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a b s t r a c t

Cochlear implants encode speech information by stimulating the auditory nerve with amplitude-
modulated pulse trains. A computer model of the auditory nerve's response to electrical stimulation
can be used to evaluate different approaches to improving CI patients' perception. In this paper a
computationally efficient stochastic and adaptive auditory nerve model was used to investigate full nerve
responses to amplitude-modulated electrical pulse trains. The model was validated for nerve responses
to AM pulse trains via comparison with animal data. The influence of different parameters, such as
adaptation and stochasticity, on long-term adaptation and modulation-following behavior was investi-
gated. Responses to pulse trains with different pulse amplitudes, amplitude modulation frequencies, and
modulation depths were modeled. Rate responses as well as period histograms, Vector Strength and the
fundamental frequency were characterized in different time bins. The response alterations, including
frequency following behavior, observed over the stimulus duration were similar to those seen in animal
experiments. The tested model can be used to predict complete nerve responses to arbitrary input, and
thus to different sound coding strategies.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

To optimally encode speech and music, cochlear implants (CIs)
must transfer cues including pitch, loudness, and fine-structure. A
person's ability to perceive temporal fine structure correlates with
music appreciation and speech understanding, especially in noisy
environments (Lorenzi et al., 2006). In patients with CIs, modula-
tion detection thresholds (MDTs) and temporal modulation trans-
fer function (TMTF) are related to the attained temporal resolution,
and thus to speech understanding and sound quality (Fu, 2002;
Shannon, 1992; Won et al., 2011). Sound coding strategies should
aim for maximal transfer of temporal information from amplitude-
modulated input. In addition to testing in animals and human
subjects such coding strategies can be evaluated using
tion Potential; ARP, absolute
s interleaved sampling; eCAP,
frequency; IH, interval histo-
ection threshold; PH, period
ulus time histogram; RRP,

single-fiber action potential;
tor strength
computational models.
A comprehensive computational model of auditory nerve re-

sponses to electrical pulse trains has been developed in our group
(van Gendt et al., 2016). It can correctly predict the distribution of
single-fiber responses to constant-amplitude pulse trains. This
model incorporates spatial and pulse shape effects, as well as
temporal and stochastic effects. Pulse shape effects are incorpo-
rated in the model by the use of a conductance-based 3D model,
which is coupled to a biophysical neural model to calculate the
deterministic threshold. Temporal effects are influenced through
the threshold, but no direct relationship between pulse shape and
temporal effects is incorporated in the model. Temporal effects
include short-term refractoriness, and the long-term history effects
of adaptation and accommodation. The model is computationally
efficient and can predict full nerve responses to long-duration pulse
trains. Validation of this model was based on experimental mea-
surement of single-fiber action potential (SFAP) responses to
constant-amplitude high-rate pulse trains published in the litera-
ture by qualitative comparison with modeled responses. As a
follow-up to the previous validation of responses to constant-
amplitude pulse trains, in the current study, we investigate the
model's response to amplitude-modulated input. We compare the
nerve's predicted responses to amplitude-modulated input to
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experimental animal single-fiber data.
Modern CI sound processing strategies, such as CIS, encode

sounds' temporal envelope through amplitude modulation (AM) of
the stimulating pulse train. In this process, most information
necessary for pitch perception from firing rate is lost due to enve-
lope extraction. In normal hearing, loudness is encoded by the
number of fibers firing and their firing rates. Such loudness cues are
important in sound perception (Fletcher and Munson, 1933). In
electrical hearing, the dynamic range is severely degraded. The
smaller dynamic range necessitates compression of temporal
amplitude modulations, which are required for speech under-
standing and for appreciation of musical loudness variations.

The proposed model was validated by comparison with previ-
ously published SFAP measures obtained in animal experiments in
response to amplitudemodulated pulse trains. SFAPmeasurements
are a precise tool for investigating different nerve fiber responses
and their variances. A properly validated neural model of long-term
CI stimulation should adequately predict SFAP responses to
continuous amplitude pulse trains. To predict effects of sound
coding strategies relevant for CI processing, the model should also
correctly simulate temporal envelope variations. Such a model
should be further validated by comparison of themodel's responses
to amplitude-modulated pulse trains with physiological data.
Several experimental studies have directly recorded animal audi-
tory nerve responses to amplitude-modulated pulse trains (Hu
et al., 2010; Litvak et al., 2001, 2003a). Hu et al. (2010) used
5000-pps pulse trains of 400-ms duration, modulated with a fre-
quency of 100 Hz and a 10% modulation depth. They used the post
stimulus time histograms (PSTHs) and interval histograms (IHs)
obtained from SFAP measurements to relate the SFAP responses to
the input. Litvak et al. (2001) stimulated the auditory nerve using
pulse trains with a 4800-Hz rate and different amplitudes. The
pulse trains were modulated only in the last part of the signal, with
amodulation frequency of 400 Hz andmodulation depths of 1% and
10%. Litvak et al. (2003b) stimulated cat auditory nerve fibers with
5000-pps pulse trains of up to 10 min in duration, which were
amplitude modulated with different depths (0.5e10%) and fre-
quencies (104e833 Hz) over the pulse train duration. They
demonstrated that the use of high-rate pulse trains improved the
temporal representation of sinusoidal modulation. Rubinstein et al.
(1999) previously showed that a high-rate pulse train would cause
de-synchronization of auditory nerve firing in a biophysical popu-
lation model, thereby increasing the dynamic range and improving
AM representation. If loudness is encoded by synchronization of
firing of a group of fibers, a desynchronized fiber bundle would be
able to slowly increase its synchrony and thus the loudness with
stimulus level. Fibers showed varying responses to high-rate
amplitude-modulated pulse trains. The sensitivity to modulations
varied among fibers and modulation frequencies.

Different types of models are available to predict nerve re-
sponses to electrical stimulation. A major distinction can be made
between the biophysical and phenomenological type of models.
Biophysical models quantitatively describe nerve membrane
behavior in response to an induced membrane current and have
been shown to correctly predict membrane responses to single
pulses and reasonably predict latencies, refraction, and facilitation
effects (Frijns et al., 1994; Frijns and ten Kate, 1994; Reilly et al.,
1985; Schwarz and Eikhof, 1987). These models can be combined
with 3D volume conduction models of the cochlea to predict
auditory nerve responses to electrical pulses as reported by
Kalkman et al. (2015). Phenomenological models directly relate
empirical observations to expected neural output. Such models
have been used to efficiently predict responses to sustained stim-
ulation by direct implementation of stochastic and temporal
behavior (Bruce et al., 1999a, 1999b; Chen and Zhang, 2007;
Goldwyn et al., 2010; Litvak et al., 2003a; Macherey et al., 2007;
Stocks et al., 2002; Xu and Collins, 2007). An overview of
phenomenological auditory nerve models and their responses to
constant amplitude pulse trains is given by Takanen et al. (2016).

