

Development of highly accurate density functionals for H2 dissociation on transition metals

Smeets, E.W.F.

Citation

Smeets, E. W. F. (2021, June 29). *Development of highly accurate density functionals for H2 dissociation on transition metals*. Retrieved from https://hdl.handle.net/1887/3193529

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3193529

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>https://hdl.handle.net/1887/3193529</u> holds various files of this Leiden University dissertation.

Author: Smeets, E.W.F. Title: Development of highly accurate density functionals for H2 dissociation on transition metlas Issue Date: 2021-06-29

Development of highly Accurate density functionals for H₂ dissociation on transition Metals

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op dinsdag 29 juni 2021 klokke 16:15 uur

door

Egidius Wilhelmus François Smeets geboren te Sittard in 1989

Promotiecommissie

Promoter:	Prof. dr. G. J. Kroes
Copromoter:	Dr. M.F. Somers
Overige leden:	Prof. dr. H. S. Overkleeft (voorzitter)
	Prof. dr. E. Bouwman (secretaris)
	Prof. Em. dr. M. C. van Hemert
	Prof. dr. D. J. Auerbach (MPI für Biophysikalische Chemie)
	Prof. dr. J. Voss (Stanford University)

ISBN: 978-94-6423-288-2

The research reported in this thesis has been performed in the Theoretical Chemistry group at the Leiden Institute of Chemistry (Einsteinweg 55, 2333 CC, Leiden, the Netherlands). This work has been made possible by financial support by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through an NWO/CW TOP Grant and by the European Research Council through an ERC-2013 advanced grant (Nr. 338580), and with computer time granted by the Physical Sciences division of NWO (NWO-EW).

Met het lezen van wat anderen over een zaak geschreven hebben kom je geen steek verder dan die anderen. En leuke ontdekkingen zijn vaak gedaan door mensen die met de vakliteratuur niet zo bekend waren, omdat ze uit een ander vak kwamen of omdat ze te lui waren om die vakliteratuur te lezen of omdat ze hun tijd gebruikten om over een probleem na te denken in plaats van te lezen wat anderen er over geschreven hadden.

Karel van het Reve, in 'Wat waren zij kwaad' uit 'Een dag uit het leven van de reuzenkoeskoes', Amsterdam, 1979.

Dispereert niet

Jan Pieterszoon Coen

Contents

1	Ger	ntroduction	1			
	1.1	Gas-surface reactions				
	1.2	H_2 reacting on metal surfaces $\dots \dots \dots$				
	1.3	Aims	and scope of this thesis	4		
	1.4	Main	results	5		
	1.5	Outlo	ok	9		
2	The	eory ai	nd methods	27		
	2.1	Electr	conic structure theory: density functional theory (DFT) .	27		
		2.1.1	Exchange-correlation density functionals: LDA, GGA, meta-GGA	29		
		2.1.2	Non-local correlation	30		
		2.1.3	The problem of obtaining accurate reaction barriers	31		
		2.1.4	Specific reaction parameter approach to DFT	32		
		2.1.5	Periodic DFT	33		
	2.2	Const	ructing potential energy surfaces	34		
	2.3	Nuclear dynamics				
2.3.1 Quasi-classical trajectory method		Quasi-classical trajectory method	35			
			Langevin equation with energy dissipation	36		
		2.3.2	Quantum dynamics	37		
	2.4	Comp	utation of observables	39		
		2.4.1	Molecular beam sticking	39		
		2.4.2	Rotational quadrupole alignment parameters	40		
		2.4.3	$E_{1/2}(\nu, J)$ parameters	41		
			Method A1	42		
			Method B1	42		
		2.4.4	Rovibrational state populations of H_2 and D_2 desorbing			
			from Au(111) \ldots	43		

3	\mathbf{Spe}	cific r	eaction parameter density functional based on the	;
	met	a-gene	eralized gradient approximation:	
	App	olicatio	on to $\mathrm{H}_2 + \mathrm{Cu(111)}$ and $\mathrm{H}_2 + \mathrm{Ag(111)}$	53
	3.1	Introd	luction	54
	3.2	Metho	odology	56
		3.2.1	Dynamical model	56
		3.2.2	Made Simple meta-GGA density functionals	56
		3.2.3	DFT calculations and representation of PESs \ldots .	59
		3.2.4	Quasi-classical trajectory method	60
		3.2.5	Compation of observables	61
	3.3	Result	ts and discussion	61
		3.3.1	Description of the metal	61
		3.3.2	Potential energy surfaces	63
		3.3.3	Dynamics results: molecular beam sticking	69
		3.3.4	Dynamics results: initial-state selected reaction probabil-	
			ities $Ag(111)$	78
	3.4	Concl	usions	78
	3.A	Apper	ndix: Details electronic structure calculations and interpo-	
		of the PESs	81	
		3.A.1	Calculations on bulk metals and on slab relaxation $\ . \ .$	81
		3.A.2	Details on the interpolation of the PESs fo $H_2 + Cu(111)$	
			and $Ag(111)$	81
4	Qua	antum	dynamics of dissociative chemisorption of H_2 on the	•
	ster	pped C	Cu(211) surface	91
	4.1	Introd	luction	92
	4.2	Comp	utational methods and simulations	95
		4.2.1	Coordinate system	95
		4.2.2	Ab initio molecular dynamics simulations	95
		4.2.3	Quasi-classical simulations	97
		4.2.4	Quantum dynamics simulations	98
		4.2.5	Computation of observables	99
	4.3	Result	ts and discussion	103
		4.3.1	Fully-state-resolved reaction probabilities	103
		4.3.2	Rotational quadrupole alignment parameters	104
		4.3.3	Comparing to experimental $E_0(\nu, J)$ parameters	111
		4.3.4	Classical molecular beam simulations	118
		4.3.5	Quantum molecular beam simulations	119
	4.4	Concl	usions	122

5	\mathbf{Des}	igning	new SRP density functionals including non-local	
	vdV	V-DF2	correlation for H_2 + $\mathrm{Cu}(111)$ and their transfer-	
	abil	ity to I	${ m H}_2 + { m Ag}(111), { m Au}(111) { m and} { m Pt}(111)$	\$1
	5.1	Introd	uction \ldots \ldots \ldots \ldots \ldots \ldots \ldots 13	32
	5.2	Metho	dology	36
		5.2.1	Coordinate system	36
		5.2.2	SRP DFT	36
		5.2.3	Construction of the PESs 13	38
		5.2.4	Quasi-classical dynamics	38
		5.2.5	Quantum dynamics	39
		5.2.6	Computation of observables	39
			Simulating molecular beam sticking	39
			Comparing to experimental $E_0(\nu, J)$ parameters 14	12
			Rotational quadrupole alignment parameters 14	45
			Rovibrational state populations of H_2 and D_2 desorbing	
			from Au(111). \ldots 14	15
		5.2.7	Computational details	46
	5.3	Result	\mathbf{s}	46
		5.3.1	Electronic structure	46
			Description of the metal	46
			$H_2 + metal surface PESs \dots 14$	46
			Van der Waals wells	54
		5.3.2	Molecular beam sticking probabilities	55
		5.3.3	Initial-state resolved reaction probabilities 15	56
		5.3.4	$E_{1/2}(\nu, J)$ parameters	34
		5.3.5	Rotational quadrupole alignment parameters $Cu(111)$. 16	34
		5.3.6	Inelastic scattering of H_2 from $Cu(111) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	34
		5.3.7	Rovibrational state populations of H_2 and D_2 desorbing	
			from Au(111) \ldots 17	74
	5.4	Discus	sion \ldots \ldots \ldots \ldots 17	78
		5.4.1	Metal properties	79
		5.4.2	Static PES properties	30
		5.4.3	Molecular beam sticking	31
			Molecular beam sticking of H_2 (D ₂) + Cu(111): QCT	
			results $\ldots \ldots \ldots$	31
			Molecular beam sticking in $H_2 + Cu(111)$: QD results . 18	33
			Molecular beam sticking in $D_2 + Pt(111)$	34
			Molecular beam sticking in $D_2 + Ag(111) \dots 18$	35
		5.4.4	Associative desorption	36
			Comparing to experimental $E_0(\nu, J)$ parameters 18	36

