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Classification of Biological Illustrations

“Ludwig Wittgenstein once said that names are the only things that exist in the world.
Maybe that’s true, but the problem is that as time passes by, names do not remain the
same—even if they don’t change.”

– Victor Pelevin

Historically, naturalists created hand-drawn scientific illustrations for the documentation of
new species. These scientific illustrations often contain captions with handwritten historical
names, as is demonstrated in Figure 2.7 and 6.1, which can be used to compare the
illustrations with other collection objects and online resources. However, many names are
unpublished or obsolete within today’s taxonomy, and are therefore di�cult to understand.
By linking these illustrations to contemporary binomial names and taxonomies, they can
be understood in their context.

In this chapter, we aim to answer research question Q.4: How can we use automated
methods for the extraction of knowledge from archives of NHCs?, by researching how we can
automatically classify—or help domain experts to classify—biological illustrations.

6.1 Introduction
Over the last 250 years, a large number of zoological species have been observed and
documented through the use of scientific illustrations. Research into these scientific
illustrations is complicated by several challenges. First, most illustrations are stored in
museum repositories and archives that are not disclosed for generic use. Digitisation
projects are currently ongoing worldwide to address this challenge, but as of now, most
collections remain o�ine (7). Second, illustrations published as online digital collections
can be used for research, but are often published with doubtful or no identifications (unique
labels), which are required to study the illustrations. Finally, the identification of an
organism from a photograph or illustration, using the system of biological classification,
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

is a complex and delicate task, even for domain experts (42). Automated methods can
significantly reduce the time and e�ort required by scholars to identify and classify the
images. Easy access to taxonomic classifications of illustrations facilitates research into
the historical abundance, range and variation of species.

Automated Classification of Scientific Illustrations Automated species identification
is a much researched problem within the computer vision and pattern recognition domain,
but, to the best of our knowledge, no approaches have been described to deal with the
wealth of detailed scientific illustrations (examples shown in Figure 2.7). Reasons could
be that samples are small due to the nature of the data—many rare species have been
depicted in small quantities—and because numerous institutions have yet to start with the
digitisation of their collections (131).

Photographs and illustrations of species are quite distinct, As described in Subsection 2.1.2.
To illustrate the di�erences between photographic and illustration data, three depictions
and two photographs of the species Lepas (Anatifa) anserifera Linnaeus, 1767 can be
observed in Figure 6.1 and 6.2.

1https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html

(a) (b) (c)

Figure 6.1: Scientific illustrations from the Iconographia Zoologica1 of Lepas (Anatifa)
anserifera Linnaeus, 1767, with handwritten (historical) name Anatifa laevis Bruguière, 1789
(best viewed in colour). (a) Species within shell, (b) shell of species, (c) species without
shell. Images free of known restrictions under copyright law (Public Domain Mark 1.0).
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6.1 Introduction

The dissimilarity of the two modes demands training or fine-tuning a (pre-trained) classifier
on the illustrations. However, this is a non-trivial task due to a couple of challenges, of
which we name two:

1. for classifying zoological illustrations, only small samples from a subset of species
described in modern taxonomy are available for training, and these samples are
smaller for rarer species (see also Chall.6 to Chall.8). Therefore, standard supervised
classification models overfit the training data, and do not capture the totality of the
problem.

2. testing a classification model on a test-set does not guarantee its value ’in the wild’.
Due to various factors, there is always a divergence that a�ects performance: a
change in distribution or di�erences in feature space (132). Illustrations, for instance,
vary in use of materials, drawing style and method, and can portray zoological
species unknown to the model.

(a) (b)

Figure 6.2: Photographs of the species Lepas (Anatifa) anserifera Linnaeus, 1767 (Goose
Barnacle), taken from iNaturalist.1 (best viewed in colour). (a) Observation © David R.2

(b) Observation © mervyngreening.3 Images are licensed under CC BY-NC 4.0.

Approach Below we formulate a research approach that copes with the aforementioned
challenges. To address the first challenge, our approach uses a non-standard learning
strategy called zero-shot learning (ZSL). With ZSL, it is possible to exploit data from
auxiliary data sources to form semantic descriptions of classes, which can help to classify
images from unseen classes: classes that are not observed by the classifier during training,
and hereby to push the boundaries of automated recognition for a specific problem. Such
a classifier is also more flexible to deal with new definitions of classes, and therefore better

1https://www.inaturalist.org/
2https://www.inaturalist.org/observations/25983495
3https://www.inaturalist.org/observations/34793791
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

formulates real world conditions. This is especially useful for biological taxonomy, where the
solution space is large, new class definitions can be introduced, and old ones can be revisited.
To avoid overfitting, our approach additionally exploits image representations learned from
another task—the recognition of zoological photographs—to extract meaningful features
for our task (129). Moreover, we use a biological taxonomy as a label hierarchy for
training (through Hierarchical Prototype Loss (HPL)), and hereby have access to a larger
number of labelled examples for groups higher up the label hierarchy. We evaluate our
approach on the ZICE dataset, that we introduce in this paper. The dataset consists of
14,502 zoological illustrations of 7973 species from the animal kingdom, and is formed by
consolidating data used and managed by the biodiversity research community.1

To address the second challenge, we evaluate the trained model “in the wild”, on a dataset
collected under di�erent conditions. To this end, our approach uses a second independent
collection of illustrations without annotations, to analyse the final species embedding
model.

Our contribution is threefold:

1. We introduce the Zoological Illustration and Class Embedding (ZICE) dataset
constructed from real-world data. It consists of: (i) 14,502 biological illustrations of
7973 species from the animal kingdom, with labels organised hierarchically, and (ii)
class embeddings from 3 di�erent sources - a hierarchy (taxonomy), historical texts
and photographs.

2. We introduce and evaluate a zero-shot learning (ZSL) approach for fine-grained
hierarchical classification. We use the prototypical networks introduced by Snell et al.
in (49) and introduce: Fused Prototype (FP), and HPL. Our approach is evaluated
on the ZICE dataset.