A biophysical neural model study by Yang and Woo (2015)
investigated the effect of different parameters on the amplitude
modulation following behavior and reported that with increased
axon diameter the Vector Strength (VS) and fundamental frequency
(F0), or transfer of fine temporal information, improves. Another
biophysical model of a population of auditory nerve fibers has been
used to simulate modulation detection discrimination in patients
(O'Brien et al., 2016). It can predict modulation detection thresholds
(MDTs) in CI users, and how they are related to stimulus intensity
and carrier rate. For the population measures several hundreds of
fibers are simulated. The human auditory nerve consists of around
30.000 fibers, therefore modeling the complete nerve's response
using a biophysical population model requires a tremendous
amount of computational power. Phenomenological models have
also been used to calculate responses to amplitude modulated
electrical input (Campbell et al., 2012; Chen and Zhang, 2007;
Goldwyn et al., 2010; Xu and Collins, 2007). Goldwyn et al. used a
phenomenological approach to a single fiber, a point process
analysis, to characterize neural responses to constant amplitude
and amplitude modulated pulse trains (Goldwyn et al., 2012, 2010).
Their model included a variety of phenomena, including facilitation
and jitter. They showed interval distributions of spikes and VS in
response to amplitude modulated pulse trains with varying mod-
ulation depths and carrier rates qualitatively similar to experi-
mental data. Campbell et al. (2012) used a phenomenological
approach, and included longer temporal components to model
responses to modulated input. In the current study a combined
biophysical and phenomenological approach is used (van Gendt
et al., 2016) to simulate complete auditory nerve responses to
modulated inputs in a computationally efficient manner. Themodel
presented in this paper builds on the previously published 3D
volume conduction model of the cochlea and deterministic cable
model of the human auditory nerve with active GSEF nerve fibers
(Briaire and Frijns, 2005; Frijns et al., 2000; Kalkman et al., 2015).
The deterministic thresholds obtained with that model are
extended with stochastic behavior and history effects.

We investigated phase-locking and frequency-following
behavior using post-stimulus time histograms (PSTH), period his-
tograms (PH), inter-spike interval distributions (ISI), vector
strength (VS), and amplitudes of the fundamental frequency (F0).
We will present the comparison between model simulations and
experimental data in the results section, followed by our inter-
pretation and analysis of the similarities and differences between
simulations and data in terms of model parameters in the discus-
sion section.

2. Materials and methods

2.1. Model

To calculate the deterministic nerve fiber thresholds at 3200
individual nerve fiber trajectories, we used the 3D volume con-
ductionmodel and active nerve fiber model developed in the LUMC
(Kalkman et al., 2015, 2014). This model was then extended with
stochasticity, adaptation, and accommodation, and 10 different
nerve fibers were introduced at each of the spatially different tra-
jectories. Thus, the model effectively incorporated a total of 32,000
different auditory nerve fibers. Each nerve fiber's deterministic
threshold was manipulated with stochasticity, and every nerve fi-
ber was modeled with temporal characteristics. Idet was calculated
using 3D volume conduction simulations and deterministic nerve



Table 1
Overview of parameters in the model.

Parameter Value (±SD)

RS 0.06 (±0.04)
tARP 0.4 (±0.1) ms
tRRP 0.8 (±0.5) ms
Within refractoriness stochasticity 5% of tARP/tRRP
Adaptation amplitude 1.0% (±0.6%) of threshold
Accommodation amplitude 0.03% of stimulus current � spatial factor
tadap 100 ms
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model. Using the RS, the spiking probability can be calculated using
a phenomenological approach, similar to Bruce et al. (1999b). After
each pulse, the stochastic threshold was obtained from the normal
distribution, NðIdet ; SDÞ. For each nerve fiber, stochasticity was
induced by adding a standard deviation to the deterministic
thresholds, which is obtained with the relative spread (RS) as in
equation (1).;

Relative spread : s ¼ Idet $RS (1)

To account for refractoriness these stochastic thresholds were
elevated depending on the time since the last spike relative to re-
fractory period as in equation (2);

Refractoriness : R ¼ 1

1� e
�ðt�tARPÞ

tRRP

; (2)

where tARP and tRRP are the time constants for the absolute and
relative refractory period, and t is the time since the last action
potential. The model includes both firing-dependent adaptation
and stimulus-dependent adaptation, with the latter referred to as
accommodation. Spike adaptation (SA) was included by increasing
the threshold after each spike (eq (3)) and accommodation by
increasing the threshold after each pulse (eq (4)).

Spike Adaptation : SA ¼
X
i

ampladap$e
t�ti
tadap (3)

Accommodation :Acco¼
X
p
0:03%$I$

IminðelectrodeÞ
Iðelectrode;fiberÞ$e

t�tp
tadap (4)

Total model : Iadj ¼ NðIdet ; sÞ$Rþ SAþ Acco (5)

A spike was assumed to occur when: Igiven > Iadj, where Igiven is
the stimulus current.

For each fiber, the stochastic and temporal parameters were
randomly chosen from a pre-defined normal distribution, ensuring
a random distribution of neural properties over the different tra-
jectories. The parameters were obtained frommeasurements of the
SFAP (Bruce et al., 1999b; Javel et al., 1987; Miller et al., 1999) and by
model fitting as described in the previous paper (van Gendt et al.,
2016). An overview of the parameters is given in Table 1.

Deterministic thresholds were obtained for specific pulse
shapes and pulse widths. In the current paper biphasic pulses with
pulse widths per phase of 18ms were used. Details of the model are
described in a previous publication (van Gendt et al., 2016). The
extended temporal and stochastic model was developed in Matlab
(Mathworks, Inc.), the code is available from the authors upon
request.
2.2. Experiments

To validate the model, we compared its predicted responses to
amplitude-modulated pulse trains to the neural responses from
similar pulse trains in experiments performed in cats by Litvak et al.
(2001, 2003a) and Hu et al. (2010). We selected the durations, pulse
rates, modulation frequencies and depths, and relative amplitudes
according to the set-ups in the published animal experiments. Here
we report the following output measures: post-stimulus time his-
tograms (PSTH), period histograms (PH), vector strengths (VS),
fundamental frequency (F0) amplitudes, and inter-spike interval
histograms (IH). All simulations were done by stimulating the
electrode located at roughly 175� from the round window. For the
simulations of a single fiber, the neuron with the index 12000 was
used; fibers are counted from base to apex. This fiber is located
roughly at the same angle, close to the center of the stimulated
electrode. For the group simulations, 80 different fibers evenly
distributed over different spatial locations within the area stimu-
lated by electrode 8 were simulated. In the complete model, the
exact fiber thresholds were influenced by the pulse width of the
stimulus train, because the exact stimulus shapes were used as
inputs to the 3D conduction and biophysical model. The thus
calculated deterministic thresholds were used in the temporal and
stochastic part of the model. It was assumed that the temporal and
stochastic properties of the model's threshold value were inde-
pendent of the pulse width, which was set at 18 ms for all simula-
tions. Biphasic pulses with no inter-phase gap were used. The pulse
width affects threshold; the absolute threshold value is therefore
not directly comparable to animal data. The exact distance from
stimulating electrode to the measured fiber is also not known in
animal data, therefore exact amplitude levels are also not compa-
rable. Furthermore, the parameters for the temporal effects in the
presented model are independent of pulse width; a different pulse
width would change the threshold, but not the relative amplitude
difference related to the temporal effects. The difference in pulse
width between animal experiments and modeled responses is
therefore not relevant. For the presented multiple-fiber data, the
model parameters were set to the values shown in Table 1. For the
comparison with experimental single-fiber data, the simulations
were obtained using average model parameters, unless otherwise
noted. When statistical analysis was performed simulated results
were compared with experimental data obtained by visual in-
spection of high resolution graphs, as were received upon request
from the authors.

2.2.1. Effect of stimulus amplitude
To mimic the experiments performed by Hu et al. (2010), we

utilized AM pulse trains of 400-ms duration, with a rate of 5000
pps. Themodulated amplitudewas calculated as shown in equation
(6), where Au is the unmodulated amplitude, m% is the modulation
depth in percentage and fm is the modulation frequency.

AðtÞ ¼ Au þm%$Au$sinð2pfmtÞ (6)

In the experiments of Hu et al. fm was 100 Hz, and m% was 10%.
Most responses were evaluated in bin-widths of 50 ms. The first
experiment entailed stimulation of a single fiber with two different
amplitudes. To mimic this in the model, we stimulated cochlear
neuron 12000 with stimulus amplitudes of 0.9 mA (supra-
threshold level, causing an average spike rate of 152 spikes/sec over
the duration of 400 ms) and 0.75 mA (near the single-pulse
threshold level, causing an average spike rate of 44 spikes/sec
over the duration of 400 ms). We performed thirty repetitions per
stimulus type, and PSTHs and PHs were obtained using a 0.1-ms
bin-width. Interval histograms were evaluated in 50-ms bins,
resulting in the plotting of five different epochs: 0e50 ms,
50e100 ms, 150e200 ms, 250e300 ms, and 350e400 ms.

The second experiment involved simulating a fiber (again
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cochlear neuron 12000) with parameters set to average values
(Table 1) at stimulation amplitudes yielding initial discharge rates
similar to those in the published animal experiments. Three
different fibers were stimulated to obtain the animal data. The rates
were based on 100 different trials, response rates were averaged
over these trials. For the three different fibers to which the simu-
lations were matched, the initial spike rates were 50, 100, 200, 250,
and 350 spikes/s for one fiber; 50, 125, 325, and 400 spikes/s for the
second fiber; and 160, 225, 300, 425, and 550 spikes/s for the last
fiber. In the simulations, all these three fibers were modeled with
average parameter settings. Output measures included discharge
rates, discharge rate decreases per bin relative to the onset
discharge rate, vector strength, and F0 amplitude, which were all
calculated for each of the eight bins over a duration of 400 ms. The
discharge ratewas calculated from the number of spikes per fiber in
each bin. The degree of adaptation was determined as one minus
the discharge rate relative to the rate in the first bin. Vector
strength is a measure of modulation following behavior (Goldberg
and Brown, 1969), and calculated here as shown in equation (7):

VS ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihX
sinðqiÞ

i2 þ hX
cosðqiÞ

i2r
(7)

In this equation, n is the number of spikes per analysis window,
and qi are the spike latencies within the bin relative to the stimulus
period (between 0 and 2p).

F0 amplitude, taken as the amplitude at the modulation fre-
quency, refers to the fundamental component of the Fourier
transform. For each epoch, the responsewas filteredwith a periodic
Hann window, using the Hann function in Matlab. This was
multiplied with the response (spike rate). The Fourier transform
was then obtained using the fft function. For the Fourier transform
a sampling frequency of 55540 Hz was used, matching the step-size
of the model. The amplitude of the power spectrum at the modu-
lation frequency, at Hu 100 Hz, was extracted as F0. For all three
output measures a regression analysis was performed.

The third experiment investigated the effects of refractoriness,
relative spread, and adaptation. The performed simulation was
similar to the previous experiment, but with variation of the model
parameters under investigation. This was done to investigate the
importance of using a stochastic distribution of model parameters
and to evaluate the effect of the different parameters as well as to
qualitatively get an indication of sensitivity of the responses to
changes in these parameter settings. To match the initial discharge
rates, we applied five different stimulus amplitudes to induce 160,
225, 300, 425, and 550 spikes/s respectively. Here again cochlear
fiber with index 12000 was used for the simulations. To investigate
the effect of refractoriness, we repeated the calculations for one set
of amplitudes with the absolute refractory period (ARP) set to
0.3 ms, and relative refractory period (RRP) set to 0.5 ms. The
simulations were also performed using a relative spread value of
0.02 instead of 0.06. To investigate the effect of a lower adaptation,
we decreased the adaptation amplitude from 1 to 0.6. These vari-
ations were all within one standard deviation of the model pa-
rameter's values, as shown in the Table 1.

In both the second and third experiment statistical analyses
were performed on all three different measures and fibers.
Normalized Root Mean Squared Error (NRMSE) was determined by
calculating the RMS of the difference between modeled and
experimental data and normalizing it by division with the average
experimental value. Generally a low NRMSE belongs to a relatively
good fit of that dataset. To calculate R-squared (R2) modeled data
was plotted versus experimental data and a linear regression line
was fitted; the regression line was forced to pass the origin. The
correlation coefficient, or R, was calculated, with R2 indicating the
amount of explained variance in the predictions. R2 of zero means
no predictive value, and R2 of one means all variance in data is
explained. A repeated measure ANOVA was performed on the
response rates of 2 different fibers to five different amplitudes in 8
temporal bins. The within-subject factors in the repeated measure
ANOVA are model versus measurements and the bin. The between
subject factors are the stimulus amplitude and the fiber. The
dependent variable is the spike rate. The RM ANOVA calculates
whether there is an effect of model versus measurement and of the
bin. No significant effect of model vs bin was found (F9,1 ¼ 1.37,
p ¼ 0.272). As expected, there was a significant effect of bin
(F1.07,9 ¼ 47.149, p ¼ 0.000). Analysis was run in SPSS.

2.2.2. Sensitivity analysis
Two different fibers were modeled with varying parameters for

adaptation amplitude, accommodation amplitude and adaptation
time constant. The spike rates in response to the different ampli-
tudes and at several epochs were compared to experimental data.
Adaptation amplitudes were varied from 0.0 up to 2.0 with a step
size of 0.25, accommodation amplitudes from 0 to 0.06 with a step-
size of 0.01, and time constants of 80, 100 and 120 ms were used.

2.2.3. Group data and parameter distribution
We next determined the responses of groups of fibers. Different

actual fibers showed differences in discharge rates, VS, and F0 (Hu
et al., 2010; Litvak et al., 2001, 2003a); thus, it was important that
the model fibers also represented these differences. The experi-
mental data defined four different sub-groups based on the
discharge ratewithin the first 50-ms epoch: R1 (5e150 spikes/s), R2
(150.1e270 spikes/s), R3 (270.1e400 spikes/s), and R4 (400.1e972
spikes/s). For the group simulations, 80 different fibers evenly
distributed over different spatial locations within the area stimu-
lated by electrode 8 (located 163� to 180�) from the round window)
were simulated, which is of importance because of the incorpora-
tion of the detailed 3D conduction model. Simulations were
repeated 30 times, and plotted results are averaged data over these
trials. The parameters of each fiber were drawn randomly from the
normal distribution presented in Table 1. For each fiber in each
different epoch, we calculated the discharge rate over time, vector
strength, and F0 amplitude. We also calculated the group average
for each of these output measures, as was done in the paper
describing the experimental results. The 80 stimulated fibers were
classified in rate groups R1 to R4 according to the spike rate in the
initial epoch. As above, the NRMSE and the correlation coefficient
R2 were calculated over the average results in the groups per output
measure.

2.2.4. Effects of modulation frequency and depth
Firing rates and vector strengths in response to different mod-

ulation depths were calculated, similar to Goldwyn et al. (2012).
Modulation depths were, similar as in Goldwyn's simulations, set to
0, 1, 2, 5, 10 and 15%. Modulation frequency was 417 Hz, stimulation
rate was 5000pps. Rate and vector strength were determined over
the average of 10 trials, each with a stimulus duration of 0.4 s. VS
was not calculated for non-responders, which were classified by
Litvak et al. as fibers in which rate increased to maximally 100
spikes/sec. Both average model parameters and a manually opti-
mized parameter set were used.

