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2 Theory and methods

In this chapter the theory behind electronic structure calculations, the con-
struction of potential energy surfaces (PESs), quasi-classical trajectory (QCT)
calculations, and quantum dynamics (QD) calculations is introduced. The last
section deals with the calculation of observables which can be used to compare
to experimental observations.

Within the realm of quantum mechanics the wave function, usually denoted
with the Greek letter Ψ, seems to take on the role of magical all-knowing
oracle. There has been much discussion since its inception on whether the wave
function is real object or a mathematical tool, and on whether it is a complete
description of reality1–3. These sort of musings on the deep mathematical
nature of reality are, however, far beyond the scope of this thesis.

From here on it is presumed that everything that can be calculated about
a particular particle or system is described by the (non-relativistic) time-
dependent Schrödinger equation for coupled electron-nuclei dynamics4,5.
Throughout this chapter we shall assume that the Born-Oppenheimer
approximation6 (BOA) has been made. In practice this means that in QD
calculations we first need to solve the electronic structure problem to compute
the ground state PES. After the PES is obtained the time-dependent Scrödinger
equation for the nuclear dynamics can be solved. With a quasi-classical approach
we can also solve Hamilton’s equations of motion instead. Alternatively forces
can be obtained on the fly from an electronic structure method, and used to
solve Hamilton’s equations of motion in direct dynamics calculations.

2.1 Electronic structure theory: density functional
theory (DFT)

Calculating a PES for H2 interacting with a metal surface in the static surface
approximation involves solving the electronic problem for many different con-
figurations of H2 relative to the surface. DFT is a particularly efficient method
for solving the electronic structure problem7,8. DFT has its origin in the 1927
Thomas-Fermi model9,10, which tries to evaluate the energy of a system using
only the three dimensional electron density of a system , n(~r), as opposed to
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the wave function of a system which depends on the coordinates of all particles
in the system. The lack of a rigorous foundation of the Thomas-Fermi model
and the large errors it produces for molecular calculations made it a rather
crude tool, not suited for quantum chemistry11.

Hohenberg and Kohn7 provided the rigorous foundation by showing that
for a system of electrons in an external potential (i.e. the potential generated
by the nuclei) the ground state wave function is a unique, although unknown,
functional of the electron density n(~r). It was also shown that the exact ground
state corresponds to the global minimum of the unknown functional of n(~r),
which makes it possible to apply the variational principle to obtain the minimum
energy and ground state electron density for a given approximation. Thus the
evaluation of the energy density functional on an electron density which is not
the ground state electron density will yield a higher energy than the ground
state energy.

A difficulty in DFT arises in calculating the electrons’ kinetic energy from
n(~r), which is the main constituent of the total energy of the system. A
solution to this problem was given by Kohn and Sham8 in the form of a
ficticious system of non-interacting electrons in an effective external potential.
The Kohn-Sham equations recast the many electron problem as a set of N
single-electron equations:

[−∇2

2
+ VKS(~r)]φi(~r) = εiφi(~r) (2.1)

In this equation and those below we will asume that atomic units are used.
Here, φi(~r) is the single particle orbital (or Kohn-Sham orbital) for a ficticious
non-interacting system. The electron density can then be retrieved by summing
over all Kohn-Sham orbitals.

n(~r) =

N∑
i=1

|φi(~r)|2 (2.2)

The first term in equation 2.1 represents the kinetic energy of the non-interacting
electrons, and the second term is the Kohn-Sham potential, VKS(~r). The Kohn-
Sham potential is given by

VKS(~r) = Vext(~r) + VH(~r) + Vxc(~r), (2.3)
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in which Vext(~r) is the external potential, VH(~r) is the Hartree (Coulomb)
potential, given by

VH(~r) =

∫
n(~r′)

|~r − ~r′|
d~r′, (2.4)

and the exchange-correlation potential is given by

Vxc(~r) =
∂Exc[n(~r)]

∂n(~r)
. (2.5)

Vxc(~r) represents the error made by ignoring many-body effects by using the
kinetic energy of the system of non-interacting electrons and the Coulomb
potential. Although Hohenberg and Kohn7 proved that a universal exchange-
correlation functional, Exc, must exist, it is, presently, not known exactly. In
any practical calculation it is therefore approximated. These approximations
are discussed in section 2.1.1.