			Rovibrational state populations of H_2 and D_2 desorbing	
			from Au(111). \ldots . \ldots . \ldots . \ldots	192
			Initial-state resolved reaction probabilities for $D_2 + Ag(111)$.194
			Rotational quadrupole alignment parameters: $H_2 + Cu(111)$).194
		5.4.5	Inelastic scattering of H_2 from $Cu(111) \ldots \ldots \ldots$	195
		5.4.6	QD vs. QCT for $H_2 + Cu(111) \dots \dots \dots \dots$	196
		5.4.7	Overall description of systems	197
			$H_2 (D_2) + Cu(111) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	198
			$D_2 + Ag(111) \dots \dots$	199
			$H_2 (D_2) + Au(111) \dots \dots$	199
			$D_2 + Pt(111) \dots \dots$	200
		5.4.8	Transferability	200
		5.4.9	Adiabatic description of S_0 and $E_{1/2}(\nu, J)$, a possible	
			fingerprint for ehp excitations	201
	5.5	Conch	usions	202
	5.A	Apper	ndix: CRP interpolation of PESs	204
	5.B	Appen	ndix: Methods for determining parameters describing initial-	
		state s	selected reaction probabilities from associative desorption	
		experi	ments	204
		5.B.1	Method A1	204
		5.B.2	Method B1	205
		5.B.3	Method B2	206
	$5.\mathrm{C}$	Apper	ndix: The rotational hindering effect as obtained with the	
		Dai-Zl	hang LEPS PES	207
6	Per	formai	nce of made-simple meta-GGA functionals with ${ m rVV}$	10
	non	-local	${ m correlation} { m for} { m H}_2 + { m Cu}(111), { m D}_2 + { m Ag}(111), { m H}_2$ -	⊢
	Au(111) a	$\mathrm{nd} \; \mathrm{D}_2 + \mathrm{Pt}(111)$	227
	6.1	Introd	luction	228
	6.2	Metho	$\operatorname{bdology}$	231
		6.2.1	Coordinate system	231
		6.2.2	Combining Made Simple meta-GGA exhcange-correlation	
			with rVV10 non-local correlation	231
		6.2.3	Construction of the PESs	237
		6.2.4	Quasi-classical dynamics	237
		6.2.5	Computation of observables	241
			Molecular beam sticking	241
			Rovibrational state populations of H_2 and D_2 desorbing	
			from Au(111) \ldots \ldots \ldots \ldots \ldots \ldots	242
			$E_{1/2}(\nu, J)$ parameters	242

	6.2.6	Computational details	243
6.3 Results and Discussion			244
	6.3.1	Metal properties	244
	6.3.2	Static PES properties	245
	6.3.3	Molecular beam sticking	252
		Molecular beam sticking of H_2 (D ₂) + Cu(111)	252
		Molecular beam sticking of $D_2 + Ag(111) \dots \dots \dots$	252
		Molecular beam sticking of $D_2 + Pt(111) \dots \dots \dots$	254
	6.3.4	Associative desorption	256
		3.4.1 Initial-state resolved reaction probabilities Ag(111)	256
		$E_{1/2}(\nu, J)$ parameters Au(111)	257
		Rovibrational state populations of H_2 and D_2 desorbing	
		from Au(111) \ldots \ldots \ldots \ldots \ldots \ldots	259
	6.3.5	Transferability	262
6.4	Conclu	nsion	265
Samen func	vatting	g: Ontwikkeling van zeer nauwkeurige dichtheids en voor de dissociatie van H_2 aan overgangsmetaal	}- -
opp	erviak	Ken	281
Curric	Curriculum vitae 289		

List	of	pul	bl	lica	tion	s
	O1	Pu		nou	01011	. L

291