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Sample surveys are often affected by nonresponse. These surveys have in common that their
outcomes depend at least partly on a human decision whether or not to participate. If it would
be completely clear how this decision mechanism works, estimates could be corrected. An
often used approach is to introduce the concept of the response probability. Of course, these
probabilities are a theoretical concept and therefore unknown. The idea is to estimate them by
using the available data. If it is possible to obtain good estimates of the response probabilities,
they can be used to improve estimators of population characteristics.

Estimating response probabilities relies heavily on the use of models. An often used model
is the logit model. In the article, this model is compared with the simple linear model.

Estimation of response probabilities models requires the individual values of the auxiliary
variables to be available for both the respondents and the nonrespondents of the survey.
Unfortunately, this is often not the case. This article explores some approaches for estimating
response probabilities that have less heavy data requirements. The estimated response
probabilities were also used to measure possible deviations from representativity of the survey
response. The indicator used is the coefficient of variation (CV) of the response probabilities.
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1. Introduction

There are various ways of selecting a sample for a survey, but over the years it has become

clear that the scientifically sound way to do this is by means of selecting a probability

sample. Objects (persons, households, businesses) must have a non-zero probability of

selection, and all these selection probabilities must be known. This makes it possible to

compute precise, unbiased estimates of population characteristics. Also, the precision of

these estimates can be quantified, for example by means of a confidence interval, or a

margin of error. These are the fundamental principles of survey sampling.

In practice, the situation is often not so ideal. All kinds of problems may affect the

quality of the estimates. One of those problems is (unit) nonresponse. This means that no

information is obtained about a number of objects in the sample. The questionnaire form

remains empty for these objects. One of the effects of nonresponse is that the sample size is

smaller than expected. This leads to less precise, but still valid, estimates of population

characteristics. This is not a serious problem as it can be taken care of by increasing the

initial sample size. A far more serious effect of nonresponse is that estimates of population

characteristics may be biased. This occurs if, due to nonresponse, some groups in the

population are over- or under-represented, and these groups behave differently with
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respect to the characteristics being investigated. Consequently, wrong conclusions will be

drawn from the survey data. Such a situation must be avoided as much as possible.

Therefore, the amount of nonresponse must be kept small as much as possible.

Nevertheless, in spite of all these efforts, a substantial amount of nonresponse usually

remains. There are several books that treat the nonresponse problem in more detail. A

general overview is given by Bethlehem et al. (2011). Stoop (2005) shows when

nonresponse can cause bias and investigates causes of and reasons of nonresponse. Särndal

and Lundström (2005) focus on estimation techniques that improve the accuracy of survey

estimates. A more recent reference is Valliant et al. (2018). The goal of this book is to

present a set of tools for handling nonresponse They also show how existing software can

be used to solve survey problems.

Although probability sampling is the preferred way of sample selection, some

researchers use different selection techniques. Particularly for online surveys, self-

selection sampling is used. The questionnaire is made available on the internet.

Respondents are those visitors of the website who spontaneously decide to participate in

the survey. No random sampling is applied. Respondents are those who happen to know

the survey is being conducted, happen to have internet access, decide to visit the survey

website, and complete the questionnaire. As the selection mechanism of these online

surveys is completely unknown and unclear, it is impossible to compute precise and valid

estimates of population characteristics. For more on self-selection surveys, see, for

example Bethlehem and Biffignandi (2012).

Both probability sampling (affected by nonresponse) and self-selection sampling have

in common that their outcomes depend, at least partly, on a human decision whether or not

to participate. If it would be completely clear how this decision mechanism works, the

estimates could be corrected. Unfortunately, such information is not available. An often

used approach to analyse the effects of and to correct for biased human participation

decisions is to introduce the concept of the response probability. It is assumed that every

object in the target population of the survey has a certain probability to respond in the

survey if asked to do so. Of course, these probabilities are a theoretical concept and

therefore unknown. The idea is now to estimate the response probabilities using the

available data. If it is possible to obtain good estimates of the response probabilities, they

can be used to improve estimators of population characteristics.

Estimated response probabilities can be used by survey researchers in several ways. The

focus in this article is on:

. Analysis of nonresponse. By analysing the relationships between response

probabilities and other survey variables, insight is obtained in how the nonresponse

mechanism works.

. Correction for nonresponse. Once precise estimates of response probabilities are

available, they can be used in weighting adjustment techniques that reduce the bias

caused by nonresponse.

. Representativity indicator. The response probabilities can be used to construct a

representativity indicator, which shows, in one number, how good or bad a survey is.

Estimating response probabilities relies heavily on the use of models. An often used model

is the logit model. It attempts to predict the response probabilities by using a set of
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auxiliary variables. This seems to work well in practical survey situations. Other models

are the probit model and the linear model. These models are compared.

Estimation of these response probabilities models requires the individual values of the

auxiliary variables to be available for both the respondents and the nonrespondents in the

survey. Unfortunately, this is often not the case. This article explores some approaches for

estimating response probabilities that have less heavy data requirements. The idea is to start

by computing weights with some weighting adjustment technique. These weights can be

seen as a kind of inverted response probabilities, and therefore they can be used to estimate

response probabilities. Weighting techniques have more modest data requirements. They can

compute weights without having the individual data of the nonrespondents. Two weighting

techniques are considered: generalised regression estimation and raking ratio estimation.

By taking the logit model as a benchmark, it is explored whether approximately the

same estimated response probabilities can be obtained using techniques requiring less

information:

1. The linear model for response probabilities;

2. Transforming weights that have been obtained by generalised regression estimation

into estimated response probabilities;

3. Transforming weights that have been obtained by raking ratio estimation into

estimated response probabilities.

The various approaches are tested on a real survey data set of Statistics Netherlands.

This is an anonymised data set that will be called here the General Population Survey

(GPS). The sample for this survey was selected from the population register of the

Netherlands. Therefore, auxiliary variables in the register are available for both

respondents and nonrespondents. Moreover, the sample data file was linked to some

registers, providing even more auxiliary variables. So logit models could be fitted, and

they could be compared with approaches requiring less data.

The estimated response probabilities were used to measure possible deviations from

representativity of the survey response. The indicator used is the coefficient of variation

(CV) of the response probabilities. This CV can be seen as a normalised measure of

dispersion of the response probabilities. The larger the value of the CV, the more the

response probabilities will vary, and the more the survey response therefore will lack

representativity. The CV also turns up as a component of the bias of estimators that are

affected by nonresponse.

The weighting adjustment approach makes it possible to estimate response probabilities

in situations in which the logit model cannot be used. An example is given. Response

probabilities and the CV are computed for a self-selection panel. This is the ‘EenVandaag

Opiniepanel’ of the Dutch national public television channel ‘NOP1’.