2.1.1 Exchange-correlation density functionals: LDA, GGA,
meta-GGA

As discussed in section 2.1, the expression of the exact exchange-correlation
functional is unknown. Many non-empirical density functionals have been
constructed that recover some or all known exact constraints on the design
of density functionals11,12. Some notable examples are the PBE13, PBEsol14,
RPBE15, B86b16, TPSS17, revTPSS18, and SCAN19 density functionals. In
general semi-local approximations to the exchange-correlation functional, in a
spin unpolarized framework, take the following form:20

Exc(n(~r)) =

∫
d3~rn(~r)εxc(n(~r),∇n(~r), τ(~r)) (2.6)

Here, ∇n(~r) is the gradient of n(~r), and τ(~r) is the kinetic energy density. Both
∇n(~r) and τ(~r) depend on n(~r). In equation 2.6 one can choose to only take
into account n(~r), this is called the local density approximation (LDA)8. In the
LDA the exchange-correlation energy is taken to be the exchange-correlation
energy of the homegeneous electron gas of the same density as n(~r).

When one chooses to take into account not only n(~r) but also ∇n(~r) this
amounts to climbing Jacob’s ladder21 one rung up to the generalized gradient
approximation (GGA)13,15,22. At the GGA level the exchange-correlation energy
thus depends on both n(~r) and its gradient. When n(~r), ∇n(~r) and τ(~r) are
taken into account in equation 2.6 one climbs another rung on Jacob’s ladder21

towards a meta-GGA exchange-correlation density functional18,19. Taking into
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account higher orders in the expansion of n(~r) amounts to taking into account
more and more information about the local environment of each point in the
three dimensional n(~r). So far only one density functional has been reported
that statisfies all known exact constraints on a exchange-correlation functional,
namely the SCAN density functional19. Statisfying all known exact constraints
is however no panacea for describing the interaction of H2 with transistion
metal surfaces, as will be discussed in chapter 3.

Many different functional expressions have been put forward as exchange
correlation functionals. The work presented in this thesis focuses on the
construction of density functionals at the GGA level (see chapter 5) and the
meta-GGA level (see chapters 3 and 6).

2.1.2 Non-local correlation

When an exchange-correlation functional is solely based on n(~r), ∇n(~r) and/or
τ(~r) it is inherently (semi-)local. Such exchange-correlation functionals cannot
describe longe range electronic correlations such as Van der Waals interactions.
As will be discussed in chapter 5, longe range electronic correlation is also
important in the description of the interaction of H2 with transition metals.

So far, several methods have been proposed that introduce long range
(non-local) correlation in DFT calculations23. The simplest method is the
DFT-D3 method by Grimme24,25 in which a pairwise potential is added based
on C6 coefficients computed using time-dependent density functional theory
(TD-DFT). A more general approach to incorporating non-local correlation
in DFT calculations is based on the Rutgers-Chalmers formulation of non-
local correlation by Lundqvist et al.26. One of the first generally applicable
non-local exchange-correlation density functionals was the vdW-DF1 density
functional proposed by Dion et al.27, and its later revision vdW-DF228. Other
implementations based on the same Rutgers-Chalmers formalism are the VV1029

and rVV1030 non-local exchange-correlation density functionals. The difference
between the vdW-DF and VV10 based functionals is that the former consists of
the local LDA correlation functional and a non-local correlation term, whereas
the latter consists of a semi-local (beyond LDA) correlation functional plus a
non-local correlation term.

The non-local term that is part of the vdW-DF and VV10 based non-local
correlation functionals can be written as:

Enon-local
c =

∫
d~rn(~r)

( h̄
2

∫
d~r′Φ(~r, ~r′)n(~r′) + β

)
. (2.7)
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Here Φ(~r, ~r′) is the kernel describing density-density interactions31. The param-
eter β is not present in the vdW-DF non-local correlation functionals and is
taken to be β = 1

32(
3
b )

3
4 in the VV10 group of non-local correlation functionals

to ensure a zero non-local correlation energy for the homogeneous electron
gas32. In the VV10 group of non-local correlation functionals the b parameter
is optimized to avoid double counting of intermediate range correlation effects
that might be present in the semi-local correlation functional that is part of
the VV10 based correlation functionals.

