskeleton, and hence their shape. This type of motion is called amoeboid
motion. Amoeboid cell motility is driven by actin polymerization (Figure
[1.3). Actin filaments are polarized and polymerization occurs mainly at
one end. Due to thermal fluctuations of the cell membrane, actin subunits
can be added in the space between an existing filament and the membrane.
When an actin subunit is added to the actin filament, its attached ATP is
hydrolyzed. This releases energy and combined with the elongation of
the actin filament, this results in a force that can be used to push the cell
membrane forward [38].

The polymerizing actin is organized in a network, an actin front. The
size and shape of this network can be seen in the deformation of the cell.
Actin fronts pushing out the cell membrane form a flat structure called a
lamellipodium. Lamellipodia vary in size and stability. Very broad and
stable lamellipodia are seen in keratocytes and these cells often cover very
straight trajectories [39]. Other cells, for example the cellular slime mold
Dictoystelium, have multiple, forking lamellipodia which they sometimes
retract, and hence, change direction more often than keratocytes [40].

With so many regulating compounds, cells can also swiftly react to
external signaling. The best known example of this is chemotaxis, where
cells migrate towards or away from a compound such as food, oxygen or
signaling molecules. Membrane located receptors influence in migration
direction by relaying their signals to the actin polymerization regulating
factors [41] such as the Arp2/3 complex which influences branching of
actin filaments [42], and the antagonistic small GTPases Racl and RhoA
which determine cell polarization [43]. Another cue that relays to the
actin machinery is durotaxis, where the cell responds to the stiffness of the
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FIGURE 1.3: Schematic view of actin polymerization within a lamel-

lipodium Red: actin filaments and actin monomers. Blue: cell nucleus.

Green: cell-matrix adhesion complexes. Shaded gray: substrate with

extracellular matrix. Actin filaments are polymerized at the front (right)

of the cell. This generates a force that can push the cell membrane out-

wards. Actin filaments attached to the ECM can transfer the force more
efficiently to outwards motion.

extracellular matrix through focal adhesions, protein complexes connecting
the cytoskeleton to the ECM [44]. In this thesis, we argue that topotaxis,
guidance by topographical cues in the environment, could also work by
changing the actin polymerization, simply by putting obstacles in the way
of cells.

1.3.2 Analysing immune cell motility

There are many determining characteristics in cell motility. Hence, de-
scribing cell motility by just a single characteristic is insufficient to fully
capture the behavior of a motile cell. The most simple characteristic of cell
motion is speed. Defining an instantaneous speed requires some considera-
tions. Using a short time frame to define instantaneous speed can measure
fluctuations of the cell membrane which do not contribute to actual cell
displacement, and overestimates cell speed. On the other hand, measuring
instantaneous speed with too large time steps disregards actual short ex-
cursions of the cell, and underestimates cell speed. Hence, choosing a time
frame for computing the instantaneous velocity requires some considera-
tion. For experimental data, there are additional constraints in the feasible
spatial and time resolution.

The trajectory of cells can be described as a random walk: they regularly
stop and move into a new direction. Random walk theory has brought forth
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superdiffusion
MSD(t) < t*, o > 1

normal diffusion
MSD(t) < Dt

MSD(t) x t* a <1
subdiffusion

MSD(t)

t ———

FIGURE 1.4: Mean squared displacement curve of diffusive, superdif-
fusive and subdiffusive processes

a number of characteristics and methods that we can apply to study cell
motility. The first measure we discuss is the mean squared displacement
(MSD). It is a measure of the deviation of the position of a random walker,
particle or cell from a reference position over time, defined by:

MSD(t) = (|x(t) — x0|*), (12)

where the mean is taken either over a number of cells or over multiple time
points. The MSD can be interpreted as the area explored by a population of
cells in a given time and is closely related to the concept of diffusivity.

By computing the MSD of a large number of cell trajectories, informa-
tion can be extracted from the curve of the MSD. If the MSD increases
linearly over time, the observed cells are performing a Brownian random
walk. Einstein and Sutherland derived independently that the MSD of
Brownian walkers is given by

MSD(t) = 2nDt, (1.3)

with 7 the dimension in which the walk takes place, and D the diffusion
constant of the walker [45] 46]. Hence, from a linear MSD, we can straight-
forwardly compute the diffusivity of the cells.

Brownian walkers do not show any correlation in their step directions.
However, some cells are able to maintain their direction for some amount
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of time. This is called persistence. One can recognize persistent random
walkers when the MSD curve shows a more than linear increase with
respect to time, i.e. MSD(t) o t* with « > 1 (figure[l.4). This is called
superdiffusion. The time scale at which « > 1 is an interesting matter.
For persistent random walkers, & > 1 on short time scales, but on longer
timescales the walker still perform a Brownian walk and & = 1. The
diffusivity is then no longer related to the slope of the MSD curve only.
Instead, for persistent random walkers a different expression gives us the
MSD, the so called Fiirth’s equation [47]:

MSD(t) = 2037t — 2(voT)?(1 — e t/7), (1.4)

with vy an intrinsic cell velocity and 7 the cell persistence time, i.e. the
time frame in which the cell keeps moving in the same direction. The
effective diffusivity of these walkers in two dimensions is given by v37.
So, the cell can explore more area by increasing its intrinsic velocity, or by
increasing its persistence time. Random walks with & > 1 on all time scales
are called superdiffusive. A good example are Lévy walkers [48], which
have fractal-like property.

A less than linear increase in MSD with time (a« < 1) is also possible
and is called subdiffusion (Figure[I.4). Usually, subdiffusion is caused by
some physical constraint on the cell, like limited space in which the cells
can move around or forces keeping the cell in place.

Cell persistence can also be measured by the meandering index. This
index is defined as the net displacement divided by the total displacement
of a cell:

|7 — x|
Y% = xia)’
with T the duration in time steps of the cell trajectory. A high index cor-
responds to straighter trajectories, and a low index to more convoluted
trajectories. An important factor is the time resolution, similar to the com-
putation of cell speed. Too low resolution will overestimate the index, and
higher resolutions will most likely always result in a lower index.

Finally, we can define the "directional bias” as the population mean
velocity in a direction of interest. If the mean is equal to zero, there is no
bias in that direction, and if the mean is significantly different from zero,
there is. Directional bias can arise by factors such as chemotaxis and other
forms of taxis.
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1.3.3 Modeling amoeboid motion

In analysis of cell tracking data, a common question is the characterization
of the type of cell motility observed in the data: which random walk
recapitulates the same statistical properties as the cell tracking data [49, 50,
51, 52]? These types of analyses show that T cells display a Brownian walk,
persistent random walk, Lévy walk or subdiffusive walk, depending on
the tissue they reside in [53} 54, 55, 56, 57], but they give no insight in what
mechanisms underlie those different types of motility.

Mechanistic models have focused on how the cellular components
such as actin, myosin, Arp2/3 and other actin network regulating factors,
focal adhesion complexes, and feedback from Rac and Rho signaling and
phosphoinositide contribute to cell polarization and cell locomotion [58) |59,
60, 61}|62]. We cannot possibly describe all the work, and hence direct the
reader to some reviews on this topic [63, [64].

In this thesis, we are interested in studying the effect of cell-ECM inter-
actions on the type of cell motility using mathematical models. We have a
number of requirements for our model: 1) we want a model that includes
cell-ECM interactions on a subcellular scale, 2) the effects of cell-ECM in-
teraction remain localized within the cell and hence we want our model to
integrate intracellular processes and cell and cytoskeleton plasticity, and
3) the model should be coarse-grained enough that we can simulate suffi-
ciently many cell tracks for statistical analysis. The combination of these
three requirements further requires us to restrict to cell motility models that
take the shape of the cell into account. These types of models can be found
in the modeling framework of phase field models [65, 66, 67] and the Cellu-
lar Potts model [68]]. Phase field models are a good tool in understanding
the role of different components in cell motility such as adhesion, contractil-
ity and actin polymerization, yet, they are computationally quite expensive
which makes them less suitable for the generation of cell trajectories. In
this thesis, we use the Cellular Potts modeling framework, described in
detail in Chapters[3land [} and shortly introduce it here.

1.3.4 Cellular Potts model

The Cellular Potts model, also known as the Glazier-Graner-Hogeweg
model, is a lattice based model of deformable cells [68]. A single cell
consists of a connected set of lattice sites having spin, or cell ID, denoted
by . Cells move by both copying their ¢ into neighboring lattice sites or
other ¢’s being copied into their lattice sites (Figure[1.5). Copy attempts are
done iteratively by a Metropolis algorithm. The algorithm selects a random
lattice site # and one of its neighboring lattice sites v. If o(u) # o (v), 0(v)
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FIGURE 1.5: Copy attempt in the Cellular Potts model A configuration
of the CPM with a yellow and red cell. A random lattice site # and one of
its neighbors v are chosen. As o (u) # o(v), lattice site u can obtain ¢(v)
causing the red cell to expand and the yellow cell to retract. Whether this
copy attempt is actually successful depends on the Hamiltonian .

can be copied into u. Whether this copy attempt is accepted depends on
the balance of forces described in the Hamiltonian H. If a copy attempt
decreases H, it is always accepted. For copy attempts which increase #,
the Boltzmann probability is used, which allows for stochasticity in cell
movement. In total, the probability of a successful copy attempt is given
by:

(1.5)

1 if AH <0
P(AHvﬁu) = { X }I

e~ (BH/T) i AH >0

where T denotes a temperature of the system. For the Metropolis algorithm,
a number of consecutive copy attempts equal to the total number of lattice
sites is called a Monte Carlo step (MCS) and is used as a time measure.
Within one MCS, each lattice site is expected to have been updated exactly
once. Rejection-free versions of the Metropolis algorithm, which exclude
sampling over neighbors with identical ¢, have modified definitions of the
Monte Carlo step [69], but are more efficient in computation time.

The Hamiltonian describes the balance of forces in the model. Terms
included in the Hamiltonian can be varied to include cellular mechanisms
of interest, such as adhesion energies between cells and between cell and
medium, area constraints to ensure cell area, or perimeter constraints to
influence cell shape. An example Hamiltonian including these terms could
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look like this [70]:

H = Z]ox (Ty (TY Uj) + Aarea Z(aU - A0)2 + Aperimeter Z(PU - P(T)2'

g g
(1.6)

Some dissipative processes are not represented in the Hamiltonian di-
rectly, but are accounted for in A as additional work terms. One example
is chemotaxis. A very simple chemotaxis algorithm for the CPM is to
compare concentrations C at u and v such that AH e = x(C(v) — C(u)),
where x denotes the strength of chemotaxis [71]. This influences the proba-
bility of a successful copy attempt by replacing A# in Eq.[L.5by the sum
AHiotal = AH + AHchem-

Cell motility in the CPM with the Hamiltonian described by Eq.|1.6|is
limited to random passive fluctuations of the membrane and has low diffu-
sivity. Multiple extensions of the CPM have been developed to simulate
actively moving cells [58, 72,59, |73]]. In this thesis, we mainly use the Act
model to model actively moving immune cells [73]. This extension models
actin dynamics in a phenomenological way: the branching and polymeriz-
ing actin network pushes the membrane outward. This is represented in
the Act model through so called Act values: aside from keeping track of the
o of each lattice site, each lattice site # now also has an Act value Act(u).
These values indicate how recently that lattice site was added to the cell and
can be viewed as a measure of actin activity. More recently active sites can
be viewed as containing polymerizing actin network pushing against the
membrane, and cell extension from lattice sites with a local neighborhood
of high Act values is favored. Similarly, retraction at such lattice sites is
suppressed, according to:

At
AHAct(u - Z)) = maxilct [NB(u H ACt ~ INB(v)] H ACt(]/)
yeNB u) YENB(v)

(1.7)
Here, A 4.t is a parameter determining the strength of this process in relation
to the other terms in the Hamiltonian. Once a lattice site is added to a cell,
that site will obtain the maximum Act value max ;. This initiates a feed-
back loop where further extension at the same edge of cell remains favored,
resulting in cell polarization. The use of the geometric means in Eq.
ensures that neighborhoods where all Act values are high are favored and
neighborhoods with ‘holes” are nullified. A biological interpretation for this
is that actin subunits contribute to growth of the actin network by attaching
to the already existing network. By using the geometric mean, attachment
of actin subunits to the existing network is enforced.
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By tuning the parameters maxa.; and A 4., the stability and strength
of the cell front can be tuned. This results in persistent random walks
with a variety in persistence times, and different motility behaviors can be
observed, such as Dictoystelium-like motion and keratocyte-like motion.

1.4 Thesis overview

This thesis is organized as follows. In Chapter 2, we present ZebraGEM 2.0,
an improved whole-genome scale metabolic reconstruction for zebrafish.
The improvements include the addition of GPRs and the oxidative phos-
phorylation pathway, and make it possible to use the model for knock-out
studies, simulating respiration experiments and predicting changes in
metabolism based on gene expression data. We specifically study zebrafish
metabolism upon infection with Mycobacterium marinum integrating gene
expression data from control and infected zebrafish larvae.

The following chapters will focus on cell motility in response to the
environment and revolves around the question how environmental input
shapes and guides cell motility. Chapter [3| explores the different types
of lymphocyte motility that can arise by the interactions between cell
and extracellular matrix. We introduce an extension of the Act model
with adhesion dynamics that can both show cell motion on a short time
scale as well as derive statistical properties of cell motility. We observe a
range of motility modes: 1) Brownian walks, 2) stick-and-slip walks where
cells alternate between sufficient adhesion and too little adhesion to gain
traction, 3) highly persistent walks, and 4) short-term persistent long-term
subdiffusive walks.

In Chapter {4 we focus on a different role of the environment, namely
how obstacles in the environment can guide cell movement. Immune cells
have to navigate within tissues around the other cells in the tissue as well
as the extracellular matrix. A model system for the role of obstacles in cell
motility has previously been set up to study Dictyostelium discoideum cells in
a gradient in density of cell sized pillars [74]. The Dictyostelium discoideum
cells display actin-driven amoeboid motility, very similar to immune cells,
and are shown to be guided by this gradient in pillar density from areas
with high pillar density to area with low pillar densities. This process is
called topotaxis: cell movement guided by topographical cues. Previous
work on Active Brownian particles, which perform a persistent random
walk, similar to the Dictyostelium cells, has shown that part of the topotaxis
effect can be explained by altered cell persistence in the pillar grid [75].
However, the extent to which Active Brownian particles perform topotaxis
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is lower than measured in Dictyostelium cells. We hypothesize that the
amoeboid motility of Dictyostelium discoideum is better captured by the Act
model and show that both deformable cell shape and active reorientation
upon collision make cells more efficient at topotaxis.

The final chapter on cell motility is Chapter |5, but this also marks
our return to zebrafish. Here, leukocyte trajectories from a tail-wounding
assay in zebrafish larvae are analyzed. Two mutants in the TLR-signalling
pathway are studied and we show that leukocyte migration towards the
wounded area is significantly lowered in the mutant compared to wild
type.

Finally, we conclude this thesis in Chapter [, where we discuss the
results of this thesis and propose ideas for future work.
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Chapter 2

Predicting metabolism from gene expression
in an improved whole-genome metabolic
network model of Danio rerio

Leonie van Steijn, Fons J. Verbeek, Herman P. Spaink,
Roeland M.H. Merks

Abstract

Zebrafish is a useful modeling organism for the study of vertebrate de-
velopment, immune response, and metabolism. Metabolic studies can be
aided by mathematical reconstructions of the metabolic network of ze-
brafish. These list the substrates and products of all biochemical reactions
that occur in the zebrafish. Mathematical techniques such as flux-balance
analysis then make it possible to predict the possible metabolic flux dis-
tributions that optimize, for example, the turnover of food into biomass.
The only available genome-scale reconstruction of zebrafish metabolism
is ZebraGEM. In this study, we present ZebraGEM 2.0, an updated and
validated version of ZebraGEM. ZebraGEM 2.0 is extended with gene-
protein-reaction associations (GPRs) that are required to integrate genetic
data with the metabolic model. To demonstrate the use of these GPRs,
we performed an in silico genetic screening for knockouts of metabolic
genes and validated the results against published in vivo genetic knockout
and knockdown screenings. Among the single knockout simulations, we
identified 74 essential genes, whose knockout stopped growth completely.
Among these, 11 genes are known have an abnormal knockout or knock-
down phenotype in vivo (partial), and 41 have human homologs associated
with metabolic diseases. We also added the oxidative phosphorylation
pathway, which was unavailable in the published version of ZebraGEM.
The updated model performs better than the original model on a prede-
termined list of metabolic functions. We also determined a minimal feed

“Published as Leonie van Steijn et al. “Predicting Metabolism from Gene Expression
in an Improved Whole-Genome Metabolic Network Model of Danio rerio”. Zebrafish 16.4
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composition. The oxidative phosphorylation pathways were validated by
comparing with published experiments in which key components of the
oxidative phosphorylation pathway were pharmacologically inhibited. To
test the utility of ZebraGEM2.0 for obtaining new results, we integrated
gene expression data from control and Mycobacterium marinum-infected
zebrafish larvae. The resulting model predicts impeded growth and altered
histidine metabolism in the infected larvae.

2.1 Introduction

The zebrafish (Danio rerio) has become a widely used model organism for
the study of vertebrate metabolism [76, 77]. Its genome has been sequenced
and annotated [78] and the CRIPSR-Cas technique has made it easier than
ever to study the role of specific metabolic genes [79]. For example, ze-
brafish have been used to test the toxicity of drugs on liver metabolism and
the effect of liver metabolism on internal drug concentration [80]. Zebrafish
have also been used in studies of metabolic diseases such as diabetes, obe-
sity, and fatty liver disease, often combining sequencing with visualization
of gene expression [76].

Mathematical and computational techniques make it possible to use
such metabolic gene expression data to predict the flux of metabolites
through single cells or even whole organisms. Genome-scale metabolic
reconstructions, or metabolic maps for short, are models that consist of
two parts: a metabolic network of the organism and the genes underlying
this network. This network reconstruction is based on the genes coding for
metabolic proteins present in the genome and sometimes requires manual
curation to fills in gaps in the network [81].

Metabolic maps make it possible to predict how metabolites flow through
a network of biochemical reactions, finally resulting in resources for growth
or the availability of energy. Because in one network, an infinite number
of alternative flow distributions are equally likely, a sensible prediction
can only be made under the assumption of an objective, for example, opti-
mal biomass production or optimal production of ATP, and a number of
constraints on the possible fluxes. Most techniques assume flux balance,
meaning that all biochemical concentrations are in equilibrium. Additional
constraints can be given by known or assumed concentrations of enzymes,
leading to a maximum flux through the reaction.

Mathematical techniques to make these predictions include Flux-Balance
Analysis (FBA) [18]] and derivate methods as Flux Variance Analysis, [20]
Minimization of Metabolic Adjustment, [82] and Expression flux [83].These
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predict the production rate of biomass or of a certain metabolite, for a
given substrate, and sometimes supplemented with expression data. These
predictions are valuable for finding suitable substrates for microorganism-
based production in bioreactors. Another feature of these methods used
to predict the flux through genome-scale metabolic models is the ability to
study the effects of gene knockouts or gene expression on metabolism by
constraining or removing reactions in the reaction network [28, 84]. This
gives insight into the metabolic routing or rerouting of an organism and
can be helpful in acquiring the aspired phenotype of an organism, but it
can also give insight into the metabolic fluxes of different cell types.

With the increasing presence of metabolic data of healthy and diseased
zebrafish, and the availability of genetic data, a genome-scale metabolic
model of the zebrafish is tremendously useful. So far, genome-scale meta-
bolic models have been proposed mainly for single-cell model organisms,
such as Escherichia coli and Saccharomyces cervesiae, [85, 29| 86|] as well as
pathogens such as Salmonella typhimurium [87] and Mycobacterium tuberculo-
sis [88]]. For these unicellular organisms, very accurate growth predictions
have been made. Multicellular organisms, particularly vertebrates, are
less well represented in the list of genome-scale metabolic models. So
far, reconstructions have been made for human, [30] mouse, [31] Chinese
hamster, [32] fish, [89, 34] and recently, rat [33]. Whole-organism modeling
is less common for these multicellular organisms, as metabolic functions
are distributed over different tissues. However, modeling specific cell types
has been done, such as erythrocytes [90] and cancer cell lines, [23] as well
as integrating different cell types into a larger model, such as a combined
model, including adipocytes, myocytes, and hepatocytes [91].

Why do we require a specific zebrafish genome-scale metabolic recon-
struction when other vertebrate models exist? Despite the high metabolic
similarity to human and mouse, there are subtle differences between ze-
brafish metabolism and the metabolism of these mammals that affect their
required nutrients. For example, inositol-3-phosphate synthase is an en-
zyme present in humans and mice, but it is absent in zebrafish, preventing
it from converting glucose-6-phosphate into inositol 3-phosphate [37]. This
makes inositol an essential nutrient for zebrafish.

The difference in metabolism aside, the main reason to make a specific
zebrafish genome-scale metabolic model is the genomic structure. The
teleost lineage underwent a whole-genome duplication event after the
radiation from their common ancestor with mammals, which resulted in
numerous genes still having duplicate copies compared to mammals [92].
As a result, there are more paralogous genes in the zebrafish genome than in
mammals. Hence, if one wants to study the effects of genes on metabolism,
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translating a human or mouse genome-scale metabolic reconstruction into
a zebrafish specific model by orthologous genes is not sufficient. Foremost,
this translation is hampered by these paralogs as it does not make the
translation one-to-one, and furthermore, many paralogs have evolved
different subfunctions, increasing the functional difference between the
zebrafish paralogs and the human or mouse orthologs. So to model the
effects of genes on zebrafish metabolism, a zebrafish-specific genome-scale
model is necessary.

Existing genome-scale models for zebrafish are MetaFishNet [89] and
ZebraGEM [34]. MetaFishNet is a metabolic model derived from the
genome of multiple fish species, including zebrafish, and focuses on indi-
vidual pathways. As these pathways are not interconnected or divided into
cell compartments, MetaFishNet is not suitable for whole-cell or whole-
organism modeling using Flux Balance Analysis (FBA) methods, and there-
fore functions mainly as a reference tool, instead of a simulation tool. The
fact that it combines multiple fish genomes also makes it harder to compare
insights gained from this model to in vivo experimental results, as some
pathways are solely based on the genome of one of those five fish species
and do not occur in the other four fish species.

The other model, ZebraGEM, is based on the zebrafish genome and
is a whole-cell and compartmentalized reconstruction. It contains 2911
reactions, of which 2446 are gene-associated reactions based upon 1498
genes and can be used for whole-cell metabolism modeling. It was reported
to fulfill a list of 160 metabolic functions, such as the production of amino
acids and biosynthesis and degradation of secondary metabolites. The
model also predicted that the synthesis of taurine is through a metabolic
pathway dependent on cysteine sulfinic acid decarboxylase, which is in
line with experimental findings [93].

Currently, ZebraGEM cannot be used for modeling large screens of
single gene knockouts or for the integration of gene expression data, as it
lacks GPR. GPRs describe how gene products associated to a reaction work
together, that is, whether they form a complex enzyme, are isoenzymes,
or a combination of these. They provide a logical framework to decide
whether a reaction can take place when one or more of its underlying genes
are knocked out, and hence, they are of great importance when it comes to
modeling gene knockouts.

In this article, we describe the modifications applied to ZebraGEM to fit
our modeling needs and to fit standards of genome-scale metabolic recon-
structions, as well as demonstrate a number of ways in which the updated
model can be used. Briefly, the modifications fall into three categories.
First, we added the GPRs, to facilitate gene knockout and gene expression
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modeling. Second, we renamed components of the model according to
BiGG Models standard names, [94] to ease comparison with genome-scale
metabolic reconstructions of other organisms. Finally, we extended the
model with essential reactions for pathways already present, or changed
the reversibility of reactions already present in the model.

We have validated the renewed model against the metabolic functions
the original model was reported to fulfill. Using the updated model, we pre-
dicted a minimal feed composition and were able to make predictions of mi-
tochondrial function with respiration simulations. Finally, we also proved
the usefulness of the newly added GPRs: we performed a large single-
knockout and double-knockout screening and predicted lethal knockouts,
and we also integrated gene expression data with the model to predict
metabolic differences between control zebrafish larvae and larvae infected
with Mycobacterium marinum.

2.2 Methods

The genome-scale metabolic reconstruction (“metabolic map”) of zebrafish
consists of the following: (1) a metabolic network describing the reactions
that can occur in the organism and (2) the genes that are associated with
those reactions (Fig[2.1). The network on its own can be used for modeling
metabolism, and the associated genes give extra handles to this modeling.
In this section, we give a general overview of the metabolic network com-
ponent and gene component of a genome-scale metabolic reconstruction, as
well as describe the modeling method called FBA. We also briefly address
the representation of this model in a computer file.

2.2.1 Metabolic network

The metabolic network part of a metabolic map can be represented by a
matrix S A B). This matrix contains the ratio between reactants and
products, or stoichiometry, for each reaction within the network, and is
called a stoichiometric matrix. The rows represent the metabolites and
the columns represent the reactions. The coefficient at the intersection of
a specific row and column indicates the contribution of that metabolite
to that reaction. Some of the reactions are of a special type, the so-called
exchange reactions. These exchange reactions either have only a reactant or
only a product, and hence do not preserve mass. They represent the influx
and efflux of metabolites in and out of the system.
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FIGURE 2.1: Important components of a genome-scale metabolic recon-
struction are the metabolic network (A, B) and the GPR (C). (A) Graphical
overview of a simplified metabolic network. Reactions within the black
border are part of the system and hence have mass balance. The solid
gray border indicated the cell membrane and the dashed gray border indi-
cates cell organelle membranes. Reactions E1-E3 are exchange reactions
and are not mass balanced, allowing for import and export of metabolites.
Reaction BM is a biomass reaction, taking biomass precursor metabolites
and exporting them to biomass; (B) stoichiometric matrix representation
of the network shown in (A); (C) example of how isoenzymes and pro-
tein complexes are translated into a GPR. GPR, gene-protein-reaction
associations; gpx, gene product x.
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2.2.2 Flux Balance Analysis

The standard method for constraint-based metabolic modeling is FBA
[18]. For a given metabolic network and a given objective function, FBA
computes the optimal flux through the metabolic network that minimizes
or maximizes the objective function. The first assumption upon which FBA
is based, is that an organism will adjust its fluxes such that the internal
metabolites, indicated with c, are in equilibrium, that is

dc -
a—S-f—O, 2.1)

with j? the vector representing the fluxes of the reactions in the metabolic
network. Some of these fluxes can be constrained. For example, exchange
reactions can be constrained due to limited availability of the exchanged
metabolite in the environment. Also, irreversible reactions can be con-
strained, as they cannot have a negative flux. This can be formulated as
follows:

a; < fi < b, (22)

with 4; and b; indicating the lower bound and upper bound of the flux of
reaction i. Sometimes an exchange reaction has a strictly positive lower
bound, indicating that the system should at least produce that amount of
the exchanged metabolite. These reactions are called demand reactions.

Solving equation 2.1|and [2.2| together can lead to an infinite number
of solutions. Within this solution space, FBA selects for a smaller solution
space based on a predefined objective, for example, that the organism opti-
mizes its metabolic fluxes for a specific reaction or for biomass production.
This optimized reaction, or objective function f,;;, can be any reaction in the
metabolic network, but most often, it is a biomass function. The biomass
function lists all the precursor metabolites and energy-carrying metabolites
required for the accumulation of biomass. Unless stated otherwise, we will
use the biomass function as the objective function. The full formulation of
the FBA problem then becomes as follows:

Optimize

f obj (2.3)

such that:

S-f=o,
a; < fi <b;

This forms a linear programming problem and can easily be solved using
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linear programming solver software, for example, GNU linear program-
ming kit (GLPK) or Gurobi. In this work, we have used CPLEX IBM ILOG
CPLEX.

Once the linear programming problem is solved, the solution f gives a
flux distribution of the metabolic network for the given constraints. This
gives insight into which pathways are used and their relative contribution
can be computed. By changing the upper and lower bounds in one
can test the flux distribution in different scenarios, such as comparing the
growth rate under different sets of substrates.

Some common variations on FBA are parsimonious FBA [95] (pFBA)
and Flux Variability Analysis (FVA) [20], which are multiobjective linear
programming problems. After solving the original FBA problem, they
then optimize a second objective. For pFBA, the secondary objective is
to minimize the total sum of fluxes, that is, min}_ |f;| , while maintaining
the same constraints as in the FBA problem, together with keeping the
previous objective fy; at its optimum. FVA is a method that explores more
of the solution space, by searching for the minimum and maximum flux of
each reaction. So after doing FBA, a new linear programming problem first
minimizes and then maximizes each f;, while also maintaining f.;; at its
optimum and regarding all the previous constraints.

Multiple software packages for FBA exist. These function as an interface
between the user and the linear programming solver. They allow for easy
manipulation of bounds, easy addition and removal of reactions in the
metabolic network, and modification of the GPRs, without having to keep
track of the linear programming problem manually. The software used in
this study is CobraPy [96], combined with the CPLEX solver.

2.2.3 Genes and constraint-based modeling

The second part of the metabolic map is the associated genes. These genes,
responsible for the enzymatic reactions in the metabolic network, are repre-
sented using GPR. In its simplest form, the GPR links each enzyme with a
biochemical reaction. If two enzymes catalyze the same reaction, the GPR
becomes a logical expression. If they are isoenzymes, for example, they can
both independently catalyze the reaction, an “OR” function is used. If the
two enzymes form a complex such that both must be present to catalyze the
reaction, an “AND” function is used. More complex GPRs can be described
by nested logical expressions Fig. 1C). In case multiple, equivalent
logical expressions are possible, the disjunctive normal form is used, that is,
a summation of all possible isoenzymes. Using the GPRs, gene knockouts
or gene expression data can be integrated into constraint-based models. A
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standard way of integrating gene knockouts is to set each occurrence of the
knocked-out gene in a GPR to False and evaluate the GPRs. If any of these
GPRs also evaluates to false, then constrain the corresponding reaction to
0 flux by setting its upper and lower bound to 0. Gene expression data
can be integrated into constraint-based modeling in alternative ways [97,
25,198, 199]. Although details vary, these methods either penalize fluxes
over reactions with no or low expression and minimize the penalty or
they set the lower and upper bound of fluxes depending on the expression
level. The gene expression data integration method used in this study is
Gene-centric flux (GC-flux) [100]. In this study, the linear programming
problem is slightly altered from the original stoichiometric matrix-based
linear programming problem. Using the GPRTransform package [101],
we split up each reaction into multiple versions of the same reaction, one
for every possible isoenzyme. The sum of the fluxes of all the reactions
containing a certain gene in their GPR is then constrained by the expression
level of that gene. Although many choices exists for how the expression
level gives an upper bound, the simplest one is to take the expression level
itself. So if we rephrase Equation 2.3 with the altered stoichiometric matrix
S’, the new programming problem becomes as follows:
First optimize
f obj (2.4)

such that,

S-f=0,
a; < fi < b;
Y. fr| S Egvg € G

reRg

Here R, denotes the reactions belonging to gene g, E, the expression
of that gene, and G the total gene set. Basically, this algorithm distributes
the gene expression among the different enzyme complexes, and hence
the related reactions, of that gene, assuming that each molecule of a gene
product can only take part in one complex at a time. The GC-flux algorithm
originally also minimized the length of the flux vector, to obtain the most
parsimonious flux distribution that optimizes the objective. We did not
minimize the flux vector length, but applied FVA together with computing
the relative flux range change (RFRC) to compare between the different
gene expression data sets. With FVA, we determine for each f; its minimum
and maximum value that still allow for the objective to be optimized. To
compare the flux ranges between different conditions, we compute the
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RERC of reaction i as follows [102]:

Crj—C1j
RFRC; = ¢ 2 —"M_
5 (1o, +11,)
with ¢, ; the center, %( fimax + fimin) of the flux range of reaction i in condi-
tion n, and r,, ; the range width f; yax — fimin-

2.2.4 Data standards for representation of metabolic maps

To facilitate exchange of computational models, such as metabolic models,
in systems biology, the Systems Biology Markup Language (SBML) has
been developed [103]. Different elements of a metabolic map, such as
metabolites, reactions, genes, and GPRs, are represented by their own class
in SBML. For this, we use the fbc package, the Flux Balance Constraints
extension of SBML. This package is especially designed to describe these
genome-scale metabolic reconstruction elements, and has specified guide-
lines on how an entity should be represented in an SBML file [104]. 41
The original model was already an SBML file, but predates the fbc pack-
age’s release. Therefore, we adapted the model to fit with the fbc package
guidelines.

Metabolite, reaction, and gene nomenclature

Aside from the file structure, there are also standards for the names of
metabolites and reactions. This facilitates comparison and interfacing with
metabolic maps of other organisms. We renamed the metabolites, reactions,
and genes. Genes were renamed with their Entrez id [105]. The metabolites
and reactions were renamed using, if possible, the data standard from
BiGG Models, a knowledgebase of genome-scale metabolic network recon-
structions [94]. Metabolites without BiGG name were renamed to their
corresponding identifier in the Kyoto Encyclopedia of Genes and Genomes
(KEGQG) to facilitate easy lookup [106, 107, 108]. Reactions without BiGG
name were not renamed, as no standardized names exist for these reac-
tions yet, making up 689 of not-renamed reactions. The reactions that did
not need renaming can be categorized into three groups. The first group
includes transport reactions of metabolites without BiGG name. These
reactions can be identified by the description of the reaction. The second
group consists of reactions involved in the exchange of fatty acids between
metabolites. The third group contains reactions involved in oxidation and
reduction of metabolites using NADH/NAD+ or NADPH/NADP+. The
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second and third group kept their original annotation, linking the reaction
to a KEGG entry.