The AM experiments performed by Litvak et al. (2003a,b) were
replicated by stimulating a nerve fiber with a 5000-pps pulse train
for 1 s, with amplitude modulation over the last 400 ms. For each
simulation, 100 trials were performed. The utilized modulation
amplitudes were 0.5, 1, 2.5, 5, and 10%, and the modulation fre-
quencies were 104, 417, and 833 Hz. Equation (6) again gives the
modulated amplitude. Interval histograms were obtained over the
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response to the modulated period of the input. For the interval
histograms and period histograms, the bin-width was 0.2 ms. The
model was used to replicate the experimental PHs and IHs of one
fiber. These simulations were performedwith all model parameters
set to average. The simulations were repeated with varying values
for RS and adaptation amplitude, within one standard deviation of
the model, to determine whether a fiber yielding results more
similar to the animal experiments existed within this distribution.

2.2.5. Modulation onset responses
The effect of modulation onset was simulated with a fiber with

all model parameters set to average. After 50 ms of stimulation,
modulation was started with a modulation frequency of 400 Hz,
similar to Litvak et al. (2001). The amplitude was down-modulated,
as shown in Equation (8).

AðtÞ ¼ Au � 2$%m$Au$sinð2pfmtÞ (8)

such that AðtÞ ¼ Aunmodulated � 2m$sinð2pfmtÞ. The fiber was stim-
ulated in 30 trials over which average rates were calculated. The
results are plotted in the PSTHs with a 5-ms bin-width. The first bin
is not shown in the experimental results due to stimulation arte-
facts, and thus the first bin was also discarded in the simulated
results.

2.2.6. Modulation detection thresholds
Similar to Goldwyn et al. (2010) modulation detection thresh-

olds were predicted using the Vector Strength measure. Stimuli of
400 ms were used, with a modulation frequency of 20 Hz and
carrier pulse rate of 1000 Hz. VS was calculated in response to pulse
trains with different stimulus levels. It was assumed the perception
would be correct when VS was larger in response to the modulated
than in response to the unmodulated stimulus in at least 78% of 10
trials. Spike trains with less than 3 spikes were discarded from the
calculation.

3. Results

3.1. Effect of stimulus amplitude

Fig. 1 shows the auditory nerve fiber response to modulated
pulse trains of 400-ms duration and two different amplitudes, with
data from animal experiments by Hu et al. (2010) shown presented
side-by-side with the simulation results. For the large amplitude
(0.9 mA in the simulations), spike patterns are shown for 30 rep-
etitions (Fig. 1, row A), revealing decreased firing efficiency and
increased phase-locking over time in both the animal data and
model simulations. Fig. 1 (row B) depicts the PSTHs obtained from
this data, showing similar decreases in spike rates and increased
phase-locking, and thus increased synchrony, over time in both the
animal and predicted data. Fig. 1 (row C) shows the stimulus time
histogram relative to the phase of amplitude modulation for the
five different epochs. The onset of stimulation is taken as a phase
zero. The amplitude modulation as calculated with Equation (6)
determines the period. The next period thus starts one modula-
tion phase hereafter (dependent on the modulation frequency). For
each spike the timing between the start of the last modulation
onset phase is taken as the value that is counted in the PH. Double
peaks are seen at the largest amplitudes in epochs 4 and 6 and
somewhat in epoch 8 in both the experimental results and model
simulations. Over the duration of stimulation, the peaks sharpen in
both the simulations and animal experiments, but the peaks at later
epochs are larger in the experimental data than in the simulations.
In Fig. 1, rows D and E show the spike patterns for 30 repetitions
obtained with the lower stimulus amplitude, near the single pulse
threshold (0.75 mA in the simulations). The simulations and
experimental data show spiking patterns that are similar in
decrease, phase-locking, and jitter (Fig. 1, row D). Fig. 1, row E,
depicts narrowing of the phase distributions over time, as was also
observed with the higher stimulus amplitude. The peak is higher in
the second epoch than in the later epochs in both the experimental
and animal data. Overall, however, the IHs obtained in animal ex-
periments are more narrowly distributed and have higher peaks
compared to the predicted IHs, thus showing a stronger phase-
locking. The distributions are shifted towards shorter spike-
timing because no spiking latency is included in the model.

Fig. 2 shows the responses to 400-ms high-rate (5000-pps)
pulse trains at different amplitudes, modulated with 100 Hz and a
10% modulation depth. Experimental results (Hu et al., 2010), and
correspondingmodeled data, of three different fibers in response to
four or five different stimulus amplitudes are shown. For the sim-
ulations, the model parameters for each of the three fibers were set
to average values, and stimulus amplitudes were chosen such that
the rates in the initial bins matched the experimental data.

The first two columns of Fig. 2 show the discharge rate in spikes/
s, indicating similar decreases in discharge rate over time between
the animal and predicted data. Across all epochs, the adaptation
was stronger at smaller amplitudes in both the simulations and
recordings. In the lowest row of column 2A, the fiber shows com-
plete adaptation after 200 ms upon stimulation with the smallest
amplitude in the experimental data, which was not replicated by
the model. In the model (column 2B), the discharge rate plateaued
after 200 ms, while the experimental data showed a continuous
decrease. R2 for the rates is relatively high, ranging from 0.89 to
0.98, and different for each fiber. Reported NRMSE values range
from 0.14 to 0.39. RM ANOVA on the rates in fiber one and three
yielded a p-value of 0.272, thus no significant difference was found
between model and experimental data.

Vector strengths, seen in the middle two columns, initially
ranged from 0.15 to 0.85 in both themeasured (C) and predicted (D)
data. For most fibers in both the measurements and simulations,
vector strength increased during the first three epochs, and then
reached a plateau. However, in the animal data, the VS continued to
increase in two cases (column 2C, the second largest amplitude in
the upper row, and the largest amplitude in the lower row). For
both the simulations and the measurements, the increase in VS
over the complete duration was in the same range: from 0.5 for the
larger amplitudes to over 0.9 for lower amplitudes. In the second
row of column 2C, the fiber shows variability of VS over time when
stimulated with the smallest amplitudes. While this pattern was
also seen in the model simulations, the variability was larger in the
simulated data. In the first row of column 2C, the fiber shows a very
steady VS at small amplitudes, whereas the model simulations are
more dynamic. R2 values for the simulated VS ranges from 0.72 to
0.85, thus somewhat lower than the rate predictions, yet again
dependent on the fiber modeled. NRMSE values range from 0.17 to
0.20.

In both the animal data and the model, the last two columns in
Fig. 2, the F0 amplitude initially increased and then decreased when
stimulated with the largest stimulus amplitudesdspecifically,
when stimulated with amplitudes evoking discharge rates in the
first epoch of 350 spikes/s or greater. When stimulated with lower
amplitudes, the F0 amplitude decreased immediately after the
initial bin, potentially reaching as low as zero in both the animal
experiments and model simulations. The lowest row of columns 2E
and F shows that the maximal F0 amplitude for the largest ampli-
tudes at the fiber was larger in the animal data than in the pre-
dicted responses. R2 values for the simulated F0 ranges from 0.55 to
0.96. NRMSE values were between 0.16 and 0.39.