In the context of plane wave DFT the method of Román-Pérez and Soler31

has allowed for the vdW-DF127, vdW-DF228, VV1029 and rVV1030 non-local
correlation functionals to efficiently evaluate the double integral over n(~r) by
use of an auxiliary function called the kernel which describes the density-density
interactions. Note that apart from a convergence paramter C present in the
integration kernel, only the vdW-DF127 non-local correlation functional is
non-empirical23. In the construction of the vdW-DF228, VV1029 and rVV1030

non-local correlation functionals at least one parameter is optimized to obtain
better agreement with experimental observables.

2.1.3 The problem of obtaining accurate reaction barriers

Currently no first principles electronic structure method exists that can compute
molecule-metal interaction energies and barrier heights to within chemical
accuracy (1 kcal/mol33). For the benchmark H2 + Cu(111) system diffusion
Monte-Carlo (DMC) calculations underestimate the best available value for the
reaction barrier height by 1.6±1.0 kcal/mol34. The description of O2 scatttering
from Al(111) was greatly improved by dynamics calculations employing an
embedded correlated wave function (ECW) method, but chemical accuracy was
not yet reached35.

In the absence of chemically accurate first principles methods describing the
interaction of molecules with metals, validation of calculated barrier heights
needs to be performed in relation to experimental measurements. However,
a barrier height is not a direct observable. An alternative path to validating
calculated results uses a dynamics method to compute a physical quantity that
is an observable, such as the sticking probability as a function of the incidence
energy. The sticking probability as a function of the incidence energy can be
measured in supersonic molecular beam experiments36. The fact that such
experiments can probe the reactivity of specific, well-defined Miller index metal
surfaces at low temperatures make such experiments suitable for validation of
calculated barrier heights33.
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2.1.4 Specific reaction parameter approach to DFT

The specific reaction parameter (SRP) approach to DFT is a semi-empirical
method, originally proposed by Truhlar and coworkers37,38. Since the work
presented in this thesis mostly focuses on reproducing molecular beam disso-
ciative chemisorption experiments, the SRP method is applied by selecting
a specific observable (here the zero coverage sticking probability, S0) of an
experiment. In the present context a SRP density functional (ESRP

xc ) is then
constructed by taking a weighted average of a density functional (e.g. EA

xc) that
overestimates the sticking probability, and one density functional (e.g. EB

xc)
that underestimates the sticking probability for the system of interest39.

ESRP
xc = α · EA

xc + (1− α) · EB
xc (2.8)

Here α is the SRP mixing parameter. This approach allows for the construction
of chemically accurate SRP density functionals for specific systems33,39–43. A
SRP density functional might be considered successful if it is fitted to reproduce
one particular experiment, while also being able to describe another experiment
on the same system the SRP density functional was not fitted to. Additionally,
a SRP density functional can be considered transferable if it can reproduce
experimental results for a system it was not fitted to, i.e. a molecular beam
dissociative chemisorption experiment on the same molecule reacting with a
different transition metal surface. Note that there exist also other approaches
to creating a tunable density functional, one such example would be the PBEα
density functional44 in which α can be adjusted, as was done for H2 + Pt(111)40.

So far SRP density functionals fitted to reproduce molecular beam dissocia-
tive chemisorption experiments for H2 and D2 were shown to be transferable
among systems in which H2 interacts with different crystal faces of the same
metal45,46, but not with different metals47,48. Transferability of SRP density
functional among systems in which the same molecule interacts with different
metals has only been reported for CH4 dissociation on Ni(111)42 to CH4 dis-
sociation on Pt(111)49. In chapters 5 and 6 it will be shown that this type
of transferability can also be achieved for the reaction of H2 and D2 on low
Miller index surfaces of transition metals, when using a non-local correlation
functional such as vdW-DF127, vdW-DF228 or rVV1030.

In equation 2.8 a weighted average is taken of two exchange correlation-
functionals. In practice often only the exchange part of two density functionals
is mixed in the creation of a SRP density functional. When creating SRP density
functionals that incorporate a non-local correlation functional two expressions
for the total exchange-correlation functional can be obtained, depending on
whether the non-local correlation part stems from the vdW-DF or VV10 group
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of non-local correlation functionals:

ESRP
xc = α · EA

x + (1− α) · EB
x +

vdW-DF non-local correlation︷ ︸︸ ︷
ELDA

c + Enon-local
c (2.9a)

ESRP
xc = α · EA

x + (1− α) · EB
x + Esemi-local

c + Enon-local
c︸ ︷︷ ︸

(r)VV10 non-local correlation

. (2.9b)

2.1.5 Periodic DFT

Metal surfaces are often periodic. In this case it is advantageous to treat the
metal surface as infinitely periodic in DFT calculations, since this naturally
allows for performing calculations on only the atoms that are part of the
repeating unit cell. Calculations using a finite metal slab would quickly spiral
out of control with respect to computational cost due to the need to use large
finite slabs in order to avoid ’edge’ effects. An elegant way of introducing
periodicity in DFT calculations is by applying Bloch’s theorem50, which applies
to the solution of the Schrödinger equation of an electron in a periodic potential,
and to the Kohn-Sham orbitals of equation 2.1. Bloch’s theorem states that
eigenfunction for an electron in a periodic potential can always be written as a
plane wave multiplied with a periodic function which obeys the periodicity of
the system

φ
i,~k
(~r) = uk(~r)e

i~k·~r. (2.10)

Here ~k is a wave vector in the first Brillouin zone, and i is an index running
over all Khon-Sham orbitals. The function uk(~r) is a function that obeys the
same periodicity as the potential of the surface (~R), i.e. uk(~r) = uk(~r + ~R).
When expanding u~k(~r) in a Fourier series (plane wave basis set) the Kohn-Sham
orbitals can be written as

φ
i,~k
(~r) = N

∑
G

ci,k( ~G)e
i(~k+ ~G)·~r, (2.11)

where N is a normalization constant, ~G is a reciprocal lattice vector and ci,k( ~G)
are the expansion coefficients.

In principle the Fourrier expansion is exact, in practice a maximum kinetic
energy cut-off is used for the plane waves in the basis set according to:

1

2
|~k + ~G|2 ≤ Ecut-off (2.12)
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Note that describing high energy core electrons using plane waves would
require exceedingly high cut-off energies. To get around this problem one
can replace the Coulomb potential set up by the bare nucleus and the core
electrons by the potential of a pseudo atom. This pseudo atom would describe
the nucleus, the core electrons, and the interactions between them, including
relativistic effects51,52. Pseudo potentials are constructed in such a way that
the pseudo wave function is as smooth as possible within a cut-off radius rc
close to the nucleus while simultaneously yielding almost exactly the same
real potential and wave function outside of rc. Given that the wave function
describing the core of the atoms is much smoother when using pseudo potentials,
calculations can be carried out using a lower cut-off energy (see equation 2.12).
For the work presented in this thesis two types of pseudo potentials have been
used, namely Vanderbilt’s ultrasoft pseudo potentials51 and the more general
projector-augmented-wave potentials53.

2.2 Constructing potential energy surfaces

Obtaining a continuous representation of the six dimensional PES of a diatomic
molecule interacting with a surface of which the surface atoms are fixed in their
ideal lateral positions can be achieved by applying the corrugation reducing
procedure (CRP)54,55. The CRP method is a rather efficient procedure to
interpolate potential energies calculated on a grid and obtained from any
electronic structure method. In the CRP method the molecule-surface PES is
written as

V 6D(R, r) = I6D(R) +

2∑
i=1

V 3D(ri), (2.13)

where R are the coordinates of the molecule, ri are the coordinates of the ith

atom belonging to the molecule, V 3D is the atom-surface potential evaluated
for each atom, and I6D is the so-called interpolation function. Subtracting
the atomic potentials from the six dimensional potential ensures that I6D

is a smooth function that can readily be interpolated without performing
an excessive amount of electronic structure calculations. The atom-surface
potential is constructed in a similar way as the molecule-surface potential. The
atom-surface potential is written as

V 3D(ri) = I3D(ri) +
N∑
j

V 1D(rij) (2.14)
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where I3D is the three dimensional interpolation function that needs to be
interpolated over the atomic coordinates ri, rij is the distance between atom
i and surface atom j, and V 1D is a one dimensional corrugation reduction
function. For V 1D one usually takes the Z dependence of the interaction of an
atom normally incident on a top layer surface atom.

Applying the steps outlined in equations 2.13 and 2.14 reduces the corru-
gation of I6D in the X,Y, θ and φ degrees of freedom with respect to V 6D54.
The number of electronic structure calculations that need to be performed
can be further reduced by taking into account the symmetry of the surface
during the interpolation. The way this is achieved is by generating symmetry
adapted basis functions for the interpolation using a Fourier expansion that
obeys the correct wallpaper group symmetry of the surface56. The way this is
done specifically for the CRP PESs created for the work in this thesis has been
documented in the PhD thesis of Wijzenbroek57.