2. The Concept of Response Probability

2.1. Nonresponse in a Simple Random Sample

Let the finite survey population U consist of a set of N identifiable objects that are labelled

1, 2, : : : , N. Associated with each object k is an unknown value Yk of the target variable.
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The vector of all values of the target variable is denoted by

Y ¼ ðY1; Y2; : : : ; YNÞ’: ð1Þ

The symbol ’ denotes transposition of a matrix or vector. The objective of the sample

survey is assumed to be the estimation of the population mean

�Y ¼
1

N

XN

k¼1

Yk: ð2Þ

To estimate this population characteristic, a simple random sample of size n is selected

without replacement. The sample can be represented by the N-vector

a ¼ ða1; a2; : : : ; aNÞ’ ð3Þ

of indicators, where ak ¼ 1 if object k is selected in the sample, and otherwise ak ¼ 0.

In case of simple random sampling without replacement, the sample mean

�y ¼
1

n

XN

k¼1

akYk ð4Þ

is an unbiased estimator of the population mean.

Now suppose there is unit nonresponse in the survey. It is assumed that each object k in

the population has a certain, unknown probability rk of response. If object k is selected in

the sample, a random mechanism is activated that results with probability rk in response

and with probability 1 – rk in nonresponse. A vector R of response indicators

R ¼ ðR1;R2; : : : ;RNÞ’ ð5Þ

is introduced, where Rk ¼ 1 if the corresponding objects k responds, and where Rk ¼ 0

otherwise. So, P(Rk ¼ 1) ¼ rk, and P(Rk ¼ 0) ¼ 1 – rk.

The survey response only consists of those elements k for which ak ¼ 1 (in the sample)

and Rk ¼ 1 (responds). Hence, the number of respondents is equal to

nR ¼
XN

k¼1

akRk: ð6Þ

Likewise, the number of nonrespondents is nNR ¼ n – nR.

The values of the target variable only become available for the nR responding objects.

The mean of these values can be denoted by

�yR ¼
1

nR

XN

k¼1

akRkYk: ð7Þ

Bethlehem (2009) shows that the expected value of the response mean is approximately

equal to

Eð�yRÞ <
1

N

XN

k¼1

rk

�r
Yk; ð8Þ
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where

�r ¼
1

N

XN

k¼1

rk ð9Þ

is the mean of all response probabilities in the population. Expression (8) shows that,

generally, the expected value of the response mean is unequal to the population mean to be

estimated. Therefore, this estimator is biased. This bias is approximately equal to

Bð�yRÞ ¼ Eð�yRÞ2 �Y <
RrY SrSY

�r
; ð10Þ

where RrY is the correlation between the response probabilities r and a target variable Y of

the survey, Sr is the standard deviation of the response probabilities r, and SY is the

standard deviation of the target variable Y. From Equation (10) a number of conclusions

can be drawn:

. The bias vanishes if there is no relationship between the target variable of the survey

and the response behaviour. Then RrY ¼ 0. The stronger the relationship between the

target variable and response behaviour, the larger the bias will be.

. The bias vanishes if all response probabilities are equal. Then Sr ¼ 0. Indeed, in this

situation the nonresponse is not selective. It just reduces the sample size. The more

the values of the response probabilities vary, the larger the bias will be.

. The magnitude of the bias increases as the mean of the response probabilities

decreases. The response rate is an unbiased estimator of the mean response

probability. Translated in practical terms, this means that low response rates will lead

to large biases.

It is clear that analysis of the estimates of the response probabilities provides insight into

the possible effects of nonresponse on the possible bias of estimates of population

characteristics. Some authors (for example Groves 2006) discuss a possible relationship

between the response rate of a survey and the bias of its estimates. They fear increased

biases if response rates decline. Equation (10) shows that the magnitude of the bias is

determined by more than just the response rate. Just as important are the variation of the

response probabilities (Sr) and the correlation between the response probabilities and the

target variable (RrY).

2.2. Nonresponse in a Self-Selection Sample

Self-selection means that researchers are not in control of the sample selection process.

They just make the survey questionnaire available, and wait and see what happens. A

typical example is a web survey where everyone can complete the questionnaire on the

internet. Also people outside the target population of the survey can participate. It is

sometimes even possible to fill in the questionnaire more than once.

Participation in a self-selection web survey requires that respondents are aware of the

existence of the survey. Moreover, they must have access to the internet, they have to visit

the website (for example by following up a banner, an e-mail message, or a commercial on

radio or TV), and they have to decide to fill in the questionnaire. This means that each
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object k in the population has unknown probability rk of participating in the survey, for

k ¼ 1, 2, : : : , N.

Assuming there are no under-coverage problems, everyone has a nonzero probability of

participating in the survey. The survey response is denoted by the vector of indicators

R ¼ ðR1;R2; : : : ;RNÞ’; ð11Þ

where Rk ¼ 1 if object k participates, and otherwise Rk ¼ 1, for k ¼ 1, 2, : : : , N. The

expected value rk ¼ E(Rk) is the response probability of element k. The realised sample

size is denoted by

nS ¼
XN

k¼1

Rk ð12Þ

Lacking any knowledge about the values of the response probabilities, a naı̈ve

researcher would implicitly assume all these probabilities to be equal. In other words:

simple random sampling is assumed. Consequently, the sample mean

�yS ¼
1

nS

XN

k¼1

RkYk ð13Þ

is used as an estimator for the population mean. Bethlehem (2009) shows that the expected

value of this estimator is approximately equal to

Eð�ySÞ <
1

N �r

XN

k¼1

rkYk ð14Þ

where �r is the mean of all response probabilities.

It is clear from Equation (14) that, generally, the expected value of this sample mean is

not equal to the population mean. One situation in which the bias vanishes is that in which

all response probabilities are equal. In terms of the theory of missing data, this comes

down to Missing Completely At Random (MCAR). This is the situation in which the cause

of missing data is completely independent of all variables measured in the survey. For

more information on MCAR and other missing data mechanisms, see Little and Rubin

(2002). Indeed, in the case of MCAR, self-selection does not lead to an unrepresentative

sample because all elements have the same selection probability.

Bethlehem (2009) shows that the bias of the sample mean in Equation (13) is

approximately equal to

Bð�ySÞ ¼ Eð�ySÞ2 �Y <
RrY SrSY

�r
; ð15Þ

in which RrY is the correlation between the values of target variable Y and the response

probabilities r, Sr is the standard deviation of the response probabilities, SY is the standard

deviation of the target variable, and �r is the average response probability.