2.3 Results

In this section, we first describe the alterations in the model. These in-
clude alterations to the metabolic network, as well as the part of the model
describing the relationships between genes and reactions. After that, we
present the results validating our updated model. We first tested the meta-
bolic expansion of the model by checking it for a list of metabolic functions,
determining a minimal feed, and predicting mitochondrial function in
respiration simulations. Next, we tested the GPRs in the model by doing
knockout simulations. Finally, we apply the model to predict metabolic
changes due to infection with M. marinum.

2.3.1 Reaction network

The alterations to the metabolic network encompassed the following five
issues: (1) improvement of the biomass function and addition of reactions to
enable synthesis of biomass precursor metabolites; (2) addition of oxidative
phosphorylation; (3) correction of starch metabolism; (4) correction of the
reversibility of reactions and their catalyzed or spontaneous nature; and (5)
validation of the list of metabolic functions ZebraGEM was reported to be
able to fulfill. Figure 2.2|summarizes the update in ZebraGEM, categorized
into subsystems following the subsystem reaction associations from Virtual
Metabolic Human (VMH), a human- and microbe-specific database on
metabolism and metabolism modeling [109, 110]. The subsystems are
sorted according to the number of reactions changed in each subsystem.
Changes are of three types: “reaction added,” “reaction deleted,” and
“reversibility changed.”

Biomass function and biomass precursors

FBA and related modeling approaches [18, 25,111} 112]] assume that an
organism or cell channels the metabolic fluxes to optimize a metabolic
function, called the objective function. This objective function is often a
biomass function, describing the relative amounts of precursor metabolites
required for biomass production. Realistic biomass functions improve
the realism of model predictions [113]. In the absence of exact data for
zebrafish, we based the updated biomass function upon data from other
vertebrates.
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FIGURE 2.2: Subsystem overview of the adaptations made to ZebraGEM.
For each subsystem, the total number of reactions, including the removed
and added reactions, is noted in between brackets.
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The biomass function coefficients were taken to be the average of the
coefficients of biomass function of a human genome-scale reconstruction
(Recon 2 [30]) and a mouse genome-scale reconstruction (iMM1415 [31]), so
far the only other vertebrates with genome-scale reconstructions, together
with Chinese hamster [32] and rat [33]. If a metabolite was a precursor in
only one of Recon 2 and iMM1415, the coefficient was taken directly from
the model in which the metabolite was present. If a metabolite was not
present in both models, the coefficient was the average of a third, human
three-tissue model, which had a biomass function for each tissue type [91].

Of the biomass precursors, 14 reactants and 2 products originally had
stoichiometry coefficient 0 and were put in the biomass reaction for fu-
ture work. Three of the reactants were cysteine, proline, and tyrosine,
and with addition of reactions to their synthesis pathways, they could be
produced. Nine of the reactants were membrane lipids, like cholesterol,
sphingomyelin, and phosphatidylinositol, which also could be produced
after the addition of reactions involved in their synthesis. We updated
their coefficients in the same way as the other metabolites taking part in
the biomass function. The remaining four metabolites were NAD, NADP,
NADH, and NADPH. These were omitted from the biomass function, fol-
lowing Recon 2, iMM1415 and the human three-tissue model. iMM1415
nor the three-tissue model contained these metabolites in their biomass
function. The resulting coefficients and their origin can be found in Supple-
mentary Table

Oxidative phosphorylation and starch metabolism

Oxidative phosphorylation in the model is an essential pathway for respi-
ration. The corresponding reactions and genes were added to the model,
using the human metabolic model Recon 2 as a template. Along with ox-
idative phosphorylation, it was also necessary to update “Ubiquinone syn-
thesis,” as well as to add the reactions CATm and SPODMm, represented
in “reactive oxygen species (ROS) detoxification,” to have a functional
oxidative phosphorylation pathway.

We have also revised glycogen metabolism, using Recon 2 as a template,
as the stoichiometry in the original model led to mass imbalance. The origi-
nal reactions were replaced with those from Recon 2, replacing the genes
within the GPRs for zebrafish orthologs. Changes in glycogen metabolism
are shown in Figure 2.2l under subsystem “Starch and sucrose metabolism”
according to VHM.
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Reaction reversibility and reaction nature

All reactions in the model were checked for reaction reversibility. This
corrected two types of unrealistic behavior. First, ZebraGEM produced
essential nutrients through backward reactions (Supplementary Table .
This was solved by correcting nonbiological reversible reactions in the
corresponding pathways. Second, several metabolites were tunneled over
membranes, as the same reaction occurred on both sides of a membrane
that involved a membrane metabolite. If at least one of these reactions
was reversible, this could result in spurious transport of the nonmembrane
metabolites, often NAD or NADP. By checking the reversibility of the
reactions with the reaction databases BiGG, VMH, and KEGG combined,
this free transport cycle could be broken. The fraction of reactions with
reversibility changed per subsystem is shown in Figure In total, the
reversibility of 543 out of 3023 reactions was changed.

A final check was done to ensure that all reactions in the updated model
do occur in zebrafish metabolism. Reactions without gene regulation were
checked using the KEGG database, a database containing information on
genes and reactions. Their KEGG entries were tested for two conditions: (1)
whether the reaction could occur nonenzymatically, and if not, then (2) it
was checked whether the reaction has an enzyme associated to vertebrates,
thus excluding reactions that occur in bacteria only. If any of these two
conditions was met, the reaction was kept; otherwise, we deleted the
reaction. The subsystems with deleted reactions are also shown in Figure
2.2]

Metabolic functions

The original model was reported to fulfill 160 metabolic functions, ranging
from amino acid metabolism to pyrimidine and purine metabolism. In
our hands, using the downloadable SBML file of the original model in
the supplements, only 92 of these functions were fulfilled (Supplementary
Table §2.4). Twenty-seven of the failed functions required metabolites in
compartments that were absent in those compartments in the model. The
other failed functions were checked manually using From Metabolite to
Metabolite (FMM [114]) and KEGG for missing reactions, or for missing
transport reactions that should be present in zebrafish. The missing reac-
tions and their corresponding genes were added to the model. An overview
of the subsystems with reactions added is shown in Figure
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TABLE 2.1: Comparison of the original ZebraGEM model with the up-
dated version.

Number of ZebraGEM | ZebraGEM 2.0
reactions 2911 3023
metabolites 2742 2810
unique metabolites 1554 1557
genes 1498 1636
gene regulated reactions 2446 2523
blocked reactions 1572 1678
successful metabolic functions 92 123
failed metabolic functions 41 12
metabolic functions missing metabolites 27 25

Genes and gene-protein-reaction associations

The original model already had 2446 gene-associated reactions coded for by
4988 genes (1498 unique genes). We extended the model by putting these
gene products into a GPR, and added this to the model according to the
SBML guidelines. As a result, the full model can now be read and run using
constraint-based modeling software, and is now suitable for gene knockout
simulations and simulations with gene expression data integration.

In summary, 95 reactions were removed and 140 were added to the
model, and 543 reactions had changed reaction reversibility. The updated
model now contains 3023 reactions with 2810 metabolites, of which 1557
were unique, and 1636 genes. Two thousand five hundred and twenty-
three reactions are gene regulated and 1678 reactions are blocked, that is,
are unable to carry any flux due to dead-end metabolites. A comparison
between the original ZebraGEM model and the updated model is shown
in Table

2.3.2 Model validation

To check whether the changes in the model network improved the perfor-
mance of the model, we tested the model predictions as follows: (1) we
checked whether the model performed the metabolic functions reported
in Bekaert [34]; (2) we checked for biological validity of the minimal set of
metabolites required for model growth; (3) we checked whether the model
could reproduce pharmacological interference with respiration. We utilized
the addition of the GPR by doing single- and double-knockout experiments,
and ultimately by gene expression data integration.
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Model metabolic functions

ZebraGEM was published with a list of 160 metabolic functions it was
reported to fulfill (Supplementary table 3 of Bekaert [34]). A metabolic
function on this list consists of one or multiple starting metabolites and one
or more end metabolites, indicating that a metabolic route between these
metabolites fulfills this function. We tested these functions by setting an
import reaction for the starting metabolites and an export reaction for the
end metabolites. The export reaction for the end metabolites was chosen as
the objective function, and a function was deemed successful if the model
imported the starting metabolites and exported the end metabolites. Some
of these metabolic functions could not be tested, as the starting or end
metabolite was not present in the model. Metabolic functions that did not
result in a success immediately were checked by hand to see whether the
model has an alternative path to fulfill the demand for the end metabolite.

Out of the 160 metabolic functions, after the corrections, ZebraGEM 2.0
was able to perform 123 functions successfully and still failed to perform
12 functions. Of the remaining 25 metabolic functions, the starting or end
metabolite was absent in the model and the corresponding function could
not be tested (Table[2.1).

Minimal feed composition

To validate the new biomass function and the changes to the reaction
reversibility, which corrected spurious production of essential amino acids,
we determined a minimal feed composition that would allow for growth.
The model was set to produce 1 arbitrary unit of biomass flux. As the model
objective, we minimized the uptake of metabolites from the environment.
The source metabolites include amino acids, the fatty acids linoleic acid and
linolenic acid, minerals, oxygen, and inositol (Fig. [2.3). We chose glucose
as the sole carbohydrate source.

The updated model predicts that the amino acids arginine, histidine,
and threonine are essential for biomass production, whereas they were
nonessential in the original model (Fig. [2.3). The updated model also
predicts additional uptake of glucose. In the original model, spurious
glucose was produced from imbalanced glycogen reactions, leading to
increased glucose uptake in the updated model. The updated model now
also predicts uptake of oxygen, due to the updated model for oxidative
phosphorylation (data not shown). The ratio between the metabolite species
taken up from the environment has also changed in the updated model,
due to the updated stoichiometry of the biomass function. This is most
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FIGURE 2.3: Minimal required metabolite uptake fluxes for the produc-

tion of 1 arbitrary unit of biomass flux for both the original model and

the updated model. Metabolite excretion fluxes are also shown, but were
not constraining the minimization.

clearly the case for phosphate uptake (Fig. 2.3), which dropped from 71%
of total metabolite uptake to 3%.

Thanks to the updated biomass function, inositol is now also an essen-
tial metabolite for growth in the model. Inositol is thought to be essential
for zebrafish as no gene for inositol-3-phosphate synthase has been found.
Inositol essentiality has been experimentally confirmed in other fish species,
even in fish species with de novo synthesis of inositol [115, (116, 117]]. The
model currently does not require the essential fatty acid linolenic acid to
grow, as the lipid metabolism in the model uses a generic fatty acid and
the correct conversion of linolenic acid into this generic fatty acid is not
present in the model. Further improvements connecting and specifying the
used fatty acid in the lipid metabolism subsystem are required; see also in
the Discussion.

Respiration

We next tested if ZebraGEM 2.0 correctly predicts oxidative phosphoryla-
tion. The mitochondrial oxidative function of zebrafish can be tested in
vivo by measuring the oxygen consumption rate, which has been done in
zebrafish embryos [118]. In Gibert et al. [118], the consumption rate of oxy-
gen has been measured under the addition of three different compounds
disrupting oxidative phosphorylation. We have simulated the effects of
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FIGURE 2.4: Overview of oxidative phosphorylation, with the site of

action of the disrupting compounds rotenone, Antimycin A, oligomycin,

and FCCP. The model reaction names are next to the corresponding

enzyme, except for Htim, which represent, the proton leak and hence has
no corresponding enzyme.

these compounds using the updated ZebraGEM model with pFBA. The site
of action of these compounds and the model reactions active in oxidative
phosphorylation are shown in Figure

The mitochondrial oxidative function can be tested in vivo by measuring
the oxygen consumption rate, which has been done on zebrafish embryos
[118]. In this study, the consumption rate of oxygen has been measured
under the addition of four different compounds disrupting oxidative phos-
phorylation. Without any compound the basal respiration is measured.
Adding oligomycin, an ATPase inhibitor, the respiration related to ATP pro-
duction can be derived. Under the addition of FCCP, a proton uncoupler,
the maximal respiration rate is measured. Finally, rotenone, a complex I
inhibitor, and Antimycin A, a complex Il inhibitor, are added such that the
non-mitochondrial respiration can be measured. However, only rotenone
was used in the last step in the zebrafish embryo study [118].

First, the basal respiration rate is determined. In the experimental setup,
this was done by measuring the oxygen consumption flux of embryos
in the absence of disrupting chemicals. In our simulations, we optimize
the model for biomass production with pFBA. Because the cellular envi-
ronment within zebrafish is unknown, we used 1000 randomly created
environments. For each of these environments, we sampled the upper
bounds of metabolite uptake from selected ranges, such that the uptake
was the constraining factor in biomass optimization. We used the same
random environments for simulations of disruptive compounds.

Second, in Gibert et al. [118] the maximal respiration rate was measured
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FIGURE 2.5: Oxygen exchange for the four modeling conditions shown
in box plots.

after exposure to the proton uncoupler FCCP. This uncoupler allows for
proton flux over the inner mitochondrial membrane, bypassing ATPase.
We simulated this by blocking the model reaction ATPS4m (Fig. [2.4), the
model equivalent of ATPase, and again optimizing for biomass production
with pFBA. The experimental results show a 29% increase in respiration
compared to basal respiration. Our FCCP simulations, Figure second
column, show a 10-fold increase in mean value compared to our basal
respiration simulations mean value.

After that, a new assay was performed in Gibert et al. [118] exposing
the embryos alternatively to oligomycin, an ATPase inhibitor, and rotenone,
a complex I inhibitor. By comparing the respiration rate after oligomycin
addition, the respiration related to ATP production can be derived. We sim-
ulated the effect of oligomycin by again blocking ATPS4m, together with
limiting the flux through the uncoupling reaction that transports protons
over the inner membrane (Htim, Fig. . The latter constraint is necessary
as proton gradients cannot develop in FBA. The Htim flux upper bound
was set equal to the Htim flux from the basal respiration simulations to
reflect the maximal buildup of proton gradient. The experimental results
show that ATP turnover-related respiration contributes about 60% to basal
mitochondrial respiration; in our simulations, this would be about 90%.
This is due to a side effect of blocking ATPS4m together with the limit on
Htim. As the proton back flow is limited, ubiquinone cycling is also lim-
ited. Ubiquinone is required for the reaction catalyzed by dihydroorotate
dehydrogenase, an essential part of pyrimidine synthesis. With limited
pyrimidine synthesis, the biomass production is also limited. As the up-
per bound for Htim is often 0, the model does not grow at all, and hence
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requires no oxygen.

The final compound rotenone can be used to measure the nonmito-
chondrial respiration, as the electron transport chain is blocked and no
oxygen is consumed by complex IV. We modeled the effect of rotenone by
blocking the reaction associated to complex I: NADH2_u10m (Fig. 2.4). The
experimental results show that nonmitochondrial respiration contributes
to about 40% of basal respiration. Our simulations show a different picture,
as the oxygen consumption flux is larger in the rotenone simulation than
in the basal simulation. (Fig. column 4). The rotenone simulation
should represent respiration where the entire electron transport chain has
been blocked, resulting in nonmitochondrial respiration. However, by only
restricting the flux of NADH2_ul0m, the electron transport chain is not
entirely blocked in the model, allowing for respiration similar to the basal
case. An extra compound that can be used to study nonmitochondrial
respiration is Antimycin A, which inhibits complex III. Although not used
in Gibert et al. [118] we tried simulating the effects by blocking the complex
III corresponding reaction CYOR_ulOm. However, in this case, the model
fails to grow at all.

Overall, the model is able to simulate the qualitative behavior of basal,
FCCP-influenced, and oligomycin-influenced respiration. It is impossible to
use FBA to describe the proton gradient. Our choice to describe the proton
gradient with Htim flux from the basal simulation proved too strict, and
choosing a higher Htim upper bound could improve the model outcome.
The rotenone/Antimycin A simulations also exposed some problems with
the model that are still open, such as alternative electron transport routing
and total biomass dependency on the reaction CYOR_ul0m.

Gene knock-out simulations

Next, we validated the utility of the GPRS by performing an in silico screen
for gene knockouts. To simulate a gene knockout, we set gene activity to
“false” in each GPR that contains the gene. The other genes in the GPRs
were set to “true,” and the logical expression of the GPR was evaluated. If
the GPR evaluated as “false,” the flux through the associated reaction was
blocked. Using FBA, we optimized biomass production in the presence of
the additional constraint. The procedure was repeated for each gene. We
also screened for double gene knockouts. In this case, each pair of genes
in the network was set to “false” and the same procedure was applied for
double knockouts. The resulting knockout biomass production rate was
expressed as a fraction of the wild-type biomass production rate, that is,
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we divide to optimal biomass production rate in the knockout case over
the optimal biomass production rate in the “wild-type” control.

Out of the 1636 genes in the model, 74 single knockouts completely
blocked biomass production. For further 30 genes, single knockout re-
duced biomass production rates. Out of these 30 single knockouts, 13
single knockouts resulted in a biomass production rate ranging from 0.4038
to 0.8 of the optimal biomass production rate and 17 have a slightly reduced
biomass production rate ranging from 0.8 to 0.95 of the optimal rate. A
further 42 single knockouts resulted in a very minor reduction in biomass
production, ranging from 0.95 to 0.9998 of that of the wild type. All these
genes are listed in Supplementary Table §2.3A. The model was robust to
single knockout of the 1490 other genes in the model, yielding a biomass
production rate identical to that of the wild type. The genes resulting in a
nonoptimal phenotype were mostly involved in oxidative phosphorylation
(37 of 146), followed by cholesterol metabolism (14), nucleotide intercon-
version (8), and synthesis (11). We see a good correlation of the essential
and partial-essential genes and the pathways for biomass precursors that
we added to the biomass function as well as oxidative phosphorylation.

To validate our single-gene knockout simulation results, we searched
the literature for mutagenesis screens in zebrafish screening for visible
defects (Fig. [119, 120, 121} (122} 123, 124, 125, 126]]. Thirty-six of all
our model genes had at least one record in these screens. Out of these
36 genes, 6 knockouts were among the 74 knockouts with fully blocked
biomass production (paics, tyms, cdipt, rrm1, and cad). One knockout (atpbpo)
resulted in a reduced biomass production rate of 0.509 of the wild-type rate.
For the remaining 29 knockouts from these in vivo screens, ZebraGEM 2.0
did not predict a reduced biomass production. These genes without model
phenotype are also included in Supplementary Table S2.3A.

We next used ZebrafishMine to extract single-gene knockdown non-
normal phenotypes from the Zebrafish Information Network (ZFIN) [127].
Around 232 genes present in ZebraGEM 2.0 had a knockdown phenotype
in ZFIN. Of those 232 genes, 18 genes also had reduced biomass production
in the single knockout simulations (Supplementary Table and Fig.
, 8 had no growth, 1 had rate 0.647 of wild-type rate, 5 had a rate in the
range 0.8-0.95 of wild-type rate, and 4 had a rate ranging from 0.95 to 0.9998
of wild-type rate. The low number in overlap between model knockout
phenotypes and in vivo phenotypes can be caused by open problems within
the model.

On the other hand, not every gene has been extensively studied in
zebrafish, which might also explain part of the model knockouts with
reduced biomass production rate, but no record in the zebrafish literature.
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FIGURE 2.6: Venn diagram of genes present in the model that result in
a phenotype in the single knockout simulation (model phenotype), are
present in the genetic screen studies (screens) [119} (120,121} {122 123} |124,
125|[126]], and have a knockdown abnormal phenotype registered in the
Zebrafish Information Network (ZFIN) (knockdown).
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For this reason, we also used ZebrafishMine to check the remaining 123
genes that have a phenotype in the model for diseases associated with
their human orthologs. Of these 123 genes, 69 have a metabolic disease
associated to their human ortholog, with the exception of sod2 and got1 that
are associated with microvascular complications of diabetes and low serum
levels of aspartate aminotransferase, respectively (Supplementary Table
52.3)A). Of the remaining 54 genes without associated disease, there is still
the possibility that they point to problems in the model, or that they are
associated with rare mutations that have not been studied yet. Twenty-five
of these genes were related to oxidative phosphorylation, which might
indicate the latter.

In total, 228 genes appeared in Refs. [119} 120,121} 122, 123, 124) |125]
and ZFIN with a non-normal phenotype, but showed no phenotype in
the single-gene knockout simulation. We categorized the effects of the
knockout of these genes. One hundred and seven genes were involved in
blocked reactions only, so knocking those out results in no change in the
model. For 59 genes, the corresponding reactions of the genes would divert
flux from the biomass production; thus, if wild-type model is optimized for
biomass production, those reactions are already minimized to 0 flux. Next,
there were also 42 genes that are redundant in our model: knocking those
out does not block any reaction. It could be that subfunctionalization on
the level of enzyme kinetics causes the in vivo phenotype, which cannot be
represented with FBA modeling. Finally, there are 20 remaining genes that
do not fit any of the three categories mentioned. Their associated reactions
might be redundant within the network or do not contribute to biomass
production.

For the double knockouts, we looked at two sets of genes pairs. First,
we looked for pairs of genes with lower growth rates, which do not involve
genes with phenotype in the single knockout simulation. The gene pairs
with lowered growth rate (44 in total, 22 of which show no growth at all) are
shown in Supplementary Table S2.3B, and are often paralogous genes. We
also checked gene pairs involving at least one gene with a lowered growth
rate in the single knockout experiment, which resulted in no growth, and
found 36 pairs, also shown in Supplementary Table §2.3B. Lethal double
knockouts are mainly involved in lipid metabolism, amino acid metabolism,
and the citric acid cycle. In contrast to the single knockout simulation, the
gene pairs that are lethal only in double knockouts do not account for much
of the newly added reactions, with the exception of gene pairs involved in
oxidative phosphorylation.
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2.3.3 Integration of expression data

Thanks to the GPRs, ZebraGEM 2.0 can predict metabolic changes driven by
changes in gene expression. We demonstrate this application of ZebraGEM
2.0 with a published dataset of infection with the fish tuberculosis bacterium
M. marinum [128]]. Briefly, zebrafish larvae were injected in the yolk with
M. marinum at 2 h postfertilization [128]. Gene expression in infected and
control larvae was measured at 4 and 5 days postfertilization using RNA
deep sequencing. This yielded a data set containing the expression of 31,388
genes.

Of these 31,388 genes, 1608 genes are present in ZebraGEM 2.0. Al-
though this is a small fraction of the total gene set, it covers 98% of the
model genes. From these 1608 genes present in ZebraGEM 2.0, we selected
genes with differential expression in the infected and control groups at
4 and 5 days postinfection (dpi). Genes were considered “differentially
expressed” if they had a fold change or a fold change , together with an
adjusted p-value threshold (Fig. [2.7). We thus identified 24 metabolic genes
in ZebraGEM 2.0 that were differentially expressed both at 4 dpi and 5 dpi
(Tables 2.2} and [2.3).

We next predicted the metabolic changes caused by differential ex-
pression of these 24 expressed genes. We made use of GC-flux [100]. The
GC-flux algorithm constrains the rate of the metabolic reaction in the model



2.3. Results 41

TABLE 2.2: Number of differentially expressed genes in the total gene
expression dataset and the subset of genes present in the model.

| Total gene set Model gene set

4 dpi 408 35
5 dpi 1714 106
both dpi 226 24

TABLE 2.3: List of genes differentially expressed at both 4 and 5 dpi that

Gene symbol

are present in the model.

Gene name

acsl5 acyl-CoA synthetase long-chain family member 5

ampd3b adenosine monophosphate deaminase 3b

anpepb alanyl (membrane) aminopeptidase b

asah2 N-acylsphingosine amidohydrolase 2

dpys dihydropyrimidinase

elovl8b ELOVL fatty acid elongase 8b

enpp7.1 ectonucleotide pyrophosphatase/phosphodiesterase 7, tan-
dem duplicate 1

ftcd formimidoyltransferase cyclodeaminase

gch2 GTP cyclohydrolase 2

gqt1b gamma-glutamyltransferase 1b

mboat2a membrane bound O-acyltransferase domain containing 2a

neu3.3 sialidase 3 (membrane sialidase), tandem duplicate 3

neu3.4 sialidase 3 (membrane sialidase), tandem duplicate 4

pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

ptgs2a prostaglandin-endoperoxide synthase 2a

satla.2 spermidine/spermine N1-acetyltransferase 1a, duplicate 2

slc13a3 solute carrier family 13 (sodium-dependent dicarboxylate
transporter), member 3

slc26a3.2 solute carrier family 26 (anion exchanger), member 3, tan-
dem duplicate 2

slc7a7 solute carrier family 7 (amino acid transporter light chain,
y+L system), member 7

tdo2a tryptophan 2,3-dioxygenase a

tyms thymidylate synthetase

ugtlab UDP glucuronosyltransferase 1 family a, b

urocl urocanate hydratase 1

zgc:92040 zgc:92040
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based on the expression levels of the genes coding for the corresponding
enzymes. GC flux distributes the gene expression of a single gene over all
reactions associated with that gene, such that the total sum of those reaction
fluxes cannot exceed maximum flux associated with the gene expression
value. We performed this analysis for control and infected larvae at 4 and 5
days dpi.

After the model was constrained with the gene expression data, a
method called FVA was applied [20]. FVA predicts the minimum and maxi-
mum possible flux ranges for each reaction, given an objective function; in
this study, we used biomass production rate. To compare the flux ranges
between control infected at 4 and 5 dpi, we used the RFRC [102]. The
RFRC is a measure that indicates how much the flux ranges differ between
the control and infected simulations. When the RFRC is greater than 1 or
smaller than —1, the centers of the compared flux ranges are separated by
more than the averaged width of those flux ranges, with negative values
indicating that the infected case has a range lower than the control case.

An important reaction with an absolute RFRC greater than 1 is the
biomass function BIO_L_2 and it appears in the list for both 4 and 5 dpi.
The RFRC of BIO_L_2 is negative in both cases, —18.371 for 4 dpi and
—17.421 for 5 dpi, suggesting that infection reduces biomass production
rate. When comparing the maximal growth rates, the growth rate of the
infected simulation was 83% of the control growth rate at 4 dpi, and at
5 dpi, the infected group reached 84% of the growth rate of the control.
Further examination of the list with reactions with absolute RFRC greater
than one (Supplementary Table shows that affected reactions (with )
at 5 dpi (46 reactions in total) are also affected at 4 dpi (56 reactions in total).
Most of these 46 reactions were essential reactions involved in biomass
precursor production and their knockouts are lethal (Supplementary Table
F2.3)A). The fluxes of the biomass precursor reactions co-vary, because they
contribute, often in parallel, to the biomass reaction. If one of the fluxes is
reduced, biomass production rate is also reduced. Due to flux balance, all
the other biomass precursor fluxes must be reduced as well.

To gain insight in which genes give rise to such restricting reactions,
and hence are limiting growth in our simulations, we identified the genes
that restricted biomass production by comparing the flux corresponding
to each gene with the expression level of each gene (Table[2.4). In total, 17
genes restricted biomass production in at least one of the four cases (con-
dition x dpi). Aside from essential biomass precursor reaction-associated
genes (essential genes for the model), 9 genes out of 17 are not essential
to the model. Among these are si:ch1073-100f3.2, slc5a9, and thal, all as-
sociated to monosaccharide transporters. The differential expression of
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TABLE 2.4: Genes with gene expression restricting biomass production

in the model with their fold change and their essentiality within the

model, according to lethal phenotypes (essential) and reduced growth
phenotypes (semiessential) in Supplementary Table

Gene FC 4dpi | FC 5dpi | Essentiality
acacb 0.522 0.036 | essential

argl -0.402 -0.837 | semi-essential
atp5s 0.358 0.088 | semi-essential
bdh2* -0.403 -0.810 | semi-essential
cox6a2 -0.437 -0.633 | essential

ftcd -1.061 -1.353 | semi-essential
galkl -0.173 -0.669 | -

galk2 -0.314 -0.315 | -

gart -0.262 -0.016 | essential

gck 1.871 -4.162 | -

hkdcl -0.529 -1.469 | -

nme4 -0.548 -1.147 | -

nmeo6 -0.548 -0.267 | -
si:ch1073-100£3.2* -0.492 -0.277 | semi-essential
slc2alla 0.068 -1.014 | -

slc5a9 -0.788 -0.791 | -

thal* 0.489 0.686 | -

Genes marked with an asterisk are not restrictive for 5 dpi. Bold face genes
have differential expression for 5 dpi, bold and italic font both 4 and 5 dpi.
FC, fold change.

slc2alla, also associated to a monosaccharide transporter, together with
limited availability of flux for the other monosaccharide transporters, puts
a large restriction on the model. The low number of only four genes with
differential expression (namely ftcd at both 4 and 5 dpi, and gck, nme4, and
slc2alla at 5 dpi only) points toward a drawback of this data integration
method: it only looks at the mean values of each case, but ignores whether
these means are significantly different.

We observed that there was a reduction in growth rate in the infected
case, and could ascribe this to a number of restricting genes. However,
growth reduction might not be the only difference in metabolic activity;
which metabolic pathways are contributing to biomass production can also
differ between control and infected. To see if there was also a shift in which
metabolic pathways contribute to biomass production, the flux ranges were
normalized with the biomass flux. The RFRC was then again computed
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with the normalized ranges, and only for 4 dpi were there reactions with

| REFRC | > 1. These reactions are HISD, IZPN, URCN, and EX_his_ L _e,
and are involved in the pathway converting histidine into glutamate. The
high IRFRCI of these reactions can be directly linked to the differential
expression of urocl.

Overall, the addition of GPRs to ZebraGEM 2.0 together with GC-flux
allowed us to integrate gene expression data into ZebraGEM 2.0, providing
us with novel insights into potential metabolic changes due to M. marinum
infection. First of all, there is a reduction in growth in the infected cases.
This can be attributed to differences in the expression of some essential
genes as well as monosaccharide transporter genes. When looking at
qualitative changes in metabolism, histidine metabolism is reduced at 4
dpi, due to reduced expression of urocl. Together with the restrictive gene
fted (Table[2.4), which is also involved in the histidine pathway, this could
make the histidine pathway an interesting starting point for more research
on changes in metabolism upon M. marinum infection.

2.4 Discussion

In this work, we have presented ZebraGEM 2.0, an improved version of
the genome-scale metabolic reconstruction ZebraGEM [34]. We have made
the model available through an xml-file, see Supplementary Materials
The improvements were the addition of GPRs, significant changes to the
stoichiometry by the addition of oxidative phosphorylation and check-
ing the reversibility of reaction, and adhering to the existing standards of
genome-scale metabolic reconstructions. To validate the new model, we
have shown that it performs better than the previous version on a prede-
termined list of 160 metabolic tasks. We also determined a minimal feed.
ZebraGEM assigns more nutrients to be essential, which is in agreement
with what is known about zebrafish nutrition. To test the added GPRs, we
did an in silico knockout screening, and found a large agreement between
genes causing a phenotype in the model and genes that are known to have
a phenotype in vivo in zebrafish or in human.

Altogether, ZebraGEM 2.0 is now suitable to be used with gene expres-
sion, which we demonstrated by integrating a gene expression data set of
M. marinum-infected and noninfected embryos. In this study, our simu-
lations predicted a lowered growth rate for the infected embryos due to
changes in essential gene expression as well as monosaccharide transporter
gene expression, and a change in histidine metabolism.
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Here, we will discuss further improvements and limitations of Ze-
braGEM 2.0, and briefly discuss the future work.

2.4.1 Blocked reactions

Blocked reactions are reactions that cannot carry any flux due to absence
of some or all pathways carrying metabolites toward or away from the
reactions. Currently, 1675 out of 3018 (55.5%) of the reactions remain
inactive in ZebraGEM 2.0. This number is high in comparison with similar
metabolic reconstructions: in Recon 2, 2123 out of 7440 (28.5%) reactions
are blocked [30], and in iMM1415, 1294 out of 3726 (34.7%) reactions are
blocked [31]. Even if the blocked reactions are currently nonfunctional, we
have decided to leave them in ZebraGEM 2.0. This prepares the model for
future improvements that can unblock these reactions.

To unblock these reactions, we will need to add a number of missing
exchange reactions. These allow the model to import metabolites and ex-
crete waste metabolites. Due to flux balance, the whole metabolic pathway
is blocked if excretion or further processing of a metabolite is impossible.
One example of such a missing exchange reaction is the exchange reaction
for urea; after we added it to the model, it allowed for the production and
incorporation into biomass of arginine. For our current needs, further addi-
tion of exchange reactions was not needed. Besides that, improvements in
the import and export reactions are complicated by three facts. First, there
is the food composition, which is not predetermined for free-feeding larvae
and adult fish; a solution here would be to add all possible exchange reac-
tions and open or close them depending on fodder composition. Second,
there is the unknown factor of exchange with the environment by other
means than diet, such as excretion and uptake of metabolites through the
skin. Third, there is exchange among cells and tissues of metabolites, such
as the uptake of nutrient from the yolk in developing embryos.