2.3 Nuclear dynamics

After a six dimensional (i.e. depending on the six degrees of freedom of the H2

molecul are in relation to the metal surface) PES has been obtained, nuclear
dynamics calculations can be performed either quasi-classically or quantum
mechanically. Both methods can be used to calculate observables (see section
2.4) which in turn can be used to compare to experimental observations.

2.3.1 Quasi-classical trajectory method

In the quasi-classical trajectory method Newton’s equations of motion are
solved for the six degrees of freedom of the H2 molecule moving on the six
dimensional PES.

Mi
d2Ri

dt2
= −∇iV

6D(Ri) (2.15)

Here i is the index that runs over the atoms in a diatomic molecule, and Mi

is the mass of atom i. In all but chapter 4 the predictor-corrector method of
Burlisch and Stoer58 is used to integrate the equation of motion. Additionally,
quasi-classical conditions are assumed59 such that the quantum mechanical
energies of impinging H2 molecules in their initial rovibrational state are taken
into account by imparting them to the molecule at time t0. The energies of the
rovibrational states of the H2 molecule are obtained by using the Fourier grid
Hamiltonian (FGH) method60.

The initial conditions of each trajectory are set up as follows. At the start
of eacht trajectory the molecule is placed in the gasphase at Z = Zgas, where
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the potential does not depend on Z. The impact site in X and Y is randomly
sampled, and an initial velocity vector for the center of mass of the molecule is
constructed based on the chosen initial perpendicular and parallel translational
energy (E⊥ and E‖, respectively). The initial positions and momenta are further
constrained by the the vibrational quantum number ν, the rotational quantum
number J and the magnetic rotational quantum number mJ . The orientation
of the molecule with respect to θ and φ is choosen based on the rotational state.
The initial angular momentum L is set by L =

√
J(J + 1)h̄ and the orientation

of L is randomly sampled with the constraint cos θL = mJ/
√
J(J + 1). Here

θL denotes the angle between L and the surface normal. The vibrational
energy of a particular vibrational state is imparted to the molecule by randomly
sampling positions and momenta obtained from a one dimensional classical
dynamics calculations of the vibrating molecule of the same energy as the
selected vibrational state.

Trajectories are considered to be reacted when the H-H distances becomes
larger than some critical value rc, and trajectories are considered to be scattered
when Z becomes bigger than Zgas and has a momentum away from the surface.
For practical reasons there is a maximum propagation time tmax for all trajectory
calculations. If neither reaction nor scattering has occurred the molecule is
considered to be trapped. It should however be noted that when no energy
is removed from the molecule during the trajectory, as is the case here, in
principle no trapping should occur in the limit of an infinite simulation time.
The reaction probability Pr is then calculated by dividing the number of reacted
trajectories Nr by the total number of trajectories Ntotal.

Pr =
Nr

Ntotal
(2.16)

The standard error in Pr, σPr , can then be computed as

σPr =

√
Pr(1− Pr)

Ntotal
. (2.17)

Langevin equation with energy dissipation

In chapter 4 the Langevin equation is used instead of Newton’s equations of
motion in order to make it possible to carry out molecular dynamics calcu-
lations that incorporate electronic friction (MDEF). Disspative effects due
to electron-hole pair excitations in MDEF calculations have been described
phenomenologically by coupling the six-dimensional H2 molecule to a heat bath.
The coupling is here realized by a (6× 6) frictional tensor η, which accounts
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for the effect of electron-hole pair excitations during the dynamics61–63.

Mi
d2Ri

dt2
= −∇iV

6D(Ri)−
N∑
k=1

ηik
dRi

dt︸ ︷︷ ︸
friction force

+F random
i (T ) (2.18)

Here ηik is the frictional tensor element, and F random
i (T ) is a temperature

dependent random force. The temperature dependent random force is calculated
as discussed in references62,63, and is taken such that the fluctuation-dissipation
theorem64 can be taken into account65

〈F random
i (t)F random

j (t′)〉 = 2kBTelηiiδi,jδ(t− t′). (2.19)

In equation 2.19 kB is the Boltzmann constant. In this way F random
i (T ) is taken

to be correlated to a Gaussian white noise distribution which is implemented as
discussed in reference62, and vanishes for T = 0K. The electronic temperature
Tel is taken to be equal to the surface temperature. Equation 2.18 is integrated
using the Ermak-Buckholz propagator66.