3. We provide a qualitative analysis of the performance of our ZSL approach in a real-
world scenario on an independent verification-set: a collection of 1,088 unlabelled
zoological illustrations, collected during a historical biodiversity expedition (16).

The rest of this chapter is organised as follows. In Section 6.2 we discuss related work
on automated species classification and ZSL. We discuss the data in Section 6.3, the
methodology in Section 6.4, the experimental setting in Section 6.5 and the experiments
in Section 6.6. We close the paper with an analysis and discussion of the results in Section
6.7, and our conclusions in Section 6.8.

1https://geheugen.delpher.nl/nl/geheugen/pages/collectie/Iconographia+Zoologica:
+een+papieren+dierenrijk
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6.2 Related Work

6.2 Related Work

Below, we discuss datasets related to computer vision and biodiversity, where we briefly
mention recent work that leverages contextual information for fine-grained classification,
and provide a short survey of the field of ZSL.

Computer Vision and Biodiversity Recognising and identifying species in images is a
well researched problem within the computer vision field. Most popular datasets contain
classes of animals, (often birds), or plants (60; 133; 134; 135; 136; 137; 138). A citizen
science project called iNaturalist (discussed in Subsection 2.3.1), allows users to upload
photographs of organism encounters in the wild. Since 2017, a new dataset has been
published every year as part of the iNaturalist Competition FGVC6 for fine-grained image
classification.1 Computer vision models trained on such datasets are much better prepared
for the automatic identification of species in the wild. Nevertheless, much variation still
exists among data captured for various tasks, such as between observation data from
iNaturalist, and data collected from motion-triggered camera traps.2 Recent datasets
therefore combine data captured for distinct tasks to model the variation that exists among
photographs of species observations (138).

To improve automated classification of species in images, recent work has demonstrated
the usefulness of leveraging contextual data for the improvement of classification models,
for instance the use of spatio-temporal data often accompanying observations to aid
fine-grained classification (139; 140; 141). Moreover, zero-shot learning methodologies
allow researchers to leverage contextual information from multimodal sources to calculate
measures of similarity between classes (142; 143). Such contextual information can greatly
aid a model to distinguish between visually similar classes where small samples are available
for training.

In addition to photographs of species, there are examples of models trained for the
automated classification of plants in herbaria (144). While a great deal of work is spent
capturing often unclear images of species in the wild, a wealth of detailed zoological
illustrations are under-utilised. Reasons could be that samples are small, many classes are
under-represented, and numerous institutions have yet to start with the digitisation of
their collections (131).

1https://www.kaggle.com/c/inaturalist-2019-fgvc6
2https://github.com/microsoft/CameraTraps
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

Zero-Shot Learning While standard supervised image classification methods learn to
recognise images from classes observed during training, ZSL aims to recognise images
from classes not observed during training, y œ Yts, from examples of classes observed
during training, Ytr, by using between-class feature transfer. With a training set T =
{(x1, y1), ..., (xN , yN )} where y œ Ytr, and embedding functions Ï : Y æ Ỹ and
◊ : X æ X̃ , the task is to learn a compatibility function f : X̃ æ Ỹ. At test time, the
function is used to assign test images to classes from Yts.

With ◊, every image xi œ RD from Ytr, is embedded in visual feature space, ◊(xi) œ RM ,
called an image embedding. Most commonly, ◊ is a CNN. After training the CNN, the
top of the network - often just the softmax layer - is removed and an image embedding
function remains.

With Ï, every class yi œ {1, ..., K} is mapped to a vector in semantic embedding space,
Ï(yi) œ RM , called a class embedding. The semantic embedding space is either (i) created
manually, through class annotations or attributes (50; 51), or (ii) learned from auxiliary
information such as taxonomies (145; 146) or texts (147; 148; 149). Attribute embeddings
encode whether a certain attribute - from a set of predefined attributes - is present for a
specific class. Attribute embeddings can be either binary or continuous, e.g., {wing: 0.1,
red: 0.4, tail: 0.7} and fall within the interval [0,1]. Learned embeddings are continuous
and represent similarities between classes more abstractly. Class embeddings from various
sources can be used to complement one another; combining them often results in a higher
accuracy (142; 143; 150). Combining class embeddings can be done in di�erent ways, for
instance by concatenating the class embeddings or combining compatibility scores. We
refer to (143) for an extensive evaluation of class embeddings.

Most common ZSL methods learn either a linear (150; 151; 143; 152) or a non-linear
(153; 154) compatibility function between the two feature spaces. Prototypical networks
(49) belong to the latter group. They learn deep visual-semantic models, such as DeViSe
(151) and Cross-modal transfer (CMT) (154), in which the visual object recognition
network is trained to predict the class embedding vector in semantic embedding space,
which is learned from auxiliary data. While all methods achieve impressive results on
small- and medium-scale datasets, the more realistic variant generalised zero-shot learning
(GZSL), that aims to classify both seen and unseen classes, performs poorly for unseen
classes (154): the model overfits to seen classes and therefore favours seen over unseen
classes at test time. Hence, ZSL models embedded in real world applications should include
a method for dealing with this issue.
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6.3 The Data

Datasets have been set up to facilitate progress in the field and demonstrate the possibilities
and advantages of zero-shot learning (155; 156; 50). We argue that there is a need for
research that analyses the performance of ZSL models on complex real-world data, collected
to fulfill a need within a certain domain, e.g., such as for the identification of tree species
from remote sensing images (142), for mapping the worlds’ biodiversity (60), or for the
estimation of species populations and richness (138). Specifically data from domains where
the solution space is large and complex, and obtaining labels for training is costly or simply
not feasible. When algorithms are evaluated on highly imbalanced large-scale datasets,
results are often poor. Xian et al. show that experiments of state-of-the-art zero-shot
learning algorithms achieve only ≥ 1.3% top-1 per-class accuracy on the 5,000 least
populated classes in ImageNet, and only ≥ 0.4% top-1 accuracy for GZSL (157), where
the classifier must choose the correct class from both seen and unseen classes.

