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CHAPTER 1

Introduction



 

  



 

Prostate cancer is a common disease that presents primarily in elderly men, with an average 
age at diagnosis of 66 years (Rawla et al. 2019). According to the latest global cancer survey, 
prostate cancer is responsible for 1.28 million new cases and 359 thousand deaths per year 
(Ferlay et al. 2019). While ranked as the second most common type of male cancer worldwide, 
in the Netherlands prostate cancer is the leading type of male cancer diagnosed, with an 
incidence of over 13 thousand cases and almost three thousand deaths per year (NKR 2019).  

Prostate cancer is a heterogeneous disease that can present in multiple disease stages and 
levels of aggressiveness. To a large extent the life expectancy of prostate cancer patients 
depends on the stage of the disease. The majority of prostate cancers are slow-developing 
indolent tumors that are confined to the prostate gland. Approximately 15% of the patients 
present with more aggressive, fast-proliferating tumors that may be accompanied with 
extracapsular extension or metastatic disease (Chang et al. 2014). 

Due to screening programs, most new prostate cancer cases are diagnosed without apparent 
complaints of the patient (Donnelly et al. 2019). A blood sample measurement showing an 
increase of the prostate specific antigen (PSA) may raise suspicion, although nonmalignant 
conditions as benign prostate enlargement (BPE) or prostatitis can cause similar abnormal PSA 
scores.  

Additional imaging and needle biopsies are recommended to differentiate between cancer 
and benign conditions (Barentsz et al. 2012). Upon imaging any visible tumor tissue is localized 
and staged. Depending on whether the imaging involves a Digital Rectal Examination (DRE) or 
an MRI examination, either a clinical or radiological tumor (T-) stage is established. The 
biopsies reveal tissue pathology at multiple locations in the prostate and are assigned to an 
ISUP (International Society of Urological Pathology) grade group based on the tissue’s cell 
differentiation (van Leenders et al. 2020). While previously ultrasound-guided biopsies were 
taken and MRI examination was performed in case of positive biopsy cores, current clinical 
practice involves initial MRI acquisition followed by MRI-targeted biopsies to reduce patient 
burden and improve the detection of clinically significant prostate cancer (Giganti et al. 2017).  

The combination of PSA, T-stage and grade group represents the clinical condition of the 
disease and allows to categorize patients by prostate cancer risk groups. These risk groups 
represent the chance of developing metastatic disease after primary treatment. In Europe the 
EAU risk classification is adopted that differentiates between low, intermediate and high-risk 
patients (Mottet et al. 2017). Higher risk is generally associated with poorer survival.  
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Alongside prostatectomy, radiotherapy is a suitable primary treatment option for low to high-
risk disease (Kishan et al. 2017, Moris et al. 2020). Radiotherapy can be delivered internally 
with brachytherapy, using radiation source tubes or seed implants, or externally with radiation 
beams, referred to as external beam radiotherapy (EBRT). Treatment with a linear accelerator 
(linac) is the standard of care for EBRT. To deliver EBRT treatment, an anatomical MRI and a 
simulation CT are acquired to respectively define anatomical regions of interest and retrieve 
tissue density information to calculate the attenuation of the radiation dose in the patient. 
With treatment planning software the beam positions, shape and dose rate are calculated to 
deliver a homogeneous dose distribution to the entire prostate gland and simultaneously limit 
the dose to surrounding organs at risk, such as the bladder and rectum. The dosimetrically 
optimized treatment plan is delivered in multiple fractions, which allows for recovery of benign 
tissue in between fractions. Radiotherapy is often combined with long-term hormonal therapy 
in the form of androgen deprivation to reduce metastatic spread and recurrence of the disease 
(Böhmer et al. 2016). 

Whole gland dose escalation, in which an elevated radiation dose is prescribed to the entire 
prostate gland, was found to improve biochemical recurrence free survival rates among low 
to intermediate risk patients (Pollack et al. 2002, Peeters et al. 2006, Dearnaley et al. 2007). 
Although further dose escalation may lead to improved recurrence free survival among 
intermediate to high-risk patients as well (Pollack et al. 2002, Peeters et al. 2006, Morgan et 
al. 2007), it would also induce unacceptable damage to organs at risk. Interestingly, prostate 
tumors were found to recur predominantly at the location of the primary tumor site (Cellini et 
al. 2002, Pucar et al. 2007). Therefore, focal dose escalation based on tumor tissue presence 
seems a reasonable approach to increase local control while restricting dose to organs at risk. 

 

To apply a dose escalation within the prostate gland, soft tissue contrast is required to identify 
the intraprostatic tumor. MRI is a valuable non-invasive imaging technique to reveal excellent 
soft tissue contrast (Owrangi et al. 2018). A T2-weighted sequence can quickly obtain high-
resolution anatomical information from the pelvic region and is therefore the most frequently 
scanned MRI sequence to localize prostate cancer (Cabarrus et al. 2017). The T2-weighted 
image reflects the T2 relaxation time of tissues relative to each other and visualizes malignant 
tissue in the prostate as hypointense regions. For delineation purpose the display settings are 
often adjusted to maximize image contrast.  
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Although an anatomical T2-weighted MRI gives a good indication on the tumor dimensions, 
additional biological information greatly contributes to determine the tumor extent and, 
moreover, reveals physical and physiological characteristics of the tumor (Olsson et al. 2019). 
Imaging of such tumor biology is performed with functional imaging. Functional imaging in 
prostate cancer primarily focusses on diffusion and perfusion measurements but may also 
involve measurements of tumor metabolism and hypoxia.  

Diffusion weighted imaging (DWI) measures the restricted motion of water molecules in 
biological tissue and allows to reveal details of the microscopic tissue composition. Since 
prostate tumors have a higher cell density than healthy prostate tissue, diffusion of water is 
reduced in the tumor, resulting in a hyperintense region on the diffusion-weighted image. 
Usually, a series of images with different diffusion weighting is acquired (Maurer et al. 2017). 
From this series a per-voxel apparent diffusion coefficient (ADC) map can be derived that 
eliminates inherent T2-weighting from the diffusion-weighted images and thereby quantifies 
the apparent local diffusion within the tissue. 

Dynamic contrast enhanced (DCE-) MRI involves the recording of a time series of T1-weighted 
images of a contrast agent distribution in a region of interest. Several tracer kinetic models 
exist that apply a cell compartment approximation to estimate the true tissue vascularity (Brix 
et al. 1991, Buckley et al. 1994, Tofts 1997, Tofts et al. 1999). Among multiple parameters that 
together model the local tissue perfusion, the volume transfer constant Ktrans is a commonly 
investigated parameter in prostate cancer. Increased values of Ktrans are associated with leaky 
vascularity which indicates the presence of malignant tissue.  

The combination of anatomical and functional MRI is referred to as multiparametric MRI (mp-
MRI). Mp-MRI improves the sensitivity of tumor detection considerably. While the sensitivity 
of clinically detectable tumors on T2-weighted images is 0.73, this value increases to 0.85 – 
0.89 when combined with DWI and DCE-imaging (Heijmink et al. 2007, Zhang et al. 2017, Woo 
et al. 2017).  

For prostate cancer detection and staging of the disease, the PI-RADS V2 guidelines 
recommend a combination of T2-weighted and DWI to be scanned, with optional DCE-MRI 
(Weinreb et al. 2016). Although PI-RADS leads to more consistency in localization of the tumor 
(Rudolph et al. 2020), to date no guidelines exist on the use of mp-MRI to delineate the tumor 
for treatment purpose. This implies that current institutional practice can only be based on 
local experience and expertise. Several studies have shown that in the absence of guidelines 
large inter-observer variability exists when delineating the visible tumor on mp-MRI (Bratan et 
al. 2013, Rischke et al. 2013, Anwar et al. 2014, Steenbergen et al. 2015). 
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Alternatively, uncertainties introduced by human interpretation can be omitted when manual 
delineations are replaced by machine learning approaches. In such approach computational 
models are applied to imaging data and optionally combined with clinical parameters, to 
calculate a probability distribution of tumor presence in the prostate. The performance of the 
machine learning model depends on the amount and quality of the data the model has learned 
from in the training phase. Whenever the training data was labelled, the training phase can be 
considered as supervised learning. For prostate cancer usually a dataset of patients with 
ground truth information derived from histopathological data forms the labelled training data.  

 

In line with the PI-RADS V2 guidelines, T2-weighted and DW-MRI sequences are scanned to 
detect and stage prostate tumors. These are popular sequences for their high spatial 
resolution, high contrast between tumor and benign tissue, and fast imaging protocols. 
However, for quantification of the tumor tissue these sequences are not suitable. The 
dimensionless values that are acquired hamper a comparison of image values between 
patients or institutions.    

MR images that contain values with physical meaning are called quantitative MRI. The physical 
values of quantitative MRI allow to compare image data from different patients at different 
scanning devices. It also enables the comparison of consecutive images of the same patient 
over a period of time. This is specifically interesting for assessing the response of tumor and 
surrounding tissue to the treatment, which could ultimately lead to improved treatment 
strategies. Quantitative MRI may also contribute to the development of continuous dose 
prescription maps that are automatically derived according to and at the resolution of the 
acquired quantitative images (Bentzen 2005). 

T2 and ADC maps are commonly investigated quantitative MRI parameters for dose painting 
purpose and response assessment of prostate cancer. T2 maps are derived from a series of 
T2-weighted images, analogous to how ADC maps are derived from diffusion-weighted 
images. Since the T2 values represent the true transverse relaxation within each voxel in the 
image, T2 times characterize certain tissues. Ktrans as a physical quantity may also qualify as 
quantitative parameter. However, Ktrans

 values have a high uncertainty due to the variation 
within and between investigated patient cohorts (Huang et al. 2016), and the actual meaning 
of those Ktrans values depends on the tracer kinetic model that was used (Khalifa et al. 2014). 
Therefore, Ktrans

 maps are less suitable as quantitative image parameters.  
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Although quantitative MRI parameters by definition should be equivalent between scanners 
and institutions, differences in imaging protocol, patient setup and scanner settings are 
sources of variation in obtained quantitative values. Standardization of these aspects is 
essential to fully utilize the potential of quantitative MRI in radiotherapy applications (Gurney-
Champion et al. 2020).  

 

Using MRI for tumor localization, several studies have demonstrated the feasibility of an 
image-based focal dose escalation in the prostate while preserving dose constraints to 
surrounding organs at risk. In a planning study with three patients Singh et al. considered 
delivery of 95 Gy to the dominant intraprostatic lesion using EBRT feasible with acceptable 
levels of toxicity (Singh et al. 2007). The HEIGHT trial demonstrated in 35 patients the 
feasibility of planning a dose escalation up to 89.3 Gy to the intraprostatic tumor while 
maintaining strict constraints to organs at risk (Bossart et al. 2016). Combining EBRT with 
concurrent brachytherapy with integrated boost was also found feasible with good outcomes 
for biochemical control, acute and late toxicities (Gomez-Itturiaga et al. 2016, Vigneault et al. 
2016). In the phase II TARGET trial, 80 patients received 76 Gy from EBRT, combined with 
either an integrated boost of 95 Gy or a single brachytherapy boost of 10 Gy. Initial results 
have shown acceptable dosimetry and comparable toxicity and quality of life between both 
arms of the study (Sanmamed et al. 2020). 

The phase III randomized controlled FLAME trial (Focal Lesion Ablative Microboost in ProstatE, 
NCT01168479) was performed between 2009 and 2015 to investigate the benefit of an 
integrated focal boost on 5-year biochemical recurrence free survival in a multi-institutional 
and single blinded setting (Lips et al. 2011). On an institutional level, patients were randomly 
assigned to either a standard treatment with 77 Gy prescribed to the entire prostate gland, or 
an experimental treatment with an integrated dose escalation up to 95 Gy to the visible tumor. 
In four participating institutions in total 571 patients were included.  

In addition to the CT scan required for dose calculation purpose, an mp-MRI was acquired to 
identify the tumor in the prostate and delineate the intraprostatic tumor accordingly. This 
tumor delineation was defined as gross tumor volume (GTV). Dose painting by contours 
treatment planning was performed using local treatment planning software. Identical to 
standard prostate radiotherapy, planning target volume (PTV) coverage was prioritized over 
dose to organs at risk. For patients in the dose-escalated arm of the trial, objectives were 
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added to increase the dose to the GTV and preserve the dose to organs at risk. The aim was 
to achieve a tumor dose of 95 Gy, provided that dose constraints to organs at risk were 
prioritized.  

Due to the integrated boost to an extreme dose in combination with strict constraints to 
organs at risk, the constitution of a focal dose escalation plan was a complex procedure. Since 
the optimization function of the treatment planning system was expanded with additional 
dose objectives, and the iterative manual optimization steps needed to be performed within 
a reasonable time frame, it is not guaranteed that the GTVs received the highest possible dose 
that the patient anatomy would allow for.  

Recently, the FLAME trial was found to demonstrate a significant increase in 5-year 
biochemical disease-free survival, from 85% in the standard to 92% in the dose-escalated 
treatment arm, and a significant GTV dose response relation was observed (Kerkmeijer et al. 
2021). The nonzero biochemical recurrence rate in the dose-escalated arm of the trial may 
partially be explained by potential undertreatment of GTVs, suggesting that more consistent 
treatment planning methods may increase the biochemical recurrence free survival rate even 
further. A common approach to improve consistency between treatment plans regarding 
optimal target coverage and organ at risk sparing is knowledge-based planning (KBP) (Wu et 
al. 2009). KBP methods utilize a large dataset of optimized dose distributions for different 
types of patient anatomy. The achievable doses to target volumes and organs at risk of a new 
patient are predicted from a subset of similar patient anatomies and corresponding dose 
distributions from the database (Wu et al. 2009, Appenzoller et al. 2012, Yuan et al. 2012, 
Wang et al. 2013, Wang et al. 2017, Wall et al. 2018). In standard prostate radiotherapy KBP 
has led to improved dose distributions and enabled automated plan quality assessment 
(Janssen et al. 2019). In future clinical settings of focal dose escalated treatment, KBP may find 
similar applications.  

Fractionation of the prescribed radiation dose allows for tissue recovery in between 
consecutive treatment fractions. The sensitivity of tissue to radiation can be described with 
the linear-quadratic (LQ) model (McMahon et al. 2018). The surviving fraction of cells is 
dependent on the radiation dose D, the intrinsic radiosensitivity parameter , and the repair 
capability parameter . The ratio between  and  describes the fractionation sensitivity of 
cells and relates to the response time of the cells to radiation.  

Evidence was found that the / ratio of prostate tumors is lower than the surrounding normal 
tissue, which is opposite to most other tumor sites (Brenner et al. 1999, Vogelius et al. 2013). 
This implies that a sufficiently large dose per fraction will do relatively more damage to tumor 
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cells than to normal tissue. As a result, patient outcome would benefit from a treatment 
delivered in fewer treatment fractions with larger fraction doses (Ritter et al. 2008, Benjamin 
et al. 2017).  

In a recent meta-analysis of 13 randomized trials that studied conventional fractionation with 
1.8 – 2.0 per fraction and moderate hypofractionation with 2.4 – 3.4 Gy per fraction, the low 
/ ratio was confirmed with a highly significant dose response (Vogelius et al. 2018). Indeed, 
in low to intermediate risk prostate cancer, moderate hypofractionation was shown to be non-
inferior and with comparable complication rates as conventional fractionation (Dearnaley et 
al. 2016, Brand et al. 2019, Widmark et al.  2019). Besides the radiobiological advantage, also 
practical aspects are in favor of a hypofractionated treatment approach: overall treatment 
time is reduced, the patient comfort is improved, and resources can be utilized more 
efficiently. 

Based on the aforementioned evidence, recommendation guidelines on the delivery of 
moderate and even extreme hypofractionation up to 5 Gy per fraction have been published 
(Morgan et al. 2018). As a result, moderate hypofractionation has become the new standard 
of care for all risk groups. Extreme hypofractionation is considered a save treatment option 
for low to intermediate risk disease, while intermediate to high-risk patients should only 
receive such treatment in trial setting. A recent meta-analysis of phase III randomized trials 
observed similar levels of safety and efficacy in conventional fractionation, moderate 
hypofractionation and extreme hypofractionation schemes among low to high-risk patients 
(Lehrer et al. 2020). 

During enrollment of the FLAME trial, conventional fractionation was delivered with 2.0 Gy 
per fraction to the prostate, with an optional boost to 2.2 Gy to the delineated tumor. The 
increasing attention for moderate and extreme hypofractionation over the last years has led 
to the hypothesis that intermediate to high-risk patients could also benefit from improved 
treatment outcome and reduced treatment time if such hypofractionated radiation scheme is 
combined with focal dose escalation. Several studies currently investigate if extreme 
hypofractionation combined with a focal boost can be safely and effectively delivered to these 
patients. In the phase II DELINEATE trial, both conventional and moderate hypofractionation 
were combined with a focal dose escalation (Murray et al. 2020). Patients received either 74 
Gy in 37 fractions or 60 Gy in 20 fractions, with integrated boost doses of 82 and 67 Gy 
respectively. In the phase II Hypo-FLAME trial, extreme hypofractionation of 35 Gy in five 
weekly fractions was delivered with an integrated boost up to 50 Gy (Draulans et al. 2020). 
Similarly, the phase II SPARC trial treated patients in five fractions with 36.25 Gy and up to 
47.5 Gy to the intraprostatic tumor (Nicholls et al. 2020). While these trials have reported 
efficacy of the treatment with acceptable toxicity levels, the primary endpoint will eventually 
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confirm the overall benefit of combined hypofractionation and focal dose escalation for 
intermediate to high-risk patients. 

Dose painting was introduced as a novel planning technique to incorporate both tumor 
location and characteristics as derived from imaging (Ling et al. 2000). Focal dose escalation 
as performed in the FLAME and hypo-FLAME trials involved a discrete elevated dose 
prescription to the identified intraprostatic lesion, and is referred to as Dose Painting by 
Contours. As observed in pathology, the actual prostate tumor boundary is more irregular than 
delineations suggest (Steenbergen et al. 2015). It has been shown that certain types of tumor 
tissue may be completely missed on mp-MRI (van Houdt et al. 2020). Moreover, multiple levels 
of cell differentiation and aggressiveness may present in the tumor, with different levels of 
radioresistance. Due to the finite resolution of mp-MRI and the inability to visualize all tumor 
tissue, delineated tumor boundaries may be inaccurate, and the uniform dose escalation may 
not always match with the local tumor tissue characteristics.  

Dose Painting by Numbers (DPbN) is a treatment strategy that reflects uncertainties of the 
target definition in terms of boundary irregularities and tumor tissue heterogeneity (Bentzen 
2005). DPbN allows to omit manual contouring and instead prescribe dose at the resolution 
of the mp-MRI. In addition, besides the radiological images DPbN could also be performed on 
higher order image features that may contain tumor characteristics invisible to the human 
eye. Often biological heterogeneity is modelled to base the dose prescription on 
(Vanderstraeten et al. 2006, Thorwarth et al. 2007, Differding et al. 2017, Grönlund et al. 2019, 
Yan et al. 2019). Specifically in prostate cancer the modelling of tumor presence is valuable for 
the purpose of DPbN. Voxel-wise conversion from tumor presence probability to prescription 
dose is enabled by a calibration function (Bowen et al. 2009). In such calibration function dose 
levels range between a minimum value to guarantee sufficient tumor control and a maximum 
value that could be delivered safely in performed trials.  

Irrespective of the chosen calibration function, the omission of manual contouring and 
discrete dose levels may lead to propagation of image value uncertainties to the planned dose 
distribution. Therefore, investigation of the repeatability of image-based dose prescription is 
essential for the development of DPbN as a robust candidate for dose escalation treatment.  
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Not only for treatment planning purpose but also during treatment delivery mp-MRI may 
potentially further improve current practice. In one of the side studies of the Hypo-FLAME trial 
(NCT02853110) five weekly mp-MRI were performed to prepare for future MRI-guided 
treatment. The mp-MRI acquired at each treatment fraction visit allowed to investigate the 
potential role of mp-MRI for treatment response monitoring and early-adaptive treatment 
strategies. To achieve such treatment strategies with imaging, an assessment of anatomical, 
functional or molecular image characteristics, called imaging biomarkers, is required (ESR 
2015, Dregely et al. 2018). Tracking changes of the tumor appearance in the Hypo-FLAME 
dataset is a suitable candidate for assessment. In radiotherapy an imaging biomarker, such as 
tumor intensity change, has a prognostic value if it relates to outcome regardless of the 
radiation dose. The prognostic value of the imaging biomarker alone, however, will not be 
suitable to base treatment adaptation on. Imaging biomarkers that do qualify for adaptive 
treatment need to have predictive value as well (Oldenhuis et al. 2008, Gurney-Champion et 
al. 2020). Predictive imaging biomarkers predict patient outcome depending on the radiation 
dose that was delivered. They allow to relate radiation dose to patient outcome using a 
calibration curve and act upon early changes during treatment. 