Further unblocking of reactions will be achieved by identifying uncon-
nected parts of the network and add the missing metabolic pathways. Such
gap-filling can, in part, be automated by finding the minimal set of addition
to the network [129,|130, [131], or using novel topology-based methods that
can pinpoint missing essential reactions [132]. Such automized gap-filling
should be done with care, because the gaps often require reactions that
have no or little literature that clearly supports those reactions.
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2.4.2 Lipid metabolism

ZebraGEM 2.0 and its predecessor have applied a number of simplifica-
tions in the description of lipid metabolism. First, a generic fatty acid is
used in most lipid metabolism reactions. Also, the essential lipid linolenic
acid has no reaction in the model converting it into this generic fatty acid
and hence is not processed further by the model. To further improve the
description of lipid metabolism in ZebraGEM 2.0, future description of
lipid metabolism should include specific reactions for each type of fatty
acid. This improvement would make linolenic acid essential, but because a
single reaction would be part of the metabolism of a range of fatty acids,
it comes at the cost of increased model size. Most likely, this will double
the number of reactions, as the ~600 reactions involved in lipid metabolism
will be multiplied by the number of specified fatty acids. This will increase
simulation time significantly for some of the modeling techniques, like
FVA. The Chinese hamster model iCHOV1 [32], a human platelet model
[133], and a human erythrocyte model [90] have parts of lipid metabolism
with specified fatty acids and can serve as examples.

An additional factor in lipid metabolism is that many of the associated
metabolites are located in the compartment “membrane.” This compart-
ment accounts for the plasma membrane, Golgi membrane, endoplasmic
reticulum membrane, lysosome membrane, nuclear membrane, and the
outer mitochondrial membrane all at once. This compartmentalization into
a single compartment does not take into account the required transport
processes and associated metabolic processes for such metabolites that take
place within the cell. Another effect of this membrane compartment is the
tunneling of NADH and NADPH over the membrane due to imbalanced
reaction reversibility, as discussed in Reaction Reversibility and Reaction
Nature section. We have currently solved this issue by checking reaction
reversibility, but a future improvement of the compartmentalization of
membrane metabolites into specific membrane parts would solve these
problems more accurately.

Improving lipid metabolism is also of interest when looking at the
growth conditions of zebrafish. Embryos rely on the abundance of lipids
present in the yolk as their source of energy, and as zebrafish are often used
for experiments in their embryonal stages, insight into lipid metabolism
is relevant. Fraher et al. determined changes in lipid composition of both
the yolk and the developing embryo [134]. This study provides interesting
information upon which estimates for lipid exchange between embryo and
yolk can be made, which can further improve metabolic modeling studies
of embryonic stages.
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2.4.3 Biomass function and quantitative simulations

The current biomass function is not based upon any data on zebrafish cell
composition, but on human and mouse models. Although the metabolites
of which a cell consists vary little between animals, as all cells are built
from amino acids, nucleic acids, and fatty acids [113], the ratios between
the required metabolites can vary as much as 30 million fold [91]. The
ratios of biomass precursor metabolites can have a large impact on the
model predictions. Therefore, data of zebrafish cell composition, possibly
for different cell types, will be of high value for increasing model prediction
accuracy. So far, there has been detailed study of lipid composition only
[135].

Genome-scale metabolic modeling focuses only on metabolism and
hence has a limited scope. For example, 20 genes with a non-normal
phenotype in Refs. [118, 119} 120, [121, 122} 123, 124, 125] or ZFIN had
no phenotype in ZebraGEM 2.0. They could not be ascribed to blocked
reactions, no knockout effect due to the gene being redundant in the model,
or the associated reaction diverting flux from the biomass optimization.
The optimization for biomass production rate does likely not reflect all the
required metabolic outputs of a cell. Alternative objective functions would
include specific protein synthesis for antibody producing B-lymphocytes,
ATP synthesis for muscle cells, or ROS production upon infection. In
addition, bacterial metabolism also plays a role during infection. Therefore,
results of in silico knockout experiments will deviate from the results of in
vivo experiments.

A generic problem of flux balance analysis is that it does not consider
kinetics and thermodynamics. Gene mutations or knockouts can change
the kinetics of metabolic reactions, causing for instance accumulation of
toxic compounds. Thermodynamics can also affect the rate of reactions and
has been combined with constraint-based methods before [136]. Finally,
these genes can cause a phenotype in vivo by other means than metabolism,
that is, they could be involved in signaling and genetic regulating processes
as well, and those aspects are not part of this model.

Last but not least, when using data integration methods, one has to
be careful with the distribution of experimental values. As we saw now
with our data-integrated simulations, most of the restricting genes were
not significantly differentially expressed, which could lead to pinpointing
incorrect causes of altered metabolism. The algorithm we used, as well
as many others take only a single value for the expression of genes, often
just the average; the original distribution underlying that average has to
be considered, especially when comparing different situations. Extending
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data integration methods for constraint-based metabolic modeling with
methods from robust optimization can offer a framework in which such
distributions can be taken into account.

Despite these limitations, the improved model combined with the ze-
brafish embryo data results in the prediction of lowered growth in the case
of Mycobacterium infection. Furthermore, we showed that metabolism of
histidine synthesis was decreased in infected zebrafish embryos. Further
improvements on the model as well as the data integration methods and
analysis can lead to new applications of ZebraGEM 2.0, such as elucidating
yolk and embryo metabolism or exploring the causes of metabolic diseases.

2.5 Supplementary material
The supplementary data can be accessed through the site of the publisher.
Supplementary Data XML-file containing ZebraGEM 2.0

Supplementary Table 2.1 Estimation of the zebrafish biomass function
coefficients based on Recon 2,iMM1415 and a human three tissue model.

Supplementary Table 2.2 Maximized effluxes of metabolites out of the
original ZebraGEM model.

Supplementary Table 2.3 Results of gene knock out experiments.

Supplementary Table 2.4 Results of metabolic function tests and the
performance of the original ZebraGEM and the updated model.

Supplementary Table 2.5 List of reactions with Relative flux range changes
(RFRC) greater than 1.
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Chapter 3

Cell-matrix adhesion affects cell motility
mode: from short-term persistent to
long-term subdiffusive modes

Leonie van Steijn, Clément Sire, Loic Dupré, Guy Theraulaz,
Roeland M.H. Merks

Abstract

Lymphocytes have been described to perform different motility patterns
such as Brownian random walks, persistent random walks, and Lévy walks.
Depending on the conditions, such as confinement or the distribution of
target cells, either Brownian or Lévy walks lead to more efficient interaction
with the targets.The diversity of these motility patterns may be explained
by an adaptive response to the surrounding extracellular matrix (ECM).
Indeed, depending on the ECM composition, lymphocytes either display
a floating motion without attaching to the ECM, or sliding and stepping
motion with respectively continuous or discontinuous attachment to the
ECM, or pivoting behaviour with sustained attachment to the ECM. More-
over, on the long term, lymphocytes either perform a persistent random
walk or a Brownian-like movement depending on the ECM composition.
How the ECM affects cell motility is still incompletely understood. Here,
we integrate essential mechanistic details of the lymphocyte-matrix adhe-
sions and lymphocyte intrinsic cytoskeletal induced cell propulsion into
a Cellular Potts model (CPM). We show that the combination of de novo
cell-matrix adhesion formation, adhesion growth and shrinkage, adhe-
sion rupture, and feedback of adhesions onto cell propulsion recapitulates
multiple lymphocyte behaviours, for different lymphocyte subsets and
various substrates. With increasing attachment area and increased adhe-
sion strength, the cells’ velocity and persistence decreases. Additionally,
the model can predict short-term persistent with long-term subdiffusive

*Submitted as Leonie van Steijn et al. “Computational modelling of cell motility modes
emerging from cell-matrix adhesion dynamics”, available on bioRxiv, https://doi.org/
10.1101/2021.06.09.447692
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motility, showing a pivoting motion. For small adhesion areas, we observe
that the spatial distribution of adhesions influences cell motility. Small
adhesions at the front allow for more persistent motion than larger clusters
at the back, despite a similar total adhesion area. In conclusion, we present
an integrated framework to simulate the effects of ECM proteins on cell-
matrix adhesion dynamics. The model reveals a sufficient set of principles
explaining the plasticity of lymphocyte motility.

Author summary

During immunosurveillance, lymphocytes patrol through tissues to interact
with cancer cells, other immune cells, and pathogens. The efficiency of this
process depends on the kinds of trajectories taken, ranging from simple
Brownian walks to Lévy walks. The composition of the extracellular matrix
(ECM), a network of macromolecules, affects the formation of cell-matrix
adhesions, thus strongly influencing the way lymphocytes move. Here,
we present a model of lymphocyte motility driven by adhesions that grow,
shrink and rupture in response to the ECM and cellular forces. Compared
to other models, our model is computationally light making it suitable for
generating long term cell track data, while still capturing actin dynamics
and adhesion turnover. Our model suggests that cell motility is affected
by the force required to break adhesions and the rate at which new adhe-
sions form. Adhesions can promote cell protrusion by inhibiting retrograde
actin flow. After introducing this effect into the model, we found that it
reduces the cellular diffusivity and that it promotes stick-slip behaviour.
Furthermore, location and size of adhesion clusters determined cell persis-
tence. Overall, our model explains the plasticity of lymphocyte behaviour
in response to the ECM.

3.1 Introduction

Lymphocytes patrol in tissues and are recruited to infected areas to detect
and clear the area of pathogens and cancer cells. The type of walk by
which lymphocytes patrol determines the efficiency of finding their target
depending on the environment [137} 138}, 139, 56, [140]. In the absence of
obstacles, Lévy walks and persistent random walks outperform Brownian
walks. Lévy walks are characterized by long strides in their trajectories
such that they cover larger areas than Brownian walks. In environments
crowded with obstacles Brownian walks perform better, as the more com-
pact trajectory leads to more thorough local exploration [137]. Even more
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local exploration follows from subdiffusive random walkers, which diffuse
less far than could be expected from their speed and persistence. Consis-
tent with these characteristics, in the densely populated lymph nodes T
lymphocytes perform Brownian walks [53, 54] or persistent random walks
[55]. In the brain tissue, T cells perform Lévy walks [56]. In pancreatic
islets CD4+ T cells perform subdiffusive random walks, whereas CD8+
T cells perform confined random walks [57]. The characteristics of these
different types of motion, including speed distribution and mean squared
displacement (MSD), determine how efficiently lymphocytes can find their
targets in vivo. Therefore it is key to understand what factors give rise to
these different types of walks.

The plasticity of lymphocyte motility behaviour is dictated both by
environmental factors and by cell intrinsic features [141, |142]. An in vitro
study has shown that the type of extracellular matrix (ECM) used as cell
culture substrate affects the motility patterns of B lymphocytes, possibly
due to the attachment strength [143]. On fibronectin, B lymphocytes show
higher diffusivity and more effective displacement than on collagen IV
substrates where cells move more slowly. The B lymphocytes formed
larger adhesive connections with fibronectin than with collagen IV, and
on fibronectin the cells changed shape more rapidly than on collagen IV.
Similar effects have been found for T lymphocytes. The majority of cells on
a casein substrate move through multiple, distinct and temporary adhesion
zones, i.e., walking motility, whereas on ICAM-1 substrates, the majority
of cells make one continuous contact zone with the substrate, i.e., sliding
motility [144].

Cells also show large individual variation in their motility patterns.
On fibronectin, individual B lymphocytes showed either floating-like be-
haviour with little attachment, dynamic attachment leading to stepping/walking
behaviour, or sustained attachment leading to cells pivoting around their
adhesive area [143|]. Similarly, T lymphocytes showed either walking,
mixed or sliding behavior, with frequencies depending the type of culture
substrate [[144].

It is still poorly understood what causes, on the one hand, the con-
sistent differences in motility modes between culture substrates, and on
the other hand, the large individual differences between cells on the same
type of substrate. To answer this question, here we propose a simplified
mathematical model of cell motility and the adhesive interaction with the
ECM.

Previous modeling studies have already provided useful insight into
this problem. Copos et al. [145] asked what causes the cellular extension
and retraction cycles driving the motility of Dictyostelium discoideum cells.
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They modelled D. discoideum movement in a force-based model. Depending
on the density of adhesion binding sites in the substrate, or the strength of
these adhesions, the model displayed different motility types. For low den-
sities of adhesion binding sites in the substrate and low adhesion strength,
gliding motility was observed. Increasing the density of the binding sites
or the adhesion strength led to a stepping motility mode of reduced speed.
For the highest adhesion densities or adhesion strengths the cells became
stationary. Thus the cells moved faster in the gliding motility mode than
in the stepping motility mode. Although this agreed with preliminary
experimental results on D. discoideum cells[145], these results contradict
observation in lymphocyes: T cells move faster in stepping motility mode
than in gliding motility mode [144]. Furthermore, as a one-dimensional
model, it cannot produce two-dimensional cell tracks and it is computation-
ally too heavy for producing the large amounts of cell track data required
for our purpose.

Phase field models make it possible to study the effect of ECM on cell
motility in two dimensions [65, 67]. In [65], the model includes actin poly-
merization, explicit dynamics of adhesion site formation and substrate
compliance. Simulated cells displayed a gliding motion when substrate
stiffness was high, the protrusion strength was large and adhesions formed
at a high rate. At intermediate substrate stiffnesses with sufficiently high
protrusion strength and intermediate adhesion formation, the cells dis-
played a stick-and-slip motion. Yet, the computational costs are still too
high for the length and number of cell track data we require for statistical
analysis.

Yu et al. [146] introduced a computationally efficient, coarse-grained
model to study long term cell persistence. The model considered spheroid
cells with a fixed pool of focal adhesions. These adhesions were assumed to
be widely dispersed within the cells for soft substrates and more narrowly
dispersed for rigid substrates. The increased persistence times on rigid
substrates led to durotaxis, i.e. preferential movement towards stiffer sub-
strates. However, Yu et al. imposed a direct dependence of cell persistence
on adhesion distribution. In our work, we hope to explain this relation
emerging from first principles.

Thus, previous models are either too computationally expensive or do
not model the effect of adhesion on the microscopic level. The Cellular
Potts model is conceptually closely related to phase fields model, but is
computationally much lighter. The Act model [73], a recent extension of
the Cellular Potts model, provides of phenomenological model of actin
dynamics. Interestingly, this model can already display multiple motility
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modes: Simulated cells show intermittent (stop-and-go) or persistent ran-
dom walks. An in-depth characterization revealed that the model displays
universal coupling between speed and persistence, and specifically that
speed increases linearly with protrusion strength, whereas persistence time
increase exponentially with protrusion strength [147].

Here we extend the Act model with cell-ECM interactions. The model
combines coarsed-grained actin dynamics, with simplified dynamics of
adhesion turn-over and detachment, resulting in a diverse palette of cell
motility. In a second version of the model, the cell-ECM adhesions pro-
mote cell protrusion by inhibiting retrograde actin flow. Our model can
simulate cell motion with sufficient detail on the location and size of ad-
hesive patches, while being computationally light enough for statistical
analysis of cell motility. With the actin component and cell-matrix adhesion
component of the model, we are able to reproduce a variety of cell motion
types, similar to the behaviour seen in other models that also include those
two components [145] 65, 67]. In addition to persistent random walks
and ballistic cell motility, the extended model can also predict anomalous
diffusion with long-term subdiffusive behaviour, showing all three phases
of lymphocyte motility on fibronectin found in the experimental work by
Rey-Barroso et al.[143]]. Our model shows that simple cell-ECM interactions
can drastically alter cell motility. Thus, adhesion dynamics can play a key
role in the plasticity of motility in response to ECM composition.

3.2 Results

In this section, we present how we model the dynamics of cell-matrix
adhesions. We show that this model can reproduce a wide range of lym-
phocyte motility modes. Next, we extend the model with feedback from
the adhesions onto the actin polymerization force and show that we can
capture more dynamic motility behaviours. Overall, our model recapitu-
lates the diversity of lymphocyte motility modes and provides insight into
the mechanisms underlying such behavioural diversity.

3.2.1 Modelling cell-matrix adhesions

Our computational model is based on the Act model [73], an extension of
the Cellular Potts model (CPM, [148) 149]]) with an actin-inspired feedback
mechanism that results in realistic cell shapes and cell polarization. In short,
this extension keeps track of recent “actin activity" through Act values at a
subcellular level, and cell protrusion at sites with locally high Act values is
favoured. Two important parameters for this are A 4.¢, the weight of the Act
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FIGURE 3.1: Overview of the adhesion processes within the model. A)
Top: overview of a simulated cell. Red to yellow shading indicates the
Act-level of each grid point. Darker coloured grid points contain an
adhesion. Bottom: same cell with the region where new adhesions can
form as the local Act-levels exceeds the 0.75 Max 4.; threshold depicted in
blue. Both: Arrows point to area with one grid point with high Act-level
due to a recent extension of the cell (top, red), but the geometric mean of
Act-levels does not exceed the threshold and hence new adhesions cannot
form there (bottom, grey). B) Visual summary of adhesion processes.
Dark coloured circles indicate grid points containing an adhesion. 1)
New adhesions can form spontaneously with probability ps at cell grid
points where the geometric means of Act values exceeds the threshold
of 0.75Max 4 (blue region). 2) An adhesion patch can grow by Eden
growth. A random neighbour of an adhesion site is selected. When
it does not contain an adhesion yet, the patch extends into that grid
point with probability p.. 3) Adhesions can disbond spontaneously;,
depending on the number of neighbouring grid points without adhesions
and probability p;. 4) When cell retraction would break an adhesion, this
is paired with a energy cost A,

model that can be interpreted as the maximum protrusive force of the actin
network, and Max 4., the maximum Act value, interpretable as the lifetime
of an actin subunit within the actin network (see Table[3.1)). In addition,
our model takes cell-matrix adhesion into account and reflects the dynamic
processes of such adhesions (Fig 3.I). We will shortly explain the addition
of cell-matrix adhesions below. For further details, see the Method section.

Modelled cell-matrix adhesions are monitored at a subcellular level.
A subcellular CPM grid point can either contain an adhesion or not. A
single grid point is approximately 600 nm wide, considering that simulated
cells contain approximately 1000 CPM grid points each, and that B cells
and T cells on a substrate cover an area of approximately 360 um?[143
150]. Observations show that single adhesion units in lymphocytes are
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approximately 100 nm in diameter [150], so a single adhesion grid point in
the model represents a small number (< 5) of adhesion units, considering
adhesion unit density of 5 clusters/um? [150].

The formation of new adhesions depends on actin polymerization,
membrane protrusion and the distribution of integrins at the leading edge
of the cell [151}|152,153]]. As actin activity and the leading edge are marked
in the Act model by grid points with high Act values, we let new adhe-
sions appear at grid points with a locally high Act-level: i.e. when the
geometric mean of Act-level Act(y) of NB,(x), the Moore neighbourhood
of grid point x restricted to the same cell as point x, exceeds a threshold

1
<Hye NB, (%) Act(y)) W01 > 0.75 Max a, grid point x receives an adhesion
with probability p, (Fig and [3.IB, process 1).

Once an adhesion has formed, it can either expand into an adhesion
patch, or disbond. Patch expansion happens due to some membrane prop-
erties: membrane fluctuations lessen with membrane-matrix adhesion and
hence allow for more integrins to bind the matrix [154], and the curvature
of the membrane favours aggregation of integrins [155,/156]. We choose to
model the effects of these properties in a phenomenological way, guided
by the observations of Jacobelli et al. [144]. They report radial expansion
of adhesion patches with some bias in the direction of the cell front. The
Eden-growth model [157] gives radially expanding spherical objects, so
we decided to use an Eden-like growth process to model adhesion patch
expansion. During the update of the adhesion layer of the model, whenever
a grid point with adhesion is selected, we also randomly select a neighbour.
If that neighbour does not contain an adhesion, it gains one with probability
pe (Fig B.1IB, process 2).

Cell-matrix adhesions are not everlasting and they can disbond spon-
taneously or by force. We model two distinct disbonding processes. First,
we consider a general and spontaneous disbonding of adhesions. As adhe-
sion molecules undergo continuous turnover and experience stress from
myosin-II, adhesions are broken constantly. Hence, we associate a proba-
bility with this process. Again, following the observations from [144] that
patches dissolve concentrically due to the involvement of myosin-II, we let
the disbonding probability depend on the local neighbourhood of the adhe-
sion. An adhesion grid point surrounded by other adhesion grid points is
likely within the centre of a patch and, hence, less likely to spontaneously
disbond, whereas a single adhesion grid point with no neighbouring ad-
hesions is quite likely to disappear. The probability that an adhesion site

2
disbonds is p; - (H"bENB(x”Adh("b):OH , where NB(x) indicates the Moore

[{nbeNB(x)}|

neighbourhood of grid point x (Fig|3.1B, process 3).



56 Chapter 3. Cell-matrix adhesion affects cell motility mode

The second process that disbonds adhesions is adhesion rupture through
retraction of the cell. We model this rupture only at the edge of the cell,
where contraction forces of the cell can break bonds. Integrin bonds are
known to show catch-slip bond behaviour, meaning that initially the bond
strengthens with increase of force, but will still break if enough force is
applied. Here we neglect this specific behaviour and associate a single
required energy cost of A, with the rupture of adhesions at the retracting
edge (Fig 3.1B, process 4).

All in all, our model extension for adhesions is quite simple and compu-
tationally light. All adhesion dynamics are governed by the four parameters
Ps, Pe, Pa and A,g,. An overview of all the relevant parameters is shown in

Table

3.2.2 Adhesions lead to crawling and pivoting motions

From the newly introduced parameters ps,p.,ps and A4, the two parame-
ters ps and A,y are most directly associated with properties of the ECM.
We can interpret ps, the probability with which new adhesions arise at sites
with high actin activity, as multiple biological processes. One process is the
rate at which integrin molecules bind to their ligands in the extracellular
matrix. Higher rates would translate into higher p;. Another process is the
availability of integrins to the cell front. Transportation towards the cell
front, integrin production and breakdown can thus all influence p;. For
Aqdn, there are two complementing interpretations. As A,y is defined as
the energy required to break an adhesion, it describes both the binding
affinity between integrins and their ligands, as well as the number of in-
tegrins bound in a single adhesion complex. Since we are interested in
how lymphocytes adapt their behaviour to the ECM, we first look at the
influence of these two ECM-associated parameters.

The proposed model displays various motility types. Cells crawl when
Agan is low to moderate (Fig [3.2A3.2IC, Supplementary Video S1). Cell
persistence decreases as A,y increases (Fig[3.2B3.2D, Supplementary Video
S1). When both A,y and ps are high, i.e.,, when adhesions easily form
and require much energy to break, cells will remain stuck in place on the
matrix. However, they can still make protrusions around them, resembling
a pivoting motion (Fig[3.2D, Supplementary Video S1).

Comparing these four parameter settings (Fig , the cell area that
is covered with adhesions is mainly regulated by the parameter p;. The
velocity of the cell is fluctuating a lot more than the cell adhesion area,
but is mostly affected by the parameter A,;;,. These observations are in
large agreement with the observations of Rey-Barroso et al. that B cells on
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TABLE 3.1: List of parameters involved in adhesion dynamics and values
used for simulations.
Values
Parameter | Description Figs. 2-4  Figs. 6,7 Fig. 8
AAct Weight of the Act-| 240 120,240 240
extension, the maximum
protrusive force induced
by actin polymerization
Max 4.t Maximum value of the | 120 120 120
Act-field, actin lifetime
- Act-value threshold | 0.75 0.75 0.75
above which adhesion
formation is possible
Ps Probability of new adhe- | 0.004- 0.001- 0.003,
sion formation 0.020 0.004 0.001
Pe Probability of neighbour- | 0.0055 0.0055 0.0015,
ing grid site to become ad- 0.004
hesion site if not already
SO.
Pd Scaling of probability of | 0.0064 0.008 0.0032
disbonding adhesion site
Aadh Energy required to rup-| 20-100 20-100 60
ture adhesion upon retrac-
tion of the cell
f Prefactor for the adhesion | - b-1 b-1
feedback onto Act model
b Base value of f in absence | - 0.5 0.5
of adhesions
s Adhesion area fraction | - 0.1 0.12
saturation threshold
above which f =1
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fibronectin with dynamic adhesion surfaces showed walking behaviour,
and cells with large and sustained adhesion surfaces displaced very little
as they were unable to relocate the adhesion area [143]. They are also in
agreement with the observation of Jacobelli et al. that T cells displaying a
gliding motion with higher adhesion area have lower speed compared to
cells with a walking motion with lower adhesion area [144].

3.2.3 Adhesions slow down cell motion and diminish dispersal

The examples shown in Fig|3.2land Supplementary Video S1 indicate that
higher adhesion area is correlated with lower speed and lower cell diffu-
sivity. To further look into this relationship, we averaged the cell velocity
and adhesion area of 1000 independent runs for different combinations
of ps and A 44, (Fig[3.3]A). Increasing the value of p, increases the average
adhesion area, while increasing the value of A 44, decreases cell velocity.
Moreover, ps and A 44, seem to have a synergistic effect. The drop in instan-
taneous cell speed (from highest to lowest in Fig[3.3]A about 50% smaller) is
modest compared to the drop in diffusion coefficient (Fig[3.3B, about 380%
smaller). The diffusion coefficient drops rapidly with increasing A 44y,.

Highly adhesive cells show subdiffusive behaviour

To investigate the drop of the diffusion coefficient, we analysed the mean
squared displacement and fitted the values with a persistent random walker
model [47,|158]:

V2

MSD(t) =41 (it — 147 M), 3.1)

T
with vy, the walker’s velocity and 7 its persistence time. However, this
description fails at the short time scale, at which the CPM is mainly driven
by the random fluctuation in grid points. Hence, we extended Eq.[3.1]with
translational diffusion [159]:

2
1%
MSD(t) = 474% (11t —14e ") + Dt (3.2)

Eq.|3.2|gives good fits, except for the higher Az, = 80,100. For lower A,
we obtained the persistence time from fitting Eq. (data not shown):
The larger drop in dispersal rate compared to instantaneous cell speed
can be explained by loss of persistence with higher adhesion energies and
adhesive areas.
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FIGURE 3.2: Simulations of the model showing different motility
types. On the left, a display of a single cell at 5000 MCS interval snap-
shots combined with the cell centre’s trajectory. Each trajectory starts in
the centre of the field and periodic boundaries are used. In the middle,
a close-up of the cell with the adhesions displayed in a darker colour.
On the right, a plot of the cell’s velocity and percentage of the cell’s area
containing adhesions corresponding to the track on the left. Vertical
dashed lines indicate the times of the snapshots on the left. Parameters
are: A) Aygy = 20, ps = 0.004, B) Ayg, = 100, ps = 0.004, C) Ay = 20,
ps = 0.02, D) A4, = 100, ps = 0.02. Furthermore, p; = 0.0008 for A, B, C
and D. These simulations are also available as Supplementary Video S1.
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mean of 1000 independent simulations. Different colours indicate dif-
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TABLE 3.2: Fitted values of « from Eq.|3.3|for different values of A, and
Ps

Parameters ‘ x
Aaan = 20,ps = 0.004 | 1.019
Aaan = 20,ps = 0.020 | 1.013
Aaan = 100, ps = 0.004 | 1.024
Aaan = 100, ps = 0.020 | 1.257

For the parameter regime where Eq.[3.2was a bad fit, we increased the
initialization period left out of the MSD computation, in order to compute
the MSD of cells closer to their dynamic equilibrium in both Act model
dynamics as well as adhesion-extension dynamics. This barely improves
the fit and suggests that cell motion in this regime cannot be correctly
described by a persistent random walker with translational diffusion.

In [160] a fractional Klein-Kramers process was suggested as a good
description of transformed Madin-Darby canine kidney cell motion. They
fitted their data with

MSD(t) = 43 P Ey3(—7at®) + (217)%, (3.3)

where E, 3 is the generalized Mittag-Leffler function and 7 is a noise term.
The case where & = 1 results in Eq. [3.T|except for the noise term. Since we
already determined that translational diffusion plays significant role in the
short-time scale of the CPM, we replaced the noise term with the term for
translational diffusion, obtaining:

MSD(t) = 43 t*Ey3(—vat®) + Drt. (3.4)

which reduces to Eq.|3.2/for « = 1. This parameter « describes the long-
term diffusive behaviour. For t — oo, Eq.[3.3} and by extension Eq.

43;{;“ [160]. So for « > 1, long-term
behaviour is subdiffusive, whereas for « < 1, long-term behaviour is
superdiffusive.

In most cases where Eq. fits well, we obtain « ~ 1 (Table [3.2).
However, for the cases were Eq. [3.2fits badly, Eq. 3.4/ has a better fit and
« > 1 (Fig. Table[3.2). This corresponds to the cells stuck to the matrix
and pivoting around their adhesion patch, as they are moving persistently
on a local scale (a single protrusion front), but moving subdiffusively on a
longer timescale.

can be approximated by MSD(t) ~
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3.2.4 Modelling feedback of adhesions onto propulsion efficiency

This current model cannot explain the observation that B cells with a low
adhesive area or no adhesive area on a fibronectin substrate show low
displacement compared to cells with dynamic attachment [143]]. Adhesions
allow actin polymerization to lead to more efficient protrusions [161, (162,
163, as the force generated by the actin polymerization is transferred onto
the matrix via the adhesion complex, instead of leading to treadmilling.
When more of the actin network is connected to integrin complexes, a
greater force resulting from actin polymerization can be transferred to the
matrix. We mimic such behaviour using positive feedback between the
adhesions and actin polymerization. We model this by defining a prefactor
f which dynamically alters the weight of the Act-extension, and hence the
propulsion force. For simplicity, we assume that protrusion efficiency will
increase linearly with the cell’s total adhesion area and will reach a point of
saturation. Hence, we define:

1-b Aun(@) ¢ Agan(i)
{ZH— S T6) if 16 <s

1 if “dé’()l) >s’

f=

with b the baseline protrusion efficiency and s the saturation adhesion area.
A schematic overview is shown in Fig We expect that the feedback
between adhesion area and propulsion strength only affects cell motility
when the adhesion area is below or near the saturation point s.

New behaviours ranging from slow cells to stick-slip

Here, we will look at parameter combinations which result in adhesion
areas below or around the saturation threshold s. We choose s = 0.1 and
b = 0.5, and from the previous simulations we know that p; is the main
parameter controlling adhesion area, so we chose ps < 0.004.

We observed different types of behaviour depending on ps (Fig 3.6} Sup-
plementary Video S2). For very low values of p, (Fig[3.6/A), cells have only
a small number of tiny adhesion patches and thus very small adhesive area.
Furthermore, they disperse little (Fig ). Despite their low dispersion,
their motion can still be described well with Eq.[3.2] or with Eq.[3.4 with
« = 0.974, so the type of motion can still be classified as a persistent ran-
dom walk, albeit with lower persistence time. When ps; = 0.004, the mean
adhesive area is approaching the saturation point. However, the diffusion
and persistence are lower compared to the model without the adhesion-
protrusion feedback, but velocity is comparable (Fig[3.6B). In between these
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A B C

FIGURE 3.5: Schematic representation of the adhesion propulsion

feedback. Colour schemes are similar to Fig B.1A. Arrow width cor-

responds to the effective protrusion strength fA .. A) In the absence

of adhesions, the propulsion prefactor f is equal to the base level b. B)

Below the saturation point s, f increases linearly with adhesion area. C)

Above the adhesion area saturation point s, prefactor f, and thus effective
protrusion strength fA 4.4, are maximal.

two adhesive regimes, there is the possibility of stick-slip behaviour (Fig
B.6[C), with clear bursts of adhesive area coupled with increased speed.

There is a clear difference between the model with and without feedback
of adhesion area onto propulsion strength. For low adhesive areas, we
expect the two models to converge to the Act model with an effective
propulsion strength equal to the set A 4. for the version without feedback,
and an effective propulsion strength of bA 4 for the version with feedback.
Looking at average velocity and the diffusion constant, this expectation
is met (Fig[3.7). Similar to the results in Fig. the effect of adhesion
energy A,qy is larger on the diffusion of cells than on their velocity for the
model both with and without feedback between adhesion and propulsion.
Remarkably, there is a slight difference in mean adhesion area between
the models. This small effect is likely due to closing the feedback loop
between adhesions and propulsion, as de novo adhesion formation depends
on Act-front presence, which becomes less pronounced when adhesion
area is low in the model with feedback.

Our model with feedback shows that cells with low adhesive area have
low displacement compared to cells with higher adhesive areas. Overall,
by adjusting the parameters p; and A,;;,, the model is able to reproduce
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the three behaviours of B cells observed on fibronectin: low attachment
with low displacement, dynamic adhesion area with high displacement
and sustained attachment with low displacement [143]].

3.2.5 Adhesion growth dynamics change persistence time

So far, we have only looked at the effects of new adhesion formation p;
and adhesion strength A, on adhesive area and cell motility. However,
the adhesive area is also in part determined by the two parameters p, for
adhesion growth and p, for disbonding adhesions. To gain further insight
in the impact of adhesion dynamics on cell motility, we also explored
parameter settings resulting in the same adhesion area but with different
adhesion cluster size distributions, by varying the formation rates for new
adhesions (ps) and adhesion growth (p.). Fig. |3.8[shows the results of two
such parameter settings resulting in the same average adhesion area. One
parameter set obtains its adhesive area mostly through the formation of new
adhesions (ps > p., Fig. B.§A: blue), whereas the other more rapidly grows
out adhesion clusters (ps < p., Fig. 3.8A: orange, see also Supplementary
Video S3). This results in different cluster size distribution (Fig. ), with
only small clusters when p; > p, (blue line), and small clusters combined
with a few large ones when ps < p, (orange line). Aside from the different
adhesion cluster size distribution, cell motility also differs between the two
situations.