Equation (10) for the bias in a random sample affected by nonresponse is identical to

Equation (15) for the bias in a self-selection survey. However, in practical situations their

values will be substantially different. For example, the probability samples for surveys of

Statistics Netherlands had response rates of around 60%. This means that the average
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response probability was 0.6. There have been self-selection web surveys in the

Netherlands with large samples. An example is 21minuten.nl. Approximately 170,000

people completed the questionnaire in 2006. Assuming the target population to consist of

all Dutch citizens from the age of 18, the average response probability was 170,000 /

12,800,000 ¼ 0.0133. This is a much lower value than the 0.6 of probability sampling

based surveys. So there is a risk of a much large bias in self-selection surveys.

From Equations (10) or (15) an upper bound for the bias can be computed. Given the

mean response probability �r, there is a maximum value that the standard deviation Sr of the

response probabilities cannot exceed:

Sr #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rð1 2 �rÞ

p
: ð16Þ

This implies that in the worst case, Sr assumes its maximum value if the correlation

coefficient RrY is equal to either þ1 or 21. Then the absolute value of the bias will be

Bmaxj j ¼ SY

ffiffiffiffiffiffiffiffiffiffiffi
1

�r
2 1

s

: ð17Þ

In case of a survey based on probability sampling with a response rate of around 60%, the

maximum absolute bias is equal to 0.816 £ SY. In case of a self-selection survey a size

170,000 from a population of size 12,800,000, the maximum absolute bias is 8.619 £ SY.

This is more than ten times as large.

3. Estimating Response Probabilities

3.1. Models for Response Probabilities

Response probabilities are unknown. Therefore they must be estimated using the available

data. To this end, the concept of the response propensity is introduced. Following Little

(1986) and Bethlehem et al. (2011), the response propensity of object k is defined by

rkðXkÞ ¼ PðRk ¼ 1jXkÞ ð18Þ

where Rk is the response indicator, and Xk ¼ (Xk1, Xk2, : : : , Xkp)’ is a vector of values of p

auxiliary variables. So the response propensity is the probability of response given the

values of some auxiliary variables. The response propensities are also unknown, but they

can be estimated provided the values of the auxiliary variables are available for both the

respondents and nonrespondents. The estimated response propensity is denoted by r̂kðXkÞ.

If the set of auxiliary variables is sufficient to explain the response probabilities, the

(estimated) response propensities will resemble the response probabilities.

To be able to estimate the response propensities, a model must be chosen. The most

frequently used one is the logistic regression model. It assumes the relationship between

response propensity and auxiliary variables can be written as

logit rkðXkÞ
� �

¼ log
rkðXkÞ

1 2 rkðXkÞ

� �
¼
Xp

j¼1

Xkjbj; ð19Þ
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where b ¼ (b1, b2, : : : , bp)’ is a vector of p regression coefficients. The logit

transformation ensures that estimated response propensities are always in the interval [0, 1].

Another model sometimes used is the probit model. It assumes the relationship between

the response propensity and auxiliary variables can be written as

probit rkðXkÞ
� �

¼ F21 rkðXkÞ
� �

¼
Xp

j¼1

Xkjbj; ð20Þ

in which F -1 is the inverse of the standard normal distribution function. Both models are

special cases of the generalised linear model (GLM)

g rkðXkÞ
� �

¼
Xp

j¼1

Xkjbj; ð21Þ

where g is called the link function that has to be specified. Another special case of the link

function is the identity link function. This means the relationship between the response

propensity and the auxiliary variables can be written as

rkðXkÞ ¼
Xp

j¼1

Xkjbj: ð22Þ

This is a simple linear model. It has advantages and disadvantages. A first advantage of the

linear model is that coefficients are much easier to interpret. They simply represent the effects

of the auxiliary variables on the response propensity. These effects are ‘pure’ effects. The

coefficient of an auxiliary variable is corrected for the interdependencies of the other auxiliary

variables in the model. Interpretation of a logit or probit model is not so straightforward. The

logit or probit transformation complicates the interpretation of the model parameters.

A second advantage of the linear link function is that the computations are simpler.

Estimates of the coefficients can be obtained by ordinary least squares. Estimation of the

logit and probit models requires maximum likelihood estimation.

An advantage of the probit and logit models is that estimated response propensities are

always in the interval [0, 1]. The linear model does not prevent estimated probabilities to

be negative or larger than 1. However, according to Keller et al. (1984) the probability of

estimates outside the interval [0, 1] vanishes asymptotically if the model is correct and all

response probabilities are strictly positive. If a linear model produces estimated response

propensities outside [0, 1], this is often an indication that the model does not fit very well.

It should be noted that the linear model is not necessarily a worse approximation of

reality than the probit or logit model. Particularly the logit transform was introduced for

convenience only, and not because this model was ‘more likely’.

Figure 1 contains the graphs of the logit and probit function. It can be observed that both

functions are more or less linear for values of p between, say, 0.2 and 0.8. So, the linear

link function can be seen as an approximation of the other two link functions.

3.2. Application of the Logit and Linear Model

As an example, the logit model and linear model are applied in the General Population

Survey (GPS). The GPS was a face-to-face survey. The target population consisted of
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persons of age 12 and older. Persons were selected by means of a stratified two-stage

sample. All persons had the same selection probability. The initial sample size was 32,019

people. The response consisted of 18,792 people. So, the response rate was 58.7%.

The GPS sample was linked to the Social Statistics Database (SSD) of Statistics

Netherlands. The SSD contains a large set of variables for every person living in the

Netherlands. These variables have been retrieved from registers and other administrative

sources. By linking the GPS to the SSD, the values of all these variables became available

for both respondents and nonrespondents.Table 1 lists the variables that have been used in

this article.

Not all auxiliary variables were included in the models for the response propensities. A

simple selection procedure was used to determine only the relevant ones. These are

variables having a relationship with response behaviour. The strength of this relationship

was measured with Cramér’s V. It is defined by

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n £ min ðr 2 1; c 2 1Þ

s

: ð23Þ

x 2 is the chi-square statistic for the contingency table obtained by crossing two categorical

variables, n is the total number of observations in the table, r is the number of rows and c is
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Fig. 1. The logit and probit link functions.

Table 1. Auxiliary variables that were available for the GPS.

Variable Description Categories

Gender Gender 2
Married Is married (yes / no) 2
Age13 Age in 13 age groups 13
Ethnic Ethnic background 5
HHType Type of household 5
Phone Has listed phone number (yes / no) 2
HasJob Has a job (yes / no) 2
HouseVal Average house value in neighbourhood 5
Region Region of the country 5
Urban Degree of urbanisation 5
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the number of columns. V always assumes a value in the interval [0, 1]. V ¼ 1 means a

perfect relationship, and V ¼ 0 means no relationship at all. Here, one of the variables is

the auxiliary variable, and the other variable is the response variable (with categories Yes

and No). Table 2 contains the values of Cramér’s V for all available auxiliary variables.

It is clear from the table that response behaviour has the strongest relationship with the

region in which people live (variable Region). The second variable is degree of

urbanisation (variable Urban), which could partly measure the same aspect as region:

people in rural areas are more likely to respond than people in urban areas. The relatively

high value for the variable Phone (has a listed phone number) implies that people with a

listed phone number are more likely to respond than those without it.

It was decided (rather arbitrarily) to include the seven auxiliary variables in the logit

model for which Cramér’s V has value larger than 0.090. Hence, the model contained the

first seven variables in Table 2. It should be noted that this selection technique is only a

simple one. There are more advanced techniques, like stepwise inclusion techniques that

only add variables having a significant contribution, see, for example Bethlehem et al.

(2011, chap. 9).

Note that all auxiliary variables are categorical. To be able to include them in the model,

each variable is split into a set of dummy variables. There are as many dummy variables as

the variable has categories. So there is a dummy variable for each category of each

explanatory variable. Unique identification of this model requires some restrictions to be

imposed. This can be done in various ways. Here, the coefficient of one of the dummy

variables is set to 0. All other coefficients in the set represent deviations from this fixed

value.

The logistic regression model was fitted, and subsequently used to estimate the response

propensities. Figure 2 shows the distribution of the estimated response propensities. There

is a substantial variation. The probabilities vary between 0.128 and 0.732.

Estimated response propensities can be used for the analysis of the nonresponse. Such a

(numerical or graphical analysis) can give insight into possible relationships between

response behaviour and auxiliary variables. Figure 3 shows an example. It is a boxplot of

the response propensities by degree of urbanisation. There is a clear pattern: the lower the

degree of urbanisation, the higher the response rate. Response is low in urban areas and

high in rural areas.

Table 2. Cramér’s V for the auxiliary variables.

Variable Cramér’s V In model

Region 0.163 Yes
Urban 0.153 Yes
Phone 0.150 Yes
HouseVal 0.112 Yes
Ethnic 0.112 Yes
HHType 0.106 Yes
Married 0.096 Yes
Age13 0.061 No
HasJob 0.037 No
Gender 0.011 No
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The response probabilities were also estimated with a linear model. The same auxiliary

variables were included as for the logit model. Again, each explanatory variable was split

into dummy variables, and extra restrictions were imposed to allow for unique

identification: the last coefficient for each set of dummy variables was set to zero. For

example, the variable Phone (has listed phone number) had two categories: No and Yes. The

coefficient of Yes was set to 0. The estimate of the coefficient for No turned out to be equal to

-0.108. So, not having a listed phone number reduced the response propensity by 0.108.

The estimated response propensities for the linear model varied between 0.050 and

0.738. So, all estimates were within the interval [0, 1]. Note that the smallest response

probability for the linear model (0.050) is somewhat smaller than the one for the logit

model (0.128). To see how much the estimated response propensities differ for the two

models, they were plotted in a scatter plot, see Figure 4.
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Fig. 2. Histogram of the estimated response propensities (logit model).
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Fig. 3. Boxplot of estimated response propensities by degree of urbanisation for the General Population Survey

(GPS).
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There is an almost perfect linear relationship between the response propensities of both

models. This is confirmed by the value of the correlation coefficient, which is equal to

0.999573. Hence, one can conclude that, at least in this example, both models result in

almost the same response propensities.

4. Adjustment Weighting With Probabilities

4.1. Weighting Adjustment

Selective nonresponse may cause estimators to be biased. To correct for such a bias,

usually some weighting adjustment technique is applied. The basic idea is to assign

weights to responding elements in such a way that over-represented groups get a weight

smaller than one and under-represented groups get a weight larger than one.

There are several types of weighting techniques. The most frequently used ones are

post-stratification, generalised regression estimation, and raking ratio estimation.

Weighting is based on the use of auxiliary information. Auxiliary information is

defined here as a set of variables that have been measured in the survey (auxiliary

variables), and for which the distribution in the population, or in the complete sample,

is available.

It is also possible to use response propensities for weighting adjustment. This can be

done in several ways. Two approaches are described in this chapter. The first approach is

response propensity weighting. It is based on the principle of Horvitz and Thompson

(1952) that always an unbiased estimator can be constructed if the selection probabilities

are known. In case of nonresponse, selection depends on both the sample selection

mechanism and the response mechanism. The idea is now to adapt the Horvitz-Thompson

estimator by including the (estimated) response probabilities.
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Fig. 4. Response propensities of the logit model and the linear model.
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A second approach is response propensity stratification. It is based on the fact that

estimates will not be biased if all response probabilities are equal. In this case, selection

problems will only lead to fewer observations, but the composition of the sample is not

affected. The idea is to divide the sample in strata in such a way that all elements within a

stratum have (approximately) the same response probability. Consequently, unbiased

estimates can be computed within strata. Next, stratum estimates are combined into a

unbiased population estimate.

First, the three traditional weight adjustment techniques (post-stratification, generalised

regression estimation, and raking ratio estimation) are described. Then it is shown how

response propensities can be used for weighting. The two mentioned approaches (response

propensity weighting and response propensity stratification) are described. This section

concludes with an example of the application of these approaches.

4.2. Post-Stratification

Post-stratification is a well-known and often used weighting technique, see, for example

Cochran (1977) or Bethlehem (2002). To carry out post-stratification, categorical

variables are needed. By crossing these variables, population and sample are divided into a

number of non-overlapping subpopulations, called strata.

All objects in one stratum are assigned the same weight, and this weight is equal to the

population proportion in that stratum divided by the response proportion in that stratum.

Suppose that crossing the stratification variables produces L strata. The number of

population objects in stratum h is denoted by Nh, for h ¼ 1, 2, : : : , L. Hence, the

population size is equal to N ¼ N1 þN2 þ : : : þ NL. The weight wk for an object k in

stratum h is now defined by

wk ¼
Nh=N

mh=m
; ð24Þ

where mh is the number of respondents in stratum h (with mh , nh), and n is the total

number of respondents (with m , n). If the values of the weights are taken into account,

the result is the post-stratification estimator

�yps ¼
1

N

XL

h¼1

Nh �yh ð25Þ

where �yh is the response mean in stratum h. So, the post-stratification estimator is equal to

a weighted sum of response means in the strata. The bias of the post-stratification estimator

is equal to

Bð�ypsÞ ¼
1

N

XL

h¼1

NhBð�yhÞ ¼
1

N

XL

h¼1

Nh

RrY ;hSr;hSY ;h

�rh

ð26Þ

where RrY,h is the correlation coefficient between the response probability and the target

variable in stratum h, Sr,h is the standard deviation of the response probabilities in stratum

h, SY,h is the standard deviation of the target variable in stratum h, and �rhis the average

response probability in stratum h.
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It can be concluded that the bias of weighted estimates is small if there is a strong

relationship between the target variable and the stratification variables. The variation in

the values of the target variable should manifest itself between strata, but not within strata.