The local density friction approximation (LDFA) together with the indepen-
dent atom approximation (IAA) is used to calculate the friction coefficients of
equation 2.1867,68. Molecular properties are thus neglected in this approach and
the off-diagonal elements of the friction tensor as expressed in the Cartesian
coordinates of the atoms are zero. As a consequence kinetical coupling between
different degrees of freedom cannot be described in this model. Whether the
LDFA is a valid approximation in combination with the IAA is still under
debate69–71, but it allows for a comparably simple incorporation of electronically
non-adiabatic effects during the dynamics of H2 reacting on transition metal
surfaces62,63,67,69,72,73.

2.3.2 Quantum dynamics

Six dimensial quantum dynamics (QD) calculations are performed by using
the time-dependent wave packet (TDWP) method74–76 in order to solve the
time-dependent nuclear Schrödinger equation:

ih̄
dΨ( ~Q; t)

dt
= ĤΨ( ~Q; t). (2.20)

This is done using an in-house computer package77,78. Here, Ψ( ~Q; t) denotes
the nuclear wave function of H2 at time t with ~Q being the position vector. To
describe motion in the six degrees of freedom of H2 the following Hamiltonian
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is used:

Ĥ = − h̄2

2M
∇2 − h̄2

2µ

∂2

∂r2
+

1

2µr2
Ĵ2(θ, φ) + V 6D( ~Q). (2.21)

Here, M and µ are the mass and reduced mass of H2, and Ĵ2(θ, φ) is the angular
momentum squared operator. A discrete variable representation (DVR)79 is
used to represent the wave packet in the Z, r,X and Y degrees of freedom
and a finite basis representation (FBR)80,81 is used for the angular degrees of
freedom. In order to transform the wave function from the DVR to the FBR
and back, fast Fourier transforms82 and discrete associated Gauss-Legendre
transforms80,81 are employed.

The initial wave packet is constructed as a product of a gas phase rovi-
brational eigenfunction of H2 characterized by the quantum numbers ν, J and
mJ (Φν,J,mJ

(r, θ, φ)) and a Gaussian wave packet with initial wave vector
~k0 = (kX0 , k

Y
0 , k

Z
0 )

T describing translational motion.

Ψ( ~Q, t = 0) = Φν,J,mJ
(r, θ, φ)ψ(~k0, t0) (2.22)

The initial translational motion is then described by the following wave function:

ψ(~k0, t0) = ei(k
X
0 X0+kY0 Y0)

∫ ∞

−∞
β(kZ0 )e

ikZ0 Z0dkZ0 (2.23)

Here, β(kZ0 ) is the initial Gaussian wave packet centered on Z0, which is defined
through the width parameter σ and average momentum k according to:

β(kZ0 ) =
(2σ2
π

)− 1
4
e−σ2(k−kZ0 )2ei(k−KZ

0 )Z0 . (2.24)

Here, σ is the width of the wave packet centered around the wave vector ~k0.
The width σ is chosen in such a way that most of the Gaussian wave packet is
placed in a initial translational energy range of Ei ∈ [Emin, Emax].

The wave function is propagated using the split operator (SPO) method83

using a time step ∆t. Reflections of the wave packet at large Z and r are
avoided by the use of quadratic complex absorbing potentials84, which permits
the use of short grids in order to reduce the computational cost. The scattered
wave packet is analyzed using the scattering matrix formalism85. Scattering
probabilities can then be obtained for the translational energy range present in
the initial wave packet from the S-matrix elements. Subtracting the sum of the
state-to-state scattering probabilities from unity yields the fully initial-state
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resolved reaction probability.

Pr(ν, J,mJ) = 1−
∑

ν′,J ′,m′
J ,n,m

Pscat(ν, J,mJ → ν ′, J ′,m′
J , n,m) (2.25)

Here Pscat(ν, J,mJ → ν ′, J ′,m′
J , n,m) are the state-to-state scattering proba-

bilities, and ν ′, J ′ and m′
J are the final vibrational, rotational and magnetic

rotational quantum numbers. The quantum numbers for diffraction are denoted
by n and m.