Fig. 3 shows that decreased refractoriness in the model led to a



Fig. 1. Single-fiber responses to a 400-ms 5000-pps pulse train modulated with a frequency of 100 Hz and a 10% modulation depth. The left column shows the experimental data
(Hu et al., 2010) for a large stimulus amplitude (0.9 mA; rows A, B, and C) and a smaller stimulus amplitude (0.75 mA; rows D and E). The right column shows the model predictions
using average model parameters. Row A: spike patterns for 30 trials when stimulated with the louder pulse train. Row B: corresponding post-stimulus time histograms (PSTHs)
obtained in bins of 0.1 ms, averaged over 30 repetitions. Row C: corresponding period histograms (PHs) in five different temporal epochs (0e50 ms, 50e100 ms, 150e200 ms,
250e300 ms, and 350e400 ms), calculated as the number of spikes per 0.1-ms bin relative to the modulation phase, averaged over 30 repetitions. Row D: spike patterns for 30 trials
when stimulated with the lower-amplitude pulse train. Row E: corresponding IHs in the five different temporal epochs, averaged over 30 repetitions. The graphs with experimental
data are adopted from the original work by Hu et al. (2010), and are reprinted with kind permission.
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steeper decline in discharge rate, stronger degrees of adaptation,
larger vector strengths, and larger F0 amplitudes upon stimulation
with pulse trains of the largest amplitude. With a lower RS, the
discharge rates and degrees of adaptationwere similar to when the
fiber was modeled using average model parameters, but VS and F0
values generally increased. At low amplitudes, VS grew steadier
over time in both themodel and the experimental data. Although F0
amplitudes increased, they remained smaller than in the matched
fiber. With a lower adaptation value, VS and F0 values were lower,
and discharge rates showed a less substantial decrease, which was
reflected in the lower degree of adaptation. For this particular fiber,
judging from the calculated NRMSE and R2 values, the average
model parameters seem to do the best job for rate and VS predic-
tion, whereas the lower RS seems to better predict F0.
3.2. Sensitivity analysis

Fig. 4 shows that the optimal parameter set is different for both
fibers. Also, there is a relatively wide range of adaptation and ac-
commodation values for which the average difference is relatively
low. The average chosen parameters of an adaptation amplitude of
1.0 and an accommodation amplitude of 0.03 is close to optimal for
the fiber plotted in (B). The results plotted for the fiber in (A) show a
minimum with an adaptation amplitude of 0.4% and accommoda-
tion amplitude of 0.02. Generally, it was seen that with the largest
time constant the optimal values for adaptation and accommoda-
tion decreased, and the sensitivity to changes in these parameters
increased. On the contrary, with a lower adaptation parameter, the
most optimal accommodation parameter ought to be higher.
Exclusion of adaptation and accommodation (the origins) causes a
relatively large error for both fibers. Moreover accommodation and
adaptation parameters are interdependent.
3.3. Group data; parameter distribution

Since all model parameters affected the discharge rates, VS, and



Fig. 2. Three different fibers were stimulated at different amplitudes. B, D and F show results from animal experiments published by Hu et al. (2010). A, C and R show corresponding
simulated results, with all model parameters set to average, all three fibers are modeled with the same parameters. The difference between the three simulations is thus the input
amplitude. Amplitudes were chosen such that initial discharge rates corresponded with the initial discharge rates in the animal data: 50, 100, 200, 250, and 350 spikes/s in the first
row; 50, 125, 325, and 400 spikes/s in the second row; and 140, 225, 300, 425, and 550 spikes/s in the last row. Results were obtained by averaging the response to 100 repetitions
and calculated in bins of 50 ms. Regression analysis between each fiber and output measure prediction and model is run, R2 values and NRMSE values (N) are shown in the model-
plots. The graphs in columns A, C and E are adopted from the original work by Hu et al. (2010), and are reprinted with kind permission.
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F0, it was important that the complete model covered a realistic
range of model parameters. Fig. 5 shows the experimental data, and
the model simulations for 80 different fibers stimulated at 1 mA,
with the data ordered in four initial rate groups (R1eR4). The 80
different fibers were all spatially distributed over the region ex-
pected to be excited by the stimulated electrode in the simulations.
Spread of excitation over this region was included, which largely
contributes to the differences in (initial) firing rates. As the re-
sponses were ordered according to the initial rates, the onset re-
sponses (Fig. 5, first column) were similar for the experimental and
modeled results. The degrees of adaptation observed over the
stimulus duration were also similar for experimental and modeled
data.

With regards to the VS, the onset VS ranges were similar be-
tween the model and the experimental results. For all fibers, VS
increased over time, similar to the animal data. Both experimental
and predicted data showed a fluctuating VS in some fibers in R1.
The greatest difference between the predicted and measured re-
sponses was that the VS in some modeled fibers in category R4
increased to 1 more rapidly than was observed in the animal data.
Experimental and model data also showed similar ranges and be-
haviors of F0 values over time in the different rate groups. In R1,
fibers that started with a low F0 showed a less substantial decrease
in F0 over time compared to fibers with an initially larger F0. In
groups R3 and R4, this decrease was not seen. R3 showed an in-
crease of F0 in both the animal and model data. In R4, some
modeled fibers started with F0 values larger than the values
observed in animal data. F0 amplitude increased with rate group in
both the experimental and modeled data. Statistical analysis yiel-
ded average R2-values when comparing rates VS and F0 on group
level between 0.80 and 0.87, and NRMSE values between 0.15 and
0.27. Overall, the stimulated ranges, variability, and averages in all
three output measures were in good agreement with the measured
responses.
3.4. Effects of modulation frequency and depth

Fig. 6 shows rates and Vector Strengths in response to different
modulation depths. Subfigure A shows the experimental data, B
and C are results obtained by our model, D is the modeled results
obtained by Goldwyn et al. About half of the randomly selected
fibers in our model were non-responders, which is similar to Litvak
et al. Modeled discharge rates increase with modulation depth (B),
this effect is seen similarly by Goldwyn et al. (D). In experimental
data a steeper increase in rate is seen around 2e5% modulation
depth. Using a sensitivity analysis (C) it was found that a fiber (D)
with very low refractoriness, RS and adaptation/accommodation
displays this steeper increase. Our model predicts a quicker in-
crease of VS with modulation depth than the model of Goldwyn
et al., but the experimental data exhibits the quickest increase. To
investigate the effect of pulse width the model was separately run
with a pulse width of 32 ms. This yielded, at lower stimulus am-
plitudes, similar increases in Vector Strength and firing rate.

We also replicated the long-duration stimulation and modula-
tion experiments by Litvak et al. (2003a). In our simulations,
600 ms of unmodulated stimulation was followed by a modulated
pulse train of 400 ms. Fig. 7 shows the period histograms for the
responses to themodulated portions of the pulse trains, while Fig. 8
shows the corresponding interval histograms. Both Figs. 5 and 6
include the animal data, the simulated results with an average fi-
ber, and the results for a fiber that better resembled the animal data
for which the parameters were found in the manual search



Fig. 3. Effects on model predictions of the following model parameters: refractory periods, relative spread, and adaptation amplitude. Amplitudes matching the initial discharge
rates equal to the lowest row in Fig. 2 were used: 160, 225, 300, 425, and 550 spikes/s. All model parameters were set to average in row A, refractory periods were lowered in row B,
the RS in row C, and the adaptation amplitude in row D. Regression analysis between each fiber and output measure prediction and model is run, R2 values and NRMSE values (N)
are shown in the model-plots. Graphs are adopted from the original work by Hu et al. (2010), and are reprinted with kind permission.
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(adjusted fiber). The distributions of the interspike intervals and
the relative periods showed similar patterns and changes with
modulation amplitudes and frequencies. At all frequencies, larger
amplitudes led the histograms to become more peaked and to shift
to shorter interspike intervals. Particularly at the middle and high
modulation frequencies, the higher harmonics disappeared in the
responses in the simulated data, as was observed in the animal
data. The period histograms of the responses to 104-Hz modulated
pulse trains showed a double peak, especially at large modulation
amplitudes, in both the experiments and simulations.