In other words, strata should be homogeneous with respect to the target variables. In

nonresponse correction terminology, this situation comes down to Missing At Random

(MAR).

The bias of the estimator will also be small if the variation of the response probabilities

is small within strata. This implies that there must be strong relationships between the

auxiliary variables and the response probability.

In conclusion, application of post-stratification will successfully reduce the bias of the

estimator if proper auxiliary variables can be found. Such variables should satisfy the

following conditions:

. They must be measured in the survey;

. Their population (or complete sample) distribution must be available;

. They must be strongly correlated with all target variables;

. They must be strongly correlated with the response behaviour.

Unfortunately, such variables are often not available. If weakly correlated variables are

used, the bias will only be partly removed.

4.3. Generalised Regression Estimation

Post-stratification is a simple and straightforward weighting technique. Unfortunately, it is

not always possible to apply post-stratification. For example, if there are many auxiliary

variables, cross-classifying them may result in empty strata. It is not possible to compute

weights for such strata. These problems can be avoided by applying more advanced

weighting adjustment techniques. Such techniques are described in Bethlehem (2002) and

Särndal and Lundström (2005). One of these techniques is generalised regression

estimation. It is sometimes also called linear weighting.

Generalised regression estimation assumes there is a set of auxiliary variables X1, X2,

: : : Xp that can be used to predict the values of a target variable Y. The generalised

regression estimator is defined by

�yGR ¼ �yþ ð �X 2 �xÞ’b; ð27Þ

in which �y is the sample mean of the target variable. �X is the vector of population means of

the auxiliary variables, and �x is the vector of response means of these variables.

Furthermore, b is the (estimated) vector of regression coefficients. The estimator reduces

the bias if the underlying regression model fits the data well.

Post-stratification is a special case of generalised regression estimation. If the

stratification is represented by a set of dummy variables, where each dummy variable

denotes a specific stratum, Equation (27) reduces to Equation (25).

By rewriting Equation (27), it can be shown that generalised regression estimation is a

form of weighting adjustment, see, for example. Bethlehem et al. (2011). The value of a

weight for a specific respondent is determined by using the corresponding values of the

auxiliary variables.
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Generalised regression estimation can be applied in more situations than post-

stratification. For example, post-stratification by age class and sex requires the population

distribution of the crossing of age class by sex to be known. If just the marginal population

distributions of age class and sex separately are known, post-stratification cannot be

applied. At most, only one variable can be used. However, generalised regression

estimation makes it possible to specify a regression model that contains both marginal

distributions. In this way, more information is used, and this will generally lead to better

estimates.

Generalised regression estimation has the disadvantage that some correction weights

may turn out to be negative. Such weights are not wrong, but simply a consequence of the

underlying model. Usually, negative weights indicate that the regression model does not fit

the data too well. Some analysis software packages are able to take into account weights,

but do not accept weights to be negative. This may be a reason not to apply generalised

regression estimation.

It should be noted that generalised regression estimation will only substantially reduce

the bias if Missing At Random (MAR) applies to the set of auxiliary variables used. For

more about generalised regression estimation, see, for example Bethlehem and Keller

(1987).

4.4. Raking Ratio Estimation

Correction weights produced by generalised regression estimation are the sum of a number

of weight coefficients. It is also possible to compute correction weights in a different way,

namely as the product of a number of weight factors. This weighting technique is usually

called raking ratio estimation, iterative proportional fitting, RIM weighting (RIM stands

for Random Iterative Method), or multiplicative weighting.

Raking ratio estimation can be applied in the same situations as generalised regression

estimation, as long as only categorical auxiliary variables are used. Correction weights are

the result of an iterative process, in which a series of post-stratifications is carried out

repeatedly. This is shown schematically in Figure 5. After post-stratification 1 is carried

out, the survey has become representative with respect to the variables of this post-

stratification. Then post-stratification 2 is carried out. This adapts the weights. The survey

becomes representative with respect to the variables of this post-stratification, but

representativity with respect to the variables of post-stratification 1 is lost. However, the

Post-stratification 1

Post-stratification 2

Post-stratification p

Fig. 5. Raking ratio estimation.
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deviation from representativity is smaller than it was. After all ( p) post-stratifications have

been dealt with, the loop of p post-stratifications starts again. In every post-stratification in

every loop the weights are adapted. The process stops if the values of the weights do not

change any more. Then the weighting process has converged.

Multiplicative weighting has the advantage that computed weights are always positive.

It has the disadvantage that there is no clear model underlying this approach. Moreover,

there is no simple and straightforward way to compute standard errors of weighted

estimates. Generalised regression estimation is based on a regression model, which allows

for computing standard errors.

It should be mentioned that Deville and Särndal (1992) and Deville et al. (1993) have

developed a general framework for weighting, of which raking ratio estimation and

generalised regression estimation are special cases. They call this framework calibration.

The paper by Haziza and Beaumont (2017) is also noteworthy. They present an overview

of weighting adjustment procedures that are used by national statistical institutes.

4.5. Response Propensity Weighting

Horvitz and Thompson (1952) showed that it is always possible to construct an unbiased

estimator if the following conditions are satisfied:

. The sample is selected by means of probability sampling;

. Each object in the target population has a positive probability of selection;

. All selection probabilities are known.

Again, let a ¼ (a1, a2, : : : , aN)’ denote the vector of sampling indicators, where ak ¼ 1

if object k is in the sample, and ak ¼ 0 otherwise. The selection probability pk is defined by

P(ak ¼ 1). It is also called the first order inclusion probability. The Horvitz-Thompson

estimator is now defined by

�yHT ¼
1

N

XN

k¼1

akYk

pk

ð27Þ

In case of full response, this is an unbiased estimator. In case of nonresponse, however,

only the data of the responding objects can be used, and this results in a biased estimator.

One way of solving this problem is to include the nonresponse mechanism in the estimator.

Let R ¼ (R1, R2, : : : , RN)’ denote the response indicators, and r ¼ (r1, r2, : : : , rN) the

corresponding response probabilities, then

�yHT ¼
1

N

XN

k¼1

akRkYk

rkpk

ð28Þ

would be an unbiased estimator. However, it is not possible to use this estimator, since

the values of the response probabilities are not known. The way out is to replace each

response probability rk by its corresponding estimated response propensity r̂kðXkÞ. See

Subsection 3.2 on how to estimate response propensities. This results in the adjusted
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Horvitz-Thompson estimator

�yHT ;R ¼
1

N

XN

k¼1

akRkYk

r̂kðXkÞpk

ð29Þ

The better the estimated response propensities resemble the ‘true’ response probabilities,

the smaller the bias of the estimator will be.