For an extensive comparison of state-of-the-art of ZSL and GZSL methods and datasets,
we point to the work of Xian et al. (157). In our work we use prototypical networks for
zero-shot learning because they are state-of-the-art models within the few- and zero-shot
learning domain (49).

6.3 The Data

In this section, we discuss the ZICE dataset (see Subsection 6.3.1), used for training,
validating and testing our ZSL approach, and an independent verification-set (in Subsection
6.3.2) used to analyse the ZSL results in a real-world scenario (in Section 6.7).

6.3.1 The ZICE Dataset

The Zoological Illustration and Class Embedding (ZICE) dataset contains illustrations,
from the Iconographia Zoologica online collection,1 and class embeddings corresponding
to the classes represented in the illustrations.

Illustrations The Iconographia Zoologica is a nineteenth century collection of biological
illustrations from the Artis Library of the University of Amsterdam. The collection was
formed by three collectors: the well-known collector and naturalist Th. G. van Lidth de
Jeude, the zoologist R.T. Maitland and the curator of the shell collection at the Amsterdam
Zoo, Abraham Oltman, together with the Amsterdam society Natura Artis Magistra. In
the twenty-first century, the collection was digitised and labelled with either complete

1https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

binomial species names (genus and specific epithet) or corresponding genera. The full
online collection contains over 26,500 pages of zoological illustrations.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.3: Cropped example illustrations from the ZICE train-set (best viewed in colour).
Image (f), depicts the skull of a Rhinosceros unicornis and image (j) the tail of a Squilla
hoevenii. Images free of known restrictions under copyright law (Public Domain Mark 1.0)

We have cross-referenced the illustration labels with the June 2018 backbone taxonomy
(59) of the GBIF (discussed in Subsection 2.3.1),1 a central repository for biodiversity
occurrence data. For 14,502 illustrations of 7973 species, labels could be cross-referenced
directly with GBIF without extra domain expert curation. Matches were only accepted
when the names had the status “accepted” in the GBIF taxonomy, as using labels with the
status “unaccepted" or “synonym" to train a ZSL model could prove problematic. Some

1https://www.gbif.org/
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6.3 The Data

synonyms, for example, refer to both a plant and an animal. As a result, visual features
would map to incorrect semantic representations. By the automated matching process,
all classes in the ZICE dataset are organised according to a taxonomy. Figure 6.3 shows
twelve example illustrations.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.4: Cropped example illustrations from the verification-set (best viewed in colour).
Labels are unknown. Images free of known restrictions under copyright law (Public Domain
Mark 1.0)

Notation A biological taxonomy can be seen as a tree data structure, in which species
are represented as leaf nodes, and parent classes represent their higher classifications based
on features shared with other species. In the rest of this paper, we refer to the biological
taxonomy by the term label hierarchy, and we refer to the various ranks (depths of the tree)
by levels. The hierarchy consists of seven levels: kingdom, phylum, class, order, family,
genus, species (genus + specific epithet). We use D = {(x1, y1, t1), ..., (xN , yN , tN )} to
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

refer to the ZICE dataset, where each xi œ RD represents a D-dimensional feature vector
of an image, each yi œ {1, ..., K} represents its species label, where K thus indicates the
number of leaf nodes of the label hierarchy, and ti =

#
t1, . . . , tL

$
represents its full

path of labels, one from each level and ordered from fine-grained to course-grained such
that ti[1] = yi, and where L indicates the number of levels in the label hierarchy.

Class embeddings To train our ZSL model, we have generated class embeddings whose
classes match those from the illustrations. They come from three di�erent sources: (i) the
GBIF backbone taxonomy (59), (ii) literature from the BHL (13) and (iii) photographs
from the iNaturalist 2018 challenge dataset (60). Information on how these embeddings
are produced is given in Section 6.4.

6.3.2 The Verification-Set

For the verification-set, we use 1,088 illustrations from the collection of the Natural
Comittee (discussed in Subsection 2.3.2) to evaluate the model in a realistic setting.
Example illustrations are presented in Figure 6.4.

6.4 Methodology
In this section, we describe the mathematical formulation of our approach: the ZSL (in
Subsection 6.4.1), image embeddings (in Subsection 6.4.2), class embeddings (in Subsection
6.4.3), our method for (i) combining class embeddings: FP (in Subsection 6.4.4), and (ii)
for calculating HPL based on the label hierarchy (in Subsection 6.4.5).

6.4.1 Zero-Shot Learning Model

Prototypical networks for few-shot learning, as described in (49), compute M -dimensional
class representations ck œ RM called class prototypes. They do so by embedding Ns

support points {(x1, y1), ..., (xN , yN )} œ S from Nc classes with an embedding function
f„ : RD æ RM , and taking the per-class average of the resulting embedded support
points, see Equation 6.1. In Equation 6.1, Sk refers to the set of support points for class
k, and ck refers to its calculated prototype. We further refer to the space Rm by the term
prototype space.

ck = 1
|Sk|

ÿ

(xi,yi)œSk

f„(xi) (6.1)
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6.4 Methodology

To train the network, Prototypical Network Loss (PNL) is calculated by mapping a set
of Nq query points: {(x1, y1), ..., (xN , yN )} œ Q from the same Nc classes to prototype
space. In prototype space, distances from the query points to the class prototypes are
computed so that, based on a softmax over these distances, a distribution over classes is
obtained. Parameters „ are learned by minimising the negative log-probability of the true
class k via Stochastic Gradient Descent (SGD). The network is trained with mini-batches.
Each mini-batch consists of Nc classes, Nq query points and Ns support points, and is
called an episode.