 

Dose escalation to the intraprostatic tumor has been shown to improve outcome of patients 
with intermediate to high-risk disease (Kerkmeijer et al. 2021). The effectiveness of such novel 
treatment depends to a large extent on the accuracy of the delivered treatment and the 
optimal use of available information about the tumor physiology. Over the past decades mp-
MRI has found application at all stages of the radiotherapy workflow (Kerkmeijer et al. 2018, 
Olsson et al. 2019). This thesis describes mp-MRI applications and models that were 
specifically developed for, and may play an important role in the evolution of dose escalated 
treatment of prostate cancer. 

Chapters 2 and 3 evaluate to what extent the treatment was realized as intended, and to what 
extent clinical practice could be further improved. Retrospective analysis of the FLAME dataset 
was performed to evaluate the quality of tumor delineations and escalated dose levels. 
Prediction models were applied to demonstrate potential improvements to MRI-based tumor 
delineations and realized dose escalations on an individual basis. In chapter 2 it was 
investigated if upon delineation of mp-MRI, besides variation between observers also 
institutional differences apply. The soundness of individual delineations was verified with an 
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automatic tumor detection model that may ultimately serve as delineation QA tool in clinical 
practice. In chapter 3 the realized dose to the tumor was evaluated and compared with the 
highest achievable dose escalation as predicted by a KBP model to estimate how well the dose 
escalation to the visible tumor was realized with respect to the prescribed dose and with 
respect to the patient anatomy. 

In chapter 4 and 5, the role for mp-MRI to future dose escalated treatment was investigated. 
This included DPbN treatment planning and response monitoring. In DPbN, the direct 
conversion from image parameters to prescription dose, may allow image value uncertainties 
to propagate into the planned dose distribution. In chapter 4 a test-retest planning study is 
described to estimate the robustness of DPbN to these uncertainties. In chapter 5 repeated 
quantitative MRI were analyzed to evaluate if early-responding tissue can be identified during 
treatment. Such tissue changes would mark the start of establishing predictive imaging 
biomarkers that could be used in adaptive treatment strategies.  

In chapter 6 the findings of this thesis are discussed to answer the main questions: how well 
can mp-MRI-based focal dose escalation with an extreme dose to the prostate tumor be 
delivered, how can predictive models assist to improve such dose escalated treatment, and 
how can potential mp-MRI applications contribute to the evolution of dose painting strategies 
for prostate cancer.
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CHAPTER 2

Contouring of prostate 
tumors on multiparametric 

MRI: evaluation of clinical 
delineations in a multicenter 

radiotherapy trial



 

To date no guidelines are available for contouring prostate cancer inside the gland, as visible 
on multiparametric (mp-) MRI. We assessed inter-institutional differences in interpretation of 
mp-MRI in the multicenter phase III FLAME trial.  

We analyzed clinical delineations on mp-MRI and clinical characteristics from 260 patients 
across three institutes. We performed a logistic regression analysis to examine each institute’s 
weighting of T2w, ADC and Ktrans intensity maps in the delineation of the cancer. As reviewing 
of all delineations by an expert panel is not feasible, we made a selection based on 
discrepancies between a published tumor probability (TP) model and each institute’s clinical 
delineations using Areas Under the ROC Curve (AUC) analysis. 

Regression coefficients for the three institutes were -0.07, -0.27 and -0.11 for T2w, -1.96, -0.53 
and -0.65 for ADC and 0.15, 0.20 and 0.62 for Ktrans, with significant differences between 
institutes for ADC and Ktrans. AUC analysis showed median AUC values of 0.92, 0.80 and 0.79. 
Five patients with lowest AUC values were reviewed by a uroradiologist.  

Regression coefficients revealed considerably different interpretations of mp-MRI in tumor 
contouring between institutes and demonstrated the need for contouring guidelines. Based 
on AUC values outlying delineations could efficiently be identified for review. 
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Radiotherapy is one of the standard treatment options for prostate cancer. Although it has 
been shown that tumor foci are non-uniformly distributed over the prostate (Chen et al. 2000), 
the prostate is usually irradiated with a more or less homogeneous dose distribution. Local 
recurrence of the disease has been observed at the original location of the tumor, suggesting 
an insufficient radiation dose at that location (Cellini et al. 2002, Pucar et al. 2007). As dose 
escalation to the entire gland would likely increase treatment-related toxicity, a focal dose 
escalation was proposed (Lips et al. 2011). Recently, accrual of patients in the FLAME trial 
(clinicaltrials.gov identifier NTC01168479) was ended. This large multi-center single-blinded 
randomized controlled phase III trial aimed to investigate the clinical benefit of focal escalation 
of the radiation dose to the visible cancer to 95 Gy. This required delineation of the tumor as 
visible on multiparametric (mp-) MRI, consisting of a T2-weighted (T2w) scan, a diffusion-
weighted MRI (DWI) and a dynamic contrast-enhanced (DCE) MRI. 

Guidelines on detection, localization, characterization and risk stratification of suspected 
prostate cancer using recommended mp-MRI were published in the Prostate Imaging – 
Reporting And Data System (PI-RADS) in 2012, and updated to PI-RADS v2 in 2015 (Barentsz 
et al. 2012, Dickinson et al. 2013, Weinreb et al. 2016). These guidelines were however not 
available when the majority of patients were included in the FLAME trial. Moreover, guidelines 
on contouring of prostate tumors based on mp-MRI are not available to date. Steenbergen et 
al. showed the large inter-observer variability that exists in a prostate tumor delineation study 
using mp-MRI (Steenbergen et al. 2015). Such variability can also be expected in the FLAME 
trial. In the absence of guidelines, institutional differences in contouring practice caused by 
differences in interpretation and weighting of the various sequences in mp-MRI scans may 
have occurred as well.  

In this work we investigated the contours of prostate tumors in the FLAME trial, focusing on 
the weighting of the individual mp-MRI sequences within three institutes. We combined mp-
MRI data with the actual clinical delineations to assess the relative contribution of each MRI 
sequence to the tumor contouring decision. As revision of all contours by a panel of experts is 
not feasible, we applied a pathology validated model for prostate tumor localization in order 
to identify cases that showed discrepancies between clinical delineations and MRI data. We 
selected the patients with the highest inconsistency between predicted tumor location and 
delineation and reviewed these retrospectively. 
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We analyzed 260 prostate cancer patients who were included in the FLAME trial and 
randomized in the escalated dose arm. These patients had biopsy-proven prostate cancer, 
clinically localized intermediate or high-risk disease and no evidence of metastatic disease, 
according to Ash et al. (2000). Institutional review board approval was obtained and all 
patients provided written informed consent. The patients were treated in three institutes: 160 
patients in the University Medical Center Utrecht (UMCU), 54 patients in the Netherlands 
Cancer Institute (NKI), and 46 patients in the University Hospitals in Leuven (UZL). Thirty-five 
patients were excluded because they had missing MRI data (15), missing biopsy reports (3), 
missing delineations (10), registration artifacts (2) or they did not receive the escalated dose 
(5), which led to analysis of 140, 33 and 52 patients from UMCU, UZL and NKI, respectively. 

 

All patients received an mp-MRI exam consisting of a T2w, DWI and DCE sequence. 
Specifications of the scanner type and sequences for each of the institutes are listed in Table 
1. An apparent diffusion coefficient (ADC) map was derived from the b-values of the DWI using 
a mono-exponential fit. We determined the volume transfer constant (Ktrans) values with the 
Tofts model using a population-based arterial input function (Tofts et al. 1999, Murase et al. 
2004). Within each institute a radiation oncologist in consultation with a radiologist had 
prospectively delineated the prostate and all tumors visible on mp-MRI. 

 

We processed the MRI data according to the method of Dinh et al. (2017). To minimize the 
impact of differences between acquisition protocols among the participating institutes, this 
method applies a normalization of T2w and Ktrans

 to the median signal intensity in the 
peripheral zone (PZ). Since no PZ delineations were made in our cohort, we assumed that 75% 
of the prostate volume was PZ tissue and 25% central gland (Weinreb et al. 2016). The T2w 
signal in the central gland tends to be lower than in the PZ, while the Ktrans is higher (Kayhan et  
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TTaabbllee  11..  mp-MRI parameters per institute.  

MMRRII  ppaarraammeetteerrss  II--11  II--22  II--33  
Scanner type Siemens 1.5 T Philips 3.0 T Philips 3.0 T 
Scanner sequence 
TT22ww 

   

Pixel size / slice thickness (mm) 0.78 / 4.0 0.40 / 3.0 0.49–1.0 / 2.5–4.0 
TE / TR (ms) 124 / 11250 120 / 3126–3828 110–130 / 2698–6717 
AADDCC     
Pixel size / slice thickness (mm) 2.73 / 4.0 1.07–1.11 / 3.0–3.7 1.17–2.38 / 2.5–4.0 
TE / TR (ms) 67 / 7110–9900 58–73 / 2712–3500 59–94 / 3119–10036  
b-values (s/mm2) 0, 50, 100, 500,  

750, 1000 
0, 188, 375, 563, 750 or 

200, 400, 600, 800 * 

0, 300, 500, 1000 or 
0, 300, 1000 * 

KKttrraannss    
Pixel size / slice thickness (mm) 1.37–1.68 / 4.0 1.02–1.36 / 3.0 0.94–2.5 / 2.5–7.0 
TE / TR (ms) 1.5 / 4–5 1.9 / 4–5 1.0–1.7 / 4 
Dynamic scan time (s) 4.4 2.5 2.5 

* b = 0 s/mm2 was acquired but not used for ADC map calculation. 

 

al. 2010). Considering the upper and lower 75% of the T2w and Ktrans signal intensity 
histograms as belonging to the PZ, we normalized the signal to the upper and lower 37.5% 
respectively.  

The data set per patient consisted of normalized T2w and Ktrans images, ADC, biopsy map and 
tumor prevalence map, plus the clinically delineated tumor and prostate. From the 
delineations a labeling mask was derived that contained labels for healthy and tumor tissue 
within the prostate. The data sets were resampled to an in-plane resolution of 0.49 mm, equal 
to the resolution of the image data used by Dinh et al. (2017), and a slice thickness of 1.0 mm. 

 

We evaluated the institutional differences on interpretation of the mp-MRI with a logistic 
regression analysis on voxel level of three intensity features, i.e. the T2w, ADC and Ktrans 
intensity images. A transformation of each feature i to zero mean and unit variance was 
applied to allow comparison between features. The logistic regression function is: 

 ( ) ( )0
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+
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where F(x) is the probability that voxel x is included in the tumor delineation, xi is the intensity 
value of feature i, βi is the regression coefficient of feature i and represents weight factor, and 
β0 is the offset.  

 

For the automatic evaluation of the manual delineations we used a published tumor 
probability (TP) model (Dinh et al. 2017), which is a logistic regression model trained on mp-
MRI and biopsy data and validated on histology data from 40 patients in two institutes. The 
coefficients of the TP model are found in Table 2. We combined 29 features from the 
normalized mp-MRI with biopsy and prevalence information, and applied the TP model to 
calculate a TP per voxel within the prostate.  

For each calculated TP map and labeling mask we derived the Area Under the receiver 
operating characteristic Curve (AUC). We selected the patients that had a large disagreement 
between calculated TP map and labeling mask with AUC values below 0.50 and reviewed the 
 

TTaabbllee  22.. Regression coefficients βi and offset β0 of the TP model (Dinh et al. 2017). Gi(s) stands for the 
Gaussian derivative in direction i, with standard deviation s (in mm). 

FFeeaattuurree  ddeessccrriippttiioonn  ββ    FFeeaattuurree  ddeessccrriippttiioonn  ββ    
Offset - β0 
T2w – Intensity 
T2w – G(3.0) 
T2w – Gx(3.0) 
T2w – Gy(3.0) 
T2w – Gxx(3.0) 
T2w – Gyy(3.0) 
T2w – Gxy(3.0) 
T2w – G(4.8) 
T2w – Gx(4.8) 
T2w – Gy(4.8) 
T2w – Gxx(4.8) 
T2w – Gyy(4.8) 
T2w – Gxy(4.8) 
T2w – G (7.6) 
T2w – Gx(7.6) 

0.1 
-5.3 

-10.9 
2.0 

-3.3 
-2.9 
-0.9 
-4.0 

-16.2 
-3.8 
-7.8 
2.2 

-0.1 
-9.1 

-13.2 
4.1 

 
e-4 

T2w – Gy(7.6) 
T2w – Gxx(7.6) 
T2w – Gyy(7.6) 
T2w – Gxy(7.6) 
T2w – G(12.0) 
T2w – Gx(12.0) 
T2w – Gy(12.0) 
T2w – Gxx(12.0) 
T2w – Gyy(12.0) 
T2w – Gxy(12.0) 
ADC – Intensity 
ADC – Blobness 
Ktrans – Intensity 
Ktrans – Blobness 
Biopsy map 
Prevalence map 

-18.7 
-3.0 
2.6 

-16.6 
39.5 
-1.4 
-6.4 
3.1 

-3.5 
-6.9 

-2753 
-376.8 

0.3 
0.2 
1.3 
0.1 
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clinical delineations. For each of the review cases we related the TP map with the clinical 
delineations and described the likely cause of disagreement. 

 

We tested patient characteristics and properties of the delineations as well as logistic 
regression coefficients for statistically significant difference on an institutional level. Median 
age, iPSA, prostate volume, tumor volume and regression coefficients were pairwise tested 
with a Mann-Whitney U test at a significance level of α = 0.05. Clinical T stage, Gleason Score, 
number of tumors per patient and tumor location were pairwise tested with a Fisher exact 
test. Statistical tests were performed with the Statistics and Machine Learning Toolbox in 
MATLAB (version R2017a, MathWorks, Natick, MA). A Bonferroni correction was applied to 
correct for multiple testing. 

  

  

Table 3 shows the patient characteristics and delineation properties for the three institutes. 
We found significant differences in age (between institute (I-) 1 and I-2/I-3), iPSA (between 
institute I-1 and I-2/I-3), number of delineated tumors per patient (between I-1 and I-3) and 
tumor volume (between I-1 and I-2/I-3). No significant differences were observed for clinical 
T stage, Gleason Score, tumor location and prostate volume. 

Figure 1 displays the obtained coefficients i from equation (1). Mean coefficients for I-1, I-2 
and I-3 were -0.07, -0.27 and -0.11 for T2w, -1.96, -0.53 and -0.65 for ADC and 0.15, 0.20 and 
0.62 for Ktrans. The strongest negative coefficient was observed for ADC in I-1, the strongest 
positive coefficient for Ktrans in I-3. All institutes weighted the ADC map the most. Comparing 
within each MRI sequence, T2w, ADC and Ktrans were weighted the most by I-2, I-1 and I-3, 
respectively. Statistically significant differences were found between I-1 and I-2/I-3 for ADC 
and between I-1/I-2 and I-3 for Ktrans (p < 0.001). This demonstrates a different interpretation 
of MRI sequences among the three institutes. 

Median AUC values per institute were 0.92, 0.80 and 0.79, and ranged between 0.50 – 0.99, 
0.47 – 0.98 and 0.19 – 0.98, for I-1, I-2 and I-3 respectively. A histogram of the distribution of 
calculated AUC values is shown in Figure 2. We found a majority of 92% with AUC values above 
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0.60. Five delineations scored an AUC below 0.50. These were reviewed as cases R-1 to R-5 by 
a uroradiologist with 14 years of experience. Figure 3 shows the T2w, ADC and Ktrans, biopsy, 
prevalence and the obtained TP map of R-1 to R-5 at a representative slice in the prostate. An 
example patient P-1 with a high AUC is added for comparison. 

 

TTaabbllee  33.. Patient characteristics and delineation properties per institute. Pairwise p-values between 
institutes are reported, significant values are printed bold (Bonferroni correction for 24 tests). Median 
values are reported for age, iPSA, prostate volume and tumor volume; mean values for number of tumors 
per patient. Numbers in parentheses represent range. 

 

 

  II--11  II--22  II--33  pp--vvaalluuee  
        pp11--22  pp22--33  pp11--33  

Patient characteristics  
AAggee  ((yy))  75 (64–82) 68 (51–78) 71 (56–80) <<  00..000011  0.008 00..000011  
iiPPSSAA  ((nngg//mmLL))  8.0 (1.8–29.0) 12.7 (3.6–44.7) 12.4 (2.6–100) 00..000022  0.94 <<  00..000011  
%%  CClliinniiccaall  TT  ssttaaggee     0.017 0.22 0.033 
T1c 
T2a 
T2b 
T2c 
T3a 
T3b 
T4 

3.0 
12.1 
0.0 
18.2 
48.5 
9.1 
9.1 

3.9 
9.6 
11.5 
15.4 
30.8 
28.9  
0.0 

12.1 
7.9 
4.3 
15.0 
38.6 
21.4 
0.7 

   

%%  GGlleeaassoonn  ssccoorree     0.028 0.78 0.004 
≤ 6 
7 
≥ 8 

3.0 
69.7 
27.3 

21.2 
46.2 
32.7 

21.4 
40.7 
37.9 

   

%%  TTuummoorr  llooccaattiioonn     0.17 0.022 0.80 
PZ 
PZ and TZ 
TZ 

61.5 
23.1 
15.4 

45.6 
41.2 
13.2 

55.9 
23.9 
20.3  

   

Delineation characteristics  
TTuummoorrss  ((nn))  1.2 (1–3) 1.3 (1–3) 1.6 (1–5) 0.72 0.057 00..000022 
PPrroossttaattee  vvoolluummee  ((ccmm33))  40.4 (16.9–101) 34.8 (17.9–105) 43.8 (13.8–157) 0.23 0.009 0.27 
TTuummoorr  vvoolluummee  ((ccmm33))  0.69 (0.05–14.2) 3.3 (0.36–27.2) 3.6 (0.11–50.3) <<  00..000011  0.97 <<  00..000011  
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FFiigguurree  22.. Histogram of AUC values calculated 
with the TP model for 225 patients.

FFiigguurree  11.. Box plot of regression coefficients βi from equation (1) for all patients per institute. Positive 
regression coefficients represent a direct relation between intensity value and tumor presence, negative 
coefficients represent an inverse relation. 

 

R-1 and R-2 showed a transurethral resection of the prostate (TURP) cavity. In the TURP cavity 
T2w and ADC signal intensities are high and Ktrans intensities are low, which causes low TP 
values. In R-1, with an AUC of 0.19, the tumor was delineated around the TURP. Upon review 
however, suspected tissue was localized in the left PZ, based on low ADC and high Ktrans signal 
intensity. The area around the TURP cavity was considered as post-operative tissue response. 
In R-2 (AUC = 0.31) the clinical tumor delineation enclosed almost the whole prostate, with 
exception of the dorsolateral left PZ. The reviewer suspected tumor tissue in the latter region 
as well.  
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FFiigguurree  33.. Overview of T2w, ADC and Ktrans signal intensity images, biopsy and prevalence map, and the 
calculated TP map of the reviewed patients R-1 to R-5 and example patient P-1 with corresponding AUC 
values. Prostates are delineated in green, clinical tumor delineations in red. Tumor delineations after 
review are blue. The reviewed delineation in R-5 was in a different axial plane and is therefore displayed 
on two rows. 
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The location of the delineations in R-3 and R-4 were consistent with the mp-MRI. In R-3 (AUC 
= 0.41) the reviewer agreed with the locations of both contours based on T2w and Ktrans, but 
the contoured volumes were too large in some parts, while missing parts of the suspected 
tissue elsewhere. R-4 had an AUC of 0.47. Upon review, the TZ delineation was considered too 
small and should have included the left ventral part of the TZ as well, based on low ADC and 
high Ktrans signal.   

In R-5, with an AUC of 0.49, the reviewer regarded the clinical tumor delineation as 
nonmalignant central gland tissue. Instead, a PI-RADS 2 region on the left apex side on the 
T2w image was mildly suspect for tumor and supported with positive biopsy map on the left 
side of the prostate (not indicated in Figure 3). ADC and Ktrans values did not confirm this 
finding. However, TP values were moderately high in the clinical tumor delineation, while 
higher TP values were found in the left apex region, indicated by the reviewer. 