2.4 Computation of observables

2.4.1 Molecular beam sticking

Calculation of molecular beam sticking probabilities from fully initial-state
resolved reaction probabilities involves averaging over the rovibrational state
distribution according to the nozzle temperature Tn as well as over the velocity
distribution of the molecules in the molecular beam. The probability to find H2

with a velocity v in an interval v + dv and in a particular rovibrational state at
a given Tn is denoted by

P (v0, α, ν, J, Tn)dv = Cv3e−(v−v0)2/α2
dv︸ ︷︷ ︸

Pflux(v0,α)

×Pint(ν, J, Tn)dv (2.26)

where C is a normalization constant, v0 is the stream velocity and α is the
width of the velocity distribution. In equation 2.26 the reactivity of each state
is weighted according to its Bolzmann weight as:

Pint(ν, J, Tn) =
gNf(ν, J, Tn)

Z(Tn)
(2.27)

with

f(ν, J, Tn) = (2J + 1)× e(−(Eν,0−E0,0)/kBTvib) × e(−(Eν,J−Eν,0)/kBTrot). (2.28)

Here, the factor gN in equation 2.27 reflects the ortho/para ratio of hydrogen
in the beam. For D2 gN = 2/3 (1/3) for even (odd) values of J , while for H2

gN = 1/4 (3/4) for even (odd) values of J . Z(Tn) is the partition function, kB
is the Boltzmann constant, and Eν,J is the energy of the rovibrational state
characterized by the vibrational (ν) and rotational (J) quantum numbers. In
equation 2.28 rotational cooling of the H2 molecules due to the supersonic
expansion is taken into account by setting the rotational temperature to Trot =
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0.8 · Tn86. Degeneracy averaged reaction probabilities are computed from fully
initial-state resolved reaction probabilities as:

Pdeg(E, ν, J) =
J∑

mJ=0

(2− δmJ0)
Pr(E, ν, J,mJ)

2J + 1
, (2.29)

where Pr(E, ν, J,mJ) is the fully initial-state resolved reaction probability,
with mJ being the magnetic rotational quantum number and E being the
translational energy (12mv

2). Note that calculations are only performed for
positive J and mJ , since given the rotational symmetry of the surfaces used in
this thesis the sign of the angular momentum is unimportant. Molecular beam
sticking probabilities can then be computed as a function of the parameters
describing a molecular beam:

S0(< Ei >, TN ) =
∑
ν,J

∫
P (v0, α, ν, J, Tn)Pdeg(E, ν, J)dv. (2.30)

Here, < Ei > is the average incidence energy, which can be computed from
v0 and α; usually the sticking probability is simply written as S(Ei) with the
assumption that the reader knows that Ei then represents the average of Ei

over the velocity distribution. A more exhaustive description of how molecular
beam sticking probabilities can be computed can be found in ref.62

2.4.2 Rotational quadrupole alignment parameters

The extent to which the reaction of H2 with a transition metal surface depends
on the alignment of the molecule relative to the surface normal can be calculated
via the rotational quadrupole alignment parameter. The rotational quadrupole
alignment parameter, A(2)

0 (E, ν, J), is computed from initial-state resolved
reaction probabilities as follows:87

A
(2)
0 (E, ν, J) =

∑J
mJ=0(2− δmJ ,0)Pr(E, ν, J,mJ)

(
3m2

J
J(J+1) − 1

)
∑J

mJ=0(2− δmJ ,0)Pr(E, ν, J,mJ)
. (2.31)

A positive value for A(2)
0 (ν, J) indicates a preference for reaction of molecules

aligned parallel to the surface, a negative value indicates a preference for
reactions of molecules aligned perpendicular to the surface, and zero means
the reaction proceeds independent of independent of the molecule’s alignment
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relative to the surface. Here the orientation refers to the angle θ between the
H-H bond and the surface normal.

2.4.3 E1/2(ν, J) parameters

Initial state-selected reaction probabilities can be obtained from H2 associatively
desorbing from metal surfaces by applying the principle of detailed balance88

to associative desorption experiments86,89–91. Typically the (unnormalized)
state-resolved translational energy distributions of molecules desorbing from
the surface is measured using resonance-enhanced multi-photon ionization
(REMPI)46,86,89 combined with time-of-flight techniques. The state resolved
distributions of desorbing molecules, Pdes(E, ν, J), may be related to the de-
generacy averaged initial-state resolved reaction probability, using:

Pdes(E, ν, J) ∝ Ee
− E

kbTs Pdeg(E, ν, J). (2.32)