For ZSL, Snell et al. (49) mention that rather than embedding support points in prototype
space, prototypes can be constructed by embedding auxiliary information, e.g., class
embeddings in the form of attribute annotations, in prototype space. In their paper they
use binary attribute vectors from the CUB-200-2011 dataset (156). They extract features
from di�erent crops of the images using a pre-trained model and map them to prototype
space using a one-layer linear model. Similarly, they use a one-layer linear model to map
the attributes to prototype space and prototypical training proceeds as in the few-shot
setting. Rather than relying on one source (such as attributes), we rely on a combination
of class embeddings from three distinct sources.

6.4.2 Image Embeddings

We embed images x œ X of zoological illustrations in a lower dimensional feature space
using a deep CNNs ◊(x) : X æ X̃ . We will use ◊ to refer to the image embeddings. To
make sure we don’t learn features specific to our dataset (such as an illustrator’s mark
or a label). We transfer image representations learned from photographs (the source
dataset) to illustrations (the target dataset) (129). We use the inception V3 model (158),
and import weights learned on the iNaturalist 2018 competition dataset.1 For zero-shot
learning, image embeddings are often generated using CNNs pre-trained on a source task
(e.g., the ImageNet task (128)). The choice of model is crucial as the quality of the image
embeddings has a big impact on the performance of the ZSL model. Therefore, we have
chosen to use a model that was trained on a task more similar to ours. Xian et al. (157)
mention that class overlap between classes from the source and target dataset leads to an
unwanted positively biased result. However, our goal is not to compare between various
state-of-the-art ZSL methods, but rather to provide insights for training a model that is
able to generalise to new data within the target domain.

1https://github.com/macaodha/inatcomp2018
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

6.4.3 Class Embeddings

Below we describe details concerning the embedding functions that map classes yi œ Y,
the set of leaf nodes from the label hierarchy, to vectors Ï(yi) œ RM in M-dimensional
semantic embedding space: Ï : Y æ Ỹ. As each embedding comes from a di�erent
domain, all embeddings are l2-normalised. For brevity, we use Ïi

k to refer to the class
embeddings of source i for class k.
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Figure 6.5: A subset of Y from the ZICE dataset, covering the phylum Anthropoda, with
the corresponding label hierarchy (from left to right: phylum to species). Bold names
indicate classes from Ytr, and numbers indicate number of instances within that class.
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6.4 Methodology

A hierarchy (Ïh) Through the GBIF backbone taxonomy, we had access to the ground
truth list of higher taxon labels for nearly all classes (see Table 6.1 for class statistics). For
53 classes, no (or an incomplete) higher classification was available. Using the deterministic
algorithm from Barz et al. (145), we have projected all 7920 classes onto a unit sphere of
dimensionality N - where N is the number of classes. The negated dot product between
classes on the sphere represents their semantic similarity. This similarity is based on
the ratio of overlap between their ground truth list of higher taxon labels—nodes in the
hierarchy. Part of the label hierarchy is given in Figure 6.5.

Texts (Ït) To facilitate semantic search over large textual biodiversity archives, Nguyen
et al. have constructed an inventory of name variants and synonyms from a large textual
biodiversity corpus (BHL) (159). For this task, they have computed word embeddings from
multi-word terms–"chipping sparrows" becomes "chipping_sparrows"–mentioned in the
corpus. They compared multiple methods for computing word embeddings: continuous-
bag-of-words (CBOW) (160), count-based (161) and Global Vectors (GloVe) (148). From
these three, we rely on the 300 dimensional multi-word GloVe embeddings.

Photographs (Ïp) Features in photographs are quite distinct from those in illustrations,
but their features capture the semantic similarity of the di�erent classes they represent in
a similar way. Hence, we have extracted 2048 dimensional features from the iNaturalist
2018 dataset photographs, using the inception V3 model trained on the corresponding
dataset (previously mentioned in Subsection 6.4.2).

6.4.4 Combining Class Embeddings

Below we describe two methods for generating singular class prototypes for prototypical
learning (see Subsection 6.4.1) from three distinct embeddings, each with a di�erent
dimensionality.

Concatenated Embeddings (CEs) One method that is often employed to combine the
di�erent embeddings is concatenation, in which the dimensions of each class embedding
(from distinct sources) are concatenated together. This results in one sparse matrix with
a large dimensionality. Similarly to Snell et al. (49), we learn a one-layer linear model
on top of the concatenated class embeddings Ï and on top of the image embeddings ◊,
mapping them to prototype space.
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Figure 6.6: FP (best viewed in colour). Figure derived from (49). Features from Ïi (here i
is replaced by: a hierarchy (h), texts (t), and photographs (p)) are mapped into prototype
space using separate one-layer linear models f„i , and fused into one prototype per class ck.
To illustrate HPL, example temporary parent-class prototypes pk are depicted in transparent
grey.

Fused Prototypes (FPs) We implement FPs, see Figure 6.6. Essentially, FPs fuse
prototypes from a variable number of multimodal sources into a single prototype per
class. We derive our implementation from the prototypical FSL approach. Instead of using
support points s œ S, we use Ïi œ �, the set of class embeddings from distinct sources
{Ï1, ..., ÏN }. A simple one-layer linear model is learned on top of the feature space of
each of the distinct Ïi’s as well as the image embeddings ◊, mapping both to prototype
space. In prototype space, the embedded Ïi’s are fused together, similarly to the way
support points are fused to form class prototypes for FSL, see Equation 6.2.

ck = 1
|�|

ÿ

(Ïi
k

,yk)œ�
f„i(Ïi

k) (6.2)

In that equation, ck refers to the class prototype for class k, where N is the number of
sources, and fi„ refers to the linear model that maps the individual class embeddings from
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6.5 Experimental Setting

Ïi to prototype space. We hypothesise that fused prototypes will perform better than
concatenated embeddings, as the latter introduce one large sparse input space whereas
fused prototypes are optimised from multiple dense input spaces.