 

 

Delineation of the visible cancer on mp-MRI was required for focal dose escalation in the 
FLAME trial. Because of the absence of contouring guidelines for prostate cancer inside the 
gland at the time of treatment, the accuracy of these delineations is uncertain. For this reason, 
we evaluated the delineations of the FLAME trial in the three institutes and observed 
statistically significant differences between institutes in the weighting of each of the MRI 
sequences during contouring of the visible cancer.  

Guidelines for the detection and localization of prostate cancer were established in 2012 in 
PI-RADS and have been updated in version 2 in 2015 with a decreased relevance of DCE-MRI 
(Barentsz et al. 2012, Weinreb et al. 2016). Several studies have already demonstrated the 
need for contouring guidelines based on inter-observer studies (Bratan et al. 2013, Jung et al. 
2013, Rischke et al. 2013, Anwar et al. 2014, Steenbergen et al. 2015). With established 
contouring guidelines, training of radiation oncologists could improve the accuracy of clinical 
tumor delineations on mp-MRI.  

Using logistic regression, we now showed differences in interpretation of mp-MRI on an 
institutional level. We limited the logistic regression analysis to T2w, ADC and Ktrans

 intensity 
images only. Nonetheless, other MRI features may be considered by the radiation oncologists 
and radiologists, but these are not made explicit. Structural appearance for example plays an 
important role as well. However, for the purpose of investigating differences between 
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institutes, the intensity values allow for a more objective analysis. Therefore, we considered 
the intensity images as most informative for contouring of the visible cancer in the clinic. 
Logistic regression performed on an increased number of features would furthermore 
increase the risk of correlations and compromise the separation between obtained 
coefficients. 

In Table 1 significant differences between institutes are observed for age, iPSA, number and 
volume of delineated tumors, after Bonferroni correction of the significance level for 24 tests. 
The significant differences we found for the delineated number and volume of tumors are 
considered to be of clinical relevance, since they have direct impact on the escalated dose 
volume and thereby may propagate into tumor control. Age and iPSA were not considered 
during manual contouring of the tumor, so we regarded the clinical relevance of the significant 
differences observed for these patient characteristics to be limited.  

Retrospective evaluation of 225 clinical delineations by a panel of experts is not feasible in 
practice. Instead, we applied a published tumor probability model to assess the delineations 
automatically (Dinh et al. 2017). Most models used in other studies are focused on the 
classification or risk stratification of prostate cancer (Vos et al. 2008, Langer et al. 2009, Ozer 
et al. 2010, Rouvière et al. 2012). Some that do predict tumor probability in the prostate use 
information from imaging only (Viswanath et al. 2012, Groenendaal et al. 2012). The TP model 
that we applied is comparable to the latter, but benefits from the inclusion of clinical 
information and knowledge of the prevalence of prostate cancer in the gland, that is also 
available to the radiation oncologist.  

As a proof of principle, we reviewed the five patients that showed the largest discrepancies 
between model predictions and delineations based on their AUC value. We found low AUC 
values caused by TURP regions for two patients and inaccurate tumor delineations for another 
two. Also, biopsy information that was contradictive to MRI lowered the AUC for two patients. 
We found that all the selected patients indeed needed revision of the clinical delineations.  

In patients treated with radiotherapy, no whole mount section histology information can be 
available to validate the delineations. Therefore, discrepancies between the TP model and 
clinical delineations can be reviewed by an expert, but confirmation with ground truth is not 
feasible. Discrepancies may be attributed to inaccurate delineations as well as to inaccuracy 
of the model. Since the model was trained on a multi-institutional dataset with comparable 
MRI scanners and scanning protocols as used in this study, we attempted to minimize the 
latter. Limitations in the MRI normalization method could translate into inaccurate model 
predictions, although the risk is small when the tumor accounts for more than 50% of the PZ 
area. Because of the absence of ground truth information and possible model inaccuracies we 
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treated the model as a screening tool to select patients that need further review by experts, 
rather than a method to improve or even substitute clinical delineations.  

The absence of histology information also complicates the assessment of the impact of 
delineation variation on the delivered focal dose escalation. The high median AUC values 
suggest however that this impact may be small overall. Still insufficient dose escalation to the 
tumor tissue and increased dose levels to normal tissue in the prostate may have occurred in 
some instances. 

 

 

In conclusion, we demonstrated inter-institutional differences in the interpretation of mp-MRI 
for delineation of the visible cancer. This supports the need for contouring guidelines for 
prostate cancer inside the gland. AUC values were high in general, suggesting good agreement 
between TP model predictions and clinical delineations. Observed discrepancies based on low 
AUC values were a clear indication for further review by experts. 
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CHAPTER 3

Knowledge-based 
assessment of focal dose 

escalation treatment 
plans in prostate cancer



 

In a randomized focal dose escalation radiation therapy trial for prostate cancer (FLAME), up 
to 95 Gy was prescribed to the tumor in the dose-escalated arm, with 77 Gy to the entire 
prostate in both arms. As dose constraints to organs at risk had priority over dose escalation 
and suboptimal planning could occur, we investigated how well the dose to the tumor was 
boosted. We developed an anatomy-based prediction model to identify plans with suboptimal 
tumor dose and performed replanning to validate our model. 

We derived dose-volume parameters from planned dose distributions of 539 FLAME trial 
patients in four institutions and compared them between both arms. In the dose-escalated 
arm, we determined overlap volume histograms and derived features representing patient 
anatomy. We predicted tumor D98% with a linear regression on anatomic features and 
performed replanning on 21 plans. 

In the dose-escalated arm, the median tumor D50% and D98% were 93.0 and 84.7 Gy, and 99% 
of the tumors had a dose escalation greater than 82.4 Gy (107% of 77 Gy). In both arms organs 
at risk constraints were met. Five out of 73 anatomic features were found to be predictive for 
tumor D98%. Median predicted tumor D98% was 4.4 Gy higher than planned D98%. Upon 
replanning, median tumor D98% increased by 3.0 Gy. A strong correlation between predicted 
increase in D98% and realized increase upon replanning was found ( = 0.86). 

Focal dose escalation in prostate cancer was feasible with a dose escalation to 99% of the 
tumors. Replanning resulted in an increased tumor dose that correlated well with the 
prediction model. The model was able to identify tumors on which a higher boost dose could 
be planned. The model has potential as a quality assessment tool in focal dose escalated 
treatment plans.  
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Focal dose escalation to the tumor in prostate cancer radiotherapy has been hypothesized to 
improve patient outcome without increasing acute and late toxicities (Lips et al. 2011). In the 
multicenter randomized Focal Lesion Ablative Microboost in prostatE cancer (FLAME) trial, 
patients in the dose-escalated arm received an escalated dose up to 95 Gy to the visible tumor. 
The aim of the trial was to increase the 5-year biochemical recurrence-free survival rate by 
10%. To prevent increased toxicity compared to the standard arm, strict dose-volume 
constraints were imposed on the organs at risk (OARs). During treatment planning, these OAR 
constraints had priority over dose escalation. Indeed, no significant increase in toxicity was 
found up to two years after treatment (Monninkhof et al. 2018). Because of the OAR 
constraints being prioritized however, the planned dose escalation to the tumor was limited 
by the spatial separation between the tumor and the OARs. This raises the question as to how 
much dose escalation to the GTV was really achieved in the dose-escalated arm of the trial. 
For this reason, we investigated in the first part of this study to what extent a dose escalation 
to the visible tumor was realized via comparison of dose-volume parameters between both 
arms of the trial. 

Besides patient anatomy, the degree of dose escalation to the tumor can also be affected by 
decisions made during optimization of the treatment plan. In clinical practice, it is difficult for 
a planner or radiation oncologist to assess if a treatment plan can be considered optimal. Over 
the past years Knowledge Based Planning (KBP) techniques have been introduced to enable 
automated plan quality assessment (QA) in radiotherapy (Wu et al. 2009, Moore et al. 2011, 
Appenzoller et al. 2012, Yuan et al. 2012, Good et al. 2013, Wang et al. 2013, Schreibmann et 
al. 2014, Nwankwo et al. 2015, Song et al. 2016, Shiraishi et al. 2016, Wall et al. 2018). These 
studies utilize a database of previously treated patients to guide treatment planning of a new 
patient, based on similarities of the patient’s anatomy with existing ones in the database. For 
standard prostate treatment planning several KBP techniques were utilized to predict OAR 
dose from the patient anatomy (Yuan et al. 2012, Wang et al. 2017, Janssen et al. 2019). 
However, to date no KBP methods have been published to predict achievable focal dose 
escalation in prostate cancer. In the second part of the study we therefore developed an 
anatomy-based prediction model using our own database to predict the achievable dose in 
the tumor. We compared the predicted achievable tumor dose with the tumor dose realized 
in the clinical plans. We tested the validity of our model and the potential for a QA tool with a 
replanning of a subset of treatment plans based on our model’s predictions. 

In this work we present how much of the intended dose was actually planned, how much dose 
escalation could have been achieved, and how much of the predicted dose escalation could 
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be realized upon replanning. Focal dose escalation is a promising strategy in prostate cancer. 
By combining dosimetric evaluation with knowledge-based planning predictions, this study 
gives a comprehensive overview of the current feasibility and limitations of this dose 
escalation strategy for prostate cancer, as well as an indication of potential improvements that 
could be realized upon future clinical implementation.  

 

 

Data from 571 prostate cancer patients who participated in the randomized FLAME trial 
(clinicaltrials.gov NCT01168479) were used. All patients had biopsy-proven, clinically localized, 
intermediate or high-risk prostate cancer (Ash et al. 2000). Patients were excluded from the 
trial if they received previous pelvic radiation or underwent prostatectomy, if they had a World 
Health Organization (WHO) score > 2, an International Prostate Symptom Score (IPSS) ≥ 20, a 
transurethral resection of the prostate (TURP) less than three months prior to treatment, 
contraindications for MRI, or if they could not discontinue anti-coagulate usage which was 
required for implanting gold fiducial markers. We obtained approval from the institutional 
review board and written informed consent from all participating patients.  

Patients were treated at four institutions: 320 patients at the University Medical Center 
Utrecht (UMCU), 93 at the University Hospitals in Leuven (UZL), 109 at the Netherlands Cancer 
Institute in Amsterdam (NKI), and 49 at the Radboud University Medical Center in Nijmegen 
(Radboudumc). At each institution patients were randomly and in a 1:1 ratio assigned to the 
standard and dose-escalated treatment arm. Treating physicians were not blinded for the 
randomization in order to evaluate and approve the treatment plans.  

The primary endpoint of the trial was to achieve an increase in 5-year biochemical recurrence 
free survival rate of 10% among patients in the dose-escalated arm of the trial as compared 
to the standard arm patients. To identify biochemical recurrence, the Prostate Specific Antigen 
(PSA) level in the blood was measured twice per year, and biochemical recurrence was defined 
as a PSA rise of 2 n/mL above nadir PSA level, according to the Phoenix definition (Roach et al. 
2006). Treatment-related acute and late toxicity, measures by the Common Toxicity Criteria 
for adverse events version 3.0 (CTCAE) (Trotti et al. 2003), as well as Quality of Life and disease-
specific survival were secondary endpoints of the trial. 
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For this study we considered patients who were included in the per-protocol analyses of the 
trial (Monninkhof et al. 2018). Patients that did not receive the assigned treatment or decided 
to discontinue the treatment due to anxiety for increased toxicity in the dose-escalated arm 
were not included in the per-protocol analyses. From the patients eligible for the per-protocol 
analyses, we excluded three patients who were assigned to the standard treatment arm for 
which no bladder was delineated. In total 274 patients in the standard arm and 265 patients 
in the dose-escalated arm were available for analysis.  

 

All patients received a planning CT scan and a pretreatment multiparametric (mp-) MRI exam, 
including a T2-weighted, diffusion weighted imaging and dynamic contrast-enhanced 
sequence. The prostate gland was delineated on the T2-weighted MRI by a radiation 
oncologist. The clinical target volume (CTV) consisted of the prostate gland and, depending on 
the risk of tumor involvement, the seminal vesicles (SV). For patients who were randomized 
to the dose-escalated treatment arm, any tumor tissue in the CTV that was visible on the mp-
MRI was contoured and defined as gross tumor volume (GTV). After registration of MRI to CT, 
target volumes and organs at risk (OARs) were defined and delineated. The planning target 
volume (PTV) was defined as the CTV with a margin of 5 – 8 mm, according to institutional 
practice. Based on negligible dosimetric impact of PTV margins around intraprostatic GTVs, in 
this trial no margins were applied to the GTV (van Haaren et al. 2009, Lips et al. 2009). 

The study protocol prescribed a radiation dose of 77 Gy to the PTV in 35 fractions, with an 
integrated boost up to 95 Gy to the identified tumors of patients in the dose-escalated arm. 
Depending on institutional practice, 55 to 77 Gy was prescribed to the SV whenever it was 
included in the CTV. Dose constraints to the OARs followed institutional practice and applied 
to both arms of the trial. In addition, dose constraints of 77 Gy to 1 cc of the rectum and 80 
Gy to 1 cc of the bladder were included. One institution applied an endorectal balloon to 
further reduce dose to the rectal wall (Radboudumc).   

Among the participating institutions different Treatment Planning Systems (TPSs) and delivery 
techniques were used. The UMCU used PLATO (Nucletron, Veenendaal, The Netherlands) and 
Monaco (Elekta, Stockholm, Sweden) to generate 7-beam intensity modulated radiation 
therapy treatment plans for 126 and 183 patients, respectively. The UZL generated 2-arc 
volumetric-modulated arc therapy treatment plans with Eclipse (Varian, Palo Alto, CA). The 
NKI and Radboudumc used Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI) 
to generate 1- or 2- arc volumetric-modulated arc therapy plans.  
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A prescription dose map was constructed using the CTV and GTV masks with corresponding 
prescription dose levels. All dose distributions were resampled to a 1 mm isotropic voxel grid. 
From the dose distributions we derived dose-volume parameters within the PTV, all GTVs in 
the prostate, the CTV minus GTV, the bladder and the rectum.  

In both study arms we determined the near-maximum dose D2% and high-dose volume V107% 
in the CTV minus GTV. The V107% was calculated as the volume percentage with a dose 
escalation above 107% of the prescribed 77 Gy (82.4 Gy). We chose to evaluate the GTV 
coverage in terms of CTV prescription dose, since the trial prioritized organ at risk sparing over 
achieving GTV coverage and therefore GTV coverage was not explicitly required. Furthermore, 
we derived the V95% in the PTV and the near-maximum doses D1cc and D2cc in the bladder and 
the rectum. For plans in the dose-escalated arm, we evaluated to what extent we reached the 
prescribed dose escalation of 95 Gy. We determined the number of plans with a GTV D50% and 
D98% above 82.4 Gy. Statistically significant differences between both arms were examined 
with one-way ANOVA tests. Since we applied several tests, Bonferroni correction for multiple 
testing was used to correct the significance level.  

At one institution (Radboudumc), an endorectal balloon was applied to reduce rectal wall dose 
and decrease inter- and intrafraction motion. For this relatively small patient group we merged 
rectal wall and balloon contours to represent the rectum, on which we report dose volume 
parameters to be in accordance with literature. We compared GTV and rectum dose-volume 
parameters between patients with and without endorectal balloon in situ to decide if both 
patient cohorts could be combined for development of a prediction model.   

Another 25 patients from UMCU and NKI received adaptive treatment. For these patients a 
rigid registration of planning and adaptive CT scan was performed, and a weighted sum was 
applied to the co-registered planned dose distributions. The weights corresponded to the 
number of treatment fractions that each dose distribution was delivered. Three patients had 
a replanning CT. In addition to the rigid registration of CT scans, we extracted binary masks of 
prostate, bladder and rectum and pairwise deformably registered the masks between first and 
second planning session. The deformable registration involved an implementation of the b-
spline deformation algorithm described by Rueckert et al. (1999). The normalized cross-
correlation similarity measure was used for optimization, and registrations were visually 
assessed. Replanned dose distributions were mapped accordingly, resulting in locally 
deformed dose distributions for prostate, bladder and rectum. Planed dose distributions were 
weighted separately for prostate, bladder and rectum to allow for dose-volume parameter 
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derivation. In the second part of the study we only considered the initial treatment plans to 
develop a prediction model on. 

 

We developed a prediction model that calculated the highest achievable D98% in the GTV based 
on the anatomy of all patients. We chose to predict the near-minimum dose, as this was 
regarded to be most sensitive to trade-offs between OAR dose and tumor coverage.  

We derived Overlap Volume Histograms (OVHs) of delineated PTV, GTV, bladder and rectum 
to encode the patient’s anatomy (Wu et al. 2009, Yuan et al. 2012). We defined ten structure 
pairs (PTV→Bladder, PTV→Rectum, GTV→Bladder, GTV→Rectum, PTV→GTV, and vice versa) 
and derived the OVH of each structure pair on a 1 mm resolution. In case of multiple GTVs per 
patient, we performed our analysis per GTV to allow for a dose prediction per GTV. Per 
structure pair we combined the OVHs of all patients and performed Principal Component 
Analysis (PCA) to reduce dimensionality (Yuan et al. 2012). We determined the set of principal 
components (PCs) that described 90% of the variance in OVHs. We reconstructed the OVHs 
using the derived PCs and defined the obtained patient-specific coefficients as PC scores. In 
addition, we added radii r5%, r50% and r95% corresponding with 5%, 50% and 95% fractional 
overlap between two structures. In contrast to the PC scores these radii were only dependent 
on the patient’s individual OVHs. 

The model we developed combined automatic feature selection with a modified linear 
regression algorithm to predict the D98% in the GTV. Given the complexity of a dose escalated 
treatment plan, it is difficult to manually assess if a treatment plan was made optimal in terms 
of highest GTV D98% for a given set of anatomical constraints. Due to the large size of the study, 
we expected the plans in our dataset to range between not optimal and close to optimal 
planned dose distributions. Therefore, we modified the regression algorithm such that for 
treatment plans with similar anatomy, a larger weighting was applied to tumors with higher 
planned D98%.  

Depending on the anatomy, values for planned D98% are expected to lie in the range of 77 – 95 
Gy. In some cases a GTV with a low D98% may be optimal given the anatomy. To account for a 
non-uniform distribution of D98% values over the dose range, we also applied a weighting of 
the planned D98% that compensated for the sparsity of data points at lower dose. Details on 
the model’s training and validation scheme can be found in the supplementary material.  
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To verify if inclusion of patients with endorectal balloon in situ did not bias the performance 
of the model, we retrained the model after exclusion of patients with balloon and compared 
the pairwise difference between the predicted GTV D98% by the two models.  

 

We determined the dose difference between predicted and planned D98% for all GTVs in the 
dose-escalated arm. We ranked the GTVs according to predicted dose difference in order to 
make a selection of treatment plans for replanning. We selected five treatment plans with the 
largest predicted dose difference and another 16 random plans: eight with a GTV with at least 
10 Gy predicted dose difference and eight without. Among the largest predicted dose 
differences no bias towards any of the institutions was observed. Replanning was performed 
by planning specialists (DE, PR and RR) with ten, nine and three years of experience in 
treatment planning. The planning specialists were blinded for the predicted dose difference 
by the model, and instructed to plan the highest achievable dose to the GTVs while adhering 
to the existing target objectives and OAR constraints. New treatment plans were generated in 
the original treatment planning system, based on original delineations and according to the 
FLAME study treatment protocol. Because of decommissioning, seven treatment plans 
originally planned with the PLATO treatment planning system were replanned using Pinnacle. 
We compared our predicted tumor D98% with the D98% obtained upon replanning to evaluate 
our model. All analyses were performed in MATLAB (MathWorks, Natick, MA, USA).  

 

 

The observed dose-volume parameters for the PTV, GTV, CTV minus GTV, bladder and rectum 
are described in Table 1. The median D50% to the GTV was 93.0 Gy, the median D98% was 84.7 
Gy. The percentage of GTVs that received a D50% above 82.4 Gy (107% of 77 Gy) was 98.7%, 
and 70.4% received a D98% above that level. Histograms of the distribution of GTV D50% and 
D98% in the dose-escalated arm are shown in Figure 1. 
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TTaabbllee  11..  Comparison of dose-volume parameters in both arms of the FLAME trial. Median and IQR values 
are reported. 

SSttrruuccttuurree  DDoossee--vvoolluummee    
ppaarraammeetteerrss  

SSttaannddaarrdd  aarrmm  
((nn  ==227744))  

DDoossee--eessccaallaatteedd  aarrmm    
((nn  ==226655))  

PP--vvaalluuee**  

PPTTVV  V95% (%) 98.3 (95.5–98.8) 98.1 (95.3–98.7) 0.127 
CCTTVV  ––  GGTTVV  D2% (Gy) 

V107% (%) 
79.3 (78.8–79.8) 
0.7 (0.0–2.7) 

91.2 (88.6–92.7) 
25.9 (17.3–39.2) 

<<  00..000011  
<<  00..000011  

GGTTVV  D50%  (Gy) 
D98% (Gy) 
V95% (%) 

 93.0 (90.3–94.5) 
84.7 (81.3–88.4) 
77.6 (50.6–92.0) 

 

BBllaaddddeerr  
  

D1cc (Gy) 
D2cc (Gy) 

75.5 (74.4–76.7) 
74.6 (73.7–76.0) 

76.2 (75.0–77.6) 
75.2 (74.0–76.6) 

<<  00..000011  
00..000099 

RReeccttuumm  D1cc (Gy) 
D2cc (Gy) 

74.1 (73.5–74.8) 
73.3 (72.5–74.0) 

74.9 (73.7–75.9) 
73.5 (72.4–74.4) 

<<  00..000011  
0.037 

**  Differences were tested with a one-way ANOVA test. A post hoc Bonferroni method was applied to 
correct the significance level for multiple testing. 

 

 

FFiigguurree  11.. Histograms of planned D50% (left) and D98% (right) of 265 patients in the dose-escalated arm.  

 

The median V95% in the PTV was 98% in both study arms. The median near-maximum dose D2% 
and high-dose volume V107% in the CTV minus GTV were respectively 79.3 Gy and 0.7% in the 
standard arm, and 91.2 Gy and 25.9 % in the dose-escalated arm, and differed significantly 
between both arms. The difference is explained by dose gradients surrounding the GTVs in the 
dose-escalated arm. The median D1cc in the bladder and rectum were 75.5 and 74.1 Gy in the 
standard arm, and 76.2 and 74.9 Gy in the dose-escalated arm, respectively. The median 
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bladder and rectum D2cc were 74.6 and 73.3 Gy in the standard arm and 75.2 and 73.5 Gy in 
the dose-escalated arm, respectively. 

Between patients treated with and without an endorectal balloon in situ we observed minor 
differences in GTV D50% and D98% that were non-significant, and small differences in rectum 
D1cc and D2cc that were significant but not exceeding clinical dose constraints. The results of 
this comparison are presented in the supplementary material, Table A2. 

 

The model was trained on 382 GTVs. After PCA, four to five PCs were extracted from each 
OVH. The trained model consisted of five features, listed with corresponding coefficients in 
the supplementary material, Table A1. The predicted GTV D98% is plotted against the planned 
D98% in Figure 2. The influence of the larger contribution of plans with a higher planned GTV 
D98% is reflected by the small fraction of data points above the identity line. Planned GTV D98% 
values are observed up to 95 Gy, which reflects the aim of the trial. Predicted GTV D98% in some 
cases however exceeded the 95 Gy, suggesting that according to the model the anatomy of 
these patients would allow for further dose escalation. In one extreme case a GTV D98% of 
104.6 Gy was predicted, which appeared to be a small tumor at a relative large distance from 
the rectum. 

The median dose difference between predicted and planned D98% was 4.4 Gy, and dose 
differences ranged between -2.8 Gy and 16.7 Gy. In 135 of 265 patients who received a focal 
dose escalation, at least for one GTV an achievable increase of 5 Gy was predicted.  

Between the prediction models trained with and without inclusion of patients treated with 
endorectal balloon in situ, we observed a median pairwise difference of 0.0 Gy (95% 
confidence interval -0.4 – 0.1 Gy), which justified the inclusion of patients with balloon in our 
presented prediction model. The difference between predicted and planned D98% of both 
models can be found in the supplementary material, as well as a scatter plot of the pairwise 
difference in predicted D98% between the two models (Figure A2).  
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FFiigguurree  22.. Scatterplot of predicted D98% versus planned D98% in the GTV after training of the modified linear 
regression model. The majority of data points can be observed below the identity line as a result of the 
asymmetric cost function. 

 

The 21 treatment plans selected for replanning involved 43 GTVs. We plotted the predicted 
GTV D98% from our model versus the planned D98% and the replanned D98% in Figure 3. Before 
replanning we observed a median dose difference between predicted and planned GTV D98% 
of 7.5 Gy (0.5 – 16.7 Gy). After replanning the median dose difference between predicted and 
replanned GTV D98% was 3.8 Gy (-5.2 – 7.7 Gy). A strong correlation (ρ = 0.86) was observed 
between the predicted increase in D98% and realized increase in D98% after replanning. 

A median increase from planned to replanned GTV D98% of 3.0 Gy (-4.0 – 16.9 Gy) was found. 
For GTVs with a planned D98% below 80 Gy we observed a median increase of 10.4 Gy. GTVs 
with a planned D98% between 80 and 85 Gy had a median increase of 4.9 Gy, between 85 and 
90 Gy a decrease of 0.7 Gy, and above 90 Gy a decrease of 1.7 Gy. Below 85.9 Gy, all GTV’s 
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FFiigguurree  33.. Scatterplot of the predicted D98% in the GTV versus the planned and replanned D98%. Upon 
replanning an increase in GTV D98% can be observed which correlates with the predicted increase in D98%. 

 

D98% increased upon replanning. In 16 out of 43 GTVs we observed a decreased D98% after 
replanning, with a median decrease of 1.4 Gy (range 0.2 – 4.1 Gy). These GTVs had a relative 
high median D98% of 90.1 Gy, which reduced the likelihood of improved tumor dose after 
replanning. For the five treatment plans that were selected based on largest predicted dose 
difference, the median difference between planned and replanned GTV D98% was 9.0 Gy. For 
the 16 randomly selected treatment plans this was 1.7 Gy. 

We observed comparable median PTV V95% of 97.1% before and 97.9% after replanning. 
Median bladder D1cc and D2cc were respectively 77.0 and 75.8 Gy before, and 76.8 and 75.4 Gy 
after replanning, while median rectum D1cc and D2cc were respectively 74.3 and 73.3 Gy before, 
and 75.8 and 74.4 Gy after replanning. The small increase in dose to the rectum was expected 
to correlate with an increased dose to the GTV. Maximum bladder and rectum dose were still 
in accordance with clinical constraints. 
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We showed that integrated focal dose escalation in the prostate is feasible with a median dose 
above 107% of the standard dose of 77 Gy achieved in 99% of the patients. Observed dose-
volume parameters show a median GTV D50% of 93.0 Gy, which was close to the intended 95 
Gy, and a median D98% of 84.7 Gy.  

We also developed a prediction model based on overlap volume histograms and planned D98% 
to identify GTVs for which a higher escalated dose was regarded feasible. After replanning of 
a subset of treatment plans, we observed a considerable increase in planned D98% which 
strongly correlated with the predicted increase by the model. 

A recent trial on dose painting in prostate cancer (HEIGHT trial) with up to 89.3 Gy in 38 
fractions found a GTV V95% (above 84.8 Gy) between 95.2% and 99.8% (Bossart et al. 2016). 
Because of the different fractionation scheme and level of dose escalation, a comparison with 
our results could not be made.  

D2% and V107% in the CTV minus GTV as well as D1cc in the bladder and the rectum showed a 
significant increase of dose in the dose-escalated arm, while D2cc in the bladder and the rectum 
did not. These findings can partially be explained by the study protocol that allowed for dose 
escalation in the healthy prostate, provided that dose-volume constraints to OARs were not 
violated.  

In the dose-escalated arm there were 382 GTVs in 265 plans, which on average was 1.4 GTVs 
per plan. These findings are in agreement with Van Schie et al. (2018). A higher average of 2.0 
GTVs per plan was observed in the replanning selection of 21 plans. The higher average in the 
replanning selection can partly be explained with statistics since a plan with multiple GTVs had 
an a priori higher chance of inclusion in the replanning selection. We also observed an 
overestimation of the achievable D98% as compared to the planned dose upon replanning. One 
explanation is the design of the trial, in which we aimed for an escalated dose up to 95 Gy. Our 
model however was not restricted by this dose constraint and, based on patient anatomy, 
could in principle predict a higher achievable escalated dose than 95 Gy. While both 
observations can partly be assigned to statistics and trial design, we do believe they are to 
some extent also explained by the limitation of our prediction model that did not consider the 
effect of multiple GTVs per prostate. The model determined the achievable GTV D98% for each 
GTV individually, which could lead to violation of OAR dose constraints in case of multiple GTVs 
within the prostate. During replanning, this likely has resulted in a reduced GTV D98%, since 
OAR dose constraints were prioritized.       
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We demonstrated that focal dose escalation was achieved in almost all patients in the dose-
escalated arm of the trial. Although several trials have hypothesized clinical benefits of focal 
dose escalation, no KBP methods exist to predict the highest achievable integrated boost dose 
to the tumor. Here we demonstrated a novel methodology that, using anatomical features 
and based on a heterogeneous dataset, could predict the highest achievable dose in the GTV 
and allowed to identify GTVs for which the escalated dose could be improved. A limitation of 
existing KBP methods is that the predicted dose range reflects the range of clinical plans. In 
our model we introduced an upward bias to predict the highest achievable dose, by putting 
extra weight on the better optimized plans in the database. Since it was trained on data from 
multiple institutions, the model is robust to different treatment planning systems. We 
recognize that our model does not allow for a precise estimation of the achievable tumor dose. 
We do however believe that our model can assist as a QA tool to identify GTVs that could be 
planned with a higher escalated dose.  

Focal dose escalation is a promising dose escalation strategy in prostate cancer. By combining 
dosimetric evaluation with knowledge-based planning predictions we were able to 
demonstrate the feasibility of focal dose escalation up to 95 Gy in the prostate, as well as 
presenting a methodology to potentially improve on focal dose escalation treatment plans in 
a clinical setting. Although developed for a novel dose escalation strategy in prostate cancer, 
we believe our methodology can be of general applicability to other treatment sites and 
radiation strategies as well. 

 

 

Focal dose escalation in prostate cancer was feasible in almost all GTVs, with an escalated dose 
well above the standard prescribed dose. We developed a prediction model to identify GTVs 
for which a higher escalated dose was considered achievable. Using this model to select plans 
for replanning, a considerable increase in D98% was found achievable, specifically for lower 
planned D98%. Our prediction model has potential as a QA tool and identify suboptimal GTV 
doses to be optimized via replanning. 
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To predict the highest achievable D98% in the GTV, we developed a model based on patient 
anatomy, expressed by principal component (PC) scores and fractional overlap scores from 
patient’s OVHs. We applied a stepwise multiple regression model (SMRM) to find the optimal 
combination of anatomical features to predict the D98% (Yuan et al. 2012). We modified 
MATLAB’s stepwiselm function available from the Statistics and Machine Learning Toolbox. 
The cost function was expanded with a penalty term such that for GTVs with comparable 
anatomy, the GTV with highest D98% would have a larger influence on the regression. A 
weighting of the planned D98% was added to compensate for sparsity of data at lower dose. 
The resulting asymmetric least squares optimization algorithm used the following cost 
function:   

( ) ( ) ( )( )
2 22

max plan,i pred,i plan,i pred,i plan,i1
Cost sgnn

i
D D D D D D 

=
= −  −  − − . (A1) 

The first term in this equation describes the weighting function, the second term corresponds 
to ordinary least squares optimization, and the third term penalizes predictions below the 
planned D98%. Dplan,i and Dpred,i are the planned and predicted D98% of data point i, sgn is the 
sign function and α the asymmetry parameter. Dmax was set to 102 Gy (107% of 95 Gy), α was 
set to 0.9.   

We had 265 treatment plans with 382 GTVs available and trained the prediction model on the 
entire dataset. During training, feature set selection was based on 10-fold cross validation, 
evaluating the Cost in the validation set.  Since the SMRM performs feature set selection based 
on a preset p-value, we tested a range of p-values (0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1). 
The range of p-values tested was determined during development of our model. For lower p-
values the model would not include any feature, and for higher p-values calculation time 
increased drastically and resulted in decreased model’s accuracy. For each p-value we 
identified the most frequently selected feature set and corresponding Cost. If feature sets 
were identical to the most frequent selected feature set, we selected the minimum of 
corresponding Costs. To be able to select the optimal p-value and optimal feature set, and 
increase robustness of the selection strategy, we repeated this procedure ten times. After ten 
repetitions we calculated the median Cost per p-value, and selected the p-value 
corresponding to the lowest median Cost. The final selected feature set was the feature set 
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that corresponded to the selected p-value and lowest Cost. Final weights were determined via 
fitting of the selected features to the complete data set using the asymmetric cost function.  

To investigate the robustness of our training strategy, we also randomly designated 25% of 
the GTVs as test set, stratified by treatment plan. A schematic representation of our training 
strategy is depicted in Figure A1. 

During OVH calculation, from most OVHs four PCs were extracted that explained 90% of the 
variance in the OVHs. For the structure pairs PTV→Bladder, PTV→Rectum, and Bladder→GTV 
these were five PCs. Together with the 5th, 50th and 95th OVH curve fractional overlaps scores, 
this yielded 73 anatomical features that were used to train the prediction model. A p-value of 
0.01 resulted in the lowest Cost of 0.627 during training of the model. 

In the robustness test we found an average Cost of 0.609 in the training data, and an average 
Cost of 0.748 in the test data, demonstrating our model was robust when applied to different 
datasets. 

 

In Table A2 dose-volume parameters in the GTV and rectum are compared between patients 
treated with and without endorectal balloon in situ. Significant dose differences are observed 
for the rectum, although D1cc and D2cc values were within accepted dose limits.  

In Table A3 we reported the selected features of the prediction model after exclusion of 
patients treated with an endorectal balloon in situ. The observed median difference between 
predicted and planned GTV D98% was 4.4 Gy (95% CI -0.2 – 10.7 Gy). For these patients, the 
median difference in the model trained on all patients was 4.3 Gy (95% CI of -0.3 – 10.4 Gy). 
The difference between predicted GTV D98% by both models was minimal: 0.0 Gy (95% CI -0.4 
– 0.1 Gy). The difference between the scatter plot distributions of both models is shown in 
Figure A2. Considering the minimal differences in GTV D98% and scatter plot distributions, the 
model including all patients was favored for presentation in the article and selection of 
treatment plans for replanning.   
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FFiigguurree  AA11.. Schematic representation of the training strategy of our prediction model. Steps in the training 
strategy are color coded in the top left corner. 

 

TTaabbllee  AA11.. List of features in the trained prediction model, together with coefficients. D98% was determined 
using D98% = D0 + Σ(βi*xi)  

DDeessccrriippttiioonn  ooff  sseelleecctteedd  ffeeaattuurreess  xxii  CCooeeffffiicciieennttss  ββii  

Offset 66.96 Gy 
PC2 of OVH Bladder → GTV 0.048 
PC4 of OVH Bladder → GTV -0.092 
r5% of OVH GTV → Rectum 0.350 
PC2 of OVH Rectum → GTV 0.076 
PC3 of OVH Rectum → GTV -0.405 

 

3

51

Knowledge-based focal dose escalated treatment plan assessment



 

TTaabbllee  AA22.. Comparison of dose-volume parameters between patients treated with and without endorectal 
balloon in situ. Median and IQR values are reported. 

SSttrruuccttuurree  DDoossee--vvoolluummee    
ppaarraammeetteerr  

TTrreeaattmmeenntt  aarrmm    WWiitthhoouutt  bbaalllloooonn  
((nn==449933))  

WWiitthh  bbaalllloooonn  
((nn==4466))  

PP--vvaalluuee**  

GGTTVV  D50% (Gy) 
D98% (Gy) 

 84.8 (81.4 – 88.4) 
92.8 (90.1 – 94.4) 

82.5 (79.2 – 88.0) 
93.9 (91.6 – 95.7) 

0.05 
0.29 

RReeccttuumm  D1cc (Gy) 
 
D2cc (Gy) 
 

Standard 
Dose-escalated 
Standard 
Dose-escalated 

74.1 (73.5 – 74.7) 
74.8 (73.6 – 75.9) 
73.2 (72.5 – 73.8) 
73.3 (72.3 – 74.3) 

75.1 (74.1 – 76.3) 
75.3 (74.8 – 76.0) 
74.7 (73.7 – 76.0) 
74.6 (73.9 – 75.1) 

<<00..000011  
0.14 
<<00..000011  
00..000011  

**  Differences were tested with a one-way ANOVA test. A post hoc Bonferroni method was applied to 
correct the significance level for multiple testing. 

 

TTaabbllee  AA33.. List of features and corresponding coefficients in the trained prediction model using patients 
treated without endorectal balloon in situ. 

DDeessccrriippttiioonn  ooff  sseelleecctteedd  ffeeaattuurreess  xxii CCooeeffffiicciieennttss  ββii 
Offset 66.57 Gy 
PC2 of OVH Bladder → GTV 0.050 
PC4 of OVH Bladder → GTV -0.111 
r5% of OVH GTV → Rectum 0.358 
PC3 of OVH Rectum → GTV -0.377 
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FFiigguurree  AA22.. Scatter plot of the planned GTV D98% versus the difference in predicted GTV D98% between the 
trained prediction models using all patients and only patients treated without endorectal balloon in situ. 
A minimum difference of -3.6 Gy was observed, corresponding to the extreme case in Figure 2. Due to the 
relative small size and large distance from the rectum, this GTV was sensitive to the composition of the 
training dataset.  
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CHAPTER 4

Repeatability of dose painting 
by numbers treatment 

planning in prostate cancer 
radiotherapy based on 

multiparametric magnetic 
resonance imaging



 

Dose Painting by Numbers (DPbN) refers to a voxel-wise prescription of radiation dose 
modelled from functional image characteristics, in contrast to dose painting by contours which 
requires delineations to define the target for dose escalation. The direct relation between 
functional imaging characteristics and DPbN implies that random variations in images may 
propagate into the dose distribution. The stability of MR-only prostate cancer treatment 
planning based on DPbN with respect to these variations is yet unknown. We conducted a 
test-retest study to investigate the stability of DPbN for prostate cancer in a semi-automated 
MR-only treatment planning workflow.  

Twelve patients received a multiparametric MRI on two separate days prior to prostatectomy. 
The tumor probability (TP) within the prostate was derived from image features with a logistic 
regression model. Dose mapping functions were applied to acquire a DPbN prescription map 
that served to generate an intensity modulated radiation therapy (IMRT) treatment plan. Dose 
calculations were done on a pseudo-CT derived from the MRI. The TP and DPbN map and the 
IMRT dose distribution were compared between both MRI sessions, using the intraclass 
correlation coefficient (ICC) to quantify repeatability of the planning pipeline. The quality of 
each treatment plan was measured with a quality factor (QF).  

Median ICC values for the TP and DPbN map and the IMRT dose distribution were 0.82, 0.82 
and 0.88 for linear dose mapping, and 0.82, 0.84 and 0.94 for square root dose mapping. A 
median QF of 3.4% was found among all treatment plans.  

We demonstrated the stability of DPbN radiotherapy treatment planning in prostate cancer, 
with excellent overall repeatability and acceptable treatment plan quality. Using validated 
tumor probability modelling and simple dose mapping techniques it was shown that despite 
day-to-day variations in imaging data still consistent treatment plans were obtained. 
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In prostate cancer radiotherapy dose escalation to the tumor based on image characteristics 
is referred to as dose painting. While dose painting is not a standard procedure in prostate 
cancer treatment (Bauman et al. 2013), it has been hypothesized that a clinical benefit without 
increased toxicity can be achieved with this approach (Pickett et al. 1999, van Lin et al. 2006, 
Singh et al. 2007, Fonteyne et al. 2008). The clinical benefit of focal dose escalation is currently 
investigated in the FLAME trial, a multicenter phase III randomized clinical trial (Lips et al. 
2011). In dose painting by contours tumors are manually delineated based on multiparametric 
(mp-) MRI, consisting of a T2-weighted (T2w), diffusion-weighted (DWI) and a Dynamic 
Contrast-Enhanced (DCE) sequence (Barentsz et al. 2012, Dickinson et al. 2013). However, it 
has been demonstrated by Steenbergen et al. (2015) that a large inter-observer variation in 
manual tumor delineations on mp-MRI exists. Since delineation of the tumor is an inherently 
binary procedure, variability in tumor delineations may have an impact on the dose coverage 
of the actual tumor.  