The second peak seen with the adjusted fiber was more similar
to the animal data. The average fiber showed less phase-locking
with 104 Hz and 0.5% modulation depth compared to in the ani-
mal data. Lowering the RS and adaptation parameter expectedly
yielded better phase-locking. At 417 Hz, both the interval and the
period histograms obtained with the simulations were wider than
the histograms for the measured data. In the animal data, the re-
sponses turned out to be more strongly locked to the modulation
phase. Decreasing the RS and adaptation value, decreased widths of
the period histogram, such that they were more similar to the
animal data. The corresponding interval histograms showed more
pronounced peaks at the higher harmonics of the modulation fre-
quency. The shift towards shorter ISIs seen in animal data was less
strongly apparent in the adjusted fiber data, although some
shortening was visible. The animal fiber appeared to show a
stronger response to increases in modulation depth. At 833 Hz,
both the average fiber and the adjusted fiber were similarly locked
to modulation; however, the interval histograms for the adjusted
fiber more closely resembled the animal experiments. In Fig. 8, the
numbers in the upper right corner of the ISIs show the number of
spikes during the modulated portion of the signal. The number of
spikes increased withmodulation depth, both in the simulated data
and in the animal data. Compared to the average fiber, the adjusted
fiber showed a stronger increase in rate that was more comparable
with the animal data.

3.5. Modulation onset responses

In Fig. 9 the animal data showed an increased firing rate
immediately following onset of modulation, which was not seen in



Fig. 4. Sensitivity analysis. Normalized RMSE of spike rates (averaged over all bins and amplitudes) between modelled and experimental results in two different fibers. Adaptation
amplitudes used were 0.0 up to 2.0 with a step size of 0.25, and accommodation amplitudes used were 0e0.06 with a step-size of 0.01. The black dots indicate the adaptation/
accommodation values used in the current model, the solid black line indicates the standard deviation value as included on the adaptation parameter. Fiber A: fiber shown in the
upper row of Fig. 2. Fiber B: fiber shown in the lowest row of Fig. 2.
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the model simulations with the average fiber. Adjusting the pa-
rameters RS and adaptation amplitude also did not yield an im-
mediate increase after modulation onset in the model simulations.

3.6. Modulation detection thresholds

The predicted MDT's as a function of stimulus level are very
comparable with the predictions of Goldwyn et al. The minimal
MDT, at the center of the shape, is somewhat lower in our model
predictions. The difference in levels on the abscissa is due to a
general difference in fiber threshold.

4. Discussion

The results of our single-fiber model simulations generally were
in good agreement with the data available from published animal
experiments. The model is shown to predict responses to pulse
trains with rates up to 5000 Hz and durations up to 400 ms. The
simulations showed similar spiking patterns in response to high-
rate amplitude-modulated pulse trains, for both near- and supra-



Fig. 5. Group variability. A total of 80 fibers (1160e1240) were stimulated at an amplitude of 1 mA, and all model parameters were set within the normal distributions, as given in
Table 1. Results are presented as the average over 30 stimulations (trials). Modulation depth was 10%, modulation frequency 100 Hz. Columns A, C and E show experimental data (Hu
et al., 2010), and columns B, D and F show model predictions. Thin lines indicate single fibers, while thick lines indicate the average of all fibers. The red dotted lines indicate
standard deviations from the means. Fibers are ordered in four different sub-groups based on the response rate within the first 50-ms epoch: R1 (5e150 spikes/s), R2 (150.1e270
spikes/s), R3 (270.1e400 spikes/s), and R4 (400.1e972 spikes/s). The graphs in columns A, C and E are adopted from the original work by Hu et al. (2010), and are reprinted with kind
permission. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Dependency of rate and VS of a 0.4 s stimulus modulated with a frequency of 417 Hz. (A) Experimental data, Litvak et al. (2003a,b). (B) Modeled responses of 10 fibers, with
parameters from the normal distribution as given in Table 1 and locations close to the stimulated electrode. Stimulus amplitude is 0.75 mA, close to the average fiber threshold in
that region, and the fiber is stimulated 10 trials over which the average rates and VS are determined. VS is only calculated for those fibers that elicited a rate of minimally 100 pps, in
replica of the experiments performed by (Litvak et al., 2003a). (C) Modeled fiber responses where the model parameter set was either adjusted to most accurately simulate data
published by Litvak et al. (2003a) (marked with D) or set to one standard deviation below all average model parameters (marked with O). The model parameters for D were as
follows; ARP ¼ 0.2 ms, RRP ¼ 0.2 ms, RS ¼ 0.01, adaptation amplitude ¼ 0.1, accommodation amplitude ¼ 0.02. For these two simulations stimulus amplitude was set to 0.8 mA, and
fiber location was close to the stimulating electrode. (D) Modeled results by Goldwyn et al. (2012). The graphs in column D are adopted from the original work by Goldwyn et al.
(2012), and are reprinted with kind permission.
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threshold stimuli, and with different modulation depths and
modulation frequencies. Group simulations showed that distribu-
tion of neural behavior is very similar to that in animal data. In-
terval histograms for the simulations showed distributions similar
to those from animal experiments, with shapes and amplitudes
that varied in accordance with stimulus duration and modulation
characteristics. Period histograms in response to amplitude
modulated input were previouslymodeled by Goldwyn et al. (2012,
Fig. 10). Similar to their model predictions, our results show
increased locking to the modulation phase with increased modu-
lation amplitude. In contrast to their predictions our model shows a
stronger phase-locking, strongest visible at the 1% modulation
depth. The period histograms revealed that both the computer
model and animal studies exhibited similar amounts of phase-
locking in the responses to the amplitude-modulated high-rate
pulse train. The discrepancy in exact timing seen in the PHs in
Figs.1 and 7 is probably due to the exact location along the auditory
nerve where recordings are taken in animal experiments. Overall
there is a slightly stronger effect of small modulation depths in
animal data than seen in the simulations. Themodel is limited in its
ability to handle sudden large changes in input, such as the sudden
off-set of amplitude modulation in Fig. 9. This may be explained by
the fact that very fast temporal components are not yet included in
the current version of themodel. Moreover, themodel still has to be
validated for inputs of much longer durations than half a second.



Fig. 7. Period histograms showing the spikes per bin in response to AM pulse trains in animal experiments (A, Litvak et al., 2003a,b) and model outcomes (B and C). Model pa-
rameters in (B) were set to average values: Absolute Refractory Period, 0.4; Relative Refractory Period, 0.8; Relative Spread, 0.06; alle sigma, 0; tau adap, 100; adap, 1; acco, 0.03;
fiber, 1200; amplitude of 0.9 mA and stimulation rate of 5 kpps. The right plots (C) shows an improved match, with an RS down to 0.02 and adaptation to 0.6, amplitude is 0.9. Each
plot was obtained by averaging the results over 100 trials. Graphs in (A) are adopted from the original work by Litvak et al. (2003a,b) and are reprinted with kind permission.

Fig. 8. Interspike intervals [spikes/bin] in response to AM pulse trains with different modulation depths and frequencies. Plots on the left (A) show animal data as published by
(Litvak et al., 2003a). Plots in the middle show simulation results with average fiber parameters (B). Plots on the right show simulation results with adjusted model parameters (C).
Average model parameters were used: ARP, 0.4; RRP, 0.8; RS, 0.06; alle sigma, 0; tau adap, 100; adap, 1; acco, 0.03; fiber, 1200; and ampl, 0.9. Each plot was obtained by averaging the
results over 100 trials. The number in the upper right corner of the ISI shows the number of spikes during the modulated portion of the signal. Graphs in (A) are adopted from the
original work by Litvak et al. (2003a,b) and are reprinted with kind permission.