4.6. Response Propensity Stratification

It was already made clear in Subsection 4.2 that post-stratification can reduce the bias of

estimates. The bias of the post-stratification estimator was shown to be equal to

Bð�ypsÞ ¼
1

N

XL

h¼1

NhBð�yhÞ ¼
1

N

XL

h¼1

Nh

RrY ;hSr;hSY ;h

�rh

ð30Þ

This bias is small if the strata are homogeneous. This means that the target variable should

vary between strata and not within strata. The same applies to the response probabilities:

they should vary between strata and not within strata. So a post-stratification based on

response probabilities helps to reduce the bias.

The idea is now to use one post-stratification variable and that is the response

probability. Since the response probabilities are unknown, the estimated response

propensities are used instead.

To construct strata based on estimated response propensities, a number of choices have

to be made. One is how to construct the strata? They should at least be such that each

stratum contains response propensities of approximately the same size. One way to do it is

to divide the interval from 0 to 1, into a number of subintervals of equal length. This may

result in some subintervals having many observations, and others only a few. Another way

to do it is to make strata that all have the same amount of observations. More on this issue

can be found in, for example, Bethlehem et al. (2011, chap. 11). Another choice to be made

is for the number of strata to be constructed. According to Cochran (1968), five strata

should be sufficient in most cases.

4.7. An Example

The various weighting techniques described in this section are applied in the GPS survey.

The GPS was a face-to-face survey. The target population consisted of persons of age 12

and older. Persons were selected by means of a stratified two-stage sample. All persons

had the same selection probability. The initial sample size was 32,019 people. The

response consisted of 18,792 people. So, the response rate was 58.7%.

The auxiliary variables used were listed phone number (yes/no), married (yes/no),

region, degree of urbanisation, ethnic background, house value, and type of household.

Two target variables were considered: has a PC (yes/no) and owns a house (yes/no).

Five estimation approaches were applied: no adjustment, generalised regression

estimation, raking ratio estimation, response propensity weighting, and response

propensity stratification. The resulting estimates are summarised in Table 3.
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For the variable HasPC all adjustment weighting approaches have approximately the

same effect: they produce smaller estimates, and all adjusted estimates are similar. The

same can be observed for the variable Ownhouse: weighting has an effect, and all adjusted

estimates are similar.

At first sight, the results in Table 3 seem to suggest that there are no differences between

the various adjustment weighting approaches. One could conclude that the type of

weighting adjustment does not matter as long as the right auxiliary variables are used. Of

course, this is only one example. It takes more research to establish whether or not this

conclusion can be generalised.

5. From Weights to Response Probabilities

5.1. Weighting Adjustment

Estimation of response propensities requires the values of the auxiliary variable to be

known for the nonrespondents. This information is not available for many surveys. So

then it is not possible to work with estimated response propensities. Still, there is a

trick to do this. It makes use of the relation between adjustment weights and response

propensities: inverse response propensities can be seen as adjustment weights. The idea

is to first carry out some weighting technique and then to transform the weights into

response propensities.

There are several types of weighting adjustment techniques. The most frequently used

ones are post-stratification, generalised regression estimation and raking ratio estimation.

Weighting is based on the use of auxiliary information. This is the set of variables that

have been measured in the survey, and for which the distribution in the population, or in

the complete sample, is available. Note that the individual values of the auxiliary variables

are not required for the nonresponding objects. This is in contrast to the techniques

discussed in Section 3. It is explored here whether it is possible to estimate the response

probabilities using weights that are produced by a weighting model that only uses the

marginal distributions of a set of auxiliary variables.

5.2. Estimating the Response Probabilities

It is now shown how weights, computed by means of generalised regression estimation or

raking ratio estimation, could be transformed into response propensities.

Let there be p categorical auxiliary variables. The values of these variables for object k

are denoted by the vector

Table 3. Results of a number of weighting adjustment techniques.

Weighting approach Has PC Owns house

No adjustment weighting 57.4 % 62.5 %
Generalised regression estimator 55.7 % 58.5 %
Raking ratio estimation 55.7 % 58.6 %
Response propensity weighting 55.7 % 58.6 %
Response propensity stratification 58.8 % 58.9 %
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Xk ¼ ðX
ð1Þ
k ;Xð2Þk ; : : : ;Xð pÞk Þ’ ð31Þ

The number of categories of variable X ð jÞ is denoted by Cj, for j ¼ 1, 2, : : : , p. The

categories are assumed to be numbered 1, 2, : : : , Cj.

Whether generalised regression estimation or raking ratio estimation is applied, all

responding objects with the same set of values for the auxiliary variables will be assigned

the same weight. Suppose an object is in category k1 of the first variable, category k2 of the

second variable, : : : , and category kp of the p-th variable. Let w(k1, k2, : : : , kp) denote

the corresponding weight. Furthermore, assume there are r(k1, k2, : : : , kp) respondents in

this group. The number of sample elements n(k1, k2, : : : , kp) in the group can now be

estimated by

n̂ðk1; k2; : : : ; kpÞ ¼
n

nR

£ wðk1; k2; : : : ; kpÞ £ rðk1; k2; : : : ; kpÞ; ð32Þ

where n is the sample size and nR is the total number of respondents. The response

propensity for all objects in the group can now be estimated by

r̂ðk1; k2; : : : ; kpÞ ¼
rðk1; k2; : : : ; kpÞ

n̂ðk1; k2; : : : ; kpÞ
¼

nR

n
£

1

wðk1; k2; : : : ; kpÞ
: ð33Þ

Indeed, the response propensities are inversely proportional to the weights.

5.3. Application to the GPS

The data of the GPS survey are now used to explore the behaviour of response propensities

that have been computed from weights. First, the generalised regression estimator is

applied. The auxiliary variables are the same as those in the logit model and the linear

model of Subsection 3.2. There are seven variables: Phone, Married, Region, Urban,

Ethnic, HouseVal, and HHType. Only their marginal distributions are used for computing

the weights. So there are no interactions in the weighting model.

Note that not the population distributions of the auxiliary variables are used to compute

the weights, but the complete sample distributions. The sample distributions are unbiased

estimates of the population distributions. So they have some margin of error.

It is assumed that the individual values of the auxiliary variables are only available for

the responding elements, and not for the nonresponding elements. So less information is

used than in the case of the logit or linear model in Subsection 3.2. As a consequence,

response propensities can only be computed for the responding elements.