As an alternative to manual contouring automated methods to derive a tumor probability (TP) 
map of the prostate have been developed (Groenendaal et al. 2012, Viswanath et al. 2012, 
Vos et al. 2012, Dinh et al. 2016, Dinh et al. 2017). These maps represent the likelihood of 
tumor presence in each voxel. We showed earlier that this tumor probability correlates with 
the level of consensus among observers (Dinh et al. 2016). Dose Painting by Numbers (DPbN) 
refers to the concept of deriving a prescription dose from image characteristics directly. For 
this, dose mapping functions converting characteristics into a dose prescription need to be 
applied (Bowen et al. 2009). 

In the current study we incorporated DPbN and tumor probability modelling in the 
radiotherapy treatment planning pipeline of prostate cancer. Based on dose prescription maps 
treatment plans were realized with conventional planning objectives and dose-volume 
constraints. Additional planning objectives allowed us to modulate the heterogeneous dose 
distribution within the prostate.  

While DPbN does not suffer from the inter-observer variation of manual contouring, the MRI 
data are affected by image noise and day-to-day patient variation. The direct relationship 
between functional imaging characteristics and dose painting by numbers implies that such 
variation in images may propagate into the dose distribution. The impact of the image data 
variations and further processing on the treatment plan quality in DPbN is yet unknown. 
Therefore, we performed a test-retest mp-MRI study to investigate whether variability due to 
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imaging noise propagates through the planning pipeline and influences the repeatability of 
semi-automated DPbN treatment planning in an MR-only workflow. 

 

 

The repeatability of the proposed semi-automated MR-only workflow was investigated with a 
test-retest study, scanning each patient two times on a different day with a mp-MRI. For each 
mp-MRI exam a radiation treatment plan was simulated via four planning stages. A 
repeatability analysis between both treatment planning sessions was performed for each of 
the stages in this workflow. The images of the first and second MRI exams were registered 
with a B-spline deformable image registration. 

 

We included twelve patients with biopsy-proven stage T1-T2 prostate cancer (median age 67, 
range 54 – 71 years) between October 2014 and March 2016. Each patient underwent two 
mp-MRI examinations with a median interval of 21 days (range 7 – 37 days), in which no 
change in tumor appearance was assumed. The second MRI examination was followed by a 
radical prostatectomy. Institutional review board approval was obtained, and all patients 
provided written informed consent.  

 

Images were acquired on a 3.0 T Philips Achieva MR scanner (Philips Healthcare, Best, the 
Netherlands). We scanned nine patients with a 6-channel phased-array coil in combination 
with an endorectal coil. After a dStream upgrade of the scanner, we scanned the last three 
patients with a 16-channel dS anterior coil and a 12-channel dS posterior coil. 

In accordance with recent recommendations (Barentsz et al. 2012, Dickinson et al. 2013), the 
mp-MRI exam included an axial, sagittal and coronal T2-weighted turbo spin echo sequence, 
a diffusion weighted single-shot echo-planar imaging sequence, and a DCE scan using a 3D 
spoiled gradient echo sequence. A pre-contrast T1-weighted (T1w) 3D gradient echo sequence 
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was used to detect hemorrhage areas as a result of preceding diagnostic biopsies. For dose 
calculations we scanned an mDIXON sequence prior to contrast, from which a pseudo-CT scan 
was derived using the MRCAT algorithm (Philips Medical Systems MR Finland, Vantaa, Finland). 

T2w scans were acquired with a TE/TR of 12/2000–5000 ms, and a reconstructed voxel size of 
0.27 x 0.27 x 3.0 mm3 before and 0.4 x 0.4 x 3.0 mm3 after dStream upgrade. T1w scans were 
obtained with a TE/TR of 1.8/3.7 ms, while the mDIXON sequence had a TE1/TE2/TR of 
1.16/2.4/3.7 ms. The DWI sequence had a TE/TR of 59/3500 ms, using b-values of 200, 600 
and 1000 s/mm2 to derive an apparent diffusion coefficient (ADC) map using a mono-
exponential model (Bammer 2002). The DCE-MRI had a TE/TR of 1.9/4–5 ms and was acquired 
at a flip angle of 20°, after injection of 15 ml 0.5 M gadolinium-based contrast agent 
(DOTAREM®, Guerbet, Paris, France). In total the DCE sequence consisted of 110 acquisitions 
with an interval of 2.7 – 2.9 s. Signal intensities were converted to concentration values using 
a baseline T1-map obtained from variable flip angle scans at 3°, 6°, 10°, 20° and 30°. (Schabel 
et al. 2008). Volume transfer constant (Ktrans) values were estimated with the Tofts model using 
a population-based arterial input function (Tofts et al. 1999, Murase 2004).  

Any organ motion that occurred between the different mp-MRI sequences was corrected with 
a rigid registration to the prostate on the axial T2w scan. 

 

Data from each examination was processed separately through the planning pipeline. The 
prostate gland and organs at risk (OARs) were delineated manually using the T2w and pseudo-
CT images. In total 30 image features from T2w, ADC and Ktrans were combined to derive a per-
voxel TP map for the prostate using a logistic regression model (Dinh et al. 2016, Dinh et al. 
2017). Prior knowledge about tumor location was included in the TP model in the form of a 
tumor prevalence map, derived from radical prostatectomy patients (Ou et al. 2009). The TP 
model was trained previously on data of 17 patients from the same institute, and was validated 
with pathology data using a leave-one-out approach. After resampling of the TP map to a 2-
mm cubic voxel grid compatible with treatment planning software, polynomial dose mapping 
functions were applied to translate the TP map to a dose prescription map (DPbN map).  

The pseudo-CT, OAR structure set and DPbN map were imported in the treatment planning 
software to generate an intensity modulated radiation therapy (IMRT) treatment plan, with 
heterogeneous dose prescription to the prostate. A schematic overview of the data flow from 
mp-MRI examination to treatment plan realization is depicted in Figure 1. 
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FFiigguurree  11.. Schematic overview of the planning pipeline in DPbN prostate cancer treatment. The treatment 
planning pipeline involves four stages: image acquisition, tumor probability modelling, dose prescription 
modelling and treatment planning. Processing steps are indicated with dashed contours. Registration and 
resampling steps to different coordinate systems are indicated with symbols. 
 
   

Image Acquisition

Tumor Probability Modelling

Treatment Planning

TP model

TP map

DPBN map

IMRT plan

Dose mapping

RT planning Pseudo-CT

mDIXON

Prevalence map

Dose grid

T2w, ADC, Ktrans

T2w grid

Dose Prescription Modelling

Rigid registration
Deformable registration

Resampling to different coordinate system
Down sampling in same coordinate system

Feature extraction

60

Chapter 4



 

For each voxel in the prostate the TP was translated into a prescription dose Dpresc using a 
polynomial dose mapping function (Bowen et al. 2009): 

 ( )min max min
n n
prescD D D D TP= + −  , (1) 

with Dmin and Dmax the minimum and maximum prescribed dose respectively, and n the 
polynomial order of the mapping function. DPbN prescription maps were created with values 
for n of 1 and 0.5, corresponding to linear and square root mappings of TP. Dmin was set to a 
safe lower bound of 68 Gy, which reflects the standard treatment in the Dutch dose escalation 
trial (Peeters et al. 2006). A Dmax of 102 Gy was allowed, which is 107% of 95 Gy and 
corresponds to the escalated dose to the visible tumor in the FLAME trial (Lips et al. 2011). 
Dpresc was calculated on a 2-mm cubic voxel grid to be compatible with the treatment planning 
software. The dose prescription outside the prostate was set to 0 Gy. Modeling of TP and DPbN 
maps was performed with MATLAB (version R2015b, MathWorks, Natick, MA). 

 

Apart from the prostate, the following OARs were delineated on the mDIXON images 
according to the clinical guidelines of our institute: the rectum (up to either the sigmoid or 
pelvic joints) and anal sphincter, the femoral heads (including articular cartilage) and the 
bladder. The pseudo-CT, DPbN map and the OAR structure set were imported in a research 
version of Pinnacle planning software (Pinnacle 9.710, Philips Research, Hamburg, Germany) 
to establish an IMRT treatment plan. The treatment plan was optimized for a 10 MV step-and-
shoot photon beam at seven angles: 210°, 260°, 310°, 0°, 50°, 100°, 150°. The minimum 
segment area of the multi-leaf collimator was set to 9 cm2, the minimum number of monitor 
units per segment to four and the maximum number of segments per beam position to 10. 
Plan optimization with a maximum of 100 iterations was performed using a standard cost 
function in combination with two dose painting objective functions fmin and fmax, summing over 
all voxels i in the prostate to penalize under- and overdosing of the prescribed dose 
respectively: 
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Here wmin and wmax are tunable weight factors, and Dpresc,i and Dplan,i are the prescribed and 
planned dose to voxel i. The treatment plan was accepted if the dose-volume constraints for 
OARs in Table 1 were met.  

Evaluation of the treatment plan was performed with a quality factor (QF), summing over the 
normalized absolute differences between planned and prescribed dose to each voxel i 
(Vanderstraeten et al. 2006): 

 , ,

,

1 100%plan i presc i

i presc i

D D
QF

n D
−

=  .  (3) 

To get information about the capability of the treatment planning system to deliver high dose 
to small regions, a QF95% was also calculated, which evaluates the treatment plan quality 
similar to equation (3), but only for voxels that were prescribed at least 95% of the maximum 
prescribed dose. Within the group of patients we tested both QF and QF95% for significant 
difference between linear and square root dose mapping functions and between the first and 
second planning session with the paired Wilcoxon signed rank test at a 5% significance. We 
also performed a cross evaluation of the treatment plan quality with xQF and xQF95%, where 
the dose distribution of the treatment plan from the first planning session was compared with 
the prescribed dose distribution of the second session and vice versa. This allows to quantify 
  

TTaabbllee  11.. List of OARs that were delineated prior to treatment planning, together with the dose-volume 
constraints that were imposed to the treatment planning system to build a clinically acceptable treatment 
plan. VX Gy refers to the volume receiving X Gy. 

OOrrggaann  aatt  RRiisskk  DDoossee--vvoolluummee  ccoonnssttrraaiinntt  
Rectum + 2 mm V80 Gy   ≤ 1 cc 
Rectal wall V64 Gy   ≤ 35 % 

V75 Gy  ≤ 10 % 
Anal sphincter Dmean   ≤ 45 Gy 
Bladder V80 Gy   ≤ 1 cc 
Femoral head Dmax   ≤ 50 Gy 
Bowel loop Dmax   ≤ 68 Gy 
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to what extent treatment planning based on a different mp-MRI compromises the plan quality. 
Treatment plan quality (Q) was visualized with a Q-volume histogram (QVH), displaying Q-
values defined as the ratio of planned over prescribed dose. 

 

For voxel-level evaluation of the TP, DPbN and IMRT map within the prostate a registration 
between both scan sessions is required. A B-spline deformable registration between the 
delineated prostates on the axial T2w scans of both mp-MRI sessions was used to match and 
resample the TP, DPbN and IMRT maps from the first planning session to the second. As a 
consequence of the registration step the DPbN and IMRT maps were upsampled to the higher 
resolution T2w grid, thereby introducing correlated data. We therefore resampled all maps 
again to the lower resolution 2-mm cubic voxel grid used for the treatment planning. 

 

Stability and repeatability of the planning pipeline was investigated on the TP, DPbN and IMRT 
map with the intraclass correlation coefficient (ICC), to quantify the variability between voxels 
relative to the measurement error (de Vet et al. 2006). In this study a one-way random model 
was used to measure consistency between two measurements, where single values were 
calculated for each individual patient (Shrout et al. 1979, McGraw et al. 1996, Raunig et al. 
2015). The one-way random model was chosen since it effectively models the between-voxels 
variation as a fixed effect. This holds for an ICC calculated on a single patient where all voxels 
of interest of the patient are included instead of a random selection. To satisfy the 
requirement of normally distributed data, repeatability of the TP map was assessed on the 
logarithm of the TP odds ratio. Hemorrhage areas as a result of biopsies taken prior to the first 
MRI examination were identified on T1w images. Since these areas shrink from first to second 
MRI exam, we excluded these regions from the repeatability analysis. In order to investigate 
to what extent the variability of the mp-MRI image features propagates through the planning 
pipeline, the repeatability of the 30 individual imaging features that were input for the TP 
model was assessed with the ICC as well. 
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To illustrate the planning pipeline, an example of the tT2w, ADC and Ktrans intensity maps 
together with the calculated TP, DPbN and IMRT map is given in Figure 2. Slices are taken in 
the axial direction of the patient from a location in the prostate involving an area suspected 
of being tumor. The top row depicts the intensity maps of T2w, ADC and Ktrans. The T2w map 
was normalized to the 75th percentile of the intensity values within the prostate. Within the 
prostate, image features from the intensity maps were combined to create the TP map in 
Figure 2D. A suspicion of tumor can be identified at the left side of the prostate, characterized 
by low T2w and ADC, and high Ktrans values. The increased Ktrans values at the transition zone of 
the prostate was disproven to be tumor from histopathology, in accordance with the TP map 
in panel B. 

 

 

FFiigguurree  22..  Example of an axial slice through the prostate. In each panel A-D the first (top row) and second 
planning session (bottom row) are compared. The ICC value is shown for each set of maps. Panel A depicts 
the mp-MRI: normalized T2w, ADC (in 10-3 mm2/s) and Ktrans map (in min-1), where Ktrans is shown as a 
colorwash on top of the normalized T2w scan. The DPbN map (in Gy) and IMRT plan (in Gy) are shown for 
linear (panel C) and square root (panel D) dose mapping functions. The delineated prostate is contoured 
in green. 
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After resampling of the TP map to the 2-mm cubic dose grid a linear and square root dose 
mapping function were applied to obtain the DPbN map. TP values of 0 and 1 were mapped 
to prescription dose levels between 68 and 102 Gy respectively. An example of the two dose 
mapping functions is shown in Figure 3. The TP histogram at the top shows a majority of voxels 
with low TP, and only a small fraction of voxels with TP above 0.5. In this example the maximum 
TP is 0.93, corresponding with 99.0 Gy for linear and 100.5 Gy for square root dose mappings. 

An example of IMRT treatment plans in both planning sessions is given for linear dose mapping 
(Figure 2C) and square root dose mapping (Figure 2D). Smoothing of the prescribed dose due 
to scatter of photons and dose deposition limitations can be observed in the optimized plan. 
The quality of the IMRT plan was assessed with QF and QF95% and visualized with a QVH in 
Figure 4. The majority of planned dose voxels was between 90% and 110% of the prescribed 
dose values, as can be observed from the gradient between Q-values of 0.9 and 1.1. For linear 
and square root dose mappings respectively, 3.4% and 1.5% of the prostate volume received 
less than 90% of the prescribed dose, while overdosing with more than 110% of the prescribed 
dose occurred in 2.3% and 6.2% of the voxels. QFs of 3.7% and 4.4% were observed, which is 
within the 5% treatment planning goal proposed by Duprez et al. (2011). QF95% were 13.8% 
and 7.5%, indicating a higher agreement of planned with prescribed dose for square root dose 
mapping. 

Comparable QVHs and quality factors were obtained for the other patients in this study, 
showing good quality of treatment plans based on DPbN. For linear dose mapping, QFs ranged 
between 2.3% and 4.1% (median 2.9%) and QF95% values ranged between 5.5% and 17.3% 
(median 11.6%). For square root dose mapping, QFs between 2.7% and 4.4% (median 3.4%) 
were observed, whereas QF95% values were between 4.1% and 11.7% (median 7.2%). Statistical 
testing with a Wilcoxon signed rank test of both QF and QF95% revealed a significant difference 
between linear and square root dose mapping (p < 0.001). No significant differences between 
plans from session 1 and plans from session 2 were observed (p = 0.80 for QF and p = 0.98 for 
QF95%). xQF values ranged between 2.1% and 4.4% (median 3.3%) for linear dose mapping, 
and between 2.9% and 4.4% (median 3.9%) for square root dose mapping. xQF95% values for 
linear dose mapping were between 4.8% and 18.1% (median 11.6%), and for square root dose 
mapping between 3.2% and 15.7% (median 8.0%).  

Stability of automated treatment planning based on DPbN was tested with a repeatability 
analysis and expressed with the ICC. For ICC classification we considered excellent (above 
0.75), good (0.6 – 0.75), fair (0.4 – 0.59) and poor (below 0.4) repeatability (Cicchetti et al. 
1981). The evaluation of TP and DPbN map and IMRT dose distributions of the whole patient 
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FFiigguurree  33.. Example of a linear (black) and square root (grey) dose mapping from tumor probability TP to 
prescribed dose Dpresc. Normalized histograms for TP and Dpresc are shown along the axis indicating the 
density of data points in the plot. Prescription dose values ranged from 68.0 to 99.0 and 100.5 Gy for 
linear and square root mappings.  

 

 

FFiigguurree  44.. Example of a QVH. Inverse cumulative histogram of the prostate volume receiving fraction Q of 
the prescribed dose. For linear dose mapping Q-values below 0.9 are observed in 3.4% of the prostate, 
and above 1.1 in 2.3% of the prostate. For square root dose mapping 1.5% of the prostate voxels had Q-
values below 0.9, while 6.2% of the voxels had Q-values above 1.1. 
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group with ICC resulted in excellent agreement at all three stages. Figure 5 shows the ICC 
values with median values of all patients for linear and square root dose mapping. The median 
ICC of TP maps was 0.82, ranging from 0.67 to 0.93. Median ICC values of 0.82 and 0.84 were 
found for the DPbN maps, using linear and square root dose mapping respectively, and ICC 
values ranged from 0.71 to 0.90. At IMRT stage a median ICC value of 0.88 was observed for 
linear dose mapping (range 0.71 – 0.93), while for square root dose mapping this was 0.94 
(range 0.88 – 0.96). On individual level good to excellent agreement between both planning 
sessions was shown. Density scatter plots of the IMRT dose values based on both linear and 
square root dose mapping are provided in Figure 6. Dose values of the first planning session 
are plotted versus values from the second session and are accumulated over all patients. We 
observed a symmetric distribution around the diagonal for both dose mapping functions, with 
95% of the voxel-to-voxel dose differences below 4.8 and 5.7 Gy for linear and square root 
dose mapping, respectively. To improve visualization of the low-count pixels in the scatter 
plot, we log transformed the intensity values.      

Median ICC values for the repeatability of the 30 imaging features over the group of patients 
varied between 0.82 and 0.98. The five most repeatable features were all T2w Gaussian 
smoothed derivatives of the first (Gy) and second (Gyy) order, where y denotes the AP direction 
of the prostate. The ICC values of these five features ranged between 0.97 – 0.98: Gy(3.8), 
Gy(2.4), Gy(6.0), Gyy(6.0) and Gyy(3.8). Here the values between brackets represent the scale 
(in mm) of the smoothing kernel. The five best performing features according to Dinh et al. 
  

  
FFiigguurree  55.. ICC values of twelve patients at three stages of the treatment planning pipeline for both linear 
and square root dose mapping. Median ICC per stage is indicated with a horizontal bar. For each patient, 
identified by symbol-filling combination, repeatability can be traced through the planning pipeline. 
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FFiigguurree  66.. Density scatter plots of dose values within the IMRT plan based on linear (left) and square root 
(right) dose mapping. Dose values are accumulated over twelve patients and plotted as session 1 versus 
session 2. Intensity values were log transformed to improve visualization of the low-count pixels.    

 

(2017) were ADC intensity, Prevalence map, Ktrans intensity, Gxx(6.0) and Gxx(1.5), where x 
denotes the LR direction of the prostate. ICC values of these features were 0.84, 0.94, 0.85, 
0.92 and 0.94, respectively. 

 

 

We investigated the repeatability of mp-MRI-based DPbN treatment planning for prostate 
cancer. Results from ICC analysis showed excellent repeatability for TP modelling, dose 
prescription and treatment planning, and QF analysis revealed good agreement between 
prescribed and planned dose. Simple polynomial dose mapping functions resulted in realistic 
prescription dose maps, and high repeatability of IMRT planning was observed. These results 
confirm that prostate cancer radiotherapy based on DPbN leads to stable treatment plans.  

Dose prescription maps were derived from the TP maps using a polynomial dose mapping 
function. In this work we implemented linear and square root dose mappings, and left out 
squared dose mapping as described by Bowen et al. (2009). We calculated a prescription dose 
map for one patient based on squared dose mapping, but we observed a mapping of more 
than 90% of the voxels to dose values between 68 and 70 Gy. This almost homogenous dose 
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distribution can be explained with the skewed TP histogram, which results in an even more 
skewed prescription dose histogram with a squared dose mapping. For this reason, the 
squared dose mapping was not included in the test-retest study.  