6.4.5 Hierarchical Prototype Loss

HPL extends PNL, and is defined as the sum of the losses for each level of the label
hierarchy (see Figure 6.5). The loss for a specific level l is calculated by first computing
temporary parent-class prototypes pk œ RM for that level from the set of class prototypes
C = {(c1, y1, t1), ..., (cK , yK , tK)}, see Figure 6.6 and Equation 6.3. In the Equation,
Ck refers to the subset of C containing all prototypes (ci, yi, ti) such that ti[l] = k. As
described in Subsection 6.4.1, distances of the query points to the temporary parent-class
prototypes are then computed and the loss is calculated over these distances. HPL is
calculated by summing the losses for all L levels.

pk = 1
|Ck|

ÿ

(ci,yi,ti)œCk

ci (6.3)

By implementing HPL, we take a multi-granularity approach: we enforce a clearer separation
of classes not only for the finest grain, but also for coarser taxonomic groups. As more
labels are available for each level higher up in the label hierarchy, this intuitively supports
the discovery of more robust features for the classification of coarser classes.

6.5 Experimental Setting
In this section we discuss details regarding the settings of the experiment: the dataset splits
(in Subsection 6.5.1), data augmentation (in Subsection 6.5.2), and evaluation criteria (in
Subsection 6.5.3).

6.5.1 Dataset Splits

As recommended by (157), we split the classes Y for training and evaluation based on the
number of instances each of them contain. Since our dataset contains so few instances
per class, (nk œ [1, 283], µ: 1.79, ‡: 3.93). We have used all classes with n Ø 2 per class
for the training set Ytr. Two examples per class is not su�cient to learn a good class
representation, but the features of these illustrations are useful for between super-class
feature sharing. Moreover, we exploit them for learning representations of classes on a
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6.5 Experimental Setting

higher taxonomic level, since a larger number of instances are available higher up the label
hierarchy. All remaining classes with n = 1 were equally distributed over the validation
set Yv, and the test set Yts. Table 6.1 shows dataset statistics per super-class. Since
not all of the classes were represented in each source (GBIF, BHL and iNaturalist), each
embedding (Ïh, Ït, and Ïp respectively) represents a subset of Y. However, together
they span the totality of classes Y. The super-class Animalia is used for classes that are
not assigned to a phylum.

6.5.2 Data Augmentation

For training, we used image embeddings extracted from augmented versions of all images,
in order to increase the ability of the classifier to generalise the classification with respect to
the data. Before cropping all images, the largest side of each image was first resized to 300.
During resizing, we kept the aspect ratio identical to the original image. 2048-dimensional
features were extracted by applying the pre-trained Inception V3 model to crops (middle,
upper left, upper right, lower left and lower right) of each resized original illustration and
its horizontally flipped version. Crops containing only white space or text were manually
discarded.

6.5.3 Evaluation Criteria

In our experimental ZSL results (Subsection 6.6.2) we report two accuracy metrics: top-k
accuracy and hierarchical accuracy@k.

Top-k accuracy Flat top-1 accuracy does not always su�ciently portray the classifier’s
capabilities. When the solution space is large, it is valuable for domain experts to obtain
top-k predictions, as exemplified later in Figure 6.8. We therefore report top-k accuracy,
k œ {1, 2, 5, 10}. This metric is computed by the percentage of images for which the
correct label is among the top k predictions.

Hierarchical accuracy@k For our task, classifying an illustration of a Boiga nigriceps as
a Boiga dendrophila - both tree snakes - is less problematic than classifying it as a Procyon
lotor, a common raccoon. In the former case, the classifier has learnt important coarse
features specific to tree snakes, and has provided researchers with a partially incorrect,
but valuable classification nonetheless. For each illustration, we would therefore like to
shed light on the accuracy of the entire label path from the label hierarchy. Hence, we
additionally report hierarchical accuracy. Hierarchical @k precision is sometimes used as
a metric for hierarchical datasets (151). We report a new metric that we deem more
informative in our context: average per-level accuracy, or hierarchical accuracy. It is
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

computed by calculating the accuracy for each level in the label hierarchy and averaging
over these, see formula 6.4. In formula 6.4, L refers to the number of levels for which we
have labels and l to a specific level l.

Hierarchical acc =
Lÿ

l=1

n correct preds in l

n samples in l
(6.4)

Additionally, we report accuracies for labels k levels up the label hierarchy, where k œ
{1, 2, 3}, thus referring to the accuracy for labels one, two and three levels up the label
hierarchy respectively.

6.6 Experimental Results
The following section is divided as follows: first we evaluate the image embeddings (Task
1) in a supervised classification setting (Subsection 6.6.1), after which we evaluate each of
the elements of our zero-shot learning approach (Subsection 6.6.2): the class embeddings
(Task 2), combining class embeddings (Task 3), hierarchical prototypical loss (Task 4),
and an analysis of the final network, which incorporates results from Task 2-4 (Task
5).

(a) Class labels (b) Family labels

Figure 6.7: t-Distributed Stochastic Neighbour Embedding (t-SNE) plots showing image
embeddings of images from the ZICE dataset (should be viewed in colour). Plot (a) shows
class level labels and (b) family level labels. Family labels come from a selection of 12
families of which the binomial name was not present in the iNaturalist 2018 dataset. The
t-SNE algorithm was run for 5,000 iterations with perplexity 20.
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6.6 Experimental Results

6.6.1 Supervised Classification and Visualisation

For Task 1, we selected image embeddings from the set of species that is disjoint from
the set of species represented in the iNaturalist 2018 dataset (on which the embedding
function was trained), so as to obtain a deeper insight into the ability of image embedding
function to find generic features. From this selection, we again selected a subset for
classification and visualisation purposes: the 12 most populated classes from the family
level (two levels up the label hierarchy).

We show per-class, micro, macro and weighted average precision and recall results for a
Support Vector Machine (SVM) trained on the subset, see Table 6.2. Additional to family
labels (Table 6.2, 2nd column), we show higher-taxon labels from the class level (Table 6.2,
1st column). The weighted average alters the macro metric to account for label imbalance.
The support column indicates the number of actual occurrences of that class in the given
subset.