First, the velocity distribution has a slightly higher mean for the many-
small-cluster (blue) setting, but also appears more bimodal than the few-
large-cluster (orange) setting (Fig. . Analysing the MSD shows more
differences: the few-large-cluster (orange) setting shows an earlier start
of the final linear regime. The onset of this regime corresponds to the
persistence time, which we obtained by fitting the MSD with Eq.[3.2|as well
as Eq. The fitted persistence times confirm this observation: the few-
large-cluster (orange) setting has about 25% lower persistence time than
the many-small-cluster (blue) setting. So not only the total adhesion area
influences cell motility, but also how that area is distributed over adhesion
clusters and where those clusters are located. This further shows that the
dynamics of cell-matrix adhesion influence cell motion and can be a key
component of cell motion plasticity.

The distribution of the adhesion clusters over the cell is reminiscent of
the difference between walking and gliding T cells [144]. The sliding T cells
had a large contact area at the cell front, quite similar to the blue setting in
Fig. which derives its adhesion area mainly from the Act-dependent
formation of new adhesions. The walking T cells, in constrast, showed
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FIGURE 3.6: Simulations of the model with adhesion-propulsion feed-
back. On the left, a display of a single cell at 5000 MCS intervals com-
bined with trajectory of the cell centre. Each trajectory starts in the middle
and periodic boundaries are used. In the middle, a close-up of the cell
with the adhesion displayed in a darker colour. On the right, a plot of
the cell’s velocity and percentage of the cell’s area containing adhesions
corresponding to the track on the left. Parameters are: A) Az, = 100,
ps = 0.001, B) A,z = 100, ps = 0.004, C) A,y = 100, ps = 0.0025. Fur-
thermore p; = 0.001 for A, B and C. These simulations are also available
as Supplementary Video S2.
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contact area also at the rear of the cell, and had multiple distinct contact
areas. The orange setting from Fig. where adhesion area mainly grows
by adhesion expansion rather than new adhesions, resembles this adhesion
distribution over the cell. However, the mean speed found in [144] is higher
for walking cells and lower for gliding cells, opposite to the two parameter
settings shown here. Nonetheless, our model suggests that the different
processes by which adhesions form, such as de novo at the cell front or by
extending existing adhesion patches, can underlie the differences between
walking and gliding cells.

3.3 Discussion

Here, we have presented an extension of the CPM-Act model with dynamic
cell-matrix interactions. In this model, cell-matrix adhesions can develop
de novo in an Act-dependent manner, and adhesion patches can shrink and
grow. Furthermore, adhesions can break for a set energy cost. We first
studied the effect of two parameters, namely the energy cost of breaking
adhesions A4, also interpretable as the strength of an adhesion bond, and
the probability with which new adhesions form at the polarized front of the
cell. Cells with low adhesion area perform a high speed, highly persistent
random walk. The simulated cells slow down for increasing bond strength,
but also for increasing de novo adhesion formation. For very high bond
strengths, the cells can even get stuck. Stuck cells show a different type
of motility which is persistent on a short time scale, but subdiffusive on
long-time scales. By adding feedback between cell-matrix adhesion area
and propulsion strength, a richer behavioural repertoire can be reproduced
for low adhesive areas. With this feedback, simulated cells with very
low adhesive areas have low dispersion, as their propulsion strength is
weakened. Cells with slightly higher adhesive areas can show temporary
spurts of increase in adhesion area combined with increase in velocity.
Finally, we studied the effect of the processes that form the adhesion area
and found that adhesion cluster size distribution can affect cell motility.
Cells with many small adhesion clusters at the cell front perform a more
persistent motion than cells that have fewer but larger adhesion clusters
located at the centre and the back of the cell, even while total adhesion area
is equal.

For long-term behaviour in our model, we mostly observed diffusive
behaviour or, for more extreme A 4.; and ps values, subdiffusive behaviour.
The B cells observed by Rey-Barroso et al. performed long-term diffusive
behaviour. Superdiffusive behaviour has also been observed in mammalian
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FIGURE 3.8: Adhesion growth dynamics influence adhesion cluster
size, cell speed and MSD (A) Example of different adhesion cluster size
for different parameter values of ps and p.. Blue: ps = 0.003, p. = 0.0015
resulting in a multitude of single grid point sized adhesions. Orange:
ps = 0.001, p, = 0.004, resulting in a small number of larger clusters.
Colours in B,C,D correspond to these parameter settings. (B) Distribution
of cluster sizes for 1000 independent simulations for each parameter
setting on a logarithmic scale. Distribution of blue does not exceed cluster
size 20 (C) Distribution of instantaneous velocity of 1000 independent
simulations for each parameter setting. Mean speed for orange is lower
compared to blue (D) Log-log plot of MSD. The onset of the second
linear regime (log-log slope approximately equal to 1) is marked with
an arrowhead in corresponding colours. This regime starts at smaller
dt for the orange curve compared to the blue curve, which corresponds
to a lowered persistence time compared to blue. Simulations are also
available as Supplementary Video S3.
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cells. The murine T cells in [56] showed superdiffusive behaviour, but have
only been tracked for a relatively short time (~10 min), so their diffusive
behaviour on longer time scales is unknown. The Madin-Darby canine
kidney cell in [160] have been tracked for a much longer time (~1000 min)
and perform superdiffusive walks at both short and large time scales, and
their velocities show long range correlations in time. What causes these
long-time correlations is unclear. As we have not seen our model display
long-term superdiffusive behaviour, and because there is no long-term
memory in our current model, we think that some molecular memory
could play a role in cell superdiffusivity.

Intercellular variability

When comparing the resulting behaviours of this model with the motility
patterns described in [143] and [144], we were able to capture the floating,
stepping, and pivoting behaviour observed in B cells on fibronectin, by
just altering adhesion bond energy cost and de novo adhesion formation,
as well as the walking and gliding behaviour observed in T cells on ICAM
and casein, by adjusting de novo adhesion formation and adhesion patch
growth. Noteable is that these different types of motility were all observed
within the same populations of cells.

Variability among individual isogenic cells has also been described in
chemotaxis of Dictyostelium discoideum cells [164] and keratocyte shape and
motility [39]. Moreover, a single random walk model could not describe
the motion of a CD8+ T cell population, but division of the population into
Brownian walkers and persistent walkers could describe the motion of the
population [165]].

Our model can aid in pinpointing what underlies the intercellular di-
versity. It shows that a small degree of variability in adhesion formation
rate, adhesion detachment rate, adhesion distribution, or in the coupling
from adhesions to cytoskeleton can lead to distinct migration properties
and even modalities. It is therefore tempting to speculate that lymphocyte
populations observed in situ or in cultures harbour a certain degree of het-
erogeneity in some of these pivotal parameters. Already, different subsets
of differentiated CD4+ T cells (Th1/Th2/Th17 subsets) have been described
to harbour distinct motility properties both in vitro and in vivo [166,[167].
These differences appear to be explained by distinct molecular equipment
in terms of adhesion and cytoskeleton dynamics. Interestingly, these dif-
ferences have been proposed to support distinct search strategies aligning
with the fact that these cell subsets target different types of pathogens. Ac-
tually, our study provides a mechanistic framework to ask such questions
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and address them experimentally (e.g., by measuring integrin expression
levels among individual cells by flow cytometry, monitoring size and dis-
tribution of adhesions with super-resolution microscopy approaches). For
instance, to fully understand the mechanisms underlying the differences
between B cell motion on fibronectin versus collagen, more knowledge on
this intercellular diversity in integrin dynamics would be beneficial. This
knowledge can then be used in further simulations to choose parameters
for individual cells from a suitable range and reproduce the fast Brow-
nian motion on fibronectin with more adhesive area as well as the slow
persistent motion on collagen IV with lower adhesive area.

How to disentangle velocity and persistence in the model

Although our model provides a plausible explanation for the impact of cell
adhesion on subdiffusive cell motility, it does not reproduce the observation
that B cells move faster and in a Brownian fashion on fibronectin, but slowly
and persistently on collagen IV. This could be due to the fact that in our
model, persistence and motility (dispersion) are highly correlated: fast cells
also show high persistence, so it is unlikely that simulations will result in
slow but persistent motion. An experimental study showed a universal
coupling between cell speed and cell persistence (UCSP) to be mediated
by actin flow [168], as actin flow stabilizes cell polarity. In our model, the
actin flow is modelled phenomenologically by the Act model [73], which
displays this UCSP as well [147].

Currently, the Act-extension, and specifically A 4. is the only model
component that is influenced by the adhesion dynamics. If adhesions
stabilize actin fibres, it is also reasonable to make Max 4 or the speed of
Act degradation dependent on the presence of adhesions. Otherwise, other
aspects of cell locomotion, already captured in our model or not, could
be influenced by cell-matrix interactions and lead to slow but persistence
motion on collagen IV.

Where the Act-extension mainly models the front of the cell, many
locomotion-related processes also involve the rear of the cell. Myosin-II
contraction pulls the back of the cell towards the front and can increase
cell velocity [144]. Preliminary studies with our model show that cell
velocity can be changed by altering the weight of the perimeter constraint,
or by changing the contact energy between cell and matrix. Both of these
components model myosin-II contractility indirectly. Part of this cortical
tension is transferred onto the matrix through adhesions [169, 170]. An
interesting question is whether the cortical tension is also influenced by
the presence of adhesions. Furthermore, myosin-II is suggested to be a
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polarization cue and to be transferred to the back of the cell by retrograde
actin flow and could possible also alter persistence of cell polarization [168].
An interesting direction for future research would be to study how the
retrograde flow is influenced by cell-matrix adhesions and how this may
affect the UCSP.

Matrix rigidity and mechanistic feedback between integrins and
matrix

We have modelled cell-matrix adhesions as a simple on/off-switch, with
a set amount of energy required to break the adhesion. In reality, the
adhesion process is much more complex, involving mechanistic feedback
between integrins and the matrix. Hence, both matrix rigidity and the cell’s
ability to generate force influence cell shape and cell motion. When it comes
to modelling this feedback, different approaches have been used already.
In Copos et al. [145], adhesions were modelled as mechanosensitive bonds.
In Ziebert et al. [65], adhesions ruptured when they exceeded a maximum
length. In Shao et al. [66] the probability of adhesion rupture increased
with force. In Lober et al. [67], the matrix deformation was also taken into
account, leading to non-trivial motion such as bipedal motion.

Modelling matrix deformation or displacement of adhesion sites within
the CPM is challenging, but a lot of progress has been made recently.
Methods to estimate forces within the CPM cell have been developed,
either based on cell shape or on the Hamiltonian [[171, 62]. The CPM has
also been combined with a finite element method to model matrix traction
forces with feedback between the CPM and FEM [171}, [172]]. Moreover, cell-
matrix adhesions were recently introduced into this framework [173] as
focal adhesions with force dependent growth, and smaller focal adhesions
being easier to dislodge from the ECM. In the observed B cells, however,
adhesions are not structured into focal adhesions. Nonetheless, these novel
methods can be used to improve the realism of our model, both on the side
of cell-matrix bonds, as well as the side of matrix deformation and matrix
stiffness.

Adhesion patch detachment

In our current model, adhesion patch detachment occurs through a stochas-
tic process of loss of sites combined with the energy requiring retraction.
This part of the model can be refined in several ways. First, it is known that
myosin-IIA, besides rear-end retraction, is also involved in the detachment
of adhesion patches in T cells [144) (174]. Myosin-II increases the forces
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exerted on the adhesions. Combining mechanistic feedback between ad-
hesions and the matrix, as proposed in the previous paragraph, with an
explicit model of myosin-II near adhesion patches could result in more
realistic patch dynamics. Second, detachment at the rear of the cell is also
regulated by other molecular processes. Talin and moesin, both scaffolding
proteins between integrin and the cytoskeleton, can compete with each
other, but have different properties. While talin connects the cytoskeleton
to integrins, moesin inactivates integrin, thereby decoupling the adhesion
from the cytoskeleton [175]. This process mainly occurs at the rear of the
cell. Integrating the activities of talin and moesin into our model can refine
the de-adhesion process at the cell rear currently modelled by an energy
threshold.

Conclusion

In conclusion, we have introduced a CPM model combining the Act model
[73] with dynamic cell-matrix adhesions. We have shown that our model
is capable of extending the repertoire of motility types within the CPM,
both from a detailed cellular level, as well as on a statistical level (Figure
B.9). Besides the persistent random walk that emerges from the Act model,
our model is also able to reproduce a short-term persistent but long-term
subdiffusive random walk. While adhesion dynamics are simplified, our
model can show the different types of motion observed in individual B cells
on a fibronectin substrate, such as reduced motility for non-attached cells,
a walking motion, and pivoting due to sustained attachment, as well as the
walking and gliding motion of T cells on ICAM or casein substrate. Here
we uniquely link short-term molecular scale to the long-term cell behaviour
scale to learn about those molecular parameters that explain the plasticity
of immune cell motility upon interaction with varying substrates. In partic-
ular, our study highlights that the interplay between adhesion formation,
adhesion expansion and adhesion strength determine the turn-over of the
adhesion area which regulates cell speed and persistence. Furthermore, the
model provides a mechanistic framework for generating experimentally
testable hypotheses.

3.4 Methods

In this work, we model the different cell motilities of cells adhering on flat
matrix surfaces. The basis of our model is the Cellular Potts model.



74 Chapter 3. Cell-matrix adhesion affects cell motility mode

Propulsion requires
A no adhesion

adhesion Ps

Persistence

AadnT

Dsd ' »peT

Propulsion requires L
|
|
|
|
|
|
|
|
|
|
|
|
|
|

V pivoting,
“~low speed ! subdiffusive ﬁ
-«

U
Adhesion level for propulsion saturation

Total adhesion area

FIGURE 3.9: Overview of the motility modes possible in the model

and which parameters govern the transitions between them. For each

motility mode, a representative cell and its trajectory are plotted in a
persistence versus total adhesion area plane.



3.4. Methods 75

3.4.1 Cellular Potts model

The Cellular Potts model (CPM) is a grid-based model. Grid points are
assigned an identity ¢, indicating to which cell they belong. All grid points
with the same ¢ together form a single cell. The model evolves through
time by doing copy attempts: two neighbouring grid points are selected
and the ¢ of one grid point is trying to be copied into the other grid point.
Whether this copy attempt actually occurs is decided by the Hamiltonian
H, which describes the energy of the system. Different Hamiltonians have
been proposed for different CPM models. We use the following:

H= Z ]T(O’u),T([fv) (1—- o) T A Z(‘lv - AU)Z +Ap Z(PU - Pa)z
u,v€Neighb. [ o

The first term describes the contact energies between cell and medium
or between two cells. The second term describes an area constraint, with
Ay being the target area of cell ¢ and the third term describes in similar
ways a perimeter constraint with P, the target perimeter of cell .

A copy attempt is accepted depending on the change in Hamiltonian
AH it causes:

1 if AH <0
P(AHxy) = { e~ OH/T) §f AH >0

Here, T plays the role of an effective temperature and controls the amount
of variability we allow to happen. Higher T will allow more thermodynam-
ically unfavourable copy attempts to succeed.

A measure of time in the CPM is the Monte Carlo Step (MCS). Within
one MCS, the expectation is that each grid point has been updated once.
We use a rejection-free algorithm that only considers attempts between
neighbours of different ¢ to speed up simulations [69} 176].

3.4.2 Cell motility

Cells move by making protrusions through actin polymerization and form
cell extrusions like filopodia, pseudopodia and lamellipodia. Actin poly-
merization in the CPM has previously been modelled in a phenomeno-
logical way by Niculescu et al. [73]. We also use this extension to model
the actin polymerization. This extension adds an extra layer to the CPM,
described as the Act-layer. The values of this layer vary between 0 and a
maximum value Max ;. Grid points that are newly added to a cell obtain
Act-value Max .+ and each MCS the values of the Act layer are lowered
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by 1 until 0. The Act-extension is added to the CPM as an extra term for
the change in Hamiltonian AH, namely as AH 4. For AH s, the local
geometric mean of Act-values of both the expanding and retracting grid
points are calculated and compared. Then, AH 4. favours the grid point
with the highest mean in the following way:

1/|V (1)) 1/1V(0)]
AH pct(u — v) = At ( I Act(y)) ( [ Act(y )

Max e yeV(u) yeV(v)

with V(x) describing the neighbourhood of grid point x in the same
cell. Here A 4. is the weight given to this model component.

Adhesion to the matrix makes actin polymerization more efficient in
protruding the cell membrane [161} |162, 163|], by transmitting the force
to the matrix. We add feedback between the cell adhesions and the actin
polymerization, by strengthening the force produced by polymerization
upon increase in adhesion area. This is done by multiplying A 4.+ with
factor f defined as follows:

{b+ A i ) <

adh(l)
1 if A >s,
Here A(i) denotes the area of cell i, and A,4,(i) denotes the adhesive area
of the cell i, b the value of f when there are no adhesions, and s the value

at which f saturates.

3.4.3 Adhesions to the substrate

The adhesions of a cell to the extracellular matrix are modelled as a third
layer in the CPM. A grid point x in this layer can have either Adh(x) =0,
no adhesion, or Adh(x) = 1, when it denotes an adhesion patch of the
cell. Adhesion dynamics are governed by four processes: spontaneous
formation of new adhesions, adhesion patch expansion, adhesion patch
retraction, and rupture of adhesion through retraction of a cell. We describe
each of these processes below.

New adhesion sites

New adhesions form when the cell membrane comes in close enough
contact with the extracellular matrix such that integrins can bind to the
matrix. This process is dependent on actin polymerization, membrane
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protrusion and polarized distribution of integrins [151} 152} 153]. We model
de novo adhesion formation through a stochastic process. Each MCS a grid
site within a cell can turn from non-adhesion to an adhesion site. This can
only happen when the local geometric mean of the Act layer exceeds the
value 0.75Max 4., i.e. when:

1

[NB(x)]
[T Acty) > 0.75Max

YENB(x)

Then, the probability for a cell to form a new adhesion at that grid site is
given by the probability parameter p;.

Adhesion patch expansion

Once adhesion patches are formed, they can increase in size. Multiple
processes underlie this expansion. First, once the cell membrane is attached
to the matrix, it fluctuates less, allowing for easier attachment of new
integrins [154]. Secondly, the curvature of the cell membrane influences the
intermolecular forces, favouring aggregation of integrins [155, [156].

We do not model integrin recruitment and membrane curvature, but
choose to model adhesion patch growth phenomenologically. Jacobelli et
al. [144] observed that adhesion patches grow radially, with some bias in
the direction of the cell front. Hence, we model adhesion patch expansion
as an Eden-like growth model [157], known to give roughly circular shapes.
While updating the adhesion layer, once a grid point containing an adhe-
sion is selected to be updated, we also select a random neighbour. If that
neighbouring grid point contains no adhesion, it can form an adhesion
with probability p..

Adhesion patch retraction

Aside from patch expansion, patch retraction can also occur. Patches will
partially dissolve spontaneously, as they are out-of-equilibrium systems
[177]. Also, Myosin-II contraction is involved in patch retraction [144],
which occurs concentrically. Following these observations, an adhesion site
x in this model can spontaneously decay with a probability depending on
the adhesion status of its neighbours.

|{nb € NB(x)|Adh(nb) = o};)z

P(x will de-adhere) = p; - ( [{nb € NB(x)}|
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with NB(x) the neighbourhood of x. Thus, the higher the number of
non-adherent neighbours, the higher the probability that the site loses its
adhesion.

Adhesion rupture through retraction

Adhesions can also disbond by force. It is know that integrin shows catch-
slip bond behaviour [178||[179]. Since we do not directly model forces in the
CPM, and since we do not model matrix stresses, we simplify the rupture of
an adhesion to a constant amount of energy required to break an adhesion
upon cell retraction. This energy is added to the change in Hamiltonian the
following way:

AHaan(u — 0) = AganAdh(0)
Here o(u) # o(v) and the cell 0(v) is retracting.

3.4.4 Order of layer updates

This model has three layers: one for the grid site identities ¢, one for the
Act-values and one for the adhesions. These three layers are updated
in the order ¢ - adhesions - Act-values. The o-layer is updated through
the rejection free Metropolis algorithm. During the c-update, Act-values
and adhesion updates regarding the relocation of the cell are executed
immediately: e.g., for copy attempts that let a cell retract from a grid point,
we do directly update the Act-values and adhesions of that site. After the
c-update, we update the adhesion layer asynchronously: we iterate, in
random order, over the grid points within the cell and execute the processes
described in the Adhesions subsection. Lastly, we update the Act-layer:
every Act-value is diminished by 1 until 0. These three updates together
constitute one MCS and this cycle is repeated for a set number of MCS.

3.4.5 Simulation parameters

During our different simulations, many parameter values were kept con-
stant (Table[3.3). All simulations were done on a 300 x 300 pixel grid with
periodic boundaries with a single cell. Parameter values that were not
constant are shown in Table[3.1] For the simulations in Fig and
pa = 0.0064, and p; and A4, varied according to the figure legends. For
simulations shown in Fig [3.6] and ps = 0.008 and again A,y varied
according to the figure legends. The Act-only simulations in Fig[3.3]and
Fig[3.7lwere run with all adhesion dynamics parameters equal to zero: i.e.,
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TABLE 3.3: List of parameter values kept constant during all simulations.
Values are arbitrary units, unless specified otherwise.
Parameter Description Value
T temperature 30
A target area 1000 px?
Aa weight area constraint 50
P target perimeter 350 px
Ap weight perimeter constraint 4
Apct weight of Act model 240
Max 4. Act lifetime 120 MCS
Jmedium medium | @adhesion energy between medium 0
Jeell medium adhesion energy between cell and medium | 35
Total MCS simulation duration 25000 MCS

Aadhs Ps, Pe, and py were all zero. For all simulations, A 4. = 240, except for
the specific Act-only simulations in Fig 3.7/ with A 5 = 120. For the simula-
tions in Fig pe and ps were varied, see figure legend. The parameters
not mentioned in the figure legend are p; = 0.0004, A5, = 60, b = 0.5,
s = 0.12.
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S3 Video Similar adhesive area sizes lead to different motility when
adhesion growth is dominated by the actin-dependent formation of new
adhesions versus the growth of existing patches.
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Chapter 4

Topotaxis on silicon and in silico:
Obstacle-induced contact-inihibition of
locomotion explains topotactic cell
navigation in dense microenvironments

Leonie van Steijn, Joeri A.J. Wondergem, Koen Schakenraad,
Doris Heinrich, Roeland M.H. Merks

Abstract

During biological development, cancer metastasis and in the immune
system, cells navigate through dense environments filled with obstacles
such as other cells and the extracellular matrix. Recently, the term “topotaxis’
has been introduced for the navigation of cells along topographic cues
such as density gradients of obstacles. Experimental and mathematical
efforts have analysed topotaxis by looking at the migration of single cells
in pillared grids, in which topographic gradients can be defined precisely
as a pillar density gradient. We have previously introduced a model based
on active Brownian particles (ABP) which has shown that ABPs perform
topotaxis, i.e., drift, on average, to lower pillar densities, due to the decrease
in effective persistence time when pillars are closer together. Whereas
topotactic drifts of up to 5% of the instantaneous cell speed have been
observed experimentally, the ABP model could only predict topotactic
drifts of up to 1%. We hypothesized that the discrepancy between the ABP
and the experimental observations is in 1) the deformable cell volume, and
2) the cell-pillar interactions. Here we introduce a more detailed model
of topotaxis, based on the Cellular Potts model. To model persistent cells
we use two methods: the Act model by Niculescu et al., and a method
similar to the ABP model. After fitting our model parameters to yield
the same motion as experimentally found for D. discoideum on an empty
field, we study how topotaxis is performed. For starved D. discoideum, our
model predictions are close to the experimental results, especially when we
correct for the fact that our simulated cells have a higher speed. However,
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topotactic efficiency is different between the two persistence methods, with
the Act model outperforming the ABP persistent model. We found that the
Act model shows a larger reduction in effective persistence time in pillar
grids than the vector model. Lastly, we also modeled the slow and less
persistent vegetative D. discoideum cells, for which our model predicted a
small topotaxis drift. Here, both model variants predicted similar topotaxis,
contrasting with the starved cell results.

Popular summary

Cell motility is an important function in development and immunity. Know-
ing how the environment influence cell motility is useful in developing
methods to interfere during disease or in tissue engineering. One of the
ways the environment affects cell motility is by the presence of obstacles.
Previous work has shown that single cells move from a high density of
obstacles to a lower density of obstacles, a process called topotaxis. A
previous mathematical model, modelling cells as particles showed that the
velocity at which cells move from high to low obstacle density, the topotac-
tic drift, can in part be explained by reduced persistence: i.e. the closer the
obstacles are together, the quicker the particle looses its direction, resulting
in a bias towards less obstacle dense areas. However, the experimentally
found topotactic drift was higher.

In this work, we look at cell motility in obstacle gradients with a more
realistic cell model with deformable cells and compare those to an experi-
mental setup. We used two different methods to model the persistence of
cells: one which models the cytoskeleton and with active reorientation after
collisions, the other similar to the previous mathematical model and with
passive reorientation after collisions. We fitted our model to experimental
cell motion. Both models as well as the experiments show more topotactic
drift in steeper obstacle gradients. The model with active reorientation
shows a better match in topotaxis efficiency and outperforms the model
with passive reorientation. This is due to a larger loss of persistence when
collisions feed back to cell motility.

Next steps would be to investigate more complex environments. In-
teresting directions would be the integration of multiple environmental
cues, such as chemotaxis, in the model, and exploration of how obstacle
shape influences topotaxis, so that we get a better understanding of cell
navigation in the body.
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4.1 Introduction

Motile cells within the body encounter many obstacles such as other cells
and extracellular matrix, as they move through a tissue. How cells react
to the density of obstacles is of importance for many processes, such as
cancer cells invading from a dense tumor into looser packed tissues [180,
181], immune cells moving through tissues with different porosity [182,
183] or pathogens such as Plasmodium that migrate through different tissue
throughout their life cycle [184, [185]]. It has been shown that cell can use
the topography of the environment as a way to orient themselves [186, (187,
188]. So far, topotaxis has only been shown in in vitro environments, but it
will also likely play a role in in vivo systems.

To study topotaxis quantitatively, a collection of in vitro models have
been developed to provide well-defined topographic cues to migrating cells.
In [[186], cells are allowed to move on a subcellular-patterned array coated
with fibronectin. Cells follow the gradient in nanopattern, from dense
to sparser patterning. In [187], cells were put on polyurethane acrylate
nanohairs. These hairs were either vertical, or bent in a specific direction.
Cells on top of these hairs moved with a bias towards the bent direction, but
without bias on straight hairs. Also larger scale cues are known: in [[188],
cells were placed on micropatterned substrates. The patterns were either
disconnected cell-sized triangles in a line, connected cell-sized triangles in
a line and a belt. They showed that cells in disconnected triangles hardly
moved from one spot to another, whereas cells in the other two patterns
did. Cells in the belt moved without preferential direction over the belt, but
the cells on the connected triangles moved with a bias in the direction of the
triangles. The rearrangement of actin and formation of the lamellipodium
were key players in this bias or ratcheting. An extensive review of other
cues in ‘ratchettaxis’ has been done in [189].

Wondergem et al. showed another setup in which topotaxis arises from
a cell-size cue [74]. They let starved Dictyostelium discoideum cells move
on a grid with micropillars placed with increasing pillar spacing in one
direction. As in previous work with isotropic pillar lattices [190][191], the
size of these micropillars were in the order of Dictyostelium cell size, in
contrast to [186] and many of the structures described in [189]. They found
that, on average, cells move to the side with larger pillar distance, with a
velocity of about 5% of their instantaneous speed.

Because Dictyostelium cells are persistent walkers [192], we hypothe-
sized that pillars alter this persistent motion. Once a cell bumps into a pillar,
it cannot continue and will have to change its direction, and hence change
its persistence. This first hypothesis on this form of topotaxis was tested
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by Schakenraad et al. [75]. They tested whether this topotaxis could be
explained by altered persistence lengths, similar to durotaxis on a stiffness
gradient [193] where cells on softer substrates change direction more often
than on stiffer substrates, or bacterial chemotaxis [194] where cells per-
form more tumbles in lower concentration of the chemoattractant. Using a
model with Active Brownian Particles, which also perform persistent mo-
tion, Schakenraad et al. showed that indeed topotaxis can be derived from
altered persistence lengths due to pillar spacing. However, the ABP model
could explain only a topotaxis of 1% of the intrinsic cell speed, significantly
lower than the 5% found in Dictyostelium experiments. Here we propose a
refined model for topotaxis giving a better match with the experiments.

This previous work shows that topotaxis in gradient pillar density can
partially be explained by changed effective persistence lengths. However,
what are the remaining factors that can explain the gap in topotactic drift
between ABPs and Dictyostelium cells? Some candidates are easy to point
out: ABPs are point-particles, whereas cells have a deformable and non-
zero volume. We can therefore expect cells to have a minimum pillar
distance through which they can move, as well as larger than zero area
of interaction between the cells and pillars. This cell-pillar interaction
points to another candidate: how cells reorient after collision. Where
ABPs only change their target direction by thermal fluctuation, cells can
actively reorient themselves. A well studied example of cell reorientation
is Contact Inhibition of Locomotion (CIL), where cells reorient themselves
after collision with another cell.

In this work, we model a persistently moving, deformable cell with
volume using the Cellular Potts model and test two different schemes
for cell persistence. The first scheme used the Act model which models
internal cell skeleton rearrangements [73]. This allows for emergent, active
reorientation as the cell cannot extend further into a pillar and will polarize
elsewhere, similar to CIL. As a control, the second scheme resembles the
ABP model and shows no CIL, as we explicitly assign a direction to a cell
together with a persistence time, which results in passive reorientation
upon collision. Before we look into topotaxis, we search for parameter
settings that match experimental Dictyostelium cells on an empty field so we
can quantitatively compare our model results with the experimental results
of persistently moving starved and less persistently moving vegetative
Dictyostelium cells.

For the starved parameter settings, the two different persistence schemes
results in different topotaxis, with the active reorientation model having
more efficient topotaxis. Our models slightly overpredict topotaxis com-
pared to the experimental results, but the main difference is cell speed,
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which is much higher in the simulations than in the experiments. On a
relative level, the model topotaxis and experimental topotaxis match very
closely, with the active reorientation model being a closer match. Trying
to explain the difference in speed, we test the effect of interaction between
pillar and cell, by changing the adhesion energy between them. However,
when simulated cell speed approximates experimental cell speeds, the
cells are largely sticking to the pillars, which we do not observe in the
experiments. Finally, we also predict a minute effect of the pillar grid on
vegetative Dictyostelium, that is only visible for very steep pillar gradients,
and is independent of persistence scheme.

4.2 Results

We characterized topotaxis for in vitro starved D. discoideum cells, and de-
veloped a Cellular Potts model with persistent cell motion with active or
passive reorientation upon collisions. Before we compared topotaxis mea-
sured in experiments and topotaxis measured in simulations, we made sure
to match the motility of simulated cells to in vitro starved cells. Futhermore,
we also matched the motility of simulated cells to in vitro vegetative D.
discoideum cells. After that, we characterized topotaxis in our starved as
well as vegetative simulations.

4.2.1 Model

We used the Cellular Potts model to simulate Dictyostelium discoideum cells.
The Cellular Potts model is a 2D lattice based model in which a cell is
represented by a number of lattice sites. The lattice is updated per site,
allowing for deformable cells, and a set number of lattice updates is called
a Monte Carlo Step (MCS), the time unit we use in this model. We can set a
goal cell area and cell perimeter, so we can control cell size and shape to a
desired extent.

In order to obtain persistent cell motion, we used two extensions of
the CPM. The first, the Act-model, is based on an actin-inspired feedback
mechanism that results in cell polarization [73]. It is controlled by two
parameters: Aaqt, which determines the weight of the Act-model and can
also be interpreted as the maximum protrusive force of the actin network,
and maxa.t, the maximum activity value, also interpretable as the lifetime
of an actin subunit within the actin network. By altering these two parame-
ters, a large variety of persistent random walkers can be achieved in this
model. Furthermore, due to the feedback mechanism, the cell can loose
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its polarization upon collision and repolarize in a different direction, i.e. it
has contact inhibition of locomotion. We indicate this model as the active
reorientation model.

The second extension is based on the previous ABP model and has a
directional vector at its center. The cell is more likely to move in a certain di-
rection if that movement aligns with the directional vector. The directional
vector changes over time by a scaled random noise term. This extension is
also controlled by two parameters: Apersistence, Which determines the weight
of this extension and how strictly cells should align to their directional vec-
tor, and 7, the persistence time of the directional vector. Combinations of
these two parameters result in a large variety of persistent random walkers
as well. Notably, this model extension has no CIL as the cell will only
reorient once its directional vector has changed. We will further indicate
this model version as the passive reorientation model.

4.2.2 Matching model parameters to cell motion

In order to match in silico cell motility to in vitro cell motily, we determined
a number of in vitro cell properties for starved and vegetative Dictyostelium
discoideum on a flat PDMS substrate (Figs. 4.1} £.2). We measured the mean

cell area (Figs[#.TD4.2B), mean cell speed (Figs [4.TE/4.2C), cell persistence

time (Figs[4.TG/4.2E) and cell diffusion constant (Figs . 1H/4.2F), see also
Table In general, starved D. discoideum cells are highly motile and

perform a persistent walk, whereas vegetative D. discoideum cells are less
motile and less persistent.

From these properties, cell area and cell speed were used to set the
length and time scale in the CPM. With the free parameters A aq and maxact
for the active reorientation model, and Apersistence and T for the passive re-
orientation model, we used a hillclimbing algorithm to fit the diffusion
constant and persistence time of simulated cells to the in vitro values in
Table The resulting best fits for both starved and vegetative cell motil-
ities and both persistence methods are also shown in Table and the
corresponding model parameter values are shown in Table Overall, we
have achieved a good match for the starved cells and a reasonable match
for the vegetative cells.