The extracted reaction probabilities are usually fitted to a sigmoid function, in
most cases an expression involving the error function:

Pdes(E, ν, J) =
Aν,J

2

[
1 + erf

(
E − E0(ν, J)

Wν,J

)]
. (2.33)

Here, the Aν,J values are the saturation values of the extracted degeneracy
averaged reaction probabilities, and the effective barrier height (E0(ν, J)) is
the incidence energy at which Pdeg(E, ν, J) first becomes equal to 1

2Aν,J . Wν,J

represents the width of the reaction probability curve.
In an associative desorption experiment the exact state-selective flux is

usually not measured86,89–91, meaning that the proportionality factor in equation
2.32 cannot be obtained directly. In the absence of a measured proportionality
factor it is still possible to make a comparison between theory and experiment.
Chapter 5 will detail four different methods that can be used to make such a
comparison, namely the methods A1 and A2 in which normalized proportionality
factors are obtained from a wholly experimental procedure, and methods B1 and
B2 in which normalized reaction probabilities are extracted with reference to
theory. Given that methods A2 and B2 apply to a specific associative desorption
experiment for the H2 + Au(111) system and the particular experimental
conditions for that experiment, only methods A1 and B1 will be briefly discussed
here.
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Method A1

Method A1 assumes that the effective barrier heights (E0(ν, J)) can be kept
the same in the description of a molecular beam sticking experiment at a low
surface temperature and an associative desorption experiment at a high surface
temperature86,89. When applying the principle of detailed balance the surface
temperature dependence of Pdeg(E, ν, J) is taken into account by allowing
for larger Wν,J parameters in the description of the associative desorption
experiments92,93. Next, the AA1

ν,J parameters are determined assuming that
they do not depend on the surface temperature by requiring that the measured
molecular beam sticking probabilities can be computed as outlined in section
2.4.1. Generally the A parameters are taken to be independent of the initial
rovibrational state, or to depend solely on the vibrational quantum number
so that a fitting procedure can be followed with a properly constrained num-
ber of degrees of freedom. Method A1 was followed to extract initial-state
resolved reaction probabilities in experiments on H2 and D2 desorbing from
Cu(111)86,89,91.

Calculated E1/2(ν, J) parameters can then be defined as the translational
energy at which the computed reaction probability becomes equal to half the
experimental saturation value39.

Pdeg(E1/2(ν, J), ν, J) =
1

2
AA1

ν,J (2.34)

Method A1 is described in more detail in chapter 5.

Method B1

In method B1, the experimental sticking probability curve is normalized by
equating the reaction probability at the maximum kinetic energy to which
the experiment was sensitive (Emax(ν, J)) to the calculated value at that
translational energy90,91.

Pdeg(E1/2(ν, J), ν, J) =
1

2
AB1

ν,J =
1

2
Pdeg(Emax(ν, J), ν, J). (2.35)

Note that the maximum translational energy to which the experiment is sensitive
is usually not high enough to equal the absolute saturation value A of the
reaction probability. However, as will be discussed in chapter 5, as long as
Pdeg(Emax(ν, J), ν, J) ≥ 0.9A the calculated E1/2(ν, J) parameters will be
underestimated by no more than 0.09 Wν,J .
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2.4.4 Rovibrational state populations of H2 and D2 desorbing
from Au(111)

The following expression is used to calculate state distributions of desorbing
molecules:90

N(ν, J) =

∫ Emax(ν,J)

0
Pint(ν, J, TS)

√
E e

(− E
kBTS

)
Pdeg(E, ν, J)dE. (2.36)

Here, E is the translational energy and TS is the surface temperature. A
comparison to experiment can be made by replacing Pdeg(E, ν, J) in equation
2.36 with reported error function fits obtained experimentally90. Note that it
is critical for a valid comparison between theory and experiment that equation
2.36 is only integrated up to Emax(ν,J). This is because the experimentally
obtained error function fits for the reaction probability are only valid below
Emax(ν,J), and can yield reaction probabilities substantially bigger than one
above Emax(ν,J). Generally the obtained populations are normalized to the
total ν = 0 population according to:

N(ν, J) =
N(ν, J)∑

J N(ν = 0, J)
(2.37)

The ratio ν = 1 : ν = 0 can then calculated as:

ν = 1 : ν = 0 =

∑
J N(ν = 1, J)∑
J N(ν = 0, J)

(2.38)
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