The SVM was trained using a stratified 80%-20% split for the train and test-set, respectively.
Note that the classification results serve to provide an insight into the quality of the features
rather than the di�culty of our task. For visualisation, we show a t-SNE (162) visualisation
of the subset with family labels (see Figure 6.7 (b)). Also here, we present higher-taxon
labels from the class level (see Figure 6.7 (a)).

Looking at Figure 6.7, we see that same-class image embeddings are visibly clustered.
However, classes within certain taxon groups overlap, for instance, families within the
class Mammalia, see the classes of Figure 6.7 (b) that are coloured brown in Figure 6.7
(a). This e�ect is reflected in Table 6.2 (see bold text): the image embeddings from
only one of four families subsumed under the class Mammalia can be classified correctly
(Canidae, with 100% recall). From the classifications and the precision value (48%) we
find that image embeddings from other classes subsumed under the class Mammalia are
also classified as Canidae, and thus a large part of the brown cluster from Figure 6.7 is
classified as the family Canidae (dog-like carnivores).

The results of Task 1 show us that the features learned from the iNaturalist 2018 task
are not su�ciently specific to properly classify all fine-grained classes in our task well.
Therefore, further improving the image embeddings would improve zero-shot learning
results, although the inter-class variation of species within certain taxon groups can be
quite small. Some species within the order Coleoptera (beatles), for instance, can only be
accurately identified after a close inspection of their genitalia (163). Visualisation of the
features can give an indication up to which grain the features within specific taxon groups
are su�ciently informative for proper classification.
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

Table 6.2: Classification precision, recall and F 1 results for Task 1 in % (rounded o� to
whole integers) for a SVM trained on the image embeddings belonging to 12 families (also
visualised in Figure 6.7 (b)). Support indicates the number of actual occurrences of that
class in the given subset. The top-1 per-class average accuracy is 43.58%.

Class Family Precision Recall F1 Support
Mammalia Bovidae 0 0 0 19
Mammalia Canidae 48 100 65 33
Insecta Carabidae 44 74 56 27
Insecta Cerambycidae 56 85 68 26
Mammalia Cercopithecidae 0 0 0 9
Gastropoda Conidae 87 98 92 41
Insecta Curculionidae 0 0 0 14
Mammalia Equidae 0 0 0 12
Insecta Melolonthinae 100 22 36 9
Gastropoda Muricidae 67 55 60 11
Insecta Staphylinidae 0 0 0 10
Bivalvia Veneridae 82 90 86 10

micro avg 60 60 60 221
macro avg 40 44 38 221
weighted avg 46 60 50 221

6.6.2 Fine-Grained Zero-Shot Learning

All prototypical networks were trained using the Adam optimisation algorithm from pytorch.1

Episodes for training were comprised of Nc = 50, Nq = 1 and Ns = 0, similar to a balanced
mini-batch of size 50. The validation loss was monitored during training and if, for 10
iterations, the loss did not decrease, the learning rate was decreased with a factor of 0.5.
We tuned hyper-parameters using hyper-parameter optimisation–tree-structured parzen
estimators–and ended up with a learning rate of 10≠4 and a weight decay of 10≠5. Early
stopping on the validation loss was used to determine the optimal number of epochs
for training. For each model, five di�erent networks were trained. As a statistical test
for comparing classifiers we used the McNemar test (164) for each classifier pair for all
predictions of 5 runs accumulated. It is a test that works well for testing statistical
significance when dealing with paired nominal data for comparing classifiers trained,
validated and tested multiple times on the same splits of a dataset. Bold numbers indicate
statistical superiority over other values within that column and cell (which separates tasks).
A final model was trained, again 5 times, with the configuration that we found to work
best. The last row of Table 6.3 indicates accuracy values for the majority guess, where
the model simply always predicts the majority class.

1https://pytorch.org/docs/stable/optim.html

108

https://pytorch.org/docs/stable/optim.html


560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork
Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

6.6 Experimental Results

Ta
bl

e
6.

3:
ZS

L
cl

as
sifi

ca
tio

n
re

su
lts

in
%

fo
r

Ta
sk

2,
3,

4
an

d
5.

T
he

50
-w

ay
cl

as
sifi

ca
tio

n
ac

cu
ra

cy
fo

r
th

e
fin

al
m

od
el

wa
s

35
.5

3%
,

ca
lcu

la
te

d
by

av
er

ag
in

g
re

su
lts

ov
er

6,
00

0
ra

nd
om

ly
dr

aw
n

ep
iso

de
s. to

p-
k

ac
c

Y
ts

H
ie

ra
rc

hi
ca

la
cc

@
k

Y
ts

Ta
sk

M
et

ho
d

Ï
h

Ï
t

Ï
p

1
2

5
10

1
2

3
av

g
Ta

sk
2

N
/A

X
7

7
2.

29
4.

12
8.

9
15

.3
4

5.
93

13
.2

3
43

.7
4

36
.3

8
7

X
7

0.
41

0.
66

1.
14

1.
72

0.
72

1.
22

7.
33

12
.5

3
7

7
X

0.
55

0.
85

1.
47

2.
15

1.
03

2.
81

15
.2

9
18

.2
6

FP
X

X
7

2.
13

3.
89

8.
79

15
.1

1
5.

51
13

.5
6

43
.2

1
35

.9
6

X
7
X

2.
50

4.
26

8.
91

15
.2

6
6.

05
14

.2
4

45
.6

9
36

.8
5

7
X

X
0.

53
0.

84
1.

45
2.

06
1.

04
2.

02
9.

41
13

.5
0

X
X

X
2.

42
4.

29
9.

10
15

.3
7

5.
98

14
.2

2
45

.0
9

36
.7

0
Ta

sk
3

CE
(b

as
eli

ne
)

X
X

X
2.