4.2.3 Introducing pillar gradients

With the model performing similar motion to the starved and vegetative
cells, we introduced a pillar grid with gradient [75]. The pillar gradient is
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FIGURE 4.1: Empirical basis of CPM parameter constraints I: starved
D. discoideums
A) Detection of starved D. discoideum motion on flat PDMS was used to
calibrate the CPM simulations. Time-lapse fluorescent confocal imaging
of cells (left) was used to detect cell edges (green, right). Scale bar is
10 ym. B) SEM image of flat PDMS, without engineered topographies
the substrate has nanometer scaled features providing traction to cells.
Scale bar is 1 ym C) Actin polymerization hot spots (visualized through
LimE-GFP, z-projection) are highly anisotropically distributed, associated
with the high persistence of starved D. discoideum. D) Areas measured
for starved cells on flat PDMS. These determined the area (A,) parameter
used in the CPM. E) Instantaneous velocity distribution of observed cell
motility. F) Trajectories obtained from live cell imaging. G) The MSD
(black) of starved D. discoideum trajectories is well fit by analytical expres-
sion for persistent random particles (red). The average instantaneous
velocity ((|v])) and persistence time (7,) were used to calibrate the vector-
and actin based CPMs. H) The MSD (black) of starved D. discoideum
trajectories at larger lag-times is well fit by a line (blue). The slope of the
blue line is used to derived the diffusion constant D, which was used to
calibrate the vector- and actin based CPMs.
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FIGURE 4.2: Empirical basis of CPM parameter constraints II: vegeta-
tive D. discoideums
A) Actin polymerization hot spots (visualized through LimE-GFP, z-
projection) in the cell are more isotropically distributed in the vegetative
state, giving rise to slower and less persistent motion than starved D.
discoideum. B) Areas measured for vegetative cells on flat PDMS. These
determined the area (A,) parameter used in the CPM. C) Instantaneous
velocity distribution of observed cell motility. D) Trajectories obtained
from live cell imaging, motion detection was performed equal to the
starved state (see Fig . E) The MSD (black) of starved D. discoideum
trajectories is well fit by analytical expression for persistent random
particles (red, but the parabolic regime for low lag-times is significantly
shorter. The average instantaneous velocity ((|v|)) and persistence time
(tp) were used to calibrate the vector- and actin based CPMs. F) The
MSD (black) of starved D. discoideum trajectories at larger lag-times is
well fit by a line (blue). The slope of the blue line is used to derived the
diffusion constant D, which was used to calibrate the vector- and actin
based CPMs.
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TABLE 4.1: Cell motility properties for the experimental data and best
fits for the active and passive reorientation models.
Starved

Experimental Active Passive
Length equivalent 1px (um) | - 0.525 0.525
Time equivalent 1 MCS (s) | - 0.373 0.574
Speed (um/s) 0.197+0.001 - -
Area (um?) 110.4+45.1 - -
Effective diffusion (um?/s) | 1.82+0.68 1.76+£0.08  1.87+0.08
Persistence time (s) 91.98+0.98 89.30+2.22 89.89+3.33

Vegetative

Experimental Active Passive
Length equivalent 1px (um) | - 0.524 0.524
Time equivalent 1 MCS (s) | - 0.388 0.821
Speed (um/s) 0.084+0.0004 - -
Area (um?) 164.6+84.3 - -
Effective diffusion (um?/s) | 0.149+4.89x10~% 0.137+0.007 0.121+0.006
Persistence time (s) 27.41+0.41 25.48+0.35  33.27+1.48

TABLE 4.2: Parameters of the best fits for the starved and vegetative
Dictyostelium cells for both the active and passive reorientation models.

Best fit parameters | Starved | Vegetative
T 20 20
Area 400 600
)\area 50 50
Perimeter 313 350
Aperimet@r 1 1
]cell,medium 20 20
Active model

AAct 129 80
maxact 37 33
Passive model

)\persistence 159 78
T 30 7




90 Chapter 4. Topotaxis on silicon and in silico

TABLE 4.3: Pillar gradient grid parameter values for the experimental
and simulation setup

Experiment Model
Parameter Description (nm) (px) (pm)
R pillar radius 5 10 5.3
h pillar height 18 +2 N/A
d pillar center distance at origin 16.8 32 168
Ain pillar center distance left cap 13.6 26 137
Amax pillar center distance right cap 19.9 38 200
s gradient steepness 0.01, 0.03 0.01-0.11

defined according to the set of pillar centers described by

pofrere|nT gl Dt )

1:
xo=d(m+3)e", withn,me Z

Here, d is the distance between pillar centers at the center of the grid, and
s a parameter that controls the steepness of the gradient, with higher s
indicating steeper gradients. P defines a pillar gradient in the x-direction
with increasing pillar distance from left to right. The gradient is capped
a both ends with a regular grid of pillar center distance d,,;, and d;ax =
2d — d iy to prevent cells from not being able to pass in between pillars.
All measurements, both for the experimental and simulation setup and
including pillar radius and pillar height, are shown in Table

In the experimental setup, the pillar grid is a molded PDMS pillar grid.
Cells are able to navigate between the pillars and resolve collision with
pillars (Fig. [4.3]A). Because cells were seeded randomly on the pillar grid,
only s = 0.01 and s = 0.03 were used (Fig. [.4)A,B), as for steeper gradients
too few cells are seeded in the short pillar gradients. Starved D. discoideum
cells were tracked while in the gradient (Fig. . 4E,EG).

For the simulations, pillars were modeled as immobile obstacles. Cells
could not move into a pillar, but were allowed to retract from them. Ad-
hesion between cell and pillar can be controlled by the contact energy
parameter Jeep pillar- We assume that cells show no preference for pillars
nor medium, so the contact energies between cell-pillar and cell-medium
are equal ( Jeen pitlar = Jeell,medium = 20), unless stated otherwise. In contrast
to the experiments, repeated simulations were done with single cells only,
starting from the same initial position in the center of the field, see Figs.

The different ways in which the two persistence models respond to
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obstacles is clarified in Fig. ,C. For the active reorientation model, we
see CIL: once the cell collides with a pillar, it looses its polarization and will
repolarize in a different direction from before. For the passive reorientation
model, the cell will try to continue into the same direction, even if it is
directed into a pillar, until the direction vector is no longer pointing into
that pillar. The time it takes to resolve a collision is in the order of minutes,
similar to that seen in the experimental setup (Fig. 4.3A).

4.2.4 Starved D. discoideum cells show topotactic drift increasing
with gradient steepness

In order to measure the effect of topotaxis of starved cells, drift in both the
x and y direction (vy and v,) was calculated for cell tracks in the gradient
(Fig. [4.4F,G,H). More specifically, the migratory drift was calculated by
averaging over all x or y displacements of all trajectories. As a control,
the migratory drifts were also calculated for starved cells on flat surface.
Starved D. discoideum cells showed a significant drift in the positive x-
direction (i.e. towards lower pillar densities) for both pillar gradients
s = 0.01 and s = 0.03. This holds compared to both the corresponding v,
as well as compared to v, on flat surface (Fig. [#.4H). Moreover, the cells on
the steeper gradient (s = 0.03) showed a larger v, relative to the cells on
the s = 0.01 gradient.

4.2.5 Reorientation mode of starved cells affects topotactic capac-
ity

We simulated the same gradient pillar grid in our model. Examples of cell
tracks and the pillar grids for different gradients are shown in Figure
Cells move within the pillar grid, but only explore a limited space each.
We can see that the active reorientation model on the steep gradient (Fig.
4.5C) does not penetrate into the dense side of the grid as much as the
passive reorientation model does (Fig. £.5F). The population mean x and y
coordinates over time (Fig. ,H) show that there is drift along the x-axis,
but not the y-axis, indicating that the simulated cell perform topotaxis in
both models.

Figure shows the migratory drift in the x-direction (vy) as a func-
tion of s, for the experimentally measured topotaxis (Fig. [4.4H) and both
reorientation models for the starved parameter set. The experimental ob-
servation of increasing v, with increasing s in starved cells is also seen in
the results of our models (Fig. ). Both reorientation models extrapolate
this trend of v, increasing with s in a linear fashion. However, there is a
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FIGURE 4.3: Examples of frontal collision of in vitro and simulated
starved cells with a pillar A) in vitro D. discoideum starved cell in a pillar
grid. The arrow indicates qualitatively the direction and magnitude of
motion. Cell cytoplasm is labeled fluorescently. B) Active reorientation
model: Act-levels are colored from red (highest level) to green (Act-
level=0). Once the polarized cell hits the pillar, it looses its polarization.
A new Act-front appears, the cell polarizes again and moves away from
the pillar. C) Passive reorientation model simulation: the arrow is the
preferential direction vector of the cell, starting at its center of mass. Once
the cell collides with the pillar, it can only move away once its directional
vector points away from the pillar (final frame).
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FIGURE 4.4: Large scale topotaxis for highly-motile amoeboid cell mi-
gration (D. discoideum) A) SEM micrograph of the s = 0.01 pillar field.
Scale bar is 100 pm. B) Same micrograph, but for s = 0.03. C) Detailed mi-
crograph of pillars (h = 20um, d = 10um). D) Actin polymerization hot
spots visualized for a cell migrating through a pillar field. Fluorescence is
LimE-GFP expressed in LimE null cells after z-projection, scale
bar is 10 ym. E) Bright field image of a pillar field (s = 0.03) overlaid with
the trajectory of a migrating starved D. discoideum cell (free cytoplasmic
GFP in green). Scale bar is 10 um. F) Trajectory plot of cells moving on
topotaxis field s = 0.01. G) Trajectory plot of cells moving on topotaxis
tield s = 0.03. H) Drifts (vy,,) measured in all live cell experiments (flat,
s = 0.01 and s = 0.03) compared. The anisotropicity in pillar positioning
was in the x direction for all non-flat experiments. The topotactic drift
(vx) was found to be significantly higher (p < 0.01) than noise (vy) for all
topotaxis assays. Additionally, the topotactic drift was found to increase
(p <0.001) with a rising gradient.
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FIGURE 4.5: Trajectories of starved simulated cells and means of x
and y coordinates over time for different gradient steepness parameter

(s)-values. Top row active reorientat

ion model example trajectories: A)

s =0.01, B) s = 0.03, C) s = 0.09. Middle row passive reorientation model
examples: D) s = 0.01, E) s = 0.03, F) s = 0.09. Starting location is

marked with a black cross and the

depiction of a cell. Each trajectory

has its own color. Bottom row mean x and y coordinates over time for

gradient steepness s corresponding

to the gradients shown in the rows

above. G) Active reorientation model. H) Passive reorientation model.
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FIGURE 4.6: Topotactic drift and instantaneous speed of starved pa-

rameter set against gradient steepness s. Each orange or blue data point

represent the average of a 1000 simulations. Error bars indicate 97.5%

CIL. A) Topotactic drift vy. B) Instantaneous speed (|v;,s|). Dotted line

depicts the instantaneous speed of starved cells in absence of pillars. C)
Relative topotactic drift vy / (|vj,s]))-

clear difference in v, when comparing the two reorientation models: the
passive reorientation model shows a lower topotactic drift. Although the
fitted parameters of the methods do not result in the exact same persistent
random walk, we wouldn’t expect such a difference in topotactic drift.
Nonetheless, when directly comparing the topotaxis between simulated
cells and D. discoideum cells, our model predictions are close. For s = 0.01,
the experimental v, is in between the active and passive reorientation mod-
els” vy, whereas for s = 0.03 both models results in higher v, albeit that the
passive reorientation model v, is very close to the experimentally measured
Ux.

As Figure shows, Dictyostelium and simulated cells collide with
pillars. This decreases their speed. We measured the mean instantaneous
speed (|vi,s|) of the cells within the pillar grid, shown in Figure and
Table For both experimental and simulated cells, the speed does indeed
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TABLE 4.4: Instantaneous speed (|vjys|) in um/s on empty field and

within pillar grid for starved D. dictyostelium cells, starved active reori-

entation model simulations and starved passive reorientation model
simulations. Given error is 97.5% confidence interval.

Field | Experimental  Act based Vector based

Empty field | 0.197+0.00139 0.198+0.00285 0.197+0.001331
s =0.01 0.087+0.00080  0.152+0.00046  0.156+0.000264
s =0.03 0.082+0.00082  0.156+0.00047 0.148+0.000274

drop and is not dependent on pillar gradient steepness s. However, experi-
mental cells show a larger decrease in speed than the simulated cells, about
50% decrease compared to cells on an empty field, versus 20% decrease for
the simulated cells. The mean instantaneous speeds of both reorientation
models are not far apart.

As our simulated cells move at a higher speed, we would also expect a
higher topotactic ddrift. Therefore, aside from comparing absolute topotac-
tic velocities, we also looked at the relative topotactic velocity: vy / (|vins|),
(Fig. [4.6C). For s = 0.01, the relative v, of the experimental data is very
similar to that of actively reorienting simulated cells, whereas for s = 0.03,
the experimental v, lies between the value of the two reorientation modes,
and is closest to the passive reorientation model predictions. We conclude
that our models make good prediction for relative topotaxis. Furthermore,
the similar mean instantaneous speeds but different topotactic drifts for the
active reorientation and passive reorientation model yield different relative
topotactic drifts. The active reorientation model’s relative topotactic drift
is on average twice as large as the passive reorientation model’s. This
indicates that the persistence method itself causes part of the difference in
topotaxis drift, and could be due to CIL in the active reorientation model.

4.2.6 Pillar adhesion changes velocity within the grid

To study what could give rise to the discrepancy between the instanta-
neous velocity of the experimental and simulated cells, we turned to the
interaction between cells and pillars. For the model results in Fig[4.6, we
assumed that cells neither adhere to nor are repulsed by the pillar surface,
i.e. Jeell medium = ]cell,piuar- However, we can test this assumption and vary
the contact energy Jeel pitlar- To test whether the adhesiveness of cells to pil-
lars affects topotaxis, we simulated cell movement in a grid with gradient
s = 0.03 for different contact energies. We let Jcep pillar range from —60 to 60,
where Jeel pillar = 20 is neutral with respect to Jeellmedium = 20. Examples
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of cell tracks under a subset of this Jel piar range are shown in Fig.
Clear is that for very low Jeel pillar (Fig. ,B,D,E), cell displacement is
reduced, and more extremely so for actively reorienting cells than pas-
sively reorienting cells. High Jeen pittar (Fig. ,F) does not seem to affect
cell displacement much compared to neutral Jeep pittar (Fig- ,E). A first
glance on topotactic drift (Fig. ,H) shows that the active reorientation
model loses it’s drift at low Jee pitlar, but not at high Jeen piar- The passive
reorientation model is also affected by pillar adhesiveness, but still displays
a drift at low Jeel pillar-

We further quantified the topotactic drift more precisely. Figure
shows the topotactic drift as a function of Jeell pittar — Jeell medium for starved
cells. There is an effect of decreasing the adhesion energy Jepitar t0
negative values, which decreases the topotactic drift. For very negative
energy differences, actively reorienting cells eventually do topotaxis in
the other direction. However, closer inspection of the cell tracks shows
that cells move to the two initial pillars on their left side and get stuck
there, see Fig. @A Increasing Jcell pillar With respect to Jeel medium does not
seem to have an effect on v,, suggesting that the topotactic drift saturates
with increasing Jee pillar- Again, we see a difference in the topotactic drift
between the two persistence methods (Fig[4.8A).

Aside from collision with pillars, cell-pillar adhesion is now an extra
interaction that can influence cell speed. Looking at the (|v;,s|), we see
again differences between the two persistence methods (Fig. [4.8B). For the
actively reorienting cells, ([v;,s|) drops quickly when lowering Jeei pitar, is
maximal around Jeep1 pitlar = 10 and slightly decreases for further increase
in Jeelpitlar- The large drop in (|vins|) confirms the observation on the
examples of cell tracks (Fig[4.7]A), as cells like to adhere more and more to
the pillars and hardly displace. For the passively reorienting cells, (|vi,s/)
doesn’t decrease as dramatically as for actively reorienting cells for negative
Jeell pillar- Also the optimum in (|v;,|) isn’t as clear and appears for higher
J cell pillar — 20.

When we compare the results to the experimental data, we can make
two observations. First is that the model prediction is close to the v, of
D. discoideum cells for Jeenpittar — Jeel,medium = —30. Second is that for
Jeell pillar — Jeell,medium = —30, (|ins|) is still higher for the simulated data
than the experimental data, resulting in underestimation of the relative
topotactic velocity. The values of Jeep pillar for which the instantaneous
speeds are indeed similar between model and experiment are Jceq pitlar —
Jeell,medium = —80 and —50 for the passive reorientation model and active
reorientation model respectively, and are already extreme in limiting cell
displacement in general.
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FIGURE 4.7: Trajectories of starved simulated cells and mean x and
y coordinates over time for different pillar adhesion energy Jce pitar-
Top row active reorientation model example trajectories: A) Jeen pillar =

=60, B) Jeel pittar = —30, ©) Jeell pittlar = 50. Middle row passive reorienta-

tion model example trajectories: D) Jeel pitlar = —60, E) Jeen pitlar = —30,
F) Jeen pitlar = 50. Starting location is marked with a black cross and the
depiction of a cell. Each trajectory has its own color. Bottom row mean
x and y coordinates over time of a 1000 independent simulations. G)

Active reorientation model. H) Passive reorientation model.
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Overall, we conclude that adhesion energy between cell and pillar can
indeed lower the velocity of cells. However, the drop in speed is paired
with a drop in displacement as well, and the values at which it occurs at
are not in agreement for when v, coincides with the experimental v,.

4.2.7 Effective persistence decreases sooner in active reorienta-
tion model than in passive reorientation model

In Schakenraad et al. [75]], topotaxis was explained as a change in effective
persistence length I = v eff - Ter and effective diffusion Deg due to the
presence of pillars, which they verified by simulating a regular grid for a
range of different pillar distances d. To further delve into the difference in
topotaxis efficiency between the active and passive reorientation model, we
also looked into the effective persistence length and effective diffusion over
a range of pillar distances. We obtain 7. by fitting the MSD with Fiirth’s
equation with translational diffusion (Eq. see Methods section) and
Degs by fitting the MSD at larger time lags with a straight line, similarly to
how we obtained them for fitting the empty field data, and obtain v ¢ by
computing (|viys|)-

Figure[d.9shows the effective parameters of the fitted random persistent
walk of both models using the starved parameter setting. The two persis-
tence methods react differently to the presence of pillars in regular grids.
The effective diffusion coefficient, persistence time and persistence length
show a similar trend (Fig. [£.9ABD): they increase as pillar distance increases
and saturate to the corresponding values of the empty field measurements.
However, this happens more rapidly for the passive reorientation model
than for the active reorientation model. The difference in persistence length
is mostly due to the difference in persistence times between the two mod-
els, as the differences in velocity are minor (Fig. [£.9C). As T is the only
measure we determine by fitting Eq. we checked whether Eq.
tits the MSD well. Except for both models on d = 13.1um and the active
reorientation model with d = 14.7um, the fits seem good. For d = 13.1um,
the active reorientation model’s MSD indicated subdiffusive behaviour: i.e.
the cells get stuck between the pillars, whereas the passive reorientation
model’s MSD did show long term diffusive behaviour but its fit was off
for the shorter time scale. The fit for the active reorientation model at
d = 14.7um seems to overestimate the persistence time. Nonetheless, at
larger d the fits are good and 7. is decreased more in the active reorienta-
tion model. So although the two models behave similarly in an empty field,
their behaviour in regular pillar grids is very different, and the persistence
of the active reorientation model is more affected by the presence of pillars.
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FIGURE 4.9: Normalized effective parameters of the persistent random
walk in regular pillar lattices for the active and passive reorientation
model with the starved parameter settings. A) Effective diffusion coef-
ficient D¢ normalized by the diffusion coefficient of starved simulations
on an empty field as a function of the distance d between pillar centers.
B) Effective persistence time 7.4 normalized by the persistence time of
starved simulations on an empty field as a function of d. C) Effective
instantaneous velocity veg normalized by the instantaneous velocity of
starved simulations on an empty field as a function of d. D) Effective
persistence length [ = Ve Togr Normalized by the persistence length of
starved simulations on an empty field as a function of d.
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4.2.8 Model predicts small topotactic drift for vegetative cell topotaxis,
but independent of persistent mode

Although no experimental data is available on topotaxis in vegetative
cells in these pillar gradients, we are still interested in whether vegetative
cells could perform topotaxis. The largest difference in motility between
starved and vegetative cells is the lower speed and lower persistence time
in the vegetative cells (Table , and hence, a lower persistence length of
about 2.3 pm. The minimum distance between pillars in our pillar grids is
significantly larger than that. Hence, we would not expect the persistence
of the cell to be altered much in the presence of pillars and therefore deem
it unlikely that persistence driven topotaxis contributes much to topotaxis
of vegetative cells.

We use our model to predict whether vegetative cells topotax or not.
We can see the lower motility of vegetative cells reflected in the example
trajectories of our simulated vegetative cells (Fig. where cells only
move in the order of magnitude of 1-3 cell lengths on the same time scale
as in Figs. Gtill, there is a visible increase in the mean x coordinate
but not mean y coordinate (Fig. [4.10), so vegetative Dictyostelium cells can
likely perform topotaxis as well.

With the lowered displacement of vegetative cells, also v, is an order of
magnitude smaller than that of starved cells (Fig. £.12]A). For s = 0.01, the
topotactic drift does hardly exceed the drift in the y-direction, (student’s t-
test p = 0.01 for actively reorienting cells, p = 0.67 for passively reorienting
cells) which indicate how small the topotaxis effect is in a shallow gradient.
As the v, confidence intervals for the starved cell simulations are much
smaller compared to those of the experimental starved cells, we expect
that it will probably be very hard to measure topotaxis in the experimental
system with vegetative cells. The topotactic drift does still increase for
higher s , similar to the starved cells. Unlike for the starved cells, the
different persistence methods results in similar v, (Fig. 4.12)A) and similar
Vins (Fig. [4.12B) and hence also in similar relative topotactic velocity (Fig.
H.12[C) for the vegetative cell parameter set. Interestingly, the relative
topotactic drift of vegetative cells lies in the range of those of starved vector
persistent cells (Fig. .60).

As we did see topotaxis occurring in the vegetative cells, we also looked
into the behaviour of these cells in regular grids. We again checked their
effective diffusion, effective instantaneous velocity, effective persistence
time and effective diffusion length as a function of distance between pillar
centres, similar to previously done for the starved cells. Again, we obtained
T.¢f by fitting Eq. to the MSD. For the vegetative cells, we observed
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FIGURE 4.10: Trajectories of vegetative simulated cells and means of
x and y coordinates over time for different gradient steepness s. Top
row: active reorientation model trajectory examples: A) s = 0.01, B)
s = 0.03, C) s = 0.09. Middle row: passive reorientation model. Trajectory
examples: D) s = 0.01, E) s = 0.03, F) s = 0.09. For the trajectory plots:
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Each trajectory has its own color. Bottom row mean x and y coordinates
of 1000 independent simulations. G) Active reorientation model. H)
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that for the active reorientation model, Eq. [4.10]is not a good descriptor of
the MSD for low pillar distance d = 13.1um to d = 16.2um. Hence, we only
show the results in Figure for d > 16.2um. The effective parameters
are more similar between the persistence methods than observed for the
starved parameter set (Fig. 4.9). Only on the smallest displayed pillar dis-
tances d, we see that the effective persistence time of the active reorientation
model is more affected than of the passive reorientation model. Compared
to the differences between the persistence methods for the starved cells,
this difference here is smaller in both relative and absolute manner. Overall,
these effective parameters do not indicate a clear difference between the
persistence methods for vegetative cells.

4.3 Discussion

In this paper we have measured topotaxis by Dictyostelium discoideum cells
in a pillar gradient as well as simulated topotaxis in a similar grid using
the Cellular Potts model. Persistent Dictyostelium motion was modelled
through two distinct persistence modules in our model: the Act model, and
a vector-based persistence of which the direction changes over time. We
fitted our model parameters to match Dictyostelium motion on an empty
field before we simulated topotaxis in a pillar grid.

For starved cells, we saw that, for shallow gradients, increasing the
gradient steepness increases topotaxis, both in the experiments and the
simulations. This is in agreement with [75]. The topotactic velocity of both
persistence methods follows a linear trend in gradient steepness, but the
actively reorienting cells are more efficient in topotaxis than the passively
reorienting cells, regardless of having similar instantaneous velocity.

We further looked into the cause of difference between the active and
passive reorientation model and found that the effective persistence length
on regular pillar grids is more affected by short pillar distances in the active
model than in the passive model. The difference in effective persistence
length arises from the difference in persistence time. We conclude that the
active reorientation model is more likely to change orientation upon colli-
sion than the passive reorientation model, explaining the lower effective
persistence time and effective persistence length.

Aside from the difference between our two models, the instantaneous
velocity is a major point of difference between the experimental and sim-
ulation results. By lowering the adhesion energy between cell and pillar,
we were able to lower the instantaneous velocity of the simulated cells.
However, this also resulted in reduced displacement, to the point that
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FIGURE 4.11: Normalized effective parameters of the persistent ran-
dom walk in regular pillar lattices for the active and passive reorien-
tation model with the vegetative parameter settings. A) Effective diffu-
sion coefficient D¢ normalized by the diffusion coefficient of vegetative
simulations on an empty field as a function of the distance d between
pillar centers. B) Effective persistence time T normalized by the persis-
tence time of vegetative simulations on an empty field as a function of d.
C) Effective instantaneous velocity ve¢ normalized by the instantaneous
velocity of vegetative simulations on an empty field as a function of d. D)
Effective persistence length logf = UefiTofs normalized by the persistence

length of vegetative simulations on an empty field as a function of 4.
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cells are sticking to the pillars. Hence, pillar adhesivity is unlikely the
only mechanism to explain the velocity difference between experiment and
simulation.

For the vegetative simulations, our model predicts that cells do undergo
topotaxis distinct from directional noise, albeit an order of magnitude
smaller than the starved cells, with the exception of the shallowest gradient.
Also, both persistence modes resulted in similar outcomes, suggesting that
there is a difference in topotaxis by quick and persistent cells and slower,
less persistent cells.

4.3.1 Topotaxis and the changing effective persistence length

The physical principle underlying topotaxis presented in Schakenraad et
al. [75] states that the change in effective persistence length caused by the
pillar grid causes ABP to turn towards regions where they display higher
effective persistent length. This idea is similar to that of how durotaxis, i.e.
motion up a stiffness gradient, arises [193, [146].

When we compare the efficiency in topotaxis of both the D. discoideum
cells and the CPM simulations to the ABP simulations, both the cells” and
CPM simulations’ relative topotactic velocities well exceed the 1% topotac-
tic velocity of ABPs, the passive reorientation model at the shallowest
gradient excluded. For the models, we can explain this difference by the
difference in effective persistence length in a pillar grid. In our model, the
effective persistence length is decreased more at small pillar distances than
the ABP model. As this is true for both reorientation models, we conclude
that this is an effect of the dynamic volume of our simulated cells.

Furthermore, when comparing the persistence length of the active and
passive reorientation models, the difference in persistence length between
the two models could explain the difference in relative topotaxis. Interest-
ing to note here is that the change in persistence length can be ascribed to
the change in persistence time and not change in velocity. We can interpret
this as actively reorienting cells changing direction more drastically upon
colliding with a pillar. We hypothesize that, for the active reorientation
model, the new direction after collision is more uniformly distributed along
the directions not pointing towards the pillar center, i.e. contact inhibition
of locomotion, whereas reorientation direction for the passive reorientation
model is more skewed towards the previous direction. This reorientation
effect can likely be exaggerated by looking at concave obstacle shapes.

In this perspective, we can also look at the vegetative simulations. As
the persistence length and persistence time for vegetative cells is very short,
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the differences in how the models reorient upon collision becomes negli-
gible. We also observed hardly any difference in the effective parameters
within regular grids between the two persistence methods, except for small
distances between pillars. The lack of difference in these parameters is
likely why the resulting topotaxis is so similar between the models.

The reorientation of cells upon obstacle collision has also been subject
of other studies [197, (198, 199]. In an experiment with fish keratocytes,
actin flow was disturbed upon collision with an obstacle, making the
keratocyte change direction [197]. Modelling studies also indicate that
intercellular molecular dynamics are important in cell reorientation upon
collision. In Nishimura et al. [198] the change in actin retrograde flow
plays an important role in the formation of a new protrusion after collision
with a wall, allowing the cell to move away from the wall. In Campbell
et al. [199] many different cell behaviours after collision were observed in
a immersive-boundary method with reaction-diffusion equations on the
cell surface. They observed 1) ‘freezing” when the cell did not have new
pseudopods for a short while after collision, 2) ‘doubling back” when the
cell return in the direction it came from and 3) ‘tug of war” were the new
pseudopods competed for leading the cell’s new direction.

4.3.2 Dictyostelium on silicon and in silico

We saw a disparity between the instantaneous speed of the D. discoideum
cells and the simulated cells when they were within the pillar grid. This
difference is unlikely to be caused by cells adhering to the pillars. Some
other mechanisms could be at play, such as dimensionality, curvotaxis and
chemotaxis. We will shortly address each of them.

Dimensionality

Our Cellular Potts model is a 2D model. However, the experimental cells
crawled in a 3D pillar grid and hence can use the third dimension while
moving around the obstacles. Experimental observation show that D.
discoideum cells sometimes crawl up a pillar, mainly displacing their center
of mass vertically. They can also move through narrower pillar distances
than our CPM simulation by spreading their volume vertically. Although
vertical displacement is not modeled directly in the CPM, the weight of
the area and perimeter constraint can be seen as a measure of 3D flexibility.
A possibility would be to extend our models into a 3D CPM, or use other
computational methods, such as in [199]. Furthermore, how our results
translate to 3D matrix environments is still unclear. As shown in [200], cells
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migrate very differently in 1D and 3D matrix environment compared to
2D matrix environments, so translating topotaxis from our experiments to
more complex structures is non-trivial.

Curvotaxis

Aside from the dimensionality difference, there is another aspect to the
experimental setup. The interpillar distance is slightly curved, as the pillars
are broadening at their feet. It has been shown that cells are responsive
to substrate curvature on the cell-scale [201} 202} 203], and tend to move
towards concave “valleys". The interpillar spaces with concave curvature
fit this description, and could alter the speed of Dictyostelium cells.

Chemotactic sensing

More guiding principles can be at play. Dictyostelium discoideum cells are
known to secrete cAMP when starved, but can also degrade cAMP when
in high concentrations [204]. This chemical functions as a chemoattractant.
Usually, this will lead to multiple cells to find each other and aggregate.
In a modeling study it has been shown that these aggregates can avoid
obstacles through the perturbations in the chemical field caused by such
obstacles [205]. However, not many studies have been done on how this
affects single Dictyostelium cells and whether they can sense their own
secreted cAMP. Nonetheless, multiple studies have shown how chemical
sensing of the environment can guide cell movement around large obstacles
[206], or through mazes [207]. Self-secreted chemoattractant can also trap
cells within containing environments such as dead ends in mazes [208].
The effect of chemical sensing in a field with a high density of obstacles as
well as its effect in topotaxis is still open for study.

Concluding, our model is a much closer match to the behaviour of
Dictyostelium discoideum cells in pillar grid with a distance gradient than
the previous, analytical ABP model. The deformable cell volume within
our models allows for more efficient topotaxis as it lowers the effective
persistence length, especially when pillar distance is close to the cell length.
We also showed that how cells interact upon collision plays an important
role in the effective persistence length and hence, topotaxis.

4.4 Materials, Methods, and Model

For this study, we have used an experimental setup with live cells and a
computational model. Experimental data from cells on a flat surface were
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used to set the model parameters. Topotaxis measurements were done in
both the experimental as well as the computational setup.

4.4.1 Live cell experiments
Cell culture and experiment preparation

For all migration experiments, Axenic D. discoideum (Ax2) with a cytoplas-
mic green fluorescent protein (GFP) insertion was used (strain HG1694,
obtained from Dr. G. Gerisch, MPI for Biochemistry, Germany). Cells were
grown at 20 °C in HL5 medium, supplemented with 20 pgml~! gentamicin
(Gentamycin solution, Merck, Netherlands) as a selection antibiotic. The
cells were cultured in 100 mm petri dishes (100 mm TC-treated culture dish,
Corning, USA) and confluency was kept below 70% during culturing. For
visualizing actin polymerization, a LIimE-GFP in im0 cell line was used
[195]]. These cells were cultured similarly, but with two selection antibiotics,
10 pgml~! Gentamycin and 10 ngml~! Blasticidin, necessary to maintain
the double mutation (LimE-GFP and Lim0).

In preparation for imaging experiments, cells were harvested by pipet
induced flow and collected in a conical tube. To remove the culture medium
the cells were centrifuged at 1500 rpm for 3 min. In case of vegetative ex-
periments, resulting cell pellets were thrice washed using non-fluorescent
buffer (3.6mM KH,POy, 2.9mM Na,HPO,, PH 6.7) and, after resuspension,
transferred onto (un)structured polydimethylsiloxane (PDMS) surfaces
placed inside an imaging chamber (see Sec. £.4.1). In case of starved ex-
periments a pulsation procedure was started before imaging instead. Cell
pellets were thrice washed with 17 mM K-Na-phosphate buffered saline
(PBS, pH 6.0) and placed on a shaker for 1 hour. Then, to induce cAR1 ex-
pression, cells were pulsed with 150 nM cyclic adenosine-monophosphate
(cAMP, Merck, The Netherlands) applied in 6 minute intervals over 4 hours
while shaking. After pulsation, any residual cAMP was removed by cen-
trifugation and resuspension. Cells were left to shake in a conical tube with
PBS for another 30 min before being loaded onto PDMS surfaces in imaging
chambers. For both experiments cells were left to adhere for 1 hour after
insertion into the imaging chamber, leading to a 6-7 hour starvation period.
Cell seeding concentrations were kept below 1-107% um~2 to limit cell-cell
interaction and enable studying migration of individual cells.