Figure 6 shows the relationship between the logit model response propensities and the

generalised regression estimation response propensities. There is a strong relationship.

The correlation coefficient is equal to 0.9801535.

The linear relationship is somewhat less strong than that between the logit model

response propensities and the linear model response propensities (with a correlation of

0.999573). Three clusters of points can be distinguished in the scatter plot of Figure 6.

Further analysis showed that the two line-shaped clusters with lower response propensities

mainly contain people in highly urbanised areas. Persons living in rural areas can all be

found in the banana-shaped cluster of high response propensities.
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The exercise was repeated using raking ratio estimation instead of the generalised

regression estimation. Again, weights were transformed into response propensities.

Figure 7 shows the relationship between the logit model response propensities and the

raking ratio estimation response propensities. There is a strong relationship. The

correlation coefficient is equal to 0.9937689.
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Fig. 6. Comparing response propensities produced by the logit model and generalised regression estimation.

0.6

0.4

0.2

0.8

0.0

0.0
Response propensities (logit model)

R
es

po
ns

e 
pr

op
en

si
tie

s (
ra

ki
ng

 ra
tio

 e
st

im
at

io
n)

0.2 0.4 0.6 0.8

Fig. 7. Comparing response propensities produced by the logit model and raking ratio estimation.
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In this example, raking ratio estimation seems to produce response propensities that are

closer to those of the logit model than generalised regression estimation. Apparently, the

individual values of the auxiliary variables are not needed in this case for estimating

response propensities. However, this is just one example. More research is required to

make clear whether or not this is a general phenomenon.

6. Using Response Propensities to Assess Representativity

6.1. The Coefficient of Variation

As was already described in Subsection 2.2, the bias of the response mean as an estimator

for the population mean is equal to

Bð�yRÞ ¼
RrY SrSY

�r
; ð34Þ

where RrY is the correlation coefficient between target variable and the response

behaviour, Sr is the standard deviation of the response probabilities, SY is the standard

deviation of the target variable, and �r is the average response probability. Equation (34)

can be rewritten as

Bð�yRÞ ¼ RrY £ SY £ CVr; ð35Þ

where CVr is the coefficient of variation (CV) of the response probabilities. It is the only

component in the expression for the bias that purely depends on the response probabilities.

A large coefficient of variation means that there is a potential risk of a large bias. How

large the bias for a specific variable will be, depends on the strength of the relationship

between the target variable and the response probabilities.

CVr can be used as an indicator of representativity: the larger the value of CVr, the

larger the lack of representativity. A CVr of 0 means that all response propensities are

equal, which implies there is no bias.

Note that there are other indicators of representativity. The indicator presented in this

section is based on the coefficient of variation of the (estimated) response probabilities.

Schouten et al. (2009) propose the R-indicator, which is based on the standard deviation of

the (estimated) response probabilities. Related to the concept of representativity is the

concept of the imbalance of the response set, which was introduced by Särndal. More

about this approach can be found in for example Särndal (2011), Lundquist and Särndal

(2013), Särndal and Lundquist (2014a, 2014b, 2017) and Särndal et al. (2016).

6.2. Case 1: Individual Values for the Nonrespondents Are Available

If the individual values of the auxiliary variables are available for both respondents and

nonrespondents, the logit model or the linear model, as described in Subsection 3.1, can be

applied. For each sample element, the response propensity can be estimated. Therefore,

CVr can be computed for the sample, and this is an estimator of the population-based CVr.

Note that for small samples, this indicator may be somewhat biased.

The data of the GPS survey are used for an illustration. Response propensities were

estimated using the seven auxiliary variables Phone, Married, Region, Urban, Ethnic,

Bethlehem: Working with response probabilities 667



HouseVal, and HHType. Only main effects were used in the logit and linear model. The

computations for both models are summarised in Table 4

Although the linear model produces a somewhat wider range of values for the response

propensities, the values of the CVr are approximately the same. At least in this example,

the linear model can be used as an approximation of the logit model.

6.3. Case 2: Individual Values for the Nonrespondents are Not Available

If the individual values of the auxiliary variables are not available for the nonrespondents,

the weighting approach may be considered for estimating response propensities. Section 5

describes how to do this. This approach requires the population distribution or the

complete sample distribution to be known.

It should be noted that the response propensities can only be estimated for respondents

and not for nonrespondents. These response propensities cannot be used without

correction to estimate the standard deviation of the all response propensities in the sample.

The reason is that elements with high response propensities will be over-represented in the

response. Fortunately, there is a way out. Let

�rR ¼

XN

k¼1
akRkrk

XN

k¼1
akRk

ð36Þ

denote the response mean of the response probabilities. The expected value of this quantity

is approximately equal to

Eð�rRÞ < �rR ;
1

N �r

XN

k¼1

r2
k ð37Þ

By rewriting Equation 37, it can be shown that the standard deviation of the response

probabilities is equal to

Sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rð �rR 2 �rÞ

p
ð38Þ

In practice, the mean �r of the response probabilities is estimated by the response rate nR / n.

The quantity �rR is estimated by the mean of the estimated response propensities of the

respondents. This assumes simple random sampling. For unequal probability sampling

designs the Horvitz-Thompson estimator should be used, which means that values are

weighted with the inverse inclusion probabilities. Table 5 summarises the results of the

computations for all four approaches considered in this article.

Table 4. Computation of the CV for the GPS survey (case 1).

Model Estimated response propensities CVr

Minimum Maximum Mean Standard deviation

Logit 0.128 0.732 0.587 0.112 0.191
Linear 0.050 0.738 0.587 0.112 0.191
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Note that here computations are based on respondents only. This why the values for the

logit and linear model differ from those in Table 4.

Although less information is used, raking ratio estimation seems to perform almost as

well as the logit and the linear model. Generalised regression estimation performs slightly

less than raking ratio estimation, but still produces an estimate that is close to the logit

estimates.

Again, it must be remarked that this conclusion is based on application to just one data

set. More research is required to find out whether this holds in general.

6.4. Application to a Self-Selection Web Survey

The theory developed for estimating response propensities from adjustment weights can

be applied to self-selection surveys. There is no sample selection for such a survey. There

are no selection probabilities, but only response probabilities. To say it differently: the

whole population is the sample.

Typically, the values of auxiliary variables are only available for the participants, and

not for the non-participants. It is assumed that it is possible to obtain the population

distributions of the auxiliary variables for weighting purposes. After weights have been

computed, they are transformed into response propensities, and they can be used to

compute the CVr. The CVr takes the form

CVr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rð �rR 2 �rÞ
p

�r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �rR 2 �rÞ

�r

s

: ð39Þ

The mean response probability �r is estimated by nS / N, where nS is the size of the realised

response and N is the size of the target population. The quantity �rR is estimated by the

mean of the estimated response propensities for the respondents.