Fig. 9. Post Stimulus Time Histograms of a fiber stimulated with a 4800-pps pulse train. The first 50 ms are unmodulated. After 50 ms, the input is down-modulated with a
modulation frequency of 400 Hz and a modulation depth of 10%. The left graph shows animal experimental results (Litvak et al., 2001). The right graph shows model predictions
using average model parameters. For the simulation stimulus, amplitude was set to 0.85 mA. Fiber 12,000 was simulated, and the results were averaged over 30 trials. The left graph
is adopted from the original work by Litvak et al. (2001) and is reprinted with kind permission.
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4.1. Validation challenges

In animal experiments, it is generally not known which fiber is
stimulated, nor is the distance between the electrode contact and
the stimulated fiber. Moreover, each study uses different electrode
contacts. Thus, the amplitude given in the experimental data
cannot be directly compared to the amplitude given for the simu-
lations. Single-fiber data (as shown in Figs. 1 and 2 and 5e7) are
acquired from random fibers of the auditory nerve. These data are
replicated by the present model using average parameter values,
which is most likely not the closest match to individual fibers
studied experimentally. Group data can provide a reliable sense of



Fig. 10. Modulation Detection Thresholds (MDTs) for different (average) stimulus levels, dB re 1 mA. A shows the prediction produced by our model with average parameter
settings, B shows the results of another model, by Goldwyn et al. The ordinate represents the logarithmic equivalent of m, which is the minimal detectable modulation in per-
centage. Modulation frequency ¼ 20 Hz, carrier pulse rate 1000 Hz. All model parameters were set to average values. Duration of the stimuli was 400 ms. The right graph is adopted
from the original work by Goldwyn et al. (2010) and is reprinted with kind permission.
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how the different parameters are distributed over a randomly
chosen group of fibers. As seen in Fig. 5, the randomly chosen range
of fibers in the model showed a good agreement with the range of
fibers in the experimental data. Notably, the experimental data was
all obtained in cats. To evaluate whether the simulations are also
applicable in the context of humans, the model's output must be
validated with human measurements. This could be performed by
predicting eCAP data in response to pulse trains, and comparing
these simulations to data from similar experiments in human CI
recipients. Validation for arbitrary pulse shapes for single pulses is
done with the 3D geometric and active nerve model (Kalkman
et al., 2014). The influence of pulse shape on stochasticity and
temporal behavior is not evaluated in the presented paper. These
effects could be implemented and should be validated by
comparing the output of such a more extended version of the
model with animal pulse train data where different pulse shapes
are used. Validation against animal datawith arbitrary pulse timing
would be very relevant in order to verify the model's ability to
study strategies using these types of stimulation. However, animal
studies on this kind of stimulation which are suitable to be used as
verification are scarce. We therefore think that animal responses to
pulse trains in which pulse timings are not evenly spaced would be
of great added value for future development and validation of
models.

4.2. Refractory behavior

Our results showed that decreasing refractoriness leads to less
firing and better frequency following behavior (Fig. 3). The faster
variations in time are easier to follow, perhaps due to the quicker
release of refractoriness. Overall the average model parameter give
a better appraisal of this nerve's behavior. As refractory behavior
can be studied with two-pulsed experiments our model uses values
obtained from previous research.

4.3. Relative spread

We found that the RS parameter did not strongly affect
discharge rates or the degree of adaptation, but may influence the
modulation following behavior (Fig. 3). A lower RS resulted in
slightly larger VS and F0 values over time with low stimulus am-
plitudes. Running the model with larger RS values led to the
opposite effect (results not presented). Modulation frequency
following behavior, as assessed based on VS and F0 values,
increased with a lower RS. This is logical since amplitude modu-
lations may or may not cause a spike, which will be more obvious
with more deterministic fiber behavior, i.e., when spiking is more
strongly related to the exact stimulus amplitude. For the particular
fiber shown in Fig. 3, the NRMSE and R2 for rate, VS and F0 are
comparable with the middle and the lower values of RS. Variation
of RS affected the width of the peaks in the interval histograms.
Interval histograms and period histograms (Figs. 5 and 6) also
revealed that a lower RS value was associated with stronger phase-
locking.

4.4. Adaptation parameter

Lower adaptation resulted in a reduced decrease in discharge
rate, as well as in smaller VS and F0 values (Fig. 3). As calculated
with the NRMSE and R2-values, the lower adaptation parameters
yields lower values for VS and F0. Thus, modulation following
behavior was improved by adaptation in the nerve. Litvak et al.
(2003a) grouped fibers showing a sustained response to high-rate
amplitude-modulated stimulation, and fibers showing a transient
response. It can be expected that the adaptation behavior differed
between these two groups of fibers. The variance in model pa-
rameters is based on animal experiments (van Gendt et al., 2016).
Similar to the refractory properties and RS, adaptation properties
are assumed to vary among different nerve fibers. The sensitivity
analysis visualizes the regions that produce optimal results. The
optimal choices for adaptation and accommodation amplitudes and
the adaptation time constant are interdependent, and different per
fiber. Because of the inter-fiber-differences, each fiber is modeled
with its own set of parameters. Our model shows a stronger locking
to the modulation frequency than shown by models without
adaptation.

4.5. Smaller temporal components

Litvak et al. (2001) reported that 80% of the fiber responses
showed a dip in the PSTH directly after the onset of the modulation
at 50 ms (Fig. 9). Our simulations, however, do not show this effect.
In the experimental study, fibers were clustered as stronger and
lesser adapters, according to their response to stimulation. The fiber
used for the simulation had average model parameters. However,
most variations of the model parameters did not substantially
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increase the resemblance. Only adjustment of the adaptation time
constant led to alteration of the recovery timing. The adaptation
time constant turned out to be related to the time of recovery after
modulation onset. Therefore, it could be argued that a faster
adaptation component should be included, as was suggested by
Zhang et al. (2007).

4.6. Longer temporal components

In the study by Litvak et al. (2003a), all measurements with
different stimulus settings were done subsequently, yielding a total
stimulus duration of about 10 s. This sequence was repeated until
contact with the fiber was lost, yielding stimulation durations of up
to 10 min. In the simulations each measurement was done inde-
pendently, the fiber was stimulated each time for about 1 s. To test
whether the longer duration of stimulation in the animal experi-
ments would affect the outcomes, we performed a few simulations
in which the fiber was stimulated for up to 10 s prior to stimulation
with the modulated pulse train. This did not alter the outcomes of
the present model. Since the outcomes of the model were very
similar to the animal data, it can be argued that the desynchroni-
zation required for optimal amplitude modulation following
behavior can be obtained after just a short onset period of adap-
tation. For the proposed use of a high-frequency desynchronizing
pulse train, this finding implies that 600 ms of desynchronization
would be sufficient to result in a better representation of modula-
tion frequency (Hong and Rubinstein, 2003; Imennov and
Rubinstein, 2009). Fig. 2 shows a constantly increasing degree of
adaptation and vector strength for the loudest amplitude during
the stimulus duration, while the model predicts a plateau after
200ms. By adjusting the different parameters it was found that this
is due to the exponential time constant of adaptation. With an
exponential adaptation of longer than 100 ms, e.g. 200 ms, the VS
and degree of adaptation increase after longer time periods. We
therefore argue that the observation of longer lasting effects is
likely due to longer time scale effects.