Obstacle and flat PDMS surfaces

PDMS (Sylgard 184 Silicon Elastomer Kit, Dow Corning, USA) was mixed
1:10 resulting in a 1.72 MPa stiffness for all surfaces [209]. Flat surfaces were
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prepared by spin-coating pre-mixed PDMS onto polished Silicon wafers
(Siegert Wafer, Germany) and then baked for 4 hrs at 110 °C. Before spin-
coating, wafers were silanized by Trichloro(1H,1H,2H,2H-perfluorooctyl)
silane deposition under vacuum (50 mbar) for 1 hour to ensure proper
PDMS detachment later. Before use, PDMS was cut, peeled off, and washed
with ethanol (70%). For migration experiments PDMS was cast around a
250-500 pum thickness, for limE-GFP imaging, PDMS was cast ultra-thin
(<50pm) enabling 100x (WD= 130pm) imaging.

Pillar obstacle fields were prepared using a molding process. The pillar
molds were prepared by two-photon direct laser writing (DLW) using the
Photonic Professional GT (Nanoscribe, Germany). First, a negative of the
topotaxis pillar lattices (s = 0.01-0.03, see Section were designed
using Inventor (Autodesk, USA) and, via a stereolithography format (.stl),
imported to DeScribe (Nanoscribe, Germany) to prepare for DLW. Then,
two-photon crosslinking was performed using the IP-S resin (Nanoscribe,
Germany) deposited on a silicon wafer. Different laser powers and scan
speeds were chosen for bulk and edges of the structure, 27% and 42% (of
140 mW), 10 and 40 mm/min respectively. To remove excess resin, molds
were developed for 45 min in polyglycidylmethacrylate (PGMA). After
blow drying with nitrogen, wafers were silanized as described previously.
To produce the pillar field casts, PDMS was deposited over the wafer (with
mold on top), baked, cut, peeled off, and washed with ethanol (70%).

PDMS inserts were hydrophilicitized by 15 min of UV /Ozone exposure
(UVO-42, Jelight Company, U.S.A) and placed inside an imaging slide (0.8
sticky-Slide I Luer, Ibidi, Germany), to be used immediately. Before loading
cell suspensions, imaging slides were washed with ethanol and then PBS.

To determine quality of the mold, each pillar field was imaged using a
nanoSEM (FEI/Thermo Fisher, The Netherlands) scanning electron micro-
scope (SEM). Samples were imaged at 10kV, with a spot size of 4.0. Before
imaging, PDMS structures were coated with 2-8 nm Pt/Pa using a plasma
magnetron sputter coater (208HR, Cressington, Watford, UK) to enhance
conductance.

Live-cell imaging and tracking

Cells were imaged every 8-10 seconds for experiments on flat PDMS and
every 20 seconds for topotaxis assays. Measurements lasted for 1-3 hours
and were performed with either 10x or 20x air objectives (Plan Fluor, Nikon)
on a Nikon Eclipse Ti microscope equipped with a confocal spinning disk
unit operated at 10,000 rpm (Yokogawa). The cytoplasmic GFP was excited
at 488nm by a solid-state diode laser (Coherent, U.S.A.) supported in an



112 Chapter 4. Topotaxis on silicon and in silico

Agilent MLC4 unit (Agilent Technologies, U.S.A.), at reduced intensity (25%
of 2.4mW) controlled by an Acousto-Optic Tunable Filter. Emission was
filtered by a quad-band fluorescence filter (TR-F440-521-607-700, IDEX LLC,
Rochester, New York, U.S.A.). Images were captured using an exposure
time of 200ms by an Andor iXon Ultra 897 High Speed EM-CCD camera
(Andor Technology, U.K.). Images of higher magnification were produced
with the same setup but using different objectives: Figure with 40x air
(PlanFluor, Nikon), imE-GFP Figures and with 60x water (Plan
Apo VC, Nikon) and and with 100x oil (CFI plan Apo, Nikon).
Image tracking was performed using Image] (http://imagej.nih.gov/ij/).
Microscopy time-lapse images were contrast and brightness adjusted, and
ran through a Gaussian filter (¢ = 2) to enable optimal cell body recog-
nition. The Image]J plugin CellEvaluator was used to determine the x, y-
coordinates of the center-of-mass of each cell body in each frame [210]. By
linking all these x, y-positions together, cell trajectories were obtained.

Empirical measurement of cell area

Fluorescence microscopy of cell migration experiments on flat PDMS were
used to fit the cell surface area (A,) parameter in the CPM. Frames used
for area analysis were chosen sufficiently far apart (f ! = 6t = 200 s) to
avoid correlations. The two-dimensional projection of the cell body was
determined using Sobel edge detection, applied to cytoplasmic GFP images
obtained using the 20x air objective (0.657 pm/pix). Brightness and contrast
were adjusted to rescale pixel intensities (i.e. only use the range of 16-Bit
intensities of GFP signal detected). Image analysis was performed using
Matlab, and the Image Processing Toolbox (Matlab v2019a, MathWorks,
U.S.A)) in particular. First, edges were detected (Sobel) using an appropriate
threshold, then the resulting binary edge-image was dilated, holes were
filled, borders cleared and the image eroded (equal to the initial dilation).
Then all groups of non-zero, adjacent pixels forming a cell were identified
and properties (using regionprops) like area extracted.

Amoeboid movement on flat and pillar surfaces

We analysed cell migration trajectories, measured on flat and pillar PDMS,
with an in-house Matlab code (version 2019b, The Mathworks, U.S.A.). The
empirical instantaneous velocities (v;,s), persistence times and diffusion
constants of cell movement measured on flat PDMS were used to fit the
CPM model for both cell types. These were calculated from the cell trajec-
tories obtained in combination with the known frame rate (f~! = 5t = 20
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s) between images. Dying or otherwise immotile cells (see [74]) and insuffi-
ciently long trajectories (flat N < 100, topotaxis N < 30) were discarded
for analysis. N was chosen higher for the flat data set, to prevent noise in
mean-squared displacement (MSD) values at long-lag times.

The displacement (r) of the cell between frames is given by 7(t) = R(t +
8t) — R(t), where R(t) are the vectors described by the x, y-coordinates of
the cell center in each image. Then, the instantaneous velocity (v(t)) and
MSD were calculated for each trajectory by,

o(t) = "7((51” and (7(7)?) i R(t; + 1) — R(t;))> 4.1)
i=1

Here, T = kot is the lag time, N the number of points in a trajectory, and k
the frame number (k = 1,2,... N — 1). The MSDs were averaged over all
trajectories, and subsequently fit to Fiirths formula for persistent random
motion. From this fit the characteristic persistence times (7;) and effective
diffusion constants (D,sy) for both vegetative and starved D. discoideum
cells moving on flat PDMS were extracted and used to fit the CPM.

For flat and topotaxis assays, migratory drift (v,,) was calculated by
averaging over all displacements of all trajectories,

n—1

(Uny) = % Z(R(ti +6t) — R(t)) (4.2)

i=1

where 7 is the total number of displacements measured.

44.2 Model

The model is based on the 2D Cellular Potts model and hence models cells
as flexible and dynamically shaped objects in two dimensions. Cell per-
sistence is obtained using two methods: one phenomenologically models
actin dynamics, the other has a set preferential direction for the cell to move
in that changes over time. We fit the parameters of these methods such that
the simulated cells perform the same persistent random walk as measured
experimentally in the starved and vegetative Dictyostelium discoideum cells
on the flat PDMS surfaces. After fitting the parameters, we use the found
parameter settings in our simulations with a pillar grid. The grid either con-
tains a gradient in pillar spacing in the x-direction, or is regularly spaced.
In the gradient grid, we measure the average step size in the x-direction
and speed of the cell. For the regular grids, we determine the effective
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persistence time, persistence length, speed and diffusion coefficient. In
each of our simulations, we simulate a single cell.

Cellular Potts model of persistently moving cells

The model of cell movement is based upon the Cellular Potts model (CPM)
[68] with either of two extensions for modeling persistent cell movement
(see Section 4.4.2). The CPM represent cells on a regular square lattice
A C Z2. Each lattice site, ¥ € A, is associated with a spin value ¢ (¥) €
{—2,0,1}, or cell ID that uniquely identifies the lattice site with the cell
(0 =1), the medium (¢ = 0), or a pillar (¢ = —2). The cell is represented as
a collection of lattice sites marked with o = 1.

Cell motion is modelled by updating the grid through random copy
attempts. In a copy attempt a lattice site x is selected randomly, as well as
one of its neighbours y. If o(x) # o(y), the copy attempt can change the
energy of the system. Whether a copy attempt is accepted depends on the
energy change associated with it. The energy of the cell is described by the
Hamiltonian #, that contains cell-medium and cell-pillar interactions and
two cell constraints: the cell area and the cell perimeter [70].

H — Z]Uu,o'v(l - 50,4,(71;) + /\area(aa - AU)Z + /\perimeter(ptf - PU)Z (43)
u,o

The first term in the Hamiltonian describes the adhesion energy of the cell.
Here, J;, ., describes the interaction energy between two neighbouring
lattice sites u, v of types o(u),(v). As Jpilagmedium = 0, we only take the
adhesion energy between cell and medium or cell and pillar into account.
The second term describes the area constraint and penalizes deviation of
the cell area a, from its target area A,. The third term is the perimeter
constraint and penalizes deviation in cell perimeter p, from the target
perimeter P;. The A’s indicate the weight of both constraints.

The probability of a successful copy attempt depends on the change in
Hamiltonian:

1 ifAH <0
P(AMyy) = { e~ (BR/T) fAH >0 7

with T denoting “the temperature", a term that allows for noise, as cells
are able to use energy to do energetically unfavourable moves by energy
expenditure. To keep track of time, the model time is expressed in Monte
Carlo steps (MCS). Within a single MCS, the expectation is that each lattice
site has been updated once. Since we only model a single cell in a large
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field, many lattice site neighbouring pairs will not lead to cell movement.
To speed up simulations, we use a rejection-free algorithm ignoring such
unfruitful copy attempts.

Pillars

The pillars in our model have their own ¢ = —2, as not to be confused
with the os of the medium or cells. Updates involving a pillar are handled
differently from other updates. As pillars are static, we do not allow a copy
attempt into a pillar site. However, we allow for copy attempts from a
pillar site into a cell. Although, in this case, we do not copy ¢ (pillar) into
the site, but o (medium). This allows the cells to retract from the pillars and
can be seen as medium flowing back in from the third dimension which we
do not model explicitly. The interaction energy Jeel, pillar can be adjusted to
represent highly adhesive or slightly repulsive pillar surfaces. In this work,
our base value is set t0 Jeen pillar = Jecell,medium, Such that pillar adhesion is
neutral in respect to adhesion to the medium, but we also vary Je piitar to
see the effect of adhesion.

We model two different pillar grids: a regularly spaced pillar grid
and a pillar grid with a gradient. The regularly spaced grids are defined
by the distance between pillar centers d and the pillar radius R. We set
R = 10px ~ 5.25um in our simulations. The pillar grid with gradient
consist of three different parts: a regularly spaced part on the left of the
field, a part with a gradient in pillar distance in the middle and another
regularly spaced part on the right. The gradient of pillar in the middle is
defined by the following set of pillar centers P,

. d Sn__ d
p= {f eRr?| Y1 = e (¢ 1)+ 5 and } (4.4)

X =d(m+3)e", withn,m e Z

where d is the distance between pillar centers at the origin (0,0), the center
of the field. We used d = 32px ~ 16.8um in our simulations and d =
16.8um in the experimental setup. The parameter s defines the steepness of
the gradient. A lattice site X is assigned to a pillar if it is within a distance
R from one of the pillar centers, p € P. Hence the set of pillar lattice sites
becomes,

{¥ € A|(3F € P)[|F -l < R} (45)

with P the set of lattice centers (Eq.[£.4), and R the pillar radius. Again,
we set R = 10px ~ 5.25um in our simulations. For the experimental setup
R = 5um.
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This gives a gradient in the horizontal axis. However, to limit the gaps
between pillars to get too small or too big, we have the two regularly spaced
grids at the left and right of the gradient part of the grid. The pillar spacing
of those two parts is set to d,,;, = 2R + 6px ~ 13.65um on the left and
Amax = 2d — dyinpx ~ 19.95um on the right in our simulations, and in our
experimental setup d,,;;, = 13.63um and d,;;5x = 19.93. See also Tablefor
an overview of all grid measurements.

Persistent random walker

Our Hamiltonian on its own does not lead to persistent cell motion. In order
to model persistent cells, we use two different extensions of the Cellular
Potts model. First, we use the Act-extension [73], which models internal
cell skeleton rearrangements and is also capable of describing persistent
cell motion. Secondly, there is the vector-based persistence, which inherits
most of the properties of the persistence model by Schakenraad et al. [75].

Act-extension - Active reorientation The Act-extension for the Cellular
Potts model adds an extra layer to this model that resembles the assembly
of actin machinery [73]. Each lattice site has an extra value, called the Act-
value, which can range from 0 to maxa, a parameter value. The Act-value
outside the cell is always 0, and can vary inside the cell. If the cell has
recently made an extension, the site of extension will get the Act-value of
max .. Each Monte-Carlo step, the Act-values will be decreased by 1, until
they become 0.

The Act-values play a role in the change in Hamiltonian. If there is
a copy attempt extending a lattice site ¢ from the cell into a lattice site 7
containing medium, then we look at the geometric mean of the Act-levels
in NB(¢), the Moore neighbours of ¢ that are within the cell, such that:

= >N /\Act
AH (T — ) = max s yell\;l(g) Act(y). (4.6)

Otherwise, if there is an attempt of a cell retracting, then the sign changes,
$0 AH pct (it — €) = —AH a+(C — 711). As a consequence, cell areas with
high Act levels are more likely to extend outwards of the cells and less
likely to retract. This simulates the polarized actin structure of a cell in a
phenomenological way. The two parameters A 4; and max 4. can be tuned
to obtain different cell motilities.
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Vector-based persistence - Passive reorientation The vector-based per-
sistence is a hybrid method between [72] and [75]. First of all, the cell has a
direction indicated by 0. Cell movement along this direction is favoured.
For each copy attempt extending the cell, the angle « between the dis-
placement caused by that move and 60 is computed, and coupled to the
Hamiltonian as by [72]:

A/7"[persis’tence = _)\persistence ) COS(D‘)- (4-7)

AHpersistence 1S added to the general AH. For the updating of 6, we deviate
from [72], and use the differential equation, the same as in [75].

do 2
i \/Z‘f(ﬂ (4.8)

Here 7 stands for the persistence time, and ¢(t) is a stochastic white noise
term, modelled by a Gaussian distribution with mean 0 and variance
02 = 241, The term At couples the time of equationto the MCS, and we
choose At = 0.17. At initialization the cell is assigned a 6 from a uniform
random distribution. We update 6 each MCS. We can tune the cell motility
of this model extension through the parameters T and Apersistence-

Empty field fitting

In order to quantitatively compare the topotaxis of simulated cells to Dic-
tyostelium discoideum cells, we tried to find parameters such that the actively
reorienting and passively reorienting cells behave similarly to the starved
and vegetative D. discoideum cells on a surface without any pillars (Figs.
and . We only changed A 4.; and max ¢, and Apersistence and T freely.
The values we fitted our cells to are the surface area, instantaneous
speed, effective diffusion coefficient and persistence time. The surface
area and speed were used to determine the length and time scale of the
CPM, whereas the effective diffusion coefficient and persistence time were
the objective of our fit. We fitted for starved and vegetative D. discoideum.
Starved cells on an empty surface displayed a persistent random walk (Fig.
Table[d.1). Vegetative cells had a larger area and were less motile (Fig.

Table

Determining model persistence time and diffusion coefficient For de-
termining the persistence time in our models, we first have computed the
mean squared displacement of 1000 simulated cell tracks from 120 MCS
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onwards:
1 1000

(r(t)?) = 1000 = (R(120 + t) — R(120))? (4.9)

We then fitted to (r(t)?) the formula
MSD(t) = 4Dt 4 2037t — 20572 (1 — '), (4.10)

which describes the active Brownian motion with translational noise [[159].
Here 7, is the persistence time, vy the constant speed, and D7 is the transla-
tional diffusion caused by thermally induced fluctuation, which is inherent
in the CPM. The corresponding effective diffusion constant is described
by Degs = Dt + %U%Tr. However, we decided to obtain D¢ independently
from Eq. 4.10|by fitting a line through the square displacements over time
starting from t = 2000 MCS and divide its slope by 4.

Scoring the fit For scoring the fit we used a weighted least squares ob-
jective. We used a hillclimbing algorithm with multiple restarts to obtain
a shortlist of possible parameter values. The best fifteen parameter sets
were then scored ten more times to obtain the best parameter set. The
resulting effective diffusion coefficient and persistence time are shown in
Table The fits for starved cells are better than the fits for vegetative cells,
most likely due to the discretization of the parameter space. The optimal
parameters are shown in Table

Measuring model topotaxis

To measure topotactic drift, we have run multiple simulations for different
values of s, the parameter indicating the steepness of the pillar gradient.
For each parameter value, we did 1000 simulations. To measure topotaxis
we computed the mean velocity in the x-direction at 20s intervals for all
cell tracks while the cell was in the gradient part of the pillar grid. This
gives our migratory drift v,.
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Chapter 5

A novel function of TLR2 and MyD88 in the
regulation of leukocyte cell migration
behavior during wounding in zebrafish
larvae

Wanbin Hu, Leonie van Steijn, Chen Li, Fons J. Verbeek, Lu Cao,
Roeland M.H. Merks, Herman P. Spaink]

Abstract

Toll-like receptor (TLR) signaling via myeloid differentiation factor 88
protein (MyD88) has been indicated to be involved in the response to
wounding. It remains unknown whether the putative role of MyD88 in
wounding responses is due to a control of leukocyte cell migration. The
aim of this study was to explore in vivo whether TLR2 and MyD88 are in-
volved in modulating neutrophil and macrophage cell migration behavior
upon zebrafish larval tail wounding. Live cell imaging of tail-wounded
larvae was performed in t/r2 and myd88 mutants and their corresponding
wild type siblings. In order to visualize cell migration following tissue
damage, we constructed double transgenic lines with fluorescent markers
for macrophages and neutrophils in all mutant and sibling zebrafish lines.
Three days post fertilization (dpf), tail-wounded larvae were studied us-
ing confocal laser scanning microscopy (CLSM) to quantify the number
of recruited cells at the wounding area. We found that in both t/r27 and
myd88” groups the recruited neutrophil and macrophage numbers are
decreased compared to their wild type sibling controls. Through analyses
of neutrophil and macrophage migration patterns, we demonstrated that
both tIr2 and myd88 control the migration direction of distant neutrophils
upon wounding. Furthermore, in both the t/r2 and the myd88 mutants,

*Modified from Wanbin Hu et al. “A novel function of TLR2 and MyD88 in the regulation
of leukocyte cell migration behavior during wounding in zebrafish larvae”. Frontiers in Cell
and Developmental Biology 9 (2021), 210
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macrophages migrated more slowly towards the wound edge. Taken to-
gether, our findings show that t/r2 and myd88 are involved in responses to
tail wounding by regulating the migratory behavior of leukocytes in vivo.

5.1 Introduction

Acute inflammation is characterized by the directed migration of leuko-
cytes, which can be triggered by tissue damage [212, 213]. The function
of directed leukocyte migration is to eliminate cell debris and invading
pathogens, with the aim of maintaining homeostasis upon tissue damage
[214]. Neutrophils and macrophages are the two crucial immune cells that
engage in this process [213, 215]. Neutrophils are the first cells to rapidly
respond to the site of injury, and produce cytokines and chemokines to
mediate the recruitment of other cells [216, 215]. However, persisting neu-
trophil recruitment can release toxic granule contents to further damage
tissue, and thereby is a hallmark of chronic inflammatory disease [217, 214,
218]]. In comparison, distant macrophages move slower and accumulate
later at the wounded area and are considered to play a role in eliminating
the debris of apoptotic cells and assist in regeneration of wounded tissue
[219, 213} 215| 220]. Leukocyte migration must be tightly regulated to
avoid negative effects on tissue repair or further damage. Despite myriad
studies on leukocyte migration in response to wounding, the underlying
mechanisms are not yet completely understood [221].

Neutrophils and macrophages depend on membrane-localized pattern
recognition receptors (PRRs) to sense invading microbes and associated
tissue damage [222]. PRRs play a crucial role to recognize pathogen associ-
ated molecular patterns (PAMPs) of invading microbes in open wounds
and damage associated molecular patterns (DAMPs) released by lysing
cells [223,224]. Toll-like receptors (TLRs) are prominent recognition factors
for PAMPs and DAMPs to regulate inflammatory responses [225] 226].
Extensive studies have demonstrated that cellular distribution is different
for each TLR. TLRs recognize different classes of PAMPs and trigger the
production of cytokines and chemokines during infection. Two typical
examples are TLR2, which senses bacterial lipoproteins [227]] , and TLR4,
which recognizes bacterial lipopolysaccharide (LPS) [228]. Accumulating
evidence shows that high-mobility group box 1 protein (HMGB1), which
is the best well known endogenous danger signal, activates inflammation
by forming complexes with other DAMPs (such as single-stranded DNA,
nucleosomes and LPS) to be recognized by IL-1R as well as TLR2, TLR4
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and TLRO to induce inflammatory responses [229, 230, 213]. After interact-
ing with these PAMPs and DAMPs, TLRs initiate downstream signaling
cascades that ultimately result in producing cytokines and chemokines. Im-
portantly, the activation of downstream signaling pathway by HMGBI1 has
been shown to be dependent on the TLR down-stream signaling mediated
by myeloid differentiation factor 88 protein (MyD88) [213, 231]].

TLR2 is one of the best known PRRs and acts as a heterodimer with
TLR1 or TLR6 to recognize gram positive bacteria including mycobacteria,
presumably based on the specific binding to their cell wall components,
such as glycolipids and glycoproteins [227, 232]]. TLR2 is expressed and
activated after tissue injury even in the absence of infections, like in acute
ischemic injury as well as in acute liver and kidney injury [233, 234, 235,
236]. In the study of Mojumdar et al. (2016), it was shown that macro-
phage infiltration was reduced into normal muscle following acute injury
in TLR2 deficiency mice [237]. In addition, Kim et al. demonstrated that
TLR2 contributes to macrophage infiltration in the dorsal root ganglia after
peripheral nerve injury in mice [238]. Such injury-induced TLR2 expression
and activation has therefore been hypothesized to be important for human
health [239, 240, 236|]. Following ischemic injury in mice, TLR2 activation
promotes cell permeability, lymphocyte invasion and endothelial cell mi-
gration and mediates the release of TNF-a and IL-6 [235]. TLR2-deficient
mice have a defective ability to recruit neutrophils to an injured liver and
fail to induce the neutrophil chemokine CXCL-2 [236]. Additionally, TLR2
contributes to chronic liver disease in a mouse model by mediating MAPK
and NF-xB signaling pathways [241]. However, there is little knowledge
of the function of Toll-like receptor signaling in cell migration of myeloid
cells to epithelial wounding sites [242].

MyD88 is an essential adaptor protein for all TLRs, except TLR3 [243,
244]]. MyD88 is responsible for activating downstream signaling through
binding to the TIR domain of TLRs [243} 244]. A few studies have shown
changes in MyD88 expression after tissue injury. Similar to TIr2, the gene
expression of Myd88 is upregulated following ischemic injury in mice [245].
Moreover, the expression of Myd88 and Tlr2 is significantly increased in
diabetic wounded mice [246]]. In addition, indirect evidence indicates
that Myd88 is involved in the modulation of wound healing [247, 248],
but the underlying mechanism is still unclear. Although TLR signaling
is important for chemokine production, little is known about the role of
MyD88 in leukocyte migratory responses to tissue injuries in the absence
of pathogenic infections.

In this paper we use zebrafish larvae as a model for studying leukocyte
cell migration after tail wounding. The zebrafish model has become an
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important vertebrate model for studying human diseases. The small size
and transparency of their larvae are useful characteristics for the screening
and imaging of transgenic reporter lines [249]. Zebrafish larvae are a
popular model for studying functions involved in wound repair [250, 251,
252,253| 254, 255|]. The availability of mutants in Toll-like receptor signaling
genes tlr2 and myd88 make it possible to study their roles in leukocyte
migratory behavior upon tail wounding in zebrafish [256| 257, 258, 252,
255]. TIr2 and Myd88 show a highly conserved structure in mammals
and zebrafish [259]. In a previous study, we demonstrated the conserved
role of tlr2 in zebrafish as a PRR to recognize the mammalian TLR2 ligand
Pam3CSK4, and identified a set of genes that are specifically expressed
genes by activation of the downstream pathway of zebrafish t/r2 [260].

In the present study, live fluorescent imaging was used to investigate the
effect of the t/r2 mutation and the myd88 mutation on leukocyte migration
upon tail wounding. We found reduced numbers of recruited neutrophils
and macrophages at the wounding area in both t/r2 mutants and myd88
mutants, compared to their sibling controls. Leukocyte migration of the
tlr2 and myd88 mutations upon wounding was analyzed using quantitative
analyses of cell migration tracks. Our results demonstrate that the t/r2 and
the myd88 mutations affect distant neutrophil migration upon wounding
by negatively affecting their directional persistence, but not their migration
speed. Not only the directional persistence of distant macrophage was
significantly decreased in the tIr2 and the myd88 mutants, but also their
migration speed. This study shows for the first time that TLR signaling is
directly involved in controlling behavior of cell migration of neutrophils
and macrophages during wounding, stimulating further studies also in
other model systems.

5.2 Materials and methods

5.2.1 Zebrafish maintenance and strain construction

All animal experiments described in this study were performed at the
University of Leiden according to standard protocols (zfin.org) and ad-
hered to the international guidelines specified by the EU Animal Protection
Directive 2010/63/EU. The culture of adult fish was approved by the lo-
cal animal welfare committee (DEC) of the university (License number:
protocol 14,198). No adult zebrafish were sacrificed for this study. All ex-
periments were done on 3 days post fertilization (dpf) fish, therefore prior
to the free-feeding stage and did not fall under animal experimentation
law according to the EU Animal Protection Directive 2010/63/EU. Eggs
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and larvae were grown at 28.5°C in egg water (60 g/ml Instant Ocean sea
salts). For living imaging and tail wounding experiments, 3 dpf larvae were
anesthetized with egg water containing 0.02% buffered 3-aminobenzoic
acid ethyl ester (Tricaine, Sigma-Aldrich, the Netherlands).

The tr2519423 mutant and myd88"3°6¢ mutant lines were identified by
the sequencing of an ENU-mutagenized zebrafish library [257, 258]. Both
homozygous mutants were outcrossed with the double transgenic line
Tg (mpeg1:mCherry-F);TgBAC (mpx: EGFP) [250, 261]]. Subsequently, their
heterozygous offspring with both positive GFP and mCherry fluorescence
were incrossed to produce the homozygous mutants and wild type siblings.
In the present study, the double transgenic lines were used for the quantifi-
cation of cell numbers, recruitment assay upon wounding and leukocyte
living imaging experiment.

To investigate the effect of the t[r2 and the myd88 mutations on leukocyte
development, double fluorescent lines t/r2*/* Tg (mpeg1:mCherry-F);TgBAC
(mpx: EGFP), tIr2"" Tg (mpeg1:mCherry-F);T¢BAC (mpx: EGFP), myd88*/+
Tg (mpeg1:mCherry-F);TgBAC (mpx: EGFP), myd88" Tg (mpeg1:mCherry-
F);TgBAC (mpx: EGFP) were used.

5.2.2 Tail wounding

In the present study, a caudal fin wounding model was applied as previ-
ously described [250, 262, 252]]. 3 dpf tIr2 zebrafish larvae were anesthetized
with egg water containing 0.02% tricaine (Sigma Aldrich). Subsequently,
the caudal fins of larvae were wounded by using a 1 mm sterile sapphire
blade scalpel (World Precision Instruments) on a 2% agarose covered petri-
dish. To avoid damaging the notochord and other tissues of zebrafish
larvae, all of the wounding experiments were performed under a MZ16FA
Fluorescence Stereo Microscope (Leica Microsystems, Wetzlar Germany)
equipped with a DFC420C color camera (Leica Microsystems). After the
wounding, the egg water with 0.02% tricaine was changed with untreated
egg water. Wounded larvae were put back into an incubator at 28.5°C.
Subsequently, the wounded larvae were collected or fixed for follow up
experiments.

5.2.3 Imaging and quantification

For the quantification of the recruited cell number upon wounding, the
double transgenic tIr2 and myd88 larvae were wounded with the method
described before. 1, 2, 4 and 6 hour post wounding (hpw), larvae were
collected and fixed with 4% paraformaldehyde (PFA) in PBS overnight
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at 4°C and washed with PBS the next day. The wounded tail area of
fixed samples from each group were imaged by using a Leica MZ16FA
fluorescence stereo microscope equipped with a DFC420C color camera.
Cells localized within an area of 200 pm from the wounding edge toward
the body trunk were counted as recruited cells. Analysis was performed by
combining three independent experiments.

For detailed cell migration behavior analyses, larvae (3 dpf) were
mounted into 1% low melting point agarose (Sigma Aldrich) with 0.02%
tricaine and imaged under a Leica TCS SP8 confocal microscope (Leica Mi-
crosystems) with a 10x objective (N.A. 0.40). Data were saved as maximum
projection images for further cell counting. The number of neutrophils and
macrophages in the tail region were manually quantified.

5.2.4 Live imaging

All time-lapse imaging was performed on 3 dpf larvae. Larvae for each con-
dition (unchallenged/ wounded) were mounted in the method described
before and visualized in the CLSM with 1 min time interval for 2 h image
capture using a 20x objective (N.A. 0.75). For the cell tracking analysis, all
time-lapse images were saved as maximum projection images.

We first defined the role of t/r2 and myd88 in leukocyte migration under
the unchallenged condition. The caudal hematopoietic tissue (CHT) of dou-
ble transgenic lines was imaged using the CLSM with unchallenged condi-
tion. To investigate the effect of the t/r2 and myd88 mutations on leukocyte
migration upon wounding, the double transgenic line Tg (mpeg1:mCherry-
F);T¢BAC (mpx: EGFP) larvae in the t/r2, myd88 mutant or their wild type
background were wounded and performed for real time imaging from 1
hpw to 3 hpw.

5.2.5 Cell tracking and its quantification

The cell tracking of macrophages and neutrophils was performed manually
by using a manual tracking plug-in from Fiji [263, 264]. To analyze the
behavior of leukocyte tracks more accurately, we defined categories of
distant and local resident cells. Cells localized further than 200 pm from the
cut edge towards the trunk were categorized as distant cells. Cell localized
within a distance of up to 200 pm from the cut toward to the trunk were
categorized as local resident cells.

The distance to the wound, mean speed, net displacement, meandering
index (M.I.), mean square displacement (MSD), cell diffusivity (D), velocity
in anteroposterior direction (V4p) and V4p over time were calculated in
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different groups by manual tracking data. The calculation and explanation
of the parameters are shown in Figure The distance to the wound is
defined as the shortest Euclidean distance to the manually traced wound
edge (Figure ). For the velocity in the anteroposterior direction, tracks
were rotated such that the spines of the larvae were aligned (Figure[5.1B).
Then, for each cell the average velocity in the anteroposterior axis was
calculated. For Vap over time, the Vp of all cells within a group was
averaged over three consecutive time frames. Net displacement, total dis-
placement, meandering index and mean speed are shown in Figure
and Table 5.1] (Egs. [5.1}{5.4). The net displacement is the distance of the
cell between the first and final time frame (Figure[5.1[C), i.e., the Euclidian
distance traveled being: dnet = d (p;, pn) (Table Eq. B.I). The total
displacement is the length of the total cell track, i.e., the sum of the net
displacements between two successive frames (diot = Yy d (pi, Pit1))
(Figure5.1C) (Table Eq.5.2). Cells can reorient between two frames,
such that this measure may underestimate the actual distance traveled.
However, we used the same frame rate of 1 min in all experiments, such
that the results are comparable with one another. Meandering index is most
simply defined as the net distance traveled divided by the total distance

traveled (M.I =drt‘—§:) [265] (Figure ) (Table Eq. . Mean speed is

the total displacement divided by traveled time (v = N.1v;) (Table

Eq.[.4). The MSD at time t was calculated for each group by averaging
the squared displacement from starting time t;=1hpw to time t over all
cells (K) within that group (MSD () = + ¥K, d (pi1, pi1st)?) (Figure )
(Table Eq.[5.5). The MSD curve can be used to distinguish migratory
behaviours such as Brownian walks and persistent random walks, and
analytical expressions for the MSD are known for theoretically ideal ran-
dom walks. For persistent random walkers, the analytical expression for
the MSD is: MSD (t) = 202 tt — 2(v7)? (1 — ) ) (Table5.1} Eq. [p.6),
with v the intrinsic cell velocity and t the persistent time, which can be
fitted to the MSD calculated from cell tracks [158]. The cell diffusivity
constant D and MSD (t) at large t are related through D = 1/2n %P(t),
with n = 2 the dimension, which for persistent random walkers results in
D=1/2v*< (Table Eq. . Regarding the shape of the MSD curve of
our data and the persistent motion reported in leukocyte migration upon
tail wounding [266], we assume that distant neutrophils and macrophages
behave like persistent random walkers during the time span of imaging.
We fit Eq. to the MSD curve (Table Eq. using a non-linear
least squares method. The obtained parameters v and t are then used to
compute the approximated cell diffusivity D. For distant neutrophils, the
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TABLE 5.1: Formulas of calculated track measures and derived measures

Measure Definition

Net displacement (p1m) dnet = d( Pi, PN) (5.1)
Total displacement (um) diot = Z d(pi, pi+1) (5.2)
Meandering index ML = dnet/ diot (5.3)
Mean speed (pm/min) U= ﬁ Ijg;l v; (5.4)
Mean squared displace- MSD (t) = Iii (d (pi1, pi, 1¢))*> (5.5)
ment (um?) i=1

Fitted mean squared dis- MSD (t) = 20% Tt — 2 (vT)* (1 — e%t) (5.6)
placement (pm?)

Cell diffusivity constant D=1/2v*+ (5.7)
(um?/min)

tit was performed on the first 80 min of tracking, for distant macrophages,
the entire 2h tracking period was used.

5.2.6 Statistical analysis

Graphpad Prism software (Version 8.1.1; GraphPad Software, San Diego,
CA, USA) was used for statistical analysis. Computations of distance to the
wound, MSD and V 4p were performed using a Python script including the
SciPy stats library for statistical testing. Shaded regions of MSD and V 4p
over time indicate standard error of mean, the other experiment data are
shown as mean + SD. Statistical significance of differences was determined
by using an unpaired, two-tailed t-test for comparing the difference be-
tween wild type and t/r2 and myd88 mutant. (ns, no significant difference;
*P < 0.05; **P < 0.01; **P < 0.001; ***P < 0.0001).

5.3 Results

5.3.1 TIr2 and myd88 mutations do not affect development and
basal motility of leukocytes.

To determine the leukocyte development in tIr2 and myd88 mutants, the
double-transgenic line tr2** Tg (mpeg1:mCherry-F);T{BAC (mpx: EGFP),
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P, ¢ Distance to the wound

P

FIGURE 5.1: Calculated track measures. (A) Depiction of distance to the
wound. It measured for each frame as the shortest distance from the
cell’s current position to the entire line of the wound, i.e. the orthogonal
projection to the wound. (B) Depiction of V 4p: velocity in anteroposterior
axis direction. The visible part of the spine is taken as the y-axis. (C)
Depiction of the net displacement, total displacement, meandering index
and mean speed: the net displacement is the distance of the cell between
the first and final time frame. Total displacement is the sum of the net dis-
placement between 2 successive frames. Meandering index corresponds
to the net displacement divided by the total displacement and measures
the trajectory straightness. Mean speed is the total displacement divided
by traveled time. Formulas are shown in Table 5.1} (Eqgs. [5.1}5.4). (D)
Depiction of the construction of the mean squared displacement: the
displacement between the first time frame and time frame t from all cells

is squared and averaged, see Table5.1} (Eq.5.5).

e cell 1
A cell2
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tlr27" Tg (mpeg1:mCherry-F);TgBAC (mpx: EGFP), myd88*/* Tg (mpeg1:mCherry-
F);T¢BAC (mpx: EGFP) and myd88” Tg (mpeg1:mCherry-F);T¢BAC (mpx:
EGFP) were constructed. The lines were imaged at 3 dpf to count the num-
ber of macrophages and neutrophils in their tail region, and then compared
with their wild type siblings (Figure[5.2A). Embryos of the tIr2 and myd88
mutants showed similar numbers of macrophages and neutrophils as their
wild type siblings (Figures [5.2B- E). This result is consistent with our previ-
ous studies of the same myd88 mutant at 3 dpf and the t/r2 mutant at 2 dpf
[257,258]. With the aim of investigating the importance of the t/r2 and the
myd88 mutations for leukocyte behavior under unchallenged condition, the
CHT region was analyzed in the double transgenic lines of t/r2 and myd88

FIGURE 5.2 (following page): Quantification of macrophage and neu-
trophil numbers and their basal migratory capability in the 3 dpf tir2
and myd88 mutants and wild sibling controls larvae. (A) Experimental
scheme. At 3 dpf, numbers and basal migratory capability of GFP-labeled
neutrophils and mCherry-labeled macrophages in tail region were quan-
tified using Leica TCS SP8 confocal laser scanning microscopy (CLSM).
Red boxes show the area in which cells were counted or tracked. (B- E)
The quantification of neutrophil and macrophage numbers in tail region
by using tlr2 and myd88 zebrafish larvae. Data (mean + SD) are combined
from three pools of zebrafish larvae. No significant differences (ns) in
the number of neutrophils (B, D) and macrophages (C, E) was detected
with an unpaired, two-tailed t-test. Sample size (n): 28, 32 (B, C); 24,
24 (D, E). (F- G, J- K) Quantification of basal migratory capability in 3
dpf tlr2 zebrafish. The total displacement and mean speed of individual
neutrophils (F, J) and macrophages (G, K) were quantified by using a
manual tracking plugin. Data (mean + SD) are combined from three
experiments of Hr2** Tg (mpeg1:mCherry-F);T¢BAC (mpx: EGFP) and
tlr27" Tg (mpeg1:mCherry-F);TgBAC (mpx: EGFP) larvae. No significant
differences (ns) in the total displacement and mean speed of neutrophils
(E J) and macrophages (G, K) were detected with an unpaired, two-tailed
t-test. Sample size (n): 11, 10 (E J); 22, 16 (G, K). Cell tracking movies are
shown in Supplementary Movie S1-4) (H- I, L- M) Quantification of basal
migratory capability in 3 dpf myd88 zebrafish. The total displacement
and mean speed of individual neutrophils (H, L) and macrophages (I, M)
were quantified by using a manual tracking plugin. Data (mean + SD)
are combined from three experiments of nmyd88*/* Tg (mpeg1:mCherry-
F);T¢BAC (mpx: EGFP) and myd88” Tg (mpeg1:mCherry-F),T{BAC (mpx:
EGFP) larvae. No significant differences (ns) in the total displacement
and mean speed of neutrophils (H, L) and macrophages (I, M) were de-
tected with an unpaired, two-tailed t-test. Sample size (n): 15, 13 (H, L);
31, 31 (I, M). Cell tracking movies are shown in Supplementary Movie
55-8)
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using CLSM by taking time-lapse images (Figure [5.2A). No significant
effect was observed on leukocyte basal motility in the CHT tissue in the tr2
and myd88 mutants compared with their wild type sibling control (Figures
b.2F-M). Representative images are shown in Supplementary Figure
and Supplementary Figure

5.3.2 TIr2 and myd88 regulate neutrophil recruitment to a tail
wound

To study the effect of the tIr2 and myd88 mutations on the recruitment of
neutrophils towards a site of injury, a tail wound method was used in 3 dpf
zebrafish larvae as a model for inflammation. To quantify the number of
recruited neutrophils to the wound, we counted the number of neutrophils
that were located in a range closer than 200 pm from the wound edge of
the tail at 1, 2, 4 and 6 hpw (Figure[5.3A). Our results show that the ¢Ir2
mutation had a significant negative effect on the recruitment of neutrophils
after 2, 4 and 6 hpw (Figures ,C). However, there is no significant
difference in recruited neutrophil numbers between wild type and r27"
at 1 hpw (Figures [5.3B,C). Notably, a significant difference of recruited
neutrophil numbers was already observed at 1 hpw in myd88 zebrafish
larvae and remained significant until 6 hpw (Figure [5.3D,E).

FIGURE 5.3 (following page): The number of neutrophils recruited to
the wounded area in the tIr2 and myd88 mutants and wild type sibling
controls larvae. (A) Experimental scheme. TIr2 and myd88 homozygous
mutants and sibling control larvae were wounded at 3 dpf. Their tails
were wounded to the tip of the notochord. The red dashed line shows the
site of wounding. Recruited neutrophils at the wound were imaged at 1,
2,4 and 6 hpw by using CLSM. For recruited cell counting analysis, cells
localized within an area of 200 pm from the wounding edge toward the
body trunk were counted as recruited cells. The red dashed box shows
the area where neutrophils were counted as recruited neutrophils. (B,
D) Representative images of 3 days dpf larvae at 1, 2, 4 and 6 hours
post-wounding (hpw). Scale bar: 50 pm. (C) Quantification of recruited
neutrophil numbers to the wounded area at 1, 2, 4 and 6 hpw in 3dpf
tHr2*/* and t1r2” larvae. Sample size (n): 45, 46, 82, 72, 74, 68, 50, 50. (E)
Quantification of recruited neutrophil numbers to the wounded area at 1,
2,4 and 6 hpw in 3dpf myd88*/* and myd88” larvae. Sample size (n): 29,
28,37, 38,45, 39, 51, 45. In all cases, statistical analyses were done from
3 independent experiments. An unpaired, two-tailed t-test was used to
assess significance (ns, no significant difference, *P < 0.05, **P < 0.01, ***P
< 0.001) and data are shown as meanz SD.
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5.3.3 TIr2 and myd88 regulate macrophage recruitment to a tail
wound

To assess the role of the t/r2 and myd88 mutations in regulating the recruit-
ment of macrophages to a site of the tail wound, we counted the recruited
macrophage numbers by the same method as for measuring the neutrophil
recruitment to the wound (Figure ). Both tr27" and myd887 mutant
zebrafish larvae displayed diminished macrophage responses upon wound-
ing (Figure 5.4). Significantly decreased numbers of recruited macrophages
toward the injury were measured in the t/r27 group at 2, 4 and 6 hpw
(Figures [5.4B,C). Similarly, there is no significant difference in recruited
macrophage numbers between wild type and t/r27" at 1 hpw (Figure ).
A significant difference of recruited macrophage numbers was already
observed from 1 hpw in myd88 zebrafish larvae, the same as was observed
with neutrophil recruitment (Figures [5.4D,E).

5.3.4 Live imaging reveals that the t/r2 and myd88 mutations af-
fect distant neutrophil directional persistence, but not mi-
gration speed upon tail wounding

To investigate how neutrophils migrate in the absence of t/r2 or myd88
after tail wounding, a time-lapse microscopy experiment was performed

FIGURE 5.4 (following page): The number of macrophages recruited to
the wounded area in the tIr2 and myd88 mutants and wild type sibling
controls larvae. (A) Experimental scheme. Tlr2 and myd88 homozygous
mutants and sibling control larvae were wounded at 3 dpf. Their tails
were wounded to the tip of the notochord. The red dashed line shows the
site of wounding. Recruited macrophages at the wound were imaged at 1,
2, 4 and 6 hpw by using CLSM. For recruited cell counting analysis, cells
localized within an area of 200 pm from the wounding edge toward the
body trunk were counted as recruited cells. The red dashed box shows
the area where macrophages were counted as recruited macrophages. (B,
D) Representative images of 3 days dpf larvae at 1, 2, 4 and 6 hpw. Scale
bar: 50 pm. (C) The quantification of recruited macrophage numbers to
the wounded area at 1, 2, 4 and 6 hpw in 3dpf tlr2*/* and tlr2”7 larvae.
Sample size (n): 45, 45, 82, 71, 69, 68, 51, 50. (E) The quantification of
recruited macrophage numbers to the wounded area at 1, 2, 4 and 6 hpw
in 3dpf myd88** and myd88” larvae. Sample size (n): 35, 34, 40, 43,
56, 42, 60, 58. In all cases, statistical analyses were done with data of 3
independent experiments. An unpaired, two-tailed t-test was used to
assess significance (ns, no significant difference, **P < 0.01, **P < 0.001,
****P < 0.0001) and data are shown as meanz+ SD.
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by using CLSM between 1 hpw to 3 hpw (Figures[5.5/5.6). The definition
of distant and local resident neutrophils was shown in panel A of Figures
and Supplementary Figures Neutrophils located closer than
200pm to the wound were defined as local resident neutrophils and further
than 200pm were defined as distant neutrophils. Measurement of the
distance to the wound over time of all distant neutrophils in the tr27"
group indicated a trend of impaired infiltration towards the wound (Figures
,C up panel). In total, the group of distant neutrophils in the #r2*/*
group that arrived at the wound edge and stayed within a distance of
20 pm to the wound comprises 84 % of a total of 25 tracked neutrophils
(Figure up panel). The local resident neutrophils in this group all
remained at the wound (Figures [5.7B,C up panel). In contrast, the group of
the distant neutrophils in the t/r27" group that arrived at the wound within
2 h time-lapse cell tracking comprises only approximately 36 % (Figures
,C bottom panel). Moreover, approximately 33 % of local resident
neutrophils in the t/r27 group already migrated away from the wound
edge within 3 hpw (Figures[5.7B,C bottom panel).

FIGURE 5.5 (following page): Quantification of distant neutrophils be-
havior in wounded tIr2 mutant and sibling control larvae. (A) Experi-
mental scheme. TIr2*/* and tr2”" larvae were wounded at 3 dpf. The red
dashed line shows the site of wounding. Neutrophils of wounded ze-
brafish larvae were tracked for 2 h and images were taken every 1 min by
using CLSM. For cell tracking analysis, cells localized outside an area of
200 pm from the wounding edge toward the body trunk were counted as
distant cells. Blue dashed box shows the area where distant neutrophils
were tracked. (B) Representative images of distant neutrophil tracks in
the wounded tail fin of 3 dpf tr2*/* or tlr27" larvae at frame 1, frame
60 and frame 120. Time interval between two successive frames is 1
min. Each color track represents an individual neutrophil. Cell tracking
movies are shown in Supplementary Movie S9-10). Scale bar: 50 um. (C)
Distance to the wound. Black dash line represents average distance to
the wound. Each color line represents one cell. (D-I) Quantification of
distant neutrophil tracks. There was no significant difference between
the groups in terms of mean speed (D), net displacement (E) and MSD
(green) and fitted MSD (black) (G). However, meandering index (F) and
mean V4p (H) of neutrophils at the wound in Hr2** is greater than in
tIr27 larvae. The fitted MSD (G, black) was fitted for dt < 80 min. The
shaded regions in MSD (G) and mean V4p over time (I) indicate stan-
dard error of the mean. Statistical analyses were done with 7 and 8 fish
respectively for each group. An unpaired, two-tailed t-test was used to
assess significance (ns, non-significance, *P < 0.05) and data are shown as
meanz+ SD. Sample size (n): 25,22 (D, E, F, H).
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In general, distant neutrophils in the myd88** group showed more
chemotaxis to the wound compared to myd88” neutrophils (Figures ,C).
Approximately 96% distant neutrophils arrived at the wound (within a
distance of 20 pm to the wound) in the myd88** group in total (Figure
up panel). However, only 70% distant neutrophils arrived to the
wound (within a distance of 20 um to the wound) in the myd887 group.
(Figure bottom panel). The local resident neutrophils in this group all
remained at the wound except for a few outliers (Figures ). In summary,
the general trend of distant neutrophils migration in the myd88 mutant and
sibling zebrafish groups was consistent with the result in the t/r2 mutant
and sibling zebrafish groups, respectively (Figure[5.6[C).

To quantify differences in neutrophil migration behavior between tIr2
and myd88 mutants and their wild type siblings, we first analyzed whether
the deficiency of t/r2 and myd88 can affect neutrophil mean migration speed
upon wounding. The results showed that the t/r2 and the myd88 mutations
do not affect the mean speed of both distant and local resident neutrophils

FIGURE 5.6 (following page): Quantification of distant neutrophils be-
havior in wounded myd88 mutant and sibling control larvae. (A) Ex-
perimental scheme. Myd88*/* and myd88” larvae were wounded at 3
dpf. The red dashed line shows the site of wounding. Neutrophils of
wounded myd88 zebrafish larvae were tracked for 2 h and images were
taken every 1 min by using CLSM. For cell tracking analysis, cells lo-
calized outside an area of 200 pm from the wounding edge toward the
body trunk were counted as distant cells. Blue dashed box shows the
area where distant neutrophils were tracked. (B) Representative images
of distant neutrophil tracks in the wounded tail fin of 3 dpf myd88*/+ or
myd88” larvae at frame 1, frame 60 and frame 120. Time interval between
two successive frames is 1 min. Each color track represents an individual
neutrophil. Cell tracking movies are shown in Supplementary Movie
S11-12). Scale bar: 50 um. (C) Distance to the wound. Black dash line
represents average distance to the wound. Each color line represents
one cell. (D-I) Quantification of distant neutrophil tracks. There was no
significant difference between the groups in terms of mean speed (D).
However, the net displacement (E), meandering index (F), ), MSD (green)
and fitted MSD (black) (G) and mean V 4p (H) of neutrophils at the wound
in myd88*/* is greater than in myd88” larvae. The shaded regions MSD
(G) and in mean V 4p over time (I) indicate standard error of the mean.
The fitted MSD (G, black) was fitted for dt < 80 min. Statistical analyses
were done with 6 and 4 fish respectively for each group. An unpaired,
two-tailed t-test was used to assess significance (ns, non-significance, **P
< 0.01) and data are shown as mean+ SD. Sample size (n): 23,10 (D, E, E,
H).
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TABLE 5.2: Persistence time, intrinsic cell velocity and diffusivity ob-
tained by fitting Eq. [5.6/to the MSD curves.

Fitted
D time-
Neutrophils | T (min) v (pm/min) (um?/min) frame
Hr2¥* 6.88+0.23 898+0.12 277 t <80
tHr2 7 3244035 12.80+0.59 265
myd88** 6.83+0.34 1097 +0.22 410
myd88”" 5.04+049 10.334+0.42 269

upon the wounding (Figure [5.5D; Figures [5.6]D; Supplementary Figures
and Supplementary Figures[5.8D).

We also tested the effect of the t/r2 and the myd88 mutations on the
movement direction of neutrophils upon wounding by the quantification
of net displacement, whose definition is shown in Figure and Table
We observed that the net displacement of distant neutrophils had a
decreased trend in the #r27 group compared to the tr2** group (Figure
5.5E). Moreover, cell diffusivity D determined by fitting Eq. 5.6/to the MSD
curve (Table5.1) did not differ much between the t/r27" group and the tr2*/*
group (Figure[5.5G, Table[5.2). A significant decrease in net displacements
was consistently observed in the myd88 mutant group (Figure[5.6). Also,
myd88” neutrophils have lower diffusivity than myd88*/* neutrophils as
measured from fitting Eq. [5.6to the MSD plots (Figure[5.6(G, Table[5.2). As
the cell speed of myd88” neutrophils does not differ from that of myd88*/+
neutrophils (Figure [5.6D), the reduced diffusivity may be due to more
frequent or sharper changes of direction of the myd88” neutrophils. Pre-
liminary results in analysing the angles between consecutive time frames
suggest that the myd88” neutrophils indeed have sharper turns than their
wild type siblings. As neutrophils reach the wound edge, their diffusivity
is limited in space. With the initial distance of the distant neutrophils in
min, the maximum of MSD(t) is expected around 12 X 104um2 /min, which
is also visible in the flattening of the MSD at later time frames. We therefore
limited fitting Eq. [5.6|to the MSD curve to dt < 80.

To further study the effect of the t/r2 and myd88 mutations on the
neutrophil migration direction, we determined the meandering index and
mean V 4p (Figures 5.5FH and Figures 5.6F H). The meandering index and
mean V4p are all significantly decreased in the distant neutrophils of both
tr2”- and myd88”- mutants compared to their wild type sibling controls
(Figures 5.5FH and Figures [5.6FH). However, no significant difference
of meandering index was found in local resident neutrophils of the 127"
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and myd88”" mutants compared to the wild type siblings (Figures and
5.8F). The mean V4p over time qualitatively shows again the impaired
chemotaxis of tlr27" and myd88” neutrophils compared to the t/r2*/* and
myd88+/ " neutrophils, respectively (Figure and Figure ). As more
and more neutrophils approach the wound (Figure [5.5C}5.6), the mean
Vap drops. For almost every time point, mean V 4p of tr2** exceeds mean
Vp of tlr2'/‘(Figure ). Similar results were observed for myd88+/ *and
myd88” distant neutrophils (Figure ).

5.3.5 Live imaging reveals that the t/r2 and myd88 mutations af-
fect distant macrophage migration speed and directional
persistence upon tail wounding

To study the effect of the t/r2 and myd88 mutations on macrophage mi-
gration upon wounding, we compared macrophage behavior with their
wild type siblings. The definition of distant macrophage and local resident
macrophage was shown in panel A of Figures[5.9],[5.10 5.11} and [5.12] Mac-
rophages located closer than 200pm to the wound were defined as local
resident macrophages and further than 200pm were defined as distant mac-
rophages. In contrast to neutrophils, the majority of macrophages do not
reach the wound within the measured time period. By measuring their dis-
tance to the wound over time, we can see a trend that distant macrophages
show less chemotaxis in the 127~ and myd887- mutant groups compared to
their wild type sibling groups (Figures[5.9B,C and Figures[5.10B,C). Within
50 pm to the wound, the local resident macrophages all remained at the
wound in both the t/r2 and myd88 mutants and their wild type sibling
controls (Figures [5.11B,C and Figures [5.12B,C). Within a distance of 200
pm, but outside 50 pm to the wound, local resident macrophages tend to
migrate to the wound direction (Figures[5.11B,C and Figures[5.12B,C).

To quantify differences in macrophage migration behavior between t/r2
and myd88 mutants and their wild type siblings, we first analyzed whether
the deficiency of tlr2 and myd88 can affect macrophage mean migration
speed upon wounding. Following tail wounding, both distant and local
resident macrophages migrate more slowly in the t/r27" and myd88”" mutant
groups than in the wild type sibling controls (Figure [5.9D; Figure [5.10D;
Figure[5.11D; Figure[5.12D).

Subsequently, we studied the directional persistence of macrophage
migration upon wounding. To this end, we quantified the net displacement,
meandering index and mean V 4p in the t/r2 and myd88 mutants and siblings.
The net displacement of the distant macrophages (Table Eq.
was reduced in the t/r27" and myd88” mutants compared to the controls
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FIGURE 5.7: Quantification of localized resident neutrophils behavior
in wounded tlr2 larvae. (A) Experimental scheme. (B) Representative
images of local resident neutrophils tracks in the wounded tail fin of 3 dpf
tr2*/* or tIr2”" larvae at frame 1, frame 60 and frame 120. Cell tracking
movies are shown in Supplementary Movie 517-18). Scale bar: 50 pm.
(C) Distance to the wound. Black dash line represents average distance
to the wound. Each color line represents one cell. (D-I) Quantification of
local resident neutrophil tracks, mean speed (D); net displacement (E);
Meandering index (F); MSD (G). An unpaired, two-tailed t-test was used
to assess significance (ns, non-significance) and data are shown as mean+
SD.
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FIGURE 5.8: Quantification of localized resident neutrophils behavior
in wounded myd88 larvae. (A) Experimental scheme. (B) Representative
images of local resident neutrophils tracks in the wounded tail fin of 3
dpf myd88*"* or myd88” larvae at frame 1, frame 60 and frame 120.
Cell tracking movies are shown in Supplementary Movie 519-20). Scale
bar: 50 pm. (C) Distance to the wound. Black dash line represents
average distance to the wound. Each color line represents one cell. (D-I)
Quantification of local resident neutrophil tracks, mean speed (D); net
displacement (E); Meandering index (F); MSD (G). An unpaired, two-
tailed t-test was used to assess significance (ns, non-significance) and
data are shown as mean= SD.
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ure Figure [5.10E). Furthermore, the meandering index (Table
5.3)

Eq. was also significantly decreased in the 127" and myd88”
groups (Figures [5.9F,H and Figures[5.10), indicating that the decrease in
net displacement was not only due to a reduced speed, but also due to
loss of directionality. This is also supported by the significantly reduction
in mean Vp of distant macrophages in the t/r27" and myd88” groups
(Figures 5.9F,H and Figures [5.10). However, no significant differences in
net displacement were found in local resident t/r2 and myd88 macrophage
groups (Supplementary Figure and Supplementary Figure [5.12).
The trend of mean V 4p over time is similar to the one observed for distant
neutrophils, in that tr2*/* and myd88*/* macrophages have a higher mean
V 4p than tr27 and myd88”" macrophages during the entire tracking period.
The mean V,p of macrophages is positive for a longer period of time
compared to the neutrophils, as the majority of macrophages have not
reached the wound site during the 2h time span.

The differences in speed and directionality also became apparent from
the differences in MSD between the t/r2*/* and myd88*/* distant macro-
phages versus the t/r27- and myd887" distant macrophages (Figures ).

FIGURE 5.9 (following page): Quantification of distant macrophage be-
havior in wounded tIr2 mutant and sibling control larvae. (A) Experi-
mental scheme. TIr2*/* and tlr27" larvae were wounded at 3 dpf. The red
dashed line shows the site of wounding. Macrophages of wounded #/r2
zebrafish larvae were tracked for 2 h and images were taken every 1 min
by using CLSM. For cell tracking analysis, cells localized outside an area
of 200 pm from the wounding edge toward the body trunk were counted
as distant cells. Blue dashed box shows the area where distant macro-
phages were tracked. (B) Representative images of distant macrophage
tracks in the wounded tail fin of 3 dpf tr2*/* or tIr27 larvae at frame 1,
frame 60 and frame 120. Time interval between two successive frames is 1
min. Each color track represents an individual macrophage. Cell tracking
movies are shown in Supplementary Movie 513-14). Scale bar: 50 pm.
(O) Distance to the wound. Black dash line represents average distance
to the wound. Each color line represents one cell. (D-I) Quantification of
distant macrophage tracks. There was a significant difference between
the groups in terms of mean speed (D), net displacement (E), meandering
index (F), ), MSD (red) and fitted MSD (black) (G) and mean V4p (H) of
macrophages. The shaded regions in MSD (G) and mean V 4p over time
(I) indicate standard error of the mean. Statistical analyses were done
with 6 and 8 fish respectively for each group. An unpaired, two-tailed
t-test was used to assess significance (ns, non-significance, *P < 0.05, **P
< 0.01, ***P < 0.0001) and data are shown as mean+ SD. Sample size (n):
23,22 (D, E, E H).
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The MSD (Table Eq. is lower for the t/r27" and myd88’ macro-
phages, which can reflect a speed reduction and/or a lowered directional
persistence. A decreased directional persistence can also be seen through
the shape of the MSD curve. For #r2*/* and myd88*/* distant macrophages,
the MSD curve, especially at short time intervals dt, has a parabolic shape,
indicating straight cell trajectories. For tr27", however, the MSD curve has
a more linear shape, indicating random and non-persistent cell motility.
The persistence time obtained from fitting Eq. confirms this obser-
vation with an order of magnitude lower persistence time for the /127"
macrophages compared to their wild type siblings group (Table[5.3). For
the myd88 groups, the persistence time is of the same order but larger in
myd88” macrophages, which in turn have a lower intrinsic cell velocity
v (Table5.3). Consequently, the cell diffusivity D is also decreased in the
t1r27" and myd88”" macrophage groups compared to the tr2*/* and myd88*/+
macrophage groups. In summary, the data show that both t/r2 and myd88
mutations affect distant macrophage migration speed and directional per-
sistence upon tail wounding.

FIGURE 5.10 (following page): Quantification of distant macrophages
behavior in wounded myd88 mutant and sibling control larvae. (A)
Experimental scheme. Myd88*/* and myd88” larvae were wounded at 3
dpf. The red dashed line shows the site of wounding. Macrophages of
wounded zebrafish larvae were tracked for 2 h and images were taken
every 1 min by using CLSM. For cell tracking analysis, cells localized
outside an area of 200 um from the wounding edge toward the body
trunk were counted as distant cells. Blue dashed box shows the area
where distant macrophages were tracked. (B) Representative images of
distant macrophage tracks in the wounded tail fin of 3 dpf myd88*/* or
myd88” larvae at frame 1, frame 60 and frame 120. Time interval between
two successive frames is 1 min. Each color track represents an individual
macrophage. Cell tracking movies are shown in Supplementary Movie
515-16). Scale bar: 50 pm. (C) Distance to the wound. Black dash line
represents average distance to the wound. Each color line represents
one cell. (D-I) Quantification of distant macrophage tracks. There was
a significant difference between the groups in terms of mean speed (D),
net displacement (E), meandering index (F), MSD (red) and fitted MSD
(black) (G) and mean V 4p (H) of macrophages. Statistical analyses were
done with 6 and 5 fish respectively for each group. The shaded regions
in MSD (G) and mean V4p over time (I) indicate standard error of the
mean. An unpaired, two-tailed t-test was used to assess significance (ns,
non-significance, *P < 0.05, **P < 0.01, ***P < 0.0001) and data are shown
as mean+ SD. Sample size (n): 32,26 (D, E, F, H).
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TABLE 5.3: Persistence time, intrinsic cell velocity and diffusivity ob-
tained by fitting Eq. [5.6|to the MSD curves of distance macrophages.

Fitted
D time-
Macrophages | 7 (min) v (pm/min) (um?/min) frame
tHr2** 2083+0.87 356+0.04 132 t <120
tr27 247 £0.23 551+0.23 38
myd88++ 6138 +3.81  3.04+0.03 284
myd88” 104.36 £14.35 2.0640.03 221
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FIGURE 5.11: Quantification of localized resident macrophages behav-
ior in wounded tIr2 larvae. (A) Experimental scheme. (B) Representa-
tive images of local resident macrophages tracks in the wounded tail
fin of 3 dpf t1r2*/* or tIr2” larvae at frame 1, frame 60 and frame 120.
Cell tracking movies are shown in Supplementary Movie 521-22). Scale
bar: 50 um. (C) Distance to the wound. Black dash line represents av-
erage distance to the wound. Each color line represents one cell. (D-I)
Quantification of local resident macrophage tracks, mean speed (D); net
displacement (E); Meandering index (F); MSD (G). An unpaired, two-
tailed t-test was used to assess significance (ns, non-significance) and
data are shown as mean= SD.
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FIGURE 5.12: Quantification of localized resident macrophages behav-
ior in wounded myd88 larvae. (A) Experimental scheme. (B) Represen-
tative images of local resident macrophages tracks in the wounded tail
fin of 3 dpf myd88*/* or myd88”" larvae at frame 1, frame 60 and frame
120. Scale bar: 50 um. (C) Distance to the wound. Black dash line rep-
resents average distance to the wound. Each color line represents one
cell. Cell tracking movies are shown in Supplementary Movie 523-24).
(D-I) Quantification of local resident macrophage tracks, mean speed
(D); net displacement (E); Meandering index (F); MSD (G). An unpaired,
two-tailed t-test was used to assess significance (ns, non-significance)
and data are shown as meanz+ SD.
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5.4 Discussion

In this study we visualized cell migration in t/r2 and myd88 mutants using
live-imaging in a zebrafish tail wounding model. Thereby we demon-
strated that these genes play a crucial role to control the migration of both
neutrophils and macrophages upon tissue wounding. Like in mammals,
neutrophils and macrophages play a dominant role in the wounding re-
sponse during the first several hours after zebrafish tail fin wounding [267,
215,252]. In mice, it has been shown previously that TLR signaling plays a
role in controlling infiltration of neutrophils and macrophages into injured
tissue [233, 234} 235, 236]]. The function of TLR signaling in migration to
epithelial wounds has only been studied so far in zebrafish larvae [242].
This study found that knock-down of myd88 by morpholinos impairs the
infiltration of neutrophils into the wound area, but the mechanisms un-
derlying such reduced wound infiltration remained unknown. By using
double transgenic lines, here we show that t/r2 and myd88§ are both es-
sential for directed migration of distant neutrophils and macrophages to
the wounded tissue. The meandering index (Figure[5.1|and Table[5.1] Eq.
of distant neutrophils and macrophages was significantly decreased
in tlr2 and myd88 mutant larvae compared with wild type sibling control
groups (Figures[5.5F, [5.6]F, and [5.10F). Moreover, the migration speed
of distant and local resident macrophages was decreased upon wounding
in the tr2 and myd88 mutants (Figures and [.10D; Supplementary
Figures[5.1TpD and [5.12bD), but not in unchallenged larvae. Taken together,
these data suggest that TLR signaling is implicated in the sensitivity to
signaling molecules secreted by the wound, explaining why less infiltration
of neutrophils and macrophages is observed in tail wounds of the t/r2 and
myd88 mutants (Figure [5.13).

The difference in directional persistence of the distant neutrophils and
macrophages in the mutant shows already within 3 hours post wounding,
suggesting that TLR signaling is involved in direct sensing of signals from
the wound at the post-transcriptional level. However, since TLRs have
not been implied in sensing meandering gradients, we assume that this
function involves other receptors. Tlr2 has been shown to be essential for
the regulation of cytokines and chemokines expression in both mice and
zebrafish [236, [258]. For instance, we have shown that t[r2 mutant shows
a significant lower expression of cxcl11aa and also of a related chemokine,
cxclllac, during mycobacterial infection. The CXCR3-CXCL11 chemokine-
signaling axis has been demonstrated to play an essential role not only
in infection process and but also in inflammation process by regulating
leukocyte trafficking [264, 255]]. It is possible that an insufficient level of
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FIGURE 5.13: Graphic summary of the data of cell migration behavior
in the tIr2 and myd88 mutants and wild type siblings. (A) Cell migra-
tion behavior in the wild type siblings. (B) Cell migration behavior in the
tlr2 mutant. (C) Cell migration behavior in the myd88 mutant. In all cases,
the green and red tracks are representative for the medians of the mea-
sured total displacements and net displacements in the anteroposterior
axis of distant neutrophils and macrophages, respectively. The number
of drawn leukocytes at the wound are only representing estimates of the
relative numbers in the different genotypes. For the wild type sibling the
tr2*/* sibling was used as an example (A).