09
4.

05
8.

96
15

.5
4

5.
45

13
.4

2
44

.7
6

36
.4

1
FP

X
X

X
2.

42
4.

29
9.

10
15

.3
7

5.
98

14
.2

3
45

.0
9

36
.7

0
Ta

sk
4

FP
+

PN
L

X
X

X
2.

42
4.

29
9.

10
15

.3
7

5.
98

14
.2

3
45

.0
9

36
.7

0
FP

+
H

PL
X

X
X

2.
12

3.
88

8.
88

15
.0

3
6.

23
15

.7
1

51
.1

0
39

.3
5

Ta
sk

5
Fi

na
lm

od
el

X
7
X

2.
77

4.
74

9.
64

16
.0

2
6.

94
16

.6
5

50
.7

1
39

.6
7

M
aj

or
ity

gu
es

s
-

-
-

0.
04

0.
07

0.
19

0.
37

2.
85

3.
26

21
.8

7
18

.6
6

109



560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork
Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

Evaluation (Task 2, 3 and 4) First, Table 6.4 presents results for Task 2, which show
the performance of the networks trained, validated and tested with embeddings from
each unique source separately, and additionally each combination of the three distinct
embeddings E. In order for the results to be comparable between all combinations, we
used the totality of Y to train, validate and test the networks, despite the fact that each Ïi

spans only a subset of classes from Y (see the last row of Table 6.1). In case a class k was
not represented in Ïi, the dimensions for Ïi

k were set to zero. In this context, the results
inform us, first and foremost, about the contribution of each embedding to the overall
accuracy (Table 6.3, Task 2, last row). We discuss each embedding separately.

Ïh is the most complete and informative embedding. Ït spans many classes (3040 out of
7973), but appears less informative. The prototypical network trained with Ït performs
better than the majority guess for the top-k acc metric, but Ït seems to harm the learning
ability of the network when used in combination with other embeddings. This could be due
to a myriad of factors. We believe the two most likely factors are that (i) the embedding is
better suited for finding synonyms between taxon terms - as similar species are described
similarly, and, (ii) that some names in the BHL are ambiguous: referring to one species
in the historical texts, while they refer to another in modern taxonomy. Particularly,
any historical unpublished name could have been published today as a di�erent species.
Matching them with sources from a modern taxonomy could therefore be problematic.
Finally, the network trained with Ïp shows improvement over the majority guess, and Ïp

complements Ïh, as the network trained with {Ïh, Ïp} improves over the accuracy of
the model trained with just {Ïh (see Table 6.3, Task 2, row 1 and 5), specifically the
hierarchical acc@2 (13.23% to 14.24%) and @3 (43.74% to 45.69%). We hypothesise
that if we increase the number of instances and fine-grained classes used to generate Ïp,
results could be improved further.

Second, Table 6.3 presents results for Task 3: combining class embeddings. CE represents
the baseline model: it is comparable to the method used by Snell et al. (49) for zero-shot
learning. Results for Task 3 show us that by using our fused prototypes (FP) formulation,
we can increase the top-1 accuracy from 2.09% to 2.42% (see Table 6.3, Task 3). Such
an increase is non-trivial. As the test-set contains an instance per class, with a total of
2702 classes (on the finest grain), an increase of 0.33% for the top-1 accuracy equals the
capability of the classifier to correctly classify illustrations from an additional 9 unseen
classes from di�erent parts of the biological taxonomy. Fused prototypes also induce a
higher hierarchical accuracy @1 and @2 (from 5.45% to 5.98% and 13.42% to 14.23%,
respectively). When class embeddings from additional (informative) sources are used, we
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

anticipate that this e�ect which we discuss in Subsection 6.4.4 will become more evident:
the value of using fused prototypes over concatenated embeddings will increase.

Third, Table 6.5 gives results for Task 4, which show that using HPL improves the average
hierarchical accuracy significantly - from 36.70% to 39.35%. However, a decrease is
measured for the top-1 and top-2 accuracy: from 2.42% to 2.12% and 4.29% to 3.88%
respectively. This e�ect demonstrates intra super-class variation of taxon groups, as it
appears that learning better coarser features slightly complicates the classification of some
fine-grained taxon groups.

Table 6.5: Generalised zero-shot learning (GZSL) classification results in % for final model

top-k acc Yts Hier. acc@k Yts

Method 1 2 5 10 1 2 avg
GZSL 0.04 0.21 1.24 3.25 4.47 16.03 38.19
M. guess 0.01 0.03 0.06 0.13 2.85 3.26 18.66

Final results (Task 5) A final model was trained 5 times using the best configuration
- {Ït, Ïp}, PNL and HPL. Although implementing HPL decreases the top-1 and top-2
accuracy, a substantial increase of the average hierarchical accuracy was measured. We
therefore chose to implement it in the final model.

Table 6.3 (Task 5) shows per-network averaged results for the final model on the test-set,
and Table 6.4 gives results for the final model’s best network, detailed per super-class.
Table 6.4 serves to provide a deeper insight into the trained network. Evidently, illustrations
from some super-classes were not recognised at all due to their limited contribution to the
training of the network–visible from the column avg Nts–as most feature sharing occurs
within super-classes. For reason of comparison we add the results for the leaf node level
(species).

On top of these results, Table 6.5 details results for GZSL. The top-k accuracies for GZSL
are poor: during classification, a network trained for ZSL tends to favour seen classes over
unseen classes (154). Logically, GZSL does not a�ect the average hierarchical accuracy by
much, as seen and unseen classes share parent-classes (see Figure 6.8).