DPbN dose prescriptions with linear and square root dose mappings resulted in comparable 
repeatability of dose prescription maps. We found that the IMRT treatment plans based on 
square root dose mapping were more repeatable than the plans based on linear dose 
mapping. This might be explained by the steeper linear dose mapping functions, particularly 
at dose levels above 85 Gy, in combination with the limited capability of the treatment 
planning optimization algorithm to deliver high dose to small, isolated areas. Isolated high 
dose areas are assumed to give rise to uncertainty in the final treatment plan, which ultimately 
leads to lower repeatability when compared in a test-retest setting. In these areas also less 
agreement with the prescribed dose was obtained resulting in lower treatment plan quality. 
This was confirmed with higher QF95% and xQF95% values that were found for linear dose 
mapping plans compared to square root dose mapping plans. Nevertheless, QF values showed 
that treatment plans were on average in good agreement with the prescribed dose 
distributions, and xQF values that were all below 5% indicated that the differences in mp-MRI 
did not compromise play quality. 

Feature repeatability analysis revealed a top five stable features all being Gaussian derivatives 
in the AP direction of the prostate at different smoothing levels. Feature ranking based on the 
TP model performance revealed a different top five: ADC intensity, tumor prevalence, Ktrans

 

normalized intensity, and two second order Gaussian derivatives of the T2w image in the LR 
direction of the prostate with different smoothing kernel (Dinh et al. 2017). The higher ranking 
of the Gaussian derivative features in the repeatability analysis is explained by smoothening 
of the stochastic noise which is the main cause of within-patient image variability. ICC values 
of ADC and Ktrans intensity maps were 0.84 and 0.85 respectively, indicating high repeatability 
of these features. Comparable findings on repeatability of ADC and Ktrans intensity features in 
MRI prostate imaging are reported in literature, as well as on CT and withß other tissue types. 
Toivonen et al. (2015) reported an ICC of 0.89 for ADC intensity in prostate cancer using MRI, 
although performed on a ROI basis. Alonzi et al. (2010) found an ICC between 0.81 – 0.84 for 
Ktrans, and reported a within-patient coefficient of variation (wCV) of 13.9% – 15.8%. Koh et al. 
(2009) reported a high repeatability for ADC measurements in a two-center phase I clinical 
trial. Padhani et al. (2002) used the within-patient standard deviation (wSD) to quantify Ktrans 
repeatability in muscle tissue in the pelvic region, and found values between 0.32 – 0.33 min-1. 
Ktrans was also shown to be reproducible between CT and MRI with an wSD of 0.03 min-1 for 
median Ktrans values of 0.10 and 0.08 min-1 in MRI and CT respectively (Korporaal et al. 2011).  
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Evaluation of differences between planned and prescribed dose distributions during 
treatment planning occurred via visual comparison of DVH curves and isodose lines. 
Unacceptable under- and overdosage was controlled by tuning the weight factors of the dose 
painting objective functions. Remaining underdosing in treatment plans consistently occurred 
in high dose prescription voxels that are associated with near-certainty about tumor presence. 
The underdosing is a limitation of the dose painting objective functions in the sense that they 
penalized under- and overdosing for the whole prostate volume. The relative small fraction of 
underdosed high prescription voxels has a relatively minor contribution to the total cost 
function. As a result, the optimizer is not steered strongly enough to increase the dose to these 
regions. Figure 2 shows an example of this issue where a small lesion in the peripheral zone 
with a TP of 0.6 has a planned dose lower than the prescribed dose.  

Improvement of the optimization algorithm for IMRT planning may be possible, for example 
by adding new cost functions. This would result in dose distributions that are more similar to 
the prescribed dose and would be reflected in smaller values of QF and particularly QF95%. This 
would also imply that the ICC of the IMRT dose distributions would approach the slightly lower 
ICC of the DPbN prescriptions. However, taking into account that dose distributions in 
treatment plans are more blurred compared to prescription dose distributions, higher ICC 
values for IMRT plans can be expected since dose blurring reduces both the inter-voxel 
heterogeneity and the part of intra-voxel differences caused by noise, thus resulting in higher 
repeatability in a test-retest situation.  

Although the tumor probability of the last three patients was calculated on a coarser T2w-grid, 
no apparent differences in the ICC values were observed. We assume that the difference in 
voxel size at this resolution has no discernable influence on the final repeatability. Instead, 
resampling artifacts within the planning pipeline and deformable registrations between the 
planning sessions have a higher impact on the observed ICC values. For a test-retest study 
resampling and registrations steps are inevitable. Introduction of artifacts in the data could 
however be minimized with reduction of resampling steps within the planning pipeline. 

Throughout the planning pipeline repeatability was above 0.75 and median values indicated 
that stable treatment plans can be realized. Although median values already show high 
repeatability, the stability of the planning pipeline on the individual level may be further 
improved. For example, with selection of image features based on not only performance but 
also their repeatability, which was not investigated in the current study. Furthermore, only 
simple polynomial dose mapping functions were implemented to prove the principle of DPbN. 
Instead of dose mapping functions, tumor control probability models could serve to relate 
tumor probability to prescribed dose based on radiobiological assumptions.  
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The pipeline holds the prospect of automation. In this work the prostate and OARs were 
delineated manually, a process that could be replaced with automatic segmentation software. 
Also, the treatment planning process used for this study involved manual interventions to 
ensure that the dose-volume constraints from Table 1 were met. Automatic plan generation 
software is already available and will be valuable in the development of a fully automatic dose 
painting by numbers MR-only treatment planning workflow. 

 

 

Using test-retest mp-MRI, we have shown that DPbN treatment plans for prostate cancer can 
be realized with excellent repeatability. From tumor probability modelling based on mp-MRI 
towards treatment plan realization based on voxel-wise dose prescription a stable treatment 
planning pipeline was demonstrated. Using validated tumor probability modelling and simple 
dose mapping it was shown that despite day-to-day variations in imaging data consistent 
treatment plans were still obtained. 
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CHAPTER 5

Quantitative MRI changes 
during weekly ultra-

hypofractionated prostate 
cancer radiotherapy 

with integrated boost



 

Quantitative MRI reflects tissue characteristics. As possible changes during radiotherapy may 
lead to treatment adaptation based on response, we here assessed if such changes during 
treatment can be detected. 

In the hypoFLAME trial patients received ultra-hypofractionated prostate radiotherapy with 
an integrated boost to the tumor in five weekly fractions. We analyzed T2 and ADC maps of 
47 patients that were acquired in MRI exams prior to and during radiotherapy, and performed 
rigid registrations based on the prostate contour on anatomical T2-weighted images. We 
analyzed median T2 and ADC values in three regions of interest (ROIs): the central gland (CG), 
peripheral zone (PZ) and tumor. We analyzed T2 and ADC changes during treatment and 
compared patients with and without hormonal therapy. We tested changes during treatment 
for statistical significance with Wilcoxon signed rank tests. Using confidence intervals as 
recommended from test-retest measurements, we identified persistent T2 and ADC changes 
during treatment. 

In the CG, median T2 and ADC values significantly decreased 12% and 8% respectively in 
patients that received hormonal therapy, while in the PZ these values decreased 17% and 18%. 
In the tumor no statistically significant change was observed. In patients that did not receive 
hormonal therapy, median ADC values in the tumor increased with 20%, while in the CG and 
PZ no changes were observed. Persistent T2 changes in the tumor were found in 2 out of 24 
patients, while none of the 47 patients had persistent ADC changes.  

Weekly quantitative MRI could identify statistically significant ADC changes in the tumor in 
patients without hormonal therapy. On a patient level few persistent T2 changes in the tumor 
were observed. Long-term follow-up is required to relate the persistent T2 and ADC changes 
to outcome and evaluate the applicability of quantitative MRI for response-based treatment 
adaptation.  
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Whole gland dose escalation for prostate cancer has shown to result in increased biochemical 
control rates but is associated with increased toxicity (Viani et al. 2009). Focal dose escalation 
may benefit patient outcome without compromising toxicity levels compared to conventional 
treatment. This hypothesis is currently tested in the FLAME trial (Lips et al. 2011) where 
patients received an integrated boost up to 95 Gy to the visible tumor in addition to a whole 
gland dose of 77 Gy in 35 treatment fractions. With advancing insight in prostate tumor 
radiobiology, hypofractionated prostate radiotherapy is increasingly performed (Brenner et al. 
1999, Miralbell et al. 2012). With ultra-hypofractionation, the therapeutic ratio between 
tumor control and toxicity increases even further due to the low α/β ratio of prostate cancer. 
Several ultra-hypofractionation trials have demonstrated similar toxicity as compared to 
standard fractionation, with reduced treatment time (Widmark et al. 2016, Morgan et al. 
2018, Brand et al. 2019, Widmark et al. 2019). Also, non-inferiority has already been 
demonstrated (Widmark et al. 2016, Widmark et al. 2019). For intermediate to high-risk 
disease, the combination of ultra-hypofractionation with a focal dose escalation to the tumor 
as conducted in the FLAME trial may even result in better outcomes. Therefore, ultra-
hypofractionation was combined with a focal boost to the tumor to treat intermediate to high-
risk prostate cancer in the hypoFLAME trial. In prostate cancer long term follow-up of at least 
five years is required to evaluate treatment outcome. If changes in the prostate occur at an 
early stage during treatment and are related to outcome, treatment adaptation for prostate 
cancer could be considered.  

Quantitative MRI is known to reflect tissue characteristics. Diffusion weighted imaging (DWI) 
and T2 mapping are suitable quantitative MRI techniques to investigate tissue properties in 
the prostate (Bonekamp et al. 2018, Mai et al. 2019). Through DWI a quantitative apparent 
diffusion coefficient (ADC) map can be obtained that represents water diffusion between cells 
and allows to discriminate between malignant and benign prostate tissue. Furthermore, the 
ADC value of tumor tissue was found to relate to aggressiveness of the disease (Manetta et al. 
2019). With T2 mapping a spatial distribution of T2 values can be calculated that are unique 
to biological tissues. T2 was for example found to correlate with hypoxia (Hoskin et al. 2007, 
Luttje et al. 2017). Since prostate tumors have different properties from benign prostate 
tissue, T2 mapping has the potential to discriminate between benign and malignant tissue. 

Since quantitative MRI reflects tissue characteristics, tissue changes due to treatment may be 
visible on quantitative MRI as well. Therefore, quantitative MRI has the potential to generate 
imaging biomarkers for treatment response assessment. Before investigating this potential 
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role for quantitative MRI, the first step is to identify if any changes in the tumor during 
treatment can be detected on quantitative MRI. 

To identify changes in the prostate during treatment, in the hypoFLAME trial we acquired 
quantitative MRI data at each weekly fraction of radiation and tracked quantitative MRI values 
during the course of treatment. Since concurrent hormonal therapy may affect these MRI 
values (Hötker et al. 2015), we also investigated the influence of hormonal therapy on tissue 
changes during radiotherapy. 

 

 

We collected data of 73 patients from two institutions who participated in the hypoFLAME 
trial (clinicaltrials.gov NCT02853110). All patients had biopsy-proven, clinically localized, 
intermediate to high-risk prostate cancer (Ash et al. 2000). Patients were excluded if they had 
a contraindication for performing an MRI examination, if no tumor nodule was visible on MRI 
or if placement of fiducial markers was unsafe. Other exclusion criteria were ≥ 5 mm seminal 
vesicle invasion, lymph node or distant metastasis, or an iPSA of more than 30 ng/mL. Also, 
patients that received previous pelvic irradiation or underwent transurethral resection of the 
prostate (TURP), or patients with an International Prostate Symptom Score (IPSS) > 15 or a 
World Health Organization (WHO) >2 were not included in the trial. We obtained approval 
from the institutional review boards and written informed consent from all included patients. 

 

Patients were treated in the University Medical Center in Utrecht (UMCU, n = 36) and the 
Netherlands Cancer Institute in Amsterdam (NKI, n = 37). Dual-arc VMAT treatment was 
delivered once per week with 35 Gy in five fractions to the prostate, with an integrated focal 
boost up to 50 Gy to the visible tumor on MRI. Position verification of the prostate was 
performed prior to each radiation fraction using gold fiducial markers visible on cone-beam 
CT. In the UMCU 10 out of 36 patients received concurrent hormonal therapy for a period of 
6 to 36 months, in the NKI these were 31 out of 37 patients. Hormonal therapy was typically 
started 2-6 weeks prior to the start of radiotherapy. 
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Prior to treatment patients received a planning CT scan and MRI exam, including a T2-
weighted scan and a diffusion weighted imaging (DWI) scan. In the NKI also a T2 mapping 
sequence was performed. In both institutions patients were scanned on a 3T Philips Ingenia 
MRI scanner. Specifications of the scanned MRI sequences are listed in Table 1. To track 
changes in the prostate and tumor during treatment, a weekly repeat MRI exam was scanned 
at each treatment fraction that included the same image sequences as the pretreatment MRI 
exam. 

 

TTaabbllee  11.. Specifications of MRI sequences in the UMCU and NKI. FOV = Field of View, TE = echo time, TR = 
repetition time. For T2 mapping patients were consistently scanned with one of the reported voxel sizes.  

 UUMMCCUU  NNKKII  
TT22--wweeiigghhtteedd  (TSE) 
Voxel size (mm3) 
   Acquired 
   Reconstructed  
FOV (mm3) 
TE / TR (ms) 

 
0.6 x 0.7 x 3 
0.5 x 0.5 x 3 
200 x 200 x 90 / 230 x 230 x 141–150 
90–100 / 3770–8620  

 
0.7 x 0.7 x 3 
0.4 x 0.4 x 3 
282 x 282 x 75–90 
120 / 3690–7930  

TT22  mmaappppiinngg  (multi-echo spin-echo)  
Voxel size (mm3)  
   Acquired 
   Reconstructed  
FOV (mm3) 
TE / TR (ms) 
Echo spacing (ms) 
Echoes (n) 

  
0.8 x 0.8 x 3 / 1.0 x 1.0 x 3 
0.4 x 0.4 x 3 / 0.6 x 0.6 x 3 
170 x 170 x 60 
32 / 2470–4150 
16 
12 

DDWWII  (single-shot EPI)  
Voxel size (mm3)  
   Acquired 
   Reconstructed  
FOV (mm3) 
TE / TR (ms) 
b-values (s/mm2) 

 
3.0 x 3.0 x 4 
2.5 x 2.5 x 4 
256 x 256 x 66 
62–93 / 3400–4940 
0, 100, 300, 500, 800, 1000 

 
2.3 x 2.4 x 3 
1.1 x 1.1 x 3 
256 x 256 x 60–66 
62 / 2860–5410 
0, 200, 800 
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The DWI scans were acquired with different protocols as described in Table 1. For consistency 
between institutions we only considered b-values between 200 and 800 s/mm2. In the NKI 
cohort we calculated the ADC maps using b = 200 and 800 s/mm2, in the UMCU cohort we 
calculated the ADC maps using b = 300, 500 and 800 s/mm2. In the NKI cohort we derived 
quantitative T2 maps from the T2 mapping sequence. For calculation of the T2 map we applied 
an in-house developed weighted logarithmic fitting algorithm to determine the T2 value per 
voxel in the image (Dinis Fernandes et al. 2019). 

 

We registered all images to the pretreatment images to allow for tracking of prostate and 
tumor changes during treatment. All registrations were performed rigidly with in-house 
developed software using mutual information as the cost function, and registrations were 
manually adapted whenever required. Within each MRI exam the b = 0 s/mm2 image from the 
DWI was selected, since it contained most anatomical information, and registered to the T2-
weighted image. We applied the transformation matrix obtained from registration to the ADC 
map to register it to the T2-weighted image. From the T2 echo image series the image with 
echo time closest to the echo time of the T2-weighted image (TE = 120 ms) was selected and 
registered to the T2-weighted image. We applied the transformation matrix to the T2 map to 
register it to the T2-weighted image. From each repeat MRI exam we registered the T2-
weighted image to the pretreatment T2-weighted image.  

 

We delineated the prostate and the peripheral zone on T2-weighted MRI and labeled the 
remaining part of the prostate as central gland (CG). The delineation of the tumor was based 
on multi-parametric MRI. CG, PZ and tumor together are referred to as ROIs throughout this 
study. 
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We resampled the registered images to 1 mm isotropic voxels. This allowed for exclusion of 
an isotropic margin of 2 mm around each ROI that was considered to minimize the impact of 
residual registration errors. We extracted the median value within each ROI on T2 and ADC. 
We determined the population median value for each time point during treatment. Per patient 
we normalized the values to the pretreatment value to examine the relative behavior over 
time. We stratified by patients with and without hormonal therapy to investigate the influence 
on T2 and ADC changes during hypofractionated radiotherapy.  

On a patient level we identified significant trends using confidence intervals for T2 and ADC 
defined by literature values. These confidence intervals were derived from test-retest 
measurements. For T2 we used a confidence interval of 11% as found by Van Houdt et al. 
(2018). For ADC we used a value of 47% as recommended by the Quantitative Imaging 
Biomarkers Alliance (QIBA) (Shukla-Dave et al. 2019). These confidence intervals separate real 
changes in T2 and ADC values from measurement imprecision with 95% confidence. We 
subsequently determined the number of patients in which T2 and ADC changes were outside 
the confidence intervals at any time point during treatment and were persistent until week 5. 

 

We performed Wilcoxon signed rank tests to identify if changes per ROI were statistically 
significant during treatment. We applied a Bonferroni correction to account for multiple 
testing (nine tests), considering p < 0.0056 as significance level. All image analysis and 
statistical tests were performed using MATLAB (MathWorks, Natick, MA, USA). 

 

 

Table 2 summarizes the number of patients per institution available for analysis. We did not 
perform analysis on 15 patients for whom less than three out of six MRI exams were scanned. 
Eleven patients were not analyzed since they were scanned with two different DWI scanning 
protocols during acquisition of pretreatment and repeat MRI. We could not analyze T2 values 
of four patients since pretreatment T2 maps were not acquired.  
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The T2-weighted images, T2 and ADC maps from one patient are shown in Figure 1 for all time 
points. A decrease in contrast within the prostate can be observed in all three image 
sequences over the course of treatment, which reduces the conspicuity of the tumor from the 
surrounding prostate tissue. 

Median values of T2 and ADC in the CG, PZ and tumor during pretreatment imaging are shown 
in Table 3. We observed statistically significant differences in the CG and PZ between the ADC 
values in the UMCU cohort and the NKI cohort. 

 

TTaabbllee  22..  Number of patients per institution from which T2 and ADC maps were available for analysis, 
separated by hormonal therapy (HT or No HT). 

  UUMMCCUU  NNKKII  AAllll  
TT22  
HT 
No HT 
All 

 21 
3 
24 

21 
3 
24 

AADDCC  
HT 
No HT 
All 

4 
15 
19 

24 
4 
28 

28 
19 
47 

 

 

FFiigguurree  11.. Example of T2-weighted images, and T2 and ADC maps of the prostate prior to treatment (pre-
RT) and at each repeat MRI exam (week 1 to week 5) of a patient treated at the NKI. The entire prostate, 
the boundary between PZ and CG and the tumor are delineated in red, blue and yellow respectively. 
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T2 and ADC values normalized to the pretreatment values are shown in Figure 2. In the CG we 
observed a median decrease of 12% on T2 and 8% on ADC in patients that received hormonal 
therapy. T2 and ADC values at week 5 were significantly lower compared to pretreatment 
values. For patients that received no hormonal therapy, the median ADC value decreased 4% 
and this was not statistically significant. 

 

TTaabbllee  33.. Population median and interquartile range (between brackets) of median T2 (in ms) and ADC 
values (in 10-3 mm2/s) in the CG, PZ and tumor on pretreatment quantitative MRI. Statistically significant 
differences between institutions are indicated in bold. 

  TT22  ((mmss))  AADDCC  ((1100--33  mmmm22//ss))  
  NNKKII  UUMMCCUU  NNKKII  
CCGG  
PPZZ  
TTuummoorr  

93 (19) 
110 (26) 
80 (9) 

11..3300  (0.13)  
11..3377  (0.19)  
1.07 (0.20) 

11..0099  (0.18)  
11..2244  (0.24)  
0.90 (0.28) 

 

 

FFiigguurree  22.. Median normalized T2 (top) and ADC value (bottom) per patient with respect to pretreatment 
imaging (week 0). Median values of patients with (blue) and without (orange) hormonal therapy are 
plotted as solid lines. Interpolated values are displayed with dashed lines. Confidence intervals of 11% and 
47% for T2 and ADC respectively are plotted as horizontal dashed lines. 
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In the PZ we observed similar behavior. In patients with hormonal therapy the median T2 and 
ADC value decreased significantly with 17% and 18% respectively, while in patients without 
hormonal therapy we observed a non-significant decrease in ADC of 5%. In the tumor the 
behavior was different from CG and PZ. Median increases of 5% and 7% on T2 and ADC maps 
were found for patients with hormonal therapy, and these were not statistically significant. 
For patients without hormonal therapy, on ADC we observed a median increase of 20% that 
was statistically significant.  