152 Chapter 5. Function of TLR2 and MyDS88 in leukocyte migration

basal transcripts for chemokines at the time of wounding is responsible for
the observed defects in leukocyte migration behavior. It is also possible
that DAMPs released by dead cells around the wound do not lead to
secretion of chemokines in the absence of TLR signaling. DAMPs are well
known for activating PRRs and then activating downstream chemokines
and cytokines secretion [224]. Molecules that can function as DAMPs
and associated recognition factors during tissue injury such as hyaluronic
acid and HMGBI, have been shown to be directly recognized by TLRs in
tissues [268) 229, 269]. Chemokines can be produced by leukocytes which
are exposed to reactive oxygen species (ROS) produced by injury [270,
213]. Moreover, previous studies have demonstrated that ROS are required
for leukocyte recruitment upon wounding in the zebrafish larval model
showing its function in long range chemotaxis to arachidonic acid [251}
254]. It has been demonstrated that the generation of ROS is related to TLR
signaling in inflammation and tissue injury [271]]. For example, Shishido et
al. found that TLR2 mediates the generation of ROS after vascular injury
([272]. Thus, it is possible that the generation of ROS may be decreased in
tlr2 and myd88 mutant zebrafish larvae.

To study the mechanistic basis of the differences in cell migratory be-
havior, mathematical and computational models can also provide insights.
Chemokine and ROS gradients can easily be modelled by partial differen-
tial equations (PDEs). These can also be incorporated into a cell chemotaxis
models, such as random walk models, phase field models, or the Cellular
Potts model, with varying degrees of cell resolution, to study the chemo-
taxis of leukocytes. Such models could provide quantitative insights into
how chemokine and ROS gradients affect the migration behavior of the
leukocytes, and how the cells change these gradients by binding or se-
cretion of chemokines or absorption and metabolizing ROS [273] which
is known to affect the robustness of chemotaxis [274]. Using Bayesian
inference on tracking data, one can infer a number of chemotaxis parame-
ters, such as the flow rate, diffusion coefficient and production time of the
chemoattractant [275]]. Furthermore, simulated tracks can be compared to
experimentally derived tracks. Altogether, such quantitative approaches
in close interaction with new experiments could help demonstrate that
the chemokine or ROS gradients are affected by the t/r2 and myd88 mu-
tations. For such experiments we will need larger data sets than were
currently obtained. This was partially due to the limitations of manual
cell tracking. Therefore, in follow-up experiments with larger datasets, the
tracking needs to be automated by using automatic tracking algorithms
[276,277,278]. Currently, the Viterbi algorithm [278] cannot fully track the
complex leukocyte cell behaviors: as cell are disappearing and appearing
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in the tracking method, this leads to gaps in the time series images. Further
optimization of this algorithm can result in the desired quantification of
larger data sets.

Better theoretical cell migration analysis methods will also be useful for
studying subsequent phases of the inflammatory response after wounding
[213]]. This can assist us in future studies focused on examining the involve-
ment of the TLR signaling in neutrophil reverse migration and in the repair
of wounded tissue. Previously we have reported that myd88 mutant larvae
that were raised under germ-free conditions show increased macrophage
and decreased neutrophil numbers in the gut [279]. This indicates that the
function of TLR signaling in leukocyte migration is dependent on the gut
microbiota. It will be highly interesting to test whether the response of
leukocytes to tail wounding is also dependent on the microbiome.
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Chapter 6

Discussion

In this chapter, we will first summarize the results described in the previous
chapters of this thesis. After that, we discuss future directions in the field
of cell migration modeling.

6.1 Summarizing discussion

In Chapter 2, we presented ZebraGEM 2.0, an improved whole-genome
scale metabolic reconstruction for zebrafish. Compared to the previous
version of ZebraGEM [34], ZebraGEM 2.0 has been extended with the
oxidative phosphorylation pathway, Gene-Protein-Reaction assocations
and a more realistic biomass function. Due to the Gene-Protein-Reaction
associations, it can now be used for knock-out studies, respiration experi-
ments, and prediction of minimal feed, of which we have shown several
examples. Furthermore, we analysed changes in metabolism upon Mycobac-
terium marinum infection by integrating gene expression data of control
and Mycobacterium marinum infected zebrafish larvae. The model predicts
a lowered growth rate and reduced histidine metabolism for the infected
larvae. The biosignature of reduced histidine metabolism is also seen in
other studies on human patients, mice and zebrafish [280, 281]]. Overall,
this improved model can be used to predict changes in zebrafish meta-
bolism in other experimental conditions based on expression data, which
can point out specific pathways, reactions or metabolites to further study
experimentally. Moreover, the model can be used as a reference framework
for interpreting omics data, for example, by showing RNAseq data on the
metabolic network structure [282].

In Chapter 3, we studied the influence of cell-matrix adhesions on
lymphocyte cell motility type. The type of motility is important for lympho-
cytes, as motility types differ in their effectiveness as immunosurveillance
behaviour. In this chapter, we proposed an extension of the Act model [73]
with cell-substrate adhesions to model lymphocyte motility. The model
includes the adhesions between cell and extracellular matrix and contains
four processes of adhesion dynamics: 1) de novo adhesion formation at the
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actin-rich leading edge of the cell, 2) expansion of already existing adhesion
patches, 3) spontaneous detachment of adhesions, and 4) adhesions break-
ing as the cell retracts. By increasing de novo adhesion formation, as well as
the energy required to break adhesions, cell speed and cell persistence drop,
and further increase results in pivoting behaviour, which is also observed
in B-lymphocytes with sustained attachment areas [143]. However, the
addition of these four processes fails to explain floating cells with no or few
adhesions that are unable to migrate efficiently. Hence, we extended the
model by including an extra feedback from the total adhesion area to the
effectiveness of propulsion. Including this feedback, the model can display
low motility at low total adhesion areas as well as stop-and-go motility
types at sligthly higher de novo adhesion formation rates. Finally, we also
saw that the ratio between the de novo adhesion formation and expansion
of adhesion patches influences the spatial distribution of adhesions and the
persistence of migration: cells with mainly small adhesion at the leading
edge are more persistent than cells with a single or few larger adhesion
patches near the cell center or rear. All in all, the behaviour captured by
this model is very rich and is comparable to behaviours seen in differ-
ent types of lymphocytes. Furthermore, the model show that parameter
values regarding de novo adhesion formation, adhesion patch expansion
and strength of the adhesion affect motility type. The molecular processes
that underlie these parameters, such as which integrins are expressed and
where they localize, or the strength of the matrix-integrin bond, could be
studied experimentally to see if they result in the motility types predicted
by the model. Such studies could deepen our understanding of how molec-
ular defects in the interactions between immune cells and the ECM, e.g., in
multiple myeloma [143] or inherited immune disease, eventually lead to
altered immune cell migration and immunity defects.

In Chapter[4, we used the Cellular Potts model (CPM) to study why cells
are efficient at performing topotaxis. Previous work on active Brownian
particles (ABPs) has shown that part of the topotaxis effect can be explained
by reduced cell persistence in denser pillar grids [75]. However, the active
Brownian particle model cannot explain the extent to which Dictyostelium
discoideum cells perform topotaxis. Using two different methods to model
persistent cell motion, we fill in the gap between active Brownian particles
and Dictyostelium discoideum. One method implements a persistent random
walker model into the CPM and can be viewed as an ABP model with
deformable volume. The other method, the Act model, phenomenolog-
ically models actin polymerization [73]]. Both methods resulted in more
efficient topotaxis than ABPs, so deformable volume makes cells more effi-
cient at topotaxis. Furthermore, the actin-based method showed inhibition
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of locomotion upon colliding with pillars, and reoriented in a different
direction than the ABP-based method. This active reorientation leads to
even more efficient topotaxis. We conclude that, for biological cells, cell
volume and active reorientation enhance the persistence driven topotaxis
already predicted by the ABP model. We can further use this model to
explore more cell-steering grid properties, such as alternative pillar shapes
or pillar adhesivity patterns, for applications in tissue engineering. More-
over, studying this model setup provides us with insight in cell motility in
environment crowded by ECM and other cells, and, together with Chapter
allows us to explore how the cellular microenvironment can influence
the direction and type of cell motility.

After mathematical of modelling cell motility, we turn to analyzing cell
tracks of leukocytes in in vivo zebrafish in Chapter 5| Here, we studied the
role of TLR2 and MYD8S8, both part of the TLR-signalling cascade, on leuko-
cyte migration upon tail wounding in zebrafish larvae. Neutrophils and
macrophages of both /127" larvae and myd88” larvae were compared with
those of wildtype siblings. There was no difference in number of leuko-
cytes and leukocyte basal migration between unchallenged mutant and
wildtype larvae. However, upon tail-wounding, both t/r27 and myd88"
larvae showed less recruitment of neutrophils and macrophages at 2 to 6
hours post wounding than their wildtype siblings. We further analysed
cell track data of cells distant from the wound to study how leukocyte
migration is changed in the mutants. Besides analyzing the speed, net
displacement and meandering index, we also analyzed the mean velocity
towards the tail end and the mean squared displacement from which we
derived persistence times. For distant neutrophils there was no difference
in speed, but the directional movement toward the wound and persistence
of motility were reduced in the mutants compared to wild type neutrophils.
For macrophages, there was a similar difference in directionality, but on
top of that, the t/r27 and myd88” macrophages had lowered speed. From
this extensive cell track analysis, we conclude that TLR2 and MYDS88 play
a role in the directionality of leukocyte migration upon wounding.

6.2 Future work

6.2.1 Combining signals in cell migration

In this thesis, we came across a number of cues that guide cells or influence
cell motility, as seen in Chapters|3|and {4} Cells in vivo encounter many of
these cues at the same time. There have been some efforts in understanding
combined cues. Li et al. used a 3D model of breast cancer cell migration
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with interstitial fluid flow, autochemotaxis and ECM fibres to study how
these cues are combined in cell motion [283]]. They showed that the flow
of self-secreted chemoattractant and the alignment of the ECM fibres with
the fluid flow resulted in synergistic motility: cell displacement was higher
when fluid flow and ECM alignment with fluid flow were increased to-
gether than the sum of cell displacement when only one of the two effects
(increased fluid flow; increased ECM alignment with fluid flow) were ap-
plied. In an experimental topotaxis setup, the effects of chemotaxis and
topotaxis on directed migration of Dictyostelium discoideum were studied
[74]. Here, the sum of drift in the case of aligned chemotaxis and topotaxis
and in the case of opposed chemotaxis and topotaxis is equal to twice the
drift of topotaxis. Thus, the chemotactic and topotactic drifts can be added
up vectorially. We still need more insight in how cues work together to be
able to grasp cell motility in vivo. Model studies can aid in this endeavour
by explicitly integrating multiple cues at the same time. An interesting
aspect to study here is the interplay of the molecular machinery of cell
locomotion and the different signalling cues.

6.2.2 A stroll in the cellular landscape

Aside from the chemical signaling in chemotaxis and haptotaxis, more stud-
ies now also focus on the structure of the environment. While cells move
through a tissue, they encounter non-motile cells, ECM, interstitial fluid,
which vary through different tissues; bone tissue is structured differently
from lymph nodes. In seperate models from Hecht et al. and Tweedy et
al. [284, 285] chemotaxing cells within a maze were studied and both mod-
els showed that the interplay between chemotaxis and the environmental
structure can result in directional cues. In the model from Hecht et al.,
cells could get stuck in a dead end of a maze which was permeable for a
chemoattractant. Secretion of a chemorepellant which could not penetrate
through the maze walls could resolve this. In the model of Tweedy et
al., cells rapidly consumed the chemoattractant, guiding the cells away
from chemoattractant depleted dead ends. Both studies contribute to the
questions that arise: to what extent is cell motility shaped by the structural
organization of the environment? And how can we find out about that? In
the example of synergy between autochemotaxis, fluid flow and aligned
ECM fibres [283], the model was used to test the different combinations of
fibre and flow alignment and showed that they have a synergistic effect
on directed cell motility. To extract this information from in vivo or in vitro
experiments is a lot harder. The lack of knowledge on the exact shape of the
environment could then skew the perceived effectiveness of chemotaxis.
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Another example of where knowledge of the shape of the environment
plays a role in interpretation of cell motility is a recent study on T cell
motility in liver [286]. Cell tracking data showed that these T cells dis-
play superdiffusive behaviour, which is often associated with Lévy walks
and optimal fouraging. However, the data lacked the infrequent large
displacements, which are a key characteristic of Lévy walks. They hy-
pothesized that T cells performed Brownian random walks, but that the
channeled structure of the liver shaped their motion such that it became
superdiffusive. To test this, they extracted the liver structure from imaging
data and modeled the motion of Brownian walkers inside this structure.
This sufficed to reproduce the superdiffusive behaviour, confirming their
hypothesis that liver structure shapes cell motility.

A study combining modeling and imaging showed that the crowded
environment of the lymph node plays a dominant role in T cell motion
[72]. Both liver and lymph node show limited space for the cell to move
in. This brings us to the point of the dimensionality of 3D environments.
Obstacles in the form of cells, cell layers and ECM fibres can reduce the
3D space to 2D or 1D space for cells to move in. Some of this structure is
immutable, such as mineralized ECM in bones, but cells can also alter parts
of this structure; they can degrade or rearrange the ECM. Understanding
the interplay between immutable and mutable structures in cell migration
is useful for further understanding of immune cell patrolling as well as
immune cell penetration in tissues such as tumours and granulomas.

6.2.3 Exchange between in vivo and in vitro motility parameters

The previous paragraphs point to a discrepancy between observed motility
and the inherent motility. This also makes it hard to directly translate
motility parameters between in vivo and in vitro data. Currently, Bayesian
inference methods are being used to extract data on chemotaxis fields from
cell track data from the lymph node [275]. However, the underlying model
does not take the spatial structure of the lymph node into account. This
could result in wrong estimates of the inferred chemotaxis fields or motility
parameters.

Incorrect estimates often bring novel insights. In Chapter[d}, we matched
the CPM parameters such that our modeled cells had the same motility as
Dictyostelium cells on a 2D substrate. The subsequent topotaxis experiments
showed a discrepancy in speed between the Dictoystelium cells and the
simulated cells. This teaches us that our model still lacks some elements
that do play a role in the experiment. This points to further research on what
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those elements are and, in the long run, contributes to our understanding
of cell motion.

In Chapter 4, we used a simple hill-climbing algorithm to optimize
two parameters to obtain experimental cell motion. In this case it was a
straightforward answer to a straightforward question. However, the role
of machine learning in this field is currently growing [287, |288]. When we
want to increase the accuracy of inference methods, we must turn to more
detailed models, which inevitably come with more parameters. Machine
learning can aid in exploring the right areas of parameter space. Vice versa,
computational modeling can also aid in quantifying the uncertainties in
parameter estimations from in vivo or in silico data, by generating training
and test data sets [288]].

6.2.4 Patroling and more: other tasks of immune cells

So far, we have mainly discussed cell motility. However, cell migration is
of course only a small aspect of the complex behaviour of cells. Leukocytes,
such as neutrophils and macrophages play a role in clearing out pathogens,
and hence, must also direct part of their energy to digestion of pathogens.
Furthermore, they also relay and amplify their own recruitment by produc-
ing cytokine and chemokines, which also requires a portion of their energy.
Hence, we can view the different tasks they have to fulfill from a metabolic
viewpoint.

When we want to understand the possible trade-offs in immune cell
motility, pathogen clearance and cell signaling, we can of course make use
of multiscale models. Integrating metabolism in motility models such as the
CPM or other agent-based modeling frameworks allows us test hypotheses
on infection clearance on a tissue scale. Recent work by Graudenzi et al.
combined the CPM and FBA framework by computing the growth rate for
indivual cells in the CPM using FBA [289]. We can also think of combining
constraint-based metabolic models with the CPM through the Hamiltonian
of the CPM. We can compute the energy available for movement depending
on the leukocyte state (migrating, phagocytizing, or signalling) and use
that energy budget for energetically unfavourable moves, instead of the
Boltzmann probability.

Advancements in single cell experimental techniques help in this ap-
proach. Sequencing data of isolated cells can function as a basis for the
metabolic component of these models. Data from cells known to be in
different states, such as infection state, or recruited /recruiting, would be of
great value here.
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Overall, this thesis presents a number of models that can be used as
building blocks for multiscale modeling, where combining metabolism and
cell migration models can give us further insight in how immune cells fight
infections.
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Samenvatting

Om infecties te bestrijden, gaat het lichaam hard aan het werk: het maakt
ontstekingstoffen aan, verhoogt de lichaamstemperatuur, en de immuuncel-
len sporen de infectie op. In dit proefschrift onderzoeken we metabolisme
tijdens een infectie, en de beweging en navigatie van immuuncellen. Hier-
voor ontwikkelen we wiskundige en computationele modellen.

In hoofdstuk 2| bestuderen we het metabolisme van zebravissen die
geinfecteerd zijn met Mycobacterium marinum, verwant aan de tuberculose-
bacterie. Hiervoor verbeteren we een gepubliceerde netwerkreconstructie
op genoomschaal van zebravismetabolisme, genaamd ZebraGEM. Naast
verbeteringen in de pathways in het netwerk is een belangrijke verbete-
ring in ZebraGEM 2.0 de toevoeging van Gen-Proteine-Reactie-associaties
(GPRs). Deze GPRs koppelen de enzymatische reacties in het netwerk met
de genen die coderen voor dat enzym. Dit maakt het mogelijk te voorspel-
len hoe de metabole routes veranderen onder invloed van gen-knockouts.
In 9% van de gen-knockouts voorspelt het model een afwijkende groei.
Van deze knock-outs heeft 15% ook een afwijkend fenotype in experimen-
tele studies. Bovendien hebben alle suboptimaal groeiende genknockouts
een menselijke homoloog gelinkt aan een metabole ziekte. De GPRs stel-
len ons ook in staat om kwantitatieve genexpressiedata in het model te
integreren door reacties met lage expressie van enzymgenen te begren-
zen. Hiermee voorspellen we wat het zebravismetabolisme doet onder
controle-omstandigheden en bij infectie met Mycobacterium marinum. Het
model voorspelt dat geinfecteerde larven langzamer groeien. Daarnaast
wordt voor geinfecteerde larven van vier dagen oud ook nog een verlaagd
histidinemetabolisme voorspeld, wat in overeenstemt met experimentele
observaties in zebravis.

Het uiteindelijke opruimen van een infectie gebeurt door immuuncel-
len. De volgende hoofdstukken gaan over de bewegingen en navigatie
van immuuncellen. In hoofdstuk [8londerzoeken we hoe de extracellulaire
matrix, het netwerk van structurele eiwitten die veel van onze cellen om-
ringen, de beweging van de immuuncellen beinvloedt. Hiervoor breiden
we een bestaande model voor persistente celbeweging uit met hechting
van de cellen aan de matrix. Het model kan meerdere soorten beweging
vertonen, grofweg in te delen in een toevalsbeweging met korte of lange
persistentietijden (hoelang een cel dezelfde richting aanhoudt), of een be-
weging van vastgeplakte cellen die om hun aanhectingsplek pivoteren en
uiteindelijk maar een klein gebiedje verkennen. Op korte tijdschalen zien
we ook nog spurts waar de cellen voldoende grip op de ondergrond hebben
afgewisseld met het verlies van grip en snelheid. Al met al wijst het model
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erop dat de dynamiek van adhesie tussen de cellen en de omgeving de
snelheid en persistentie van de celbeweging reguleert.

In hoofdstuk onderzoeken we het fenomeen topotaxis, waar de vorm
van de omgeving de cellen stuurt. Een zo'n sturende omgevingvorm is
de dichtheid van obstakels, zoals andere cellen of extracellulaire matrix.
Een modelomgeving hiervoor is een pilarenrooster waartussen cellen be-
wegen. Om het effect van obstakeldichtheid op celbeweging te bestuderen,
laten we de dichtheid van de pilaren afnemen van links naar rechts. Als
model voor immuuncellen gebruiken we Dictyostelium discoideum cellen,
een amoebe die op vergelijkbare wijze beweegt als immuuncellen, maar
eenvoudiger is om te kweken. Eerdere studies naar D. discoideum-cellen
in zo’n rooster wezen uit dat de cellen gemiddeld gezien naar het minder
dichte deel van het rooster bewegen, oftewel, de cellen vertonen topotaxis.
D. discoideum-cellen bewegen persistent: ze blijven een tijd lang in dezelfde
richting bewegen. Een eerder model van persistent bewegende deeltjes
wees uit dat het verlies van persistentie bij een botsing een deel van de
topotaxis kan verklaren. Echter, deze deeltjes hadden wel zwakkere topo-
taxis dan de cellen. Het Cellular Potts model (CPM) is een realistischer
model voor D. discoideum-cellen dan het deeltjesmodel omdat het rekening
houdt met de vervormbaarheid van de cellen. We verkrijgen op twee ver-
schillende wijzen persistente cellen: de een op dezelfde wijze als het model
van persistent bewegende deeltjes, de ander een variant van het CPM die
de amoeboide beweging van immuuncellen en Dictyostelium cellen goed
blijkt te benaderen. Eerst fitten we de modelparameters om celbeweging
met dezelfde snelheid en persistentie als gemeten in D. discoideum-cellen
te kunnen simuleren. Beide persistentiemodellen vertonen topotaxis, het
eerste model 1-2% van de celbeweging. Het tweede model vertoont efficién-
tere topotaxis met 3-6% van de celbeweging en benadert de experimenteel
data van D. discoideum-cellen van 2,5-4% beter. Uit verdere analyse blijkt
die efficiéntere topotaxis te komen doordat gesimuleerde cellen met het
tweede model bij een botsing een groter verlies van persistentie kennen en
zich sneller heroriénteren.

Na infectie of verwonding worden macrofagen en neutrofielen aange-
trokken door de geinfecteerde of verwonde plek via signaalmoleculen. In
hoofdstuk [5|bestuderen we de paden van macrofagen en neutrofielen in
zebravislarven na het amputeren van een deel van de staartvin. We kijken
hierbij naar twee mutanten in de TLR2-signaleringspathway die een rol
speelt in de herkenning van lichaamsvreemde stoffen: t/r2 en myd88. De
neutrofielen van wildtypelarven en mutanten verschillen niet in hun be-
wegingssnelheid of afgelegde afstand, maar de neutrofielen van mutanten
bewegen minder gericht naar de wond toe. Voor macrofagen is er ook een
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afname in snelheid en daarbovenop ook nog een verminderde gerichtheid
naar de wond voor de macrofagen van mutanten ten opzichte van wildtype.
De TLR2-signaleringspathway speelt dus een rol in de gerichte beweging in
het wildtype tijdens het rekruteren van immuuncellen tijdens wondheling.

Het proefschrift eindigt met een samenvattende discussie en suggesties
voor toekomstig werk. Hier bespreken we onder andere hoe cellen omgaan
met meerdere omgevingssignalen, zoals chemische en topografische sig-
nalen, het verdere samenspel tussen celbeweging en de celomgeving, de
verschillen en gelijkenissen tussen motiliteitsparameters van cellen in in
vitro experimenten en cellen in levende organismen en het combineren van
metabolismemodellen met het CPM.
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Summary

The body is very active during an infection: it releases inflammatory
compounds, raises the body temperature, and prompts immune cells to
detect the infection. In this thesis, we study metabolism during infection,
as well as the motion and navigation of immune cells. To this end, we
develop mathematical and computational models.

In chapter 2} we study the metabolism of zebrafish larvae infected with
Mycobacterium marinum, a relative of the bacterium that causes tuberculosis.
We improve a published whole-genome metabolic network reconstruc-
tion of zebrafish metabolism, called ZebraGEM. Besides improvements
on the network pathways, the major improvement in ZebraGEM 2.0 is
the addition of Gene-Protein-Reaction associations (GPRs). These GPRs
links the enzymatic reactions in the network to the genes coding for those
enzymes. This makes it possible to predict changes in metabolic routes
under gene knockouts. The model predicts reduced growth in 9% of the
knockouts. From these knockouts, 15% also shows an aberrant phenotype
in experimental studies. Morever, all growth reducing knockouts have a hu-
man homolog associated with metabolic diseases. The GPRs also facilitate
integrating quantitative gene expression data into the model by limiting
reactions with lowly expressed genes. We use this to predict zebrafish
metabolism in control larvae and Mycobacterium marinum-infected larvae.
The model predicts that infected larvae grow more slowly than uninfected
larvae. Furthermore, four day old infected larvae have reduced histidine
metabolism, in agreement with experimental observations.

Infections are cleared by immune cells. The next chapters study the
motility and navigation of immune cells. In chapter 3| we study how the
extracellular matrix, the protein network that surrounds most of our cells,
influences the motility of immune cells. To this end, we extend a published
model for persistent cell motility with the adhesion of cells to the matrix.
The model can display multiple types of motility, which can be roughly
divided into random walks with short or long persistence times (the time a
cell will continue moving in the same direction), or a motility type where
cells are stuck to matrix and pivot around their adhesive patch, and where
the explored area remains small. On short time scales, we also observe
accelerations when the cells have sufficient grip on the substrate alternated
with the loss of grip and speed. Altogether, the model shows that the
dynamics of adhesion between the cell and its surroundings regulate the
speed and persistence of cell motility.

In chapter 4, we study a phenomenon called topotaxis: the shape of
the environment guides the cells. One such environmental cue is the
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density of obstacles such as other cells and extracellular matrix. As a model
for obstacles within a tissue, we use a silicon pillar grid on which cells
move in between the pillars. To study the effect of obstacle density, we
change pillar density from left to right. As a model for motile immune
cells, we study Dictyostelium discoideum cells, an amoeba that moves similar
to immune cells, but can be cultured more easily. Previous studies on D.
discoideum cells in such grids showed that cells drifted, on average, to the
less dense area of the grid, i.e.: the cells perform topotaxis. A previous
model of persistently moving particles showed that the loss of persistence
upon collision can explain topotaxis in part. However, the particles drifted
slower towards the less dense area than observed in cells. The Cellular
Potts model (CPM) is a more realistic model for D. discoideum cells than the
particle model, because it takes the malleability of cells into account. We
model persistent cell motion in two ways: one is similar to the persistently
moving particle model, the other is a variation of the CPM and closely
resembles the amoeboid motion of immune cells and D.discoideum. Both
persistence models perform topotaxis, the first model shows 1-2% of the
cell speed. The second model shows more efficient topotaxis of 3-6% of
cell speed and better resembles the experimental data of D. discoideum
cells of 2.5-4% of cell speed. Further analysis shows that the more efficient
topotaxis can be explained by the cells from the second model losing more
of their persistence upon collision and sooner reorient themselves after
that.

Upon infection or wounding, macrophages and neutrophils are re-
cruited to the infected or wounded site by signalling molecules. In chapter
we study the trajectories of macrophages and neutrophils in zebrafish
larvae upon a tailfin cut. We specifically study two mutants of the TLR2-
signalling pathway which plays a role in recognizing microbial molecules:
tlr2 en myd88. Neutrophils of wild type larvae and mutant have similar
speeds and displacements, but the mutant neutrophils show a less directed
motion towards the wound. Mutant macrophages showed a lower speed
beside a less directed motion towards the wound compared to wild type
macrophages. We conclude that the TLR2 signalling pathway plays a role
in the directed motion in wild type during the recruitment of immune cells
upon wound healing.

The thesis ends with a summarizing discussion and suggestions for
future work. We discuss how cells integrate multiple environmental cues,
such as chemical and topographical signal, the interplay between cell
motion and cell environment, the similarities and differences of motility
parameters between cells of in vitro experiments and cells in live organisms,
and combining metabolic models with the CPM.



189

Dankwoord

Tenslotte rest mij nog de personen te bedanken die mij tijdens dit pro-
motieonderzoek hebben geholpen en ondersteund. Allereerst mijn eerste
promotor Roeland Merks, wie ik het geluk had te ontmoeten tijdens mijn
master. Zonder jouw enthousiasme was ik nooit aan een promotieon-
derzoek begonnen, en had ik het waarschijnlijk ook nooit afgemaakt. Je
vertrouwen, zeker bij het starten met het onderwerp celbeweging, heeft
regelmatig mijn zelfvertrouwen overstegen, maar het daardoor ook doen
groeien.

Mijn andere twee promotores, Herman Spaink en Fons Verbeek, wil ik
ook bedanken. Het was in het begin wel even wennen aan de “professortaal”
van jullie, maar langzaam begon ik te snappen dat het gaat om zoveel
mogelijke verbindingen tussen allerlei zaken waar ik op dat moment nog
geen weet van had. Herman, bedankt voor het noemen van alle biologische
verbanden die in onze gesprekken opborrelden. Door jou heb ik geleerd dat
sommige, mij onbenullig ogende dingen biologisch heel relevant kunnen
zijn. Fons, bedankt voor de bredere blik die jij en je groep hebben laten zien
van wat je allemaal met een computer en biologie kan doen.

I also want to thank Guy Theraulaz, Clément Sire and Loic Dupré.
Your inquisitive remarks have elevated the work beyond what I could
have achieved on my own. Also, thanks for the Toulousian restaurant
recommendations, they were delicious.

Ook wil ik mijn PhD-collega’s bedanken met wie ik heb samengewerkt.
Joeri en Koen, met jullie besmettelijke nieuwsgierigheid werd het werken
aan het pilarenproject een bron van nieuwe spannende onderzoeksvragen.
Wanbin, thank you for our joyful conversations of what we want to learn
from the cell track data that you so diligently obtained by hand.

Daarnaast wil ik ook de schare aan kantoorgenoten bedanken die ik
onderweg in de zes verschillende kamers waar ik gedurende mijn promo-
tieonderzoek heb gezeten heb leren kennen. Dus, Esmée, Koen, Claudiu,
Christian, Robbin, Olfa, Sandro, Roy, David, bedankt voor het oplossen
van bugs, printproblemen en de hulp bij allerhande kleine en grote zaken.
Lief, leed en lunch delen doet een mens goed, en ik heb jullie het afgelopen
jaar dan ook zeer gemist.

En tenslotte wil ik mijn vriend en thuiskantoorgenoot Remie bedanken.
Doordat jij ook aan het promoveren was, heb ik altijd kunnen rekenen
op begrip voor de rare periodes die een promotieonderzoek soms kent.
Bedankt voor het lezen van elke tekst die ik je heb voorgelegd en voor het
zijn van oefenpubliek voor belangrijke presentaties. Zonder jou was het
een minder interessante show geweest.






191

Curriculum Vitae

Leonie van Steijn werd geboren op 26 januari 1991 te Noordwijkerhout.
In 2009 behaalde ze het gymnasiumdiploma met het profiel “Natuur en
Techniek” en “Natuur en Gezondheid” aan het Fioretti College te Lisse. In
2009 was ze onderdeel van de Nederlandse delegatie voor de Internationale
Biologie Olympiade te Japan, waar ze een bronzen medaille behaalde.
Ze volgde de bacheloropleiding Wiskunde met minor Biologie aan de
Universiteit Utrecht en behaalde hiervoor in 2013 haar diploma. Vervolgens
behaalde ze in 2016 een masterdiploma van de opleiding Molecular and
Cellular Life Sciences, eveneens aan de Universiteit Utrecht. Voor deze
master deed ze twee onderzoeksstages: één onder begeleiding van dr.
Rutger Hermsen aan de Universiteit Utrecht over de fixatiekans van een
mutatie binnen een populatie, en één onder begeleiding van prof. dr.
Roeland Merks aan het Centrum Wiskunde & Informatica over de effecten
van antibiotica op de darmflora.

In 2016 begon ze aan promotieonderzoek aan het Mathematisch Insti-
tuut van de Universiteit Leiden onder begeleiding van prof. dr. Roeland
Merks, prof. dr. Herman Spaink en prof. dr. Fons Verbeek. Hier werkte
ze eerst aan het modelleren van zebravismetabolisme, en daarna aan het
modelleren van celbeweging. Eind 2018 bracht ze drie maanden door
aan de Université Paul Sabatier te Toulouse met steun van een Bourse
d’Excellence Descartes van de Franse Ambassade om te werken aan een
model voor lymfocytbeweging. Naast onderzoek heeft ze gedurende haar
PhD ook vakken gedoceerd en geassisteerd, studenten begeleid en haar
werk gepresenteerd op nationale en internationale conferenties.

In de zomer van 2021 begint ze als docent voor de opleiding Molecular
and Biophysical Life Sciences aan de Universiteit Utrecht



	Introduction
	Cell migration and metabolism: linked by infection
	Metabolism
	Cell migration
	Thesis overview

	Predicting metabolism in a metabolic model of Danio rerio
	Introduction
	Methods
	Results
	Discussion
	Supplementary material

	Cell-matrix adhesion affects cell motility mode
	Introduction
	Results
	Discussion
	Methods
	Supporting information

	Topotaxis on silicon and in silico
	Introduction
	Results
	Discussion
	Materials, Methods, and Model

	Function of TLR2 and MyD88 in leukocyte migration
	Introduction
	Materials and methods
	Results
	Discussion

	Discussion
	Summarizing discussion
	Future work

	Bibliography
	Samenvatting
	Summary
	Dankwoord
	Curriculum Vitae