Finally, we present and discuss four example images from the test-set with their top-
5 predictions (and corresponding confidence values), see Figure 6.8. Image (a) and
(b) have good top-5 predictions: the top-1 prediction of image (a) is incorrect (the
classifier is most confident about the label Brachirus macrolepis, while the correct label is
Brachirus panoides), but the top-1 prediction is correct up to the fine-grained genus level:
Brachirus.
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Figure 6.8: Top 5 predicted classes and their confidence values for two example test images
(best viewed in colour). Labels are organised hierarchically (K: kingdom to S: species) to
show the diversity of predictions and how close–in the label hierarchy–the classifier is to the
real label. For image (c) the correct label was not among the top 5 predictions (therefore 6
are shown). Green paths, labels and confidence bars denote correct labels. Orange confidence
bars indicate incorrect predictions.
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

Moreover, the top-3 predictions are all correct up to the genus level. For image (b),
the top-1 prediction is correct, and the remaining predictions are from the same correct
order.

The third image (c) has poor predictions, as (i) the correct label is not among the top
5 predictions, and (ii) almost all predictions are from a di�erent phylum. Interestingly,
however, the top-2 predictions (the Bittium reticulatum and Cyclura cornuta) have
something in common with the correct species (Cribrinopsis crassa): they share its most
salient feature - their skin is covered with small tubercles.

Lastly, for the fourth image (d) the correct label (Elephantulus intufi) belongs to the order
Macroscelidea (Elephant shrew), and the other predictions belong to the orders (from top
to bottom): Rodentia (Rodents) and Carnivora (Carnivores). The two predictions from
the Rodentia order are two di�erent mice species (Dipus sagitta and Holochilus brasiliensis.
Elephant shrew visually resemble mice. Interestingly, the most salient feature that would
allow a classifier to distinguish between a mouse and an elephant shrew, is cut o� from the
illustration: its long trunk-like nose, which resembles an elephant’s trunk. It is therefore
good to consider that cropping the image at its center in a standardised way can cause
the loss of information that is vital for proper classification.

6.7 Analysis and Discussion
Standard supervised classification o�ers limited solutions to deal with the full scope of the
problem presented above. ZSL models are better suited to deal with limited data (small
samples for only a subset of classes from the domain). For instance, Table 6.5 shows
that 20 Anthropod species could be correctly classified without any training examples,
from their similarity to 620 other seen Anthropod species. We note that this shows an
important gain: the labelling of these illustrations by domain experts is costly, and does
not necessarily guarantee high-quality annotations, due to the complex nature of species
classification (42). Especially prototypes optimised according to the label hierarchy can be
exploited in an expert support system to guide experts in the identification process.

In practice, it can be a real challenge to transfer results to real-world scenarios. We provide
two telling examples. First, Table 6.5 shows us that with GZSL, seen classes are favoured
over unseen classes during classification. In real-world applications, methods are required
that deal with this issue. If not, a classifier will often prefer classes from Ytr over Yts

for classification. Second, using a trained network in real-world applications can prove
problematic due to a domain shift between datasets. Our verification-set, that we have
presented in Subsection 6.3.2, serves to illustrate this issue. When using the final species
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6.7 Analysis and Discussion

Figure 6.9: A t-SNE plot showing all prototypes (closed circles) and instances (open
triangles), from the 12 most populated phyla, embedded by the final prototypical network
(should be viewed in colour). Instances from the verification-set (bottom cluster) are
indicated by the label ’unknown’. Note that t-SNE does not accurately preserve distances
between clusters. The t-SNE algorithm was run for 5,000 iterations with perplexity 100.

embedding model for classification of the verification-set, all instances are classified as
species of Anthropods, although it contains illustrations from a variety of phyla (among
which Chordates and Annelids, see Figure 6.4). The t-SNE visualisation, see Figure 6.9,
allows us to hypothesise about the results. The visualisation shows instances from the
verification-set (depicted as purple triangles, see bottom cluster), as well as instances and
prototypes from the ZICE dataset (all other open triangles and closed circles respectively),
all embedded by the species embedding model. The species embedding model appears
to have mapped instances from the verification-set to a di�erent manifold than those
from the ZICE dataset. Consequently, instances from the verification-set manifold are
classified as Anthropods, as its prototypes are closest (see the red prototype clusters in
Figure 6.9). We hypothesise that both datasets must come from a distinct marginal
probability distribution. Most likely, this domain shift is the result of di�erences in paper
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

types, sketching techniques and materials.

Overcoming the aforementioned issues is key, but we argue that ZSL and hierarchical
learning methods (methods that exploit the label hierarchy) are fundamental for problem
domains such as the one described here: where labelling of images is expensive, but where,
at the same time, auxiliary data sources contain a wealth of domain knowledge maintained
by a community of experts.

6.8 Conclusions
In this chapter we have analysed the problem of classifying species in zoological illustrations.
For this purpose, we have introduced a dataset, with many classes and few samples,
and an independant (unlabelled) verification-set, both representative of the problem
domain.

From the experimental results, we conclude that auxiliary data sources have allowed us to
push the boundaries of automated recognition for this specific problem: illustrations from 80
classes, that contained zero example instances for training, could be classified correctly. We
furthermore conclude that our model improves over the baseline classifier. Compared with
the baseline, our FP implementation allowed us to classify instances from an additional 9
unseen fine-grained classes. Moreover, implementing HPL increased the average hierarchical
accuracy substantially (from 36.41% to 39.35%). Finally, from the results of the analysis
of the verification-set in Section 6.7, we show the complexity of our task. Aside from the
depicted illustrations, there are other di�erences between the digital images that impact
the predictive capabilities of the model. The illustrators’ technique, the physical drawing
materials and the chosen perspectives change significantly between illustrators. In order
for our zero-shot learning model to function well in an application, domain adaptation
methods should be employed to align domain marginal probability distributions (132)
between datasets, and therefore make the model illustrator-invariant.

Coming back to our main problem description, we conclude that biodiversity datasets,
storing domain knowledge and auxiliary data, can be exploited to develop models for
classification (especially when small samples are available for training). These models
can then serve as decision support systems for biodiversity researchers to help classify the
historical and present-day scientific illustrations from various species of living organisms,
which reside underutilised in natural history museums globally.
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