Due to the low number of patients that were scanned with a T2 mapping sequence and 
received no hormonal therapy, we did not test statistical significance of T2 changes in these 
patients. On an individual patient level we found that 14 out of 21 patients who received 
hormonal therapy, showed persistent T2 changes larger than 11% during treatment. These 
were 11 patients with persistent changes in the CG, 12 in the PZ and one in the tumor. For the 
three patients without hormonal therapy, two patients had persistent T2 changes, from which 
one showed changes in the CG, two in the PZ and one in the tumor. In total 67% of the 23 
patients showed persistent T2 changes during treatment. In contrast, on ADC maps for both 
patients with and without hormonal therapy we observed no changes outside the confidence 
interval of 47%. 

 

 

In this study we analyzed changes in the prostate as observed on quantitative MRI during 
hypofractionated radiotherapy with an integrated boost to the tumor. Using repeated imaging 
we observed changes in median T2 and ADC values that depended on the use of hormonal 
therapy. The changes we observed can explain the reduced tumor conspicuity that is observed 
after primary radiotherapy. However, depending on hormonal therapy this can be explained 
by either normalization of tumor characteristics or by a decrease of normal prostate tissue 
values. For patients who received hormonal therapy, we observed a reduction of T2 and ADC 
values in the PZ, while values in the tumor did not change significantly. However, for patients 
who did not receive hormonal therapy, we found that ADC values increased significantly in the 
tumor, but not in the PZ.   

The pretreatment ADC values were significantly different between the two institutions. This 
may be a consequence of the DWI scanning protocols. The b-values in both protocols were 
similar with b = 200 and 800 s/mm2 in the NKI and b = 300, 500 and 800 s/mm2 in the UMCU. 
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However, the acquisition voxel size in the UMCU protocol was 2.2 times larger than in the NKI 
protocol. This resulted in a different signal to noise ratio and could contribute to differences 
in ADC values (Scherrer et al. 2011).  

In the literature a similar variation between ADC values was found. In one study median ADC 
values in the tumor of 1.08 ± 0.39 · 10-3 mm2/s (mean ± SD) prior to treatment are reported 
(Sato et al. 2005). ADC values in the untreated healthy PZ were 1.8 ± 0.4 · 10-3 mm2/s. Other 
studies found values of 1.6 ± 0.2 · 10-3 mm2/s in the healthy prostate of untreated patients 
(Kim et al. 2009, Westphalen et al. 2012). Again, differences in DWI protocol as well as image 
reconstruction methods may have contributed to the existing variation. 

We observed different trends in patients that did and did not receive hormonal therapy. 
Hormonal therapy however correlated with the institution where patients were treated. In the 
UMCU 4 out of the 19 patients received hormonal therapy, while in the NKI this was 24 out of 
the 28 patients. Because of this unbalanced distribution we could not separate hormonal 
therapy from institution to explain the differences in normalized ADC value behavior during 
treatment. This was also the reason we did not compare the T2 values for patients with and 
without hormonal therapy in the NKI cohort. 

One study describes prostate and tumor changes on MRI during treatment. Foltz et al. (2013) 
reported an early treatment response in the entire prostate and CG, plus a progressive 
response in the PZ and tumor towards the end of treatment (Foltz et al. 2013). A statistically 
significant change in the tumor was found after six weeks on ADC. Early treatment response 
in the tumor was not observed on either T2 or ADC. While there were differences in the overall 
treatment duration, the frequency of imaging and the time between radiotherapy fractions 
compared to our study. our quantitative MRI results indicate similar behavior. We found 
progressive T2 changes in the PZ and late ADC changes in the tumor. This qualitative 
comparison is only indicative though, since the use of hormonal therapy was not reported in 
Foltz et al. (2013). 

Here we analyzed the T2 and ADC changes in prostate and tumor only during treatment. Dinis 
Fernandes et al. reported late changes on quantitative MRI in recurrent prostate cancer 
patients that were scanned at least two years after primary treatment (Dinis Fernandes et al. 
2019). Adjuvant hormonal therapy was given in 82% of the patients but ended at least one 
year before the MRI examination. Changes in CG and PZ regions on both T2 and ADC maps 
were found and reduced contrast between PZ and tumor on T2 maps was observed. Median 
T2 values in the CG, PZ and tumor decreased by 29%, 19% and 5%, while we observed 
statistically significant decreased values of 12% and 17% in the CG and PZ and no statistically 
significant change in the tumor. For ADC values a reduction of 5 – 9% in CG, PZ and tumor was 
observed two year after treatment. In our study we observed a decrease of 8% and 18% in the 
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CG and PZ in case of hormonal therapy, while an increase of 20% was found in the tumor in 
absence of hormonal therapy. Based on these findings we expect further reduction of T2 
values in the CG and PZ after treatment, as well as post-treatment changes in ADC. Also, the 
treatment fractionation and both timing and duration of hormonal therapy may contribute to 
the discrepancies between both studies. Follow-up of patients in our study will be required to 
confirm if changes on T2 and ADC correlate with long-term biochemical recurrence free 
survival.  

We implemented a rigid registration method to align all images to the pretreatment T2-
weighted image. More accurate registration methods like deformable registration could be 
more appropriate when registering between MRI exams. Deformable registration would 
account for possible deformations of the prostate between MRI exams and allow for voxel-
level analysis. However, as a result of treatment we experienced intensity changes on T2-
weighted images that lead to incorrect deformations we were unable to manually adapt. 
Therefore, we applied rigid registrations instead and minimized registration inaccuracy via 
removal of an isotropic margin around each ROI, which required resampling of all images. 
Since we performed our analysis on ROI level, we expected limited impact of both the 
registration method and the image resampling on our results. 

 

 

Using quantitative MRI, on a population level we were able to find significant ADC changes in 
the intraprostatic tumors of patients that did not receive hormonal therapy during 
hypofractionated radiotherapy. However, early during treatment, when treatment adaptation 
could be considered, no significant change was identified in the tumor. We did observe only 
two individual patients that showed persistent T2 changes in the tumor, while no individual 
patients showed persistent ADC changes in the tumor. On ADC we did observe several patients 
with early and progressive trends in the tumor although these trends were within the 
confidence intervals. If these trends are continued after treatment and exceed the confidence 
intervals, a possible relation between early treatment response and clinical outcome could be 
established. Follow-up is therefore desired for assessing the potential role of quantitative MRI 
for adaptation of hypofractionated radiotherapy based on early treatment response. 
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In this thesis, the performance of mp-MRI based focal dose escalation to the visible tumor in 
the prostate was investigated, and potential applications of mp-MRI to further development 
of dose-escalated treatment were explored. Although intraprostatic lesions may present 
locally or heterogeneously distributed throughout the prostate, present-day radiotherapy 
treatment involves irradiation of the entire prostate gland with a uniform dose. Over the past 
decades, multiple planning studies have demonstrated the feasibility of a focal boost to the 
intraprostatic tumor (Singh et al. 2007, Bossart et al. 2016, Garibaldi et al. 2016). Recently, the 
multi-center phase III FLAME trial (NCT01168479) has shown a statistically significant 
improvement of biochemical disease-free survival in favor of the dose-escalated arm without 
increased toxicity (Kerkmeijer et al. 2021). Focal dose escalation treatment has become a likely 
candidate for clinical introduction to improve recurrence free survival rates among 
intermediate to high-risk prostate cancer patients.  

The quality of the delivered focal treatment requires accurate contouring of the intraprostatic 
lesion, and an optimal planned focal dose escalation to achieve the highest local tumor 
control. By retrospective analysis of the clinically used delineations and focal boost plans in 
the FLAME study, it was demonstrated that both delineation practice and escalated dose 
planning could be further improved, and that automated prediction models are valuable tools 
to realize those improvements. Furthermore, the role for mp-MRI as direct input for dose 
painting by numbers (DPbN) treatment plans is promising, since treatment plan quality was 
found robust to noise and day-to-day variation during image acquisition. During the course of 
treatment on the contrary, quantitative MRI could not detect early responding tissue. Tumor-
response driven adaptive strategies for prostate cancer based on interfraction imaging are 
therefore considered unlikely to be established in the near future.  

 

Detection of the intraprostatic tumor requires both anatomical and functional information. 
Mp-MRI combines anatomical and functional imaging in a single examination and is therefore 
an excellent candidate for focal dose escalation strategies. The generally accepted PI-RADS V2 
guidelines recommend acquisition of anatomical T2-weighted and functional DWI for the 
detection and staging of prostate cancer, with a secondary role for DCE MRI (Weinreb et al. 
2016). These guidelines lead to improved detection rates and more consistent staging (Kasel-
Seibert et al. 2016, Padhani et al. 2019). However, to date no consensus on delineation 
practice has been established. It has been reported in various studies that in the absence of 
delineation guidelines significant interobserver variability is observed (Bratan et al. 2013, 
Rischke et al. 2013, Anwar et al. 2014, Steenbergen et al. 2015). Rischke et al. observed 
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substantial agreement between observers on T2-weighted and DCE-MRI and moderate 
agreement on DWI, which were considered insufficient for radiotherapy purpose. 
Steenbergen et al. found a median interobserver delineation standard deviation of 2.3 mm for 
intraprostatic lesions delineated on mp-MRI. In this thesis it was demonstrated that in a large 
multi-institutional patient cohort apart from the observer variability also institutional bias 
exists regarding relative use of the different MR sequences to delineate the intraprostatic 
lesions.  

Interobserver variability as well as different institutional weighting of mp-MRI suggest that 
depending on the observer and the institution, the agreement between delineation and actual 
tumor boundary may vary. Relative large disagreements could result in a suboptimal targeted 
focal treatment and may affect the expected improvement in biochemical disease free 
survival. Linking institutional delineation preferences regarding MRI sequence weighting with 
disease free survival may give evidence to base delineation guidelines on. Unfortunately, for 
such evaluation institutional confounders as patient cohort, T-stage and treatment plan 
generation may require a statistical power beyond that of the FLAME dataset.  

Consensus guidelines on the use of mp-MRI sequences for delineation of the intraprostatic 
lesion are hypothesized to minimize interobserver variability and institutional bias. Another 
approach to improve delineation practice is the introduction of probabilistic models that 
predict tumor presence. Histopathology based prediction models may reveal hidden patterns 
and assist to improve contouring consistency. Groenendaal et al. observed an area under the 
receiver operator curve (AUC) value of 0.70 for predicting tumor presence based on ADC and 
Ktrans image parameters, using a logistic regression model that was developed based on 
ground-truth histopathology from prostatectomy patients (Groenendaal et al. 2012). Dinh et 
al. extracted higher order image features and cross-validated a logistic regression model on 
histopathology data from two institutions yielding an AUC value of 0.78 (Dinh et al. 2017). 
They also related per voxel the model predicted tumor probability with the number of 
observers that included the voxel in the tumor delineation, and found a significant correlation 
between tumor probability and group consensus (Dinh et al. 2016). However due to a large 
uncertainty range of this correlation no probability threshold could be identified to distinguish 
tumor from benign tissue and therefore delineations cannot be derived from the probability 
maps directly.  

Over the past years availability of computational power has enabled development of deep 
learning approaches for the detection and classification of prostate cancer on MRI. 
Convolutional neural networks (CNNs) are the most commonly investigated deep learning 
approach and have the potential to outperform classical logistic regression models. To date, 
according to a recent systematic review on the detection of significant prostate cancer using 
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computer models, CNNs were found to perform similar to logistic regression approaches 
(Castillo T. et al. 2020). 

In this thesis the per-patient tumor probability prediction was determined using an adapted 
version of the model developed by Dinh et al. to check the quality of the manual tumor 
delineations of the FLAME trial (Dinh et al. 2017). Using the AUC score to quantify the 
agreement with the predicted tumor probability map, clinical delineations with low AUC values 
were flagged and reviewed retrospectively. It was found that considerable improvements 
could be realized upon review, suggesting that applying this methodology in clinical routine 
could be beneficial for delineation practice. 

Although these prediction models improve identification of tumor tissue and contribute to 
more accurate manual tumor delineations, specific parts of the intraprostatic lesion are 
systematically missed upon delineation on mp-MRI (Rosenkrantz et al. 2013, de Visschere et 
al. 2016, Lewis et al. 2017). De Visschere et al. concluded that the majority of missed tumors 
were low grade and organ-confined. Van Houdt et al. observed a relation between 
histopathological features and visibility on mp-MRI. The invisibility of tumors on mp-MRI was 
associated with heterogeneous morphology and low tumor density (van Houdt et al. 2020). 
Since mp-MRI fails to identify certain tumor characteristics, recent studies also investigated 
the benefit of an additional PSMA-PET scan. Draulans et al. proposed optimal tracer-specific 
window levels for PSMA PET to reduce interobserver delineation variability of the 
intraprostatic lesion (Draulans et al. 2020). In a review study, Zamboglou et al. reported that 
multimodal imaging using PSMA PET and mp-MRI offers complementary information for 
intraprostatic tumor delineation (Zamboglou et al. 2018). The combination of both image 
modalities results in high sensitivity and specificity. The addition of diagnostic PET to mp-MRI 
is believed to improve the detection of the intraprostatic tumor, better characterize the tumor 
biological properties, and ultimately decrease interobserver delineation variability. Although 
further research is demanded, the combination of PET and mp-MRI better addresses the 
present-day requirements for identification of intraprostatic lesions and is considered a 
realistic scenario to improve delineation consistency.  

 

The FLAME trial demonstrated an increase in 5-year biochemical disease-free survival from 
85% to 92% with focal boosting of the intraprostatic lesion (Kerkmeijer et al. 2021). Post hoc 
analysis suggests a strong positive correlation between escalated dose level and the 5-year 
biochemical disease-free survival. The dose response curve suggests there is room for further 
improvement of focal dose escalation when further increasing the dose to the intraprostatic 
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lesion. For the remaining 8% of the patients in the dose-escalated arm of the trial, possible 
explanations of biochemical recurrence could be underdiagnosis of latent metastases, 
radioresistance, missed tumor tissue in the delineation, or a too low escalated dose to the 
intraprostatic lesion. For the latter explanation, in this thesis an anatomy-based prediction 
model was shown to be able to predict an escalated dose in the tumor that could be achieved 
upon replanning. Since the FLAME trial has demonstrated that focal boosting is relevant to 
increase biochemical disease-free survival rates, the KBP prediction model that was evaluated 
in this thesis may be valuable in future clinical setting to optimally target the intraprostatic 
tumor. 

For the treatment plans where unfavorable patient anatomy or tumor location caused an 
undertreatment of the intraprostatic tumor, solely focal escalated EBRT might not be the most 
suitable treatment option. Alternative strategies to achieve steeper dose gradients in the 
unfavorably located tumor may include minimal invasive combined EBRT and brachytherapy 
boost to the tumor as investigated in the TARGET trial (Sanmamed et al. 2020), or MR-based 
treatment planning and delivery on an MR-Linac, leading to reduced target volume margins 
(Murray J, et al. 2019). Insertion of an endorectal balloon reduces anorectal doses which gives 
a therapeutic window to increase radiation dose at the dorsal side of the prostate (Smeenk et 
al. 2011). As an alternative to an endorectal balloon, a hydrogel spacer can be simulated 
between prostate and rectum to separate prostate and rectal wall, and followed by 
implantation if shown beneficial for the patient (Vanneste et al. 2016, van Wijk et al. 2017).  

The presented KBP model in this thesis was specifically developed to indicate achievable 
maximum tumor dose in the prostate and was tested on the treatment plans in the dose-
escalated arm of the FLAME study. KBP models published so far were developed to predict 
DVH parameters of OARs surrounding the target volume (Wu et al. 2009, Yuan et al. 2012, 
Good et al. 2013, Wall et al. 2018). Such predictions could guide the clinical planning 
optimization process to reduce OAR doses. Incorporation of OAR dose DVH parameter 
prediction in the KBP model presented in this thesis is therefore considered as the next step 
to produce a plan QA tool dedicated for clinical focal dose escalation in prostate cancer.  

Current state-of-the-art automated plan quality optimization approaches rely on KBP, 
protocol-based automatic iterative optimization, and multi-criteria optimization (MCO) 
(Hussein et al. 2019, Cozzi et al. 2019, Ge et al. 2019, Moore 2019). In protocol-based 
automatic iterative optimization, using a predefined protocol, the objectives and constraints 
are updated for the next iteration (Gintz et al. 2016, Kusters et al. 2017) In MCO optimization 
parameters are tuned to optimally balance the target coverage and spare organs at risk. 
Erasmus-iCycle is a fully automated MCO algorithm that allows to produce Pareto-optimal 
treatment plans (Breedveld et al. 2012). Presently, automated plan optimization is a standard 
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module of commercial treatment planning systems. Janssen et al. reviewed Pinnacle’s 
AutoPlan module to conclude that even commercial auto-plan solutions should be audited 
with independent KBP methods (Janssen et al. 2019). Future automated planning may involve 
the combination of KBP and MCO, for which higher plan quality in less time was found as 
compared to both methods separately (Teichert et al. 2019). 

 

Delineation guidelines and incorporation of a prediction model are hypothesized to ease 
clinical delineation practice with the purpose of escalating the radiation dose to a pre-specified 
region. The resulting manual delineation of the intraprostatic tumor reflects the binary 
decision of the observer based on the available clinical and image information. To meet closer 
with the actual tumor biology characteristics, DPbN omits manual contouring and allows to 
produce a dose prescription at the resolution of the functional images. The direct conversion 
from image parameters to dose prescription however, potentially allows image value 
uncertainties to impact the planned dose distribution. In this thesis it was shown that applying 
a straightforward first or second order polynomial mapping function to image-derived 
probability maps of repeated mp-MRI examinations, DPbN planning was robust to image value 
uncertainties and resulted in equivalent dose distributions. This conclusion is a precondition 
for the further investigation of DPbN and acceptance as an alternative strategy to contour-
based dose escalation. 

DPbN requires a mapping function between a (composite) image characteristic and 
prescription dose. Most studies have adopted a linear relationship, inspired by Vanderstraeten 
et al. (2006). Bowel et al. presented polynomial and sigmoidal mapping functions (Bowen et 
al. 2009). Such mathematical mapping functions are straightforward to implement and are 
applicable to image-derived parameter maps or composite parameter maps. On the other 
hand, these mapping functions are not validated and oversimplify the true dose-response. In 
addition, the upper dose limit is usually based on prescribed escalation dose levels from clinical 
trials, which does not necessarily guarantee sufficient tumor control in all tissue. 

As an alternative to DPbN, prescription dose could be related to radiobiological tumor 
characteristics. In biological optimization generally the tumor control probability (TCP) is 
chosen as target objective to optimize the dose distribution for (Her et al. 2020). In addition, 
biological optimization may simultaneously minimize normal tissue complication probability 
(NTCP). Most planning studies incorporate a phenomenological TCP model with 
radiobiological parameter values derived from clinical data (Levegrün et al. 2002, Kim et al. 
2006). Biofocused radiotherapy (BiRT) incorporates histopathology-validated machine 
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learning methods to derive radiobiological feature maps from imaging and produce a TCP 
objective map for biological optimization (Haworth et al. 2018).  

Several studies have reported on the relation between pretreatment ADC values and 
pathological Gleason score as a predictor of biochemical recurrence. Ghobadi et al. postulated 
a patient-specific dose response with incorporation of the Gleason score in the linear-
quadratic model (Ghobadi et al. 2016). Casares-Magaz et al. inserted cell densities derived 
from ADC values into a linear-quadratic model to estimate individual tumor control probability 
(TCP) levels (Casares-Magaz et al. 2016). Grönlund et al. combined these findings to 
demonstrate a formalism in which ADC values were related to Gleason score driven dose-
responses and dose painted treatment plans were generated that yielded higher TCP and 
similar dose to normal tissue as compared to homogenous dose prescription (Grönlund et al. 
2018, Grönlund et al. 2021). Although biological optimization is a promising method to yield 
dose painted treatment plans, uncertainties of radiobiological parameters and models need 
to be addressed first before considering patient studies. 