The theory is applied in an example. There are three nationwide public TV channels in

the Netherlands. One of these channels (‘NOP1’) has a current affairs program called

’EenVandaag’. This program maintains a web panel. It is used to measure public opinion

with respect to topics that are discussed in the program. The ‘EenVandaag Opinion Panel’

started in 2004. In 2008, it contained approximately 45,000 members. The panel is a self-

selection panel. Participants were recruited from the viewers of the program. For these

reasons, the panel lacks representativity.

In the period before the start of the Olympic Games in Beijing in August of 2008 there

was a lot of discussion in the Netherlands about a possible boycott of the games.

Suggestions ranged from not showing up at the opening ceremony to athletes not

Table 5. Computation of the CVr for the GPS survey.

Approach Standard deviation CVr

Logit model 0.097 0.160
Linear model 0.097 0.160
Generalised regression estimation 0.107 0.176
Raking ratio estimation 0.102 0.168
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participating in the games at all. This boycott was proposed because of the lack of respect

of the Chinese for the human rights of the Tibetan people. One of the waves of the opinion

panel was conducted in April 2008 in order to determine the public opinion of the Dutch

with respect to this issue. The members of the panel were invited to complete a

questionnaire. This questionnaire also contained topics about other issues, like preference

for political parties. The questionnaire was completed by 19,392 members of the panel

aged 18 years and older.

The representativity of the response was affected by two phenomena. Firstly, the panel

was constructed by means of self-selection. Secondly, not all members of the panel

responded to the request to fill in the questionnaire (nonresponse).

If persons apply for membership of the panel, they have to complete a basic

questionnaire with a number of demographic questions. These demographic variables can

be used as auxiliary variables. The following variables were used for weighting

adjustment:

. Gender in two categories: male and female;

. Age in five categories: 18–24, 25–39, 40–54, 55–64, and 65þ;

. Marital Status in four categories: never married, married, divorced, widowhood;

. Province of residence in twelve categories: Groningen, Friesland, Drenthe,

Overijssel, Flevoland, Gelderland, Noord-Holland, Zuid-Holland, Zeeland, Noord-

Brabant and Limburg;

. Ethnic background in three categories: native, first-generation non-native, and

second-generation non-native;

. Voting in the 2006 general elections in twelve categories: CDA (Christian-

democrats), PvdA (social-democrats), SP (socialists), VVD (liberals), PVV (rightwing

populists), GroenLinks (green party), ChristenUnie (right-wing Christians), D66

(liberal-democrats), PvdD (party for the animals), SGP (right-wing Christians), other

party, and did not vote.

The population distributions were available for all these variables. Note that the

variables came from different sources, so that only marginal distributions could be used

and not cross-classifications of variables.

The first step was to compute adjustment weights. Raking ratio estimation was used for

this. The resulting weights turned out to have a large variation. The smallest weight was

0.089 and the largest was 34.570. This large variation clearly points to a substantial lack of

representativity.

The next step was to estimate the response propensities using expression (Equation 29).

The distribution of these response propensities is shown in Figure 8. It is clear that all

response propensities are small. They vary approximately between 0.000 and 0.017. This

is not surprising, as only 19,000 people out of a population of more than 12 million people

responded.

The computations for the coefficient of variation are summarised in Table 6. The

coefficient of variation is a little over one. This means that, compared to the GPS survey,

the potential bias of the web survey is more than five times as large.

One should be careful when comparing the CVr of different surveys. Differences are

only meaningful if the estimated response probabilities are based on the same model. If
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this is not the case, differences may also be attributed to differences in models, and not to

differences in the variation of the true response probabilities.

7. Conclusion

Nonresponse can have a serious impact on the quality of survey outcomes. Nonresponse

affects the representativity of the survey and therefore the validity of its outcomes. Hence,

it is important that survey researchers analyse the outcomes of their surveys. If there is a

risk of biased outcomes, some kind of correction is called for.

One way of getting more insight into nonresponse is to introduce the concept of

response probability. To that end, a model must be fit that is able to explain response

probabilities from a set of auxiliary variables. The most frequently used model is the

logistic regression model (or logit model). It is important that all relevant auxiliary

variables are included in the model. It must have sufficient explanatory power.

Another model is the linear model. This is a simpler model. It can be seen as an

approximation of the logistic regression model. Particularly when response probabilities
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Fig. 8. Histogram of the response propensities in the self-selection survey.

Table 6. Computation of the CV for the self-selection web survey.

Quantity Value

Minimum response propensity (response) 0.000044
Maximum response propensity (response) 0.016878
Mean response propensity (response) 0.003051
Stand. dev. response propensity (response) 0.002334
CVr (response) 0.764931
CVr 1.011636
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are within the range from 0.20 to 0.08, both models produce almost the same predictions.

Application in the GPS showed that is does not matter which model is used.

To be able to estimate response probabilities with the logistic regression model or the

linear model, the values of the explanatory variables must be available for both

respondents and nonrespondents. Sometimes this is the case, for example if the sample is

selected from a population register or from a sampling frame that is linked to registers.

More often the values for the nonrespondents are not available. The article proposes a

technique to circumvent this problem: first, a weighting adjustment technique is applied,

and which does not require the individual values of the nonrespondents. Examples are

generalised regression estimation and raking ratio estimation. These techniques assign

weights to respondents. These weights can be seen as reciprocal response probabilities,

and therefore response probabilities can be computed.

Application of this reciprocal weights technique to the GPS data showed that it worked

in practice. The estimated response probabilities were similar to those obtained by using

the logistic model or linear model, even though less information was used (no

interactions).

The approach of estimating response probabilities by means of weighting model models

has the attractive property that it can also be applied in the case of self-selection surveys.

Application of the theory in the example of the web panel shows that the worst case bias

can be very large.

Various models for response probabilities were explored in this article and applied to

the example of the GPS. The conclusion could be drawn that it does not seem to matter

which correction technique is used, as long as the model contains the relevant auxiliary

variables. Of course, this conclusion is based on just one example. More research is needed

to find out whether or not this conclusion can be generalised.

Response probabilities can be used for various purposes. Not only for corrections, but

also for analysis. It was shown how a graphical technique like a boxplot can give more

insight into the relation between response behaviour and auxiliary variables.

Another application is to base representativity indicators on response probabilities. A

well-known example is the R-indicator. This article proposes an indicator based on the

coefficient of variation of the response probabilities. It seems to work for the example of a

self-selection web panel. More research is necessary.
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