4.7. Spike timing

As seen in the PH's in Figs. 1 and 8, in the animal experiments
the spike timings are later than in the model predictions; around
1.5 ms for the fiber in Fig. 1 (rows C and E) and around 0.5 ms in
Fig. 8. This relative temporal delay seen in the animal recordings
can be due to either travel duration (runtime) of the action po-
tential (AP) through the nerve or rise time of the AP before it is
detected in the electrophysiological recordings. Latencies in
detection of AP's in electric stimulation of auditory fibers in cat
were found between 0.2 and 1.3 ms, dependent on stimulus shape
and amplitude (Miller et al., 1999). As the temporal differences
between the experimental data and results of about 0.5e1.5 ms are
within a similar range, they are very likely due to the latency at the
recording site which is due to runtimes and of the AP through the
fiber and risetime of the AP. Furthermore, latency and jitter are
related to spiking probability. Including latency and jitter, and their
dependency on spiking probability might therefore improve the
resemblance of the exact spike timings.

4.8. Pulse shapes

As explained in the introduction, in the present model the pulse
shape directly influences the initial thresholds. The amplitude of
the pulse hereafter determines all temporal and stochastic prop-
erties. They are however not influenced by the pulse width of pulse
shape. It could be argued that the pulse shape affects the temporal
and stochastic behavior. Especially accommodation, which is
directly related to the stimulus. Increased pulse width would lead
to larger charge build-ups and thus to larger accommodation. An-
imal experiments using similar pulse rates and amplitudes, but
with different pulse widths, measured on the same fiber, could
inform us about the effect of pulse width on accommodation and
accommodation. For stochastics we also have chosen not to include
an effect of pulse width, even though pulse direction and pulse
width are shown to affects the RS (Miller et al., 1999). In our model,
the ranges of RS are wider than the differences seen in here,
however a further development could include this to make the
model more precise in evaluating pulse trains where different pulse
shapes are used.

4.9. Implications

Sensorineural hearing loss often results in spiral ganglion cell
degeneration, and thus to decreasing numbers of functional audi-
tory nerve fibers (Ramekers, 2014). This decrement reduces the
auditory nerve's effectiveness at using place coding to transfer
pitch-related information. Furthermore, spatial spread of current in
cochlear implantation diminishes the frequency specificity of the
CI. Higher pulse rates can increase pitch perception among CI users,
but typically only up to 300 Hz (Drennan and Rubinstein, 2008;
Zeng, 2004). Amplitude modulation of the pulse train can also
induce perception of amplitudemodulation frequency, especially in
the low frequency range and with large modulation amplitudes
(Drennan and Rubinstein, 2008).

4.10. State of the field and future work

The proposed model showed good agreement with the pres-
ently available animal data. The model's performance compared to
Bruce's model in response to continuous amplitude pulse trains is
given in the previous paper (van Gendt et al., 2016). The model was
shown to correctly predict rates and interspike intervals in
response to up to 400 ms constant amplitude pulse trains of
different rates and amplitudes. The current paper investigates
response rates, VS and F0 in response to amplitudemodulated pulse
trains. Results show that average model parameters predicts
behavior in the same ranges as in response to animal data. All
output measures however depend differently on choice of param-
eters for refractoriness, relative spread and adaptation. For
instance, decreasing the refractory periods, as seen in row 1 of
Fig. 3, increases VS for low stimulus amplitudes. Lowering of the RS,
as seen in Fig. 3 row 2, increases VS in response to the larger
amplitude-pulse trains. Decreasing the adaptation parameter cau-
ses a lower VS for all amplitudes, but the effect is strongest at
lowest amplitudes.

Prediction of rate and VS in response to different modulation
depths presented in Fig. 6 was previously shown by Goldwyn et al.
The average picture seen in their predictions is similar to ours.
However, our model shows that within the fiber population, due to
the distribution of parameters, better resembling data can be
simulated. One difference between both models on the one hand
and the experimental data on the other is a weaker effect of
modulation depth. Therefore perhaps a shorter time constant is
also involved, as would be the case in power-law adaptation, which
might cause immediate release of adaptation in response to a
slightly modulated input signal.

Prediction of dependency of the MDTon stimulus amplitudes by
the proposed model is similar as that predicted by Goldwyn et al.
(2010). However, a lower minimal detectable depth is seen at the
levels yieldingminimal MDTs, whichmight very well be an effect of
adaptation. Adaptation brings the nerve in a state more responsive
to changes, thereby logically decreasing the MDT. Goldwyn et al.
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(2010) and O'Brien et al. (2016) investigated the effect of temporal
integration windows and the number of fibers on MDT prediction.
Shannon (1992) shows psychophysically that with increase of
modulation frequency MDT's increase. As was shown by Goldwyn
et al. and O'Brien et al. (Goldwyn et al., 2010; O'Brien et al., 2016)
this can be due to jitter as large as 1e2 ms which is similar to
temporal time constants for neural integration at interpretation
level. The current paper demonstrates how a large distribution of
model parameters is required to model the wide range of physio-
logical behavior at a neural level. The distribution of behaviormight
affect the perceptual interpretation at neural level, which should
preferably be evaluated with an interpretation model. In future
research we would like to use whole nerve predictions to further
study MDT's and other psychophysical measures.

First stage phenomenological models of auditory nerve re-
sponses to electrical stimulation included threshold, RS and
refractoriness (Bruce et al., 1999a; Chen and Zhang, 2007; Xu and
Collins, 2007). In addition phenomenological models have experi-
mented with the inclusion of latency, jitter, RS dependency on time
since pulse (related to channel noise) and summation (Goldwyn
et al., 2012; Hamacher, 2004) or accommodation and adaptation
(van Gendt et al., 2016). In an overview paper the temporal con-
siderations of refractoriness, summation, accommodation and
adaptation are theoretically entangled (Boulet et al., 2016). The
current and previous paper (van Gendt et al., 2016) show that
adaptation is important to model the effects of high rate pulse
trains. None of the currently existing models investigated re-
sponses to long duration stimulation (over 1 s), or recovery sta-
tistics after offset of amplitude modulation.

For prediction of responses to cochlear implants stimulation a
complete nerve model, consisting of a realistic number of nerve
fibers and a realistic current spread has to be included. Future
studies should test this model for evaluating complete auditory
nerve responses to different sound coding strategies. Before design
of new CI strategies can be evaluated using a computational model,
a validated interpretationmodel for neural response patterns has to
be developed. The next step in modeling research must make the
connection between physiological outcomes (such as those ob-
tained in animal experiments) and psychophysical data obtained
from CI users. The presently described auditory nerve model can be
used to compare stimulus parameters and related neural outcomes
to detection thresholds from different discrimination tests per-
formed in CI users. Such comparisons could provide insight into the
relationship between neural output and human auditory percep-
tion. These investigations will require the development of a neural
interpretation model as the next step in the model's evolution.
Using the comprehensive geometrical cochlear and auditory nerve
model, including stochasticity and long-duration stimulation ef-
fects, in combination with such an interpretation model will pro-
vide a tool for evaluating developments in speech coding research.

5. Conclusions

The developed model can be used to predict full auditory nerve
responses to amplitude-modulated long-duration high-rate
cochlear implant stimulation. The model can show differences
between different stimulations in amanner that reflects differences
observed in neurophysiological measurements. Therefore, the
model can be used to predict firing patterns in response to varying
electrical stimulus patterns.
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