Both DPbN and biological optimization strategies prescribe a heterogeneous dose distribution 
to the prostate gland. During treatment anatomical movements may introduce a relative 
displacement of the delivered dose, which in case of dose painted plans has consequences for 
the actual received dose by the prostate tissue. Probabilistic planning methods have been 
developed and evaluated that incorporate optimization uncertainties and perform a robust 
optimization (Shusharina et al. 2018, Miura et al. 2019, Bortfeld et al. 2021). Thereby image 
value uncertainties as well as modelling and geometric uncertainties can be accounted for in 
the generated treatment plan. 

DPbN treatment planning in principle could also de-escalate the radiation dose based on 
image characteristics representing benign prostate tissue. Ultimately such de-escalation to 
benign tissue below conventional doses is considered beneficial for the patient, but it is 
challenging to prove this hypothesis without risking insufficient local tumor control. One 
randomized study for head and neck cancer treatment avoided this risk by defining a dose 
escalated region first (Heukelom et al. 2013). One treatment arm received focal escalated 
treatment, in the other arm the escalated dose was redistributed based on image 
characteristics. Thereby the de-escalated part of the escalated dose region still received a dose 
level above conventional prescription. Such exploratory studies are essential to investigate 
safe lower limits of radiation dose to tissues considered benign. 
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Quantitative imaging biomarkers in prostate radiotherapy are currently primarily used in 
research on treatment response monitoring and to a smaller extent on dose painting (Gurney-
Champion et al. 2020). Regarding treatment response monitoring, biomarkers derived from 
quantitative MRI could prove valuable for image-based adaptive treatment strategies. In order 
to deliver adaptive therapy, actionable changes occurring early during the course of treatment 
are required. In this thesis it was investigated if MRI was capable of recording early treatment 
changes to the tumor and surrounding tissue. In an extreme-hypofractionated setting with an 
MRI at each of the five fractions, significant early changes to MRI parameters were not 
observed. Although this study was not powered to detect small or individual changes, results 
show that adaptive treatment based on the investigated MRI parameters is not evident. 

In this thesis imaging biomarkers to evaluate prostate cancer treatment response were 
investigated in a hypofractionated radiotherapy schedule. In a conventional fractionation 
schedule primarily ADC has been subject of response monitoring research. Park et al. observed 
significant increase of tumor ADC value at three time points during and after treatment, with 
respect to the pretreatment ADC value (Park et al. 2012). Also, for other tumor sites ADC 
values were found to change during conventionally fractionated treatment: cervical cancer 
(Liu et al. 2009), rectal cancer (Lambrecht et al. 2012), and brain metastases (Mahmood et al. 
2017). Both the high fraction dose as well as the relative long interval of one week between 
radiation fraction and MRI examination could be hypothesized to explain why early ADC 
changes were not observed in this thesis.   

Although quantitative imaging for radiotherapy has been studied for decades, multiple issues 
need to be addressed before clinical introduction is to be considered. Dose response 
monitoring, timing and optional early treatment adaptation require imaging biomarkers 
changes that are predictive of patient outcome for a given radiation dose. For dose painting 
based on quantitative imaging biomarkers, establishing which voxels of the original tumor are 
related to poor outcome is challenging. In addition, sophisticated trial design is required to 
prevent unethical dose de-escalation. As long as the imaging biomarker of interest is not 
proven to be predictive, sub regions in the prostate may receive an unjustified dose de-
escalation based on the imaging biomarker with less tumor control as compared to 
conventional treatment. In order to identify imaging biomarkers for treatment response 
monitoring or dose painting purpose, large multicenter studies are required to demonstrate 
clinical applicability (Gurney-Champion et al. 2020).  
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In this thesis an assessment of tumor delineations and focal escalated dose distributions was 
performed on treatment plans that were delivered in 35 fractions. The presented automatic 
evaluation tools could lead to more consistent delineation practice and higher escalated doses 
whenever such treatment is delivered in routine clinical practice. Over the past years 
moderately hypofractionated treatment has become standard of care and extreme 
hypofractionation with only five treatment fractions is expected to perform even better in 
terms of patient outcome and clinical workload. Therefore, for patients with intermediate to 
high-risk disease, trials have been performed that combined extreme hypofractionation and 
focal dose escalation, and promising preliminary results have been presented (Draulans et al. 
2020, Murray et al. 2020, Nicholls et al. 2020). Supposing positive long-term results of these 
trials, the applicability of the presented work in this thesis to extremely hypofractionated focal 
dose escalation can already be considered.  

The prescribed focal escalated dose distribution is a direct result of the delineation of the 
intraprostatic lesion. The accuracy of the dose that is actually delivered to the intraprostatic 
lesion is dependent on the ability of the treatment planning system to realize steep dose 
gradients and on anatomical changes during treatment. For the latter, the relative high 
number of treatment fractions with conventional fractionation causes blurring of the planned 
dose distribution upon treatment delivery and is therefore rather forgiving to small 
delineation inaccuracies. With fewer treatment fractions, the blurring effect will decrease and 
delineation inaccuracies will have more impact on the delivered dose. Therefore, precise 
definition of the tumor boundary is more relevant in an extreme-hypofractionated setting.  

The KBP model presented in this thesis was developed using features from planned dose 
distributions for delivery with conventional fractionation. For application to hypofractionated 
dose escalation plans, the methodology would remain the same. Anatomical features need to 
be derived from a new dataset consisting of patients treated with hypofractionated focal dose 
escalation, and be related to the achieved dose to the tumor. In the FLAME consortium both 
the Hypo-FLAME (NCT02853110) and the Hypo-FLAME 2.0 (NCT04045717) study would be 
suitable datasets to build a tumor dose prediction model on. Such model could for example 
be a valuable tool to explain the discrepancy between the intended dose escalation of 50 Gy 
to the visible tumor and the realized median dose escalation of 44.7 Gy in the HypoFLAME 
study (Draulans et al. 2020). 

The robustness of DPbN treatment plans to image uncertainties was evaluated up to the 
treatment planning stage and independent from the fractionation scheme. DPbN should 
therefore be equally applicable to extreme hypofractionated as conventional 
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hypofractionated focal dose escalation treatments. Since hypofractionated treatment is 
always preceded by online position verification, setup errors are avoided. Therefore, mainly 
blurring of the planned dose due to interfraction motion impacts the delivery of the DPbN 
plan.  

The applicability of quantitative MRI for dose response monitoring and potential adaptive 
strategies in an extreme hypofractionated treatment setting was presented in this thesis. 
There were no strong indications for a dose response early during treatment on a population 
basis. Individual early changes were detected but within the uncertainty ranges of the image 
parameters. Additional research to the outcome of the investigated patients in this study may 
raise hypotheses on tissue response on an individual level. Further optimization of image 
protocols is also desired to reduce the uncertainty bandwidth and ease detection of significant 
early treatment changes.  

 

The FLAME trial has demonstated that mp-MRI can be utilized to define the intraprostatic 
tumor and deliver a focal dose escalated treatment with improved biochemical disease-free 
survival. In this thesis it was concluded that delineation guidelines are desired to minimize 
institutional bias towards interpretation of mp-MRI and ultimately improve delineation 
consistency and accuracy. Prediction tools for tumor localization and dose escalation were 
shown to yield potential improvements to clinical cases and are therefore considered valuable 
tool for future clinical practice of focal dose escalation treatment.  

Mp-MRI can furthermore find application in future dose escalation strategies. For DPbN 
treatment planning it was found that mp-MRI value uncertainties would not significantly 
impact planned dose distributions and thereby enable further investigation of DPbN as a more 
sophisticated dose escalation treatment strategy. During the course of extreme-
hypofractionated treatment however, repeated MRI did not reveal early responding tumor 
tissue to potentially adapt treatment to. It is therefore not likely that these will result in 
actionable imaging biomarkers in the near future to allow for response-based treatment 
adaptations in hypofractionated radiotherapy of prostate cancer.  
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For patients with intermediate to high-risk prostate cancer, focal dose escalation to the 
intraprostatic lesion has been hypothesized to improve local control with no additional normal 
tissue complications as compared to conventional uniform dose prescription. Recently, the 
FLAME trial demonstrated that focal dose escalation significantly improves 5-year biochemical 
disease-free survival rates, without increased toxicities or reduced quality of life. Since a 
clinical benefit of focal dose-escalated treatment was found, a technical analysis of the FLAME 
dataset is useful for the further optimization of focal dose escalation strategies. In Chapter 2 
and 3 of this thesis the FLAME dataset is analyzed and prediction models are applied to 
evaluate the soundness of tumor delineations and escalated dose levels. Chapter 4 and 5 of 
this thesis describe the applicability of multiparametric (mp-)MRI for dose painted treatment, 
and the value for early response-based adaptive treatment. 

In CChhaapptteerr  22 the soundness of cclliinniiccaall  ddeelliinneeaattiioonnss of the intraprostatic tumor in the FLAME 
trial is evaluated. It was found that besides interobserver variability, significant institutional 
bias exists regarding the weighting of T2-weighted, DWI and DCE-MRI sequences to delineate 
the intraprostatic lesion. It is therefore recommended to involve weighting of MRI sequences 
in the development of delineation guidelines for intraprostatic lesions on mp-MRI. In addition, 
a tumor prediction model was shown to be capable of identifying manual delineations that 
needed to be corrected. This demonstrates the added benefit of prediction models in the 
clinical workflow. 

The realized level of dose escalation during treatment planning depends to a large extent on 
the anatomy of the patient and the complexity of the dose optimization process. In CChhaapptteerr  33 
dose volume histogram (DVH) parameters of the ppllaannnneedd  ddoossee  ddiissttrriibbuuttiioonnss of the FLAME trial 
are reported, showing how well a focal dose escalation up to 95 Gy could be planned. In the 
dose-escalated arm of the trial, a median D98% of 84.7 Gy was observed, and 99% of the 
patients received a significant dose escalation above 82.4 Gy. During treatment planning, an 
unfavorable tumor location with respect to healthy surrounding organs results in a lower than 
intended planned dose escalation. To assist during the treatment planning procedure, a 
regression model was developed that estimates the achievable dose escalation to the tumor 
as a function of patient anatomy. To validate the model, a random subset of dose-escalated 
treatment plans was replanned. For this subset a strong correlation (r = 0.89) was found 
between predicted increase in tumor D98% and replanned tumor D98%. It was concluded that 
the model may assist future clinical dose escalated treatment planning to reach the highest 
achievable dose to the tumor. 
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With mp-MRI both anatomical and functional information is acquired. For this reason, an mp-
MRI examination is recommended for identifying the intraprostatic lesion and for defining the 
target for focal dose escalation. Currently, most research on mp-MRI focusses on improved 
identification of the intraprostatic lesion. With the positive outcome of the FLAME trial, new 
applications of mp-MRI can be considered for further development of focal dose escalation 
for prostate cancer.  

While in the FLAME trial a uniform escalated dose was prescribed to the delineated 
intraprostatic lesion, in reality the tumor can be spatially heterogeneous and the boundary is 
not discrete. Circumventing the binary process of manual contouring and to reflect the 
biological characteristics of the tumor, dose painting by numbers (DPbN) prescribes a 
heterogeneous dose distribution to the prostate gland and is directly related to imaging 
features. The omission of manual interaction however potentially allows measurement 
uncertainties in image data to impact the planned dose distribution. In CChhaapptteerr  44, a 
repeatability analysis is performed to quantify the applicability of ddoossee  ppaaiinnttiinngg  bbyy  nnuummbbeerrss. 
The intra-class correlation (ICC) coefficients used as repeatability measure, improved from 
0.84 to 0.93 from acquired imaging data towards planned dose distributions. It was concluded 
that variation in imaging data had a minimal impact on the realized planned dose distributions, 
which suggests that DPbN treatment planning is a realistic alternative to contour-based dose 
painting.  

While mp-MRI has proven its use for focal dose escalated treatment and was shown suitable 
for DPbN treatment planning as well, during the delivery of the treatment, mp-MRI may also 
record radiation response of the tumor. In CChhaapptteerr  55 the value of qquuaannttiittaattiivvee  MMRRII  bbiioommaarrkkeerrss 
dduurriinngg  rraaddiiootthheerraappyy for the purpose of image-based treatment adaptation was investigated. 
T2 and ADC maps of six MRI examinations during hypofractionated treatment were analyzed. 
No early treatment-induced changes to the tumor on a population basis were found. It is 
therefore unlikely that in the near future actionable imaging biomarkers will be discovered for 
early-treatment adaptations in hypofractionated prostate radiotherapy.  

In this thesis a technical evaluation of focal dose escalation of prostate cancer was performed 
and the role of mp-MRI for future optimization of this treatment strategy was investigated. 
The technical evaluation demonstrates the need for MRI-based delineation guidelines of the 
intraprostatic tumor, and that models could contribute to more consistent tumor delineations 
and optimization of the escalated dose to the tumor. The presented findings with respect to 
future optimization of this treatment strategy show that mp-MRI is applicable in the planning 
stage of the treatment for the purpose of dose painting, and leave little room for early 
adaptive treatment based on mp-MRI. 
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Voor patiënten met matig- tot hoog-risico prostaatkanker wordt het integreren van een lokale 
dosisverhoging (bestralingsboost) op de tumor in de prostaat gezien als geschikte 
bestralingsstrategie om zonder extra bijwerkingen van het gezonde weefsel een verbeterde 
lokale controle te behalen. Onlangs heeft de FLAME studie aangetoond dat een lokale 
dosisverhoging een significante verbetering op de 5-jaars biochemisch recidief-vrije overleving 
geeft, zonder toename in toxiciteit en vermindering van kwaliteit van leven. Omdat met deze 
behandeling de klinische uitkomst van de patiënt verbetert, is een technische analyse van de 
FLAME dataset nuttig voor de verdere optimalisering van bestralingsbooststrategieën. In 
hoofdstuk 2 en 3 van dit proefschrift is de FLAME dataset onderzocht en worden 
voorspellingsmodellen toegepast om de betrouwbaarheid van klinische tumor intekeningen 
en dosis van de bestralingsboost te beoordelen. Hoofdstuk 4 en 5 van dit proefschrift 
beschrijven de toepassing van multiparametrische (mp-)MRI voor een ‘dose painting’ 
behandeling, en de rol die het kan spelen voor vroegtijdige aanpassing van de behandeling op 
basis van reacties van het weefsel. 

In hhooooffddssttuukk  22 wordt de betrouwbaarheid van kklliinniisscchhee  iinntteekkeenniinnggeenn van de prostaattumor in 
de FLAME studie beoordeeld. Het blijkt dat naast individuele intekenvariatie er op 
afdelingsniveau een significante trend bestaat met betrekking tot de voorkeur voor T2-
gewogen, DWI en DCE-MRI sequenties ten behoeve van het intekenen van de prostaattumor. 
Het is daarom aanbevolen om de weging van de verschillende sequenties mee te nemen in 
het opstellen van intekenrichtlijnen voor de prostaattumor op basis van mp-MRI. Daarnaast 
bleek een tumor voorspellingsmodel in staat om handmatige intekeningen te herkennen die 
aangepast moesten worden. Dit resultaat laat de toegevoegde waarde van 
voorspellingsmodellen in de kliniek zien. 

Tijdens het opstellen van het behandelplan hangt de hoogte van de lokale dosisverhoging voor 
een groot deel af van de anatomie van de patiënt en de complexiteit van het 
optimalisatieproces. In hhooooffddssttuukk  33 worden dosis volume histogram (DVH) parameters van 
ggeeppllaannddee  ddoossiissvveerrddeelliinnggeenn uit de FLAME studie vermeld, die aangeven in hoeverre een focale 
bestralingboost tot aan 95 Gy is gepland op de tumor in de prostaat. In de bestralingsboostarm 
van de studie werd een mediane D98% gevonden van 84.7 Gy, waarbij 99% van de patiënten 
een significante dosisverhoging boven de 82.4 Gy kregen. Tijdens het opstellen van het 
bestralingsplan kan een ongunstige tumorlocatie ten opzichte van gezonde organen leiden tot 
een bestralingsboost dosis die lager uitvalt dan gewenst. Om deze oorzaak aan te pakken, is 
een regressiemodel ontwikkeld dat de haalbare dosisverhoging in de prostaattumor als functie 
van de anatomie van de patiënt kan inschatten. Om het model te valideren is een willekeurige 
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selectie van bestralingplannen met een focale bestralingsboost opnieuw gepland. Voor deze 
bestralingsplannen werd een sterke correlatie (r = 0.89) gevonden tussen de voorspelde 
toename in tumor D98% en de gerealiseerde toename tijdens de herplanning. Deze resultaten 
tonen aan dat het model een toekomstige klinische toepassing kan vinden in de behandeling 
van prostaatkanker met een focale bestralingsboost. 

Met mp-MRI wordt zowel anatomische als functionele informatie verkregen. Om deze reden 
is een mp-MRI onderzoek aangeraden voor het identificeren van de tumor in de prostaat en 
het definiëren van het doelvolume waarop een lokale dosisverhoging wordt gegeven. Op dit 
moment richt onderzoek met mp-MRI zich vooral op een verbeterde herkenning van de tumor 
in de prostaat. Met de positieve uitkomst van de FLAME studie kunnen ook andere 
toepassingen van mp-MRI worden onderzocht voor verdere ontwikkeling van 
prostaatbestraling met een lokale dosisverhoging. 

Hoewel in de FLAME studie een uniforme dosisverhoging is voorgeschreven op de 
ingetekende prostaattumor, kan de tumor in werkelijkheid heterogeen en niet scherp 
begrensd zijn.  Om de binaire beslissing van handmatig intekenen te omzeilen en om beter 
aan te sluiten bij de biologische eigenschappen, schrijft dose painting by numbers (DPbN) een 
onregelmatige dosisverdeling op de prostaat voor die direct gerelateerd is aan 
beeldkarakteristieken. Het weglaten van de handmatige intekening laat echter toe dat 
onzekerheden in de beelden de geplande dosisverdeling beïnvloeden. In hhooooffddssttuukk  44 is een 
herhaalbaarheidsstudie uitgevoerd om de toepassing van ddoossee  ppaaiinnttiinngg  bbyy  nnuummbbeerrss te 
kwantificeren. De intra-class correlation (ICC) coëfficiënt als maat voor herhaalbaarheid, 
verbeterde van 0.84 naar 0.93 voor verkregen MRI beelden en geplande dosisverdelingen. 
Hieruit volgt dat variatie in beelden een minimale invloed op de gerealiseerde dosisverdeling 
heeft, wat DPbN aandraagt als realistisch alternatief voor contour-gebaseerde lokale 
dosisverhoging. 

Terwijl mp-MRI zijn gebruik voor bestraling met een lokale dosisverhoging heeft bewezen en 
tevens geschikt blijkt voor DPbN behandeling, zou mp-MRI ook toepassing kunnen vinden 
tijdens de bestraling, door het in beeld brengen van respons op de radiotherapie in de tumor. 
In hhooooffddssttuukk  55 is de waarde van kkwwaannttiittaattiieevvee  MMRRII  bbiioommaarrkkeerrss voor het aanpassen van de 
behandeling op basis van beeldinformatie onderzocht. T2 en ADC beelden van zes MRI 
onderzoeken tijdens een gehypofractioneerde behandeling werden geanalyseerd. Op 
populatieniveau werden geen veranderingen van de tumor gevonden als gevolg van de 
behandeling. Het is daarom onwaarschijnlijk dat in de nabije toekomst MRI biomarkers 
worden ontdekt die vroege aanpassing aan de gehypofractioneerde bestralingsdosis van 
prostaatkanker mogelijk maken. 
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In dit proefschrift is een technische evaluatie van de bestraling van prostaatkanker met een 
mp-MRI gebaseerde focale bestralingsboost uitgevoerd en is de rol van mp-MRI voor 
toekomstige optimalisatie van deze behandelstrategie onderzocht. De technische evaluatie 
toont aan dat er behoefte is aan intekenrichtlijnen voor de tumor in de prostaat op basis van 
mp-MRI en dat modellen kunnen bijdragen aan een verhoogde consistentie van tumor 
intekeningen en optimalisatie van de focale bestralingsboost. De gepresenteerde bevindingen 
omtrent toekomstige optimalisatie van deze behandelstrategie laten zien dat mp-MRI goed 
toepasbaar is in de planningsfase van de behandeling, zoals voor ‘dose painting’ doeleinden, 
en geven weinig aanleiding tot gebruik van mp-MRI voor het tussentijds aanpassen van de 
behandeling.  
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