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Automating Semantic Annotation

“Perhaps the deepest accomplishment of cognitive development is the construction of
larger-scale systems of knowledge: [...] Building these systems takes years, much longer
than learning a single new word or concept, but on this scale too the final product of
learning far outstrips the data observed.”

– Joshua B. Tenebaum, Charles Kemp, Thomas L. Gri�ths, Noah D. Goodman, in: How to
Grow a Mind: Statistics, Structure, and Abstraction

Biological nomenclature and systematics (discussed in Chapter 2), forms the basis of
worldwide scientific discourse about the biodiversity of our planet. Employing such prior
knowledge about biological structures in machine learning models, enables the process of
learning to retrieve these structures accurately from only small data samples that encode
them. At the same time, historical field observations, even more than contemporary ones,
contain fierce discussions about systematics and nomenclature. Biological taxonomies,
once extracted from archives, can be used to search historical records. Systems can exploit
extracted taxonomies through query expansion techniques, or allow users to semantically
query, or browse through, archival collections.

In this chapter, we aim to answer research question Q.4: How can we use automated
methods for knowledge extraction from archives of NHCs? by aiming to automate part of
the pipeline for knowledge extraction from field books.

5.1 Introduction

Automatic knowledge extraction from field book manuscripts and illustrations is challenging
as content is too heterogeneous to process using common HTR techniques (Chall.6).
HTR is one of the more challenging tasks within the field of Document Image Analysis and
Recognition (DIAR), mainly due to the huge variety in writing styles and languages, paper
degradation, overlapping words and historical handwriting. Creating labelled examples
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5. AUTOMATING SEMANTIC ANNOTATION

for HTR requires domain expertise (Chall.7), and interesting words lie in the long tail of
the distribution of words (Chall.8). Examples of interesting content that lies in this long
tail, are scientific names. In Chapter 4, we saw that domain experts were interested in
retrieving such names, see Table 4.1.

Here, we use computer vision and Semantic Web technologies to (i) identify the elements
of scientific species names in handwritten document images, and (ii) link and structure
the elements, using an ontology for species observations. We use the MONK handwriting
recognition system (23) to segment the document images into single word images. Our
main contribution is the automatic identification and semantic annotation of word zones
in manuscripts that contain species names, and the goal is to integrate such a system with
a system for HTR, together tackling the task of named entity transcription and salient
named entity recognition and classification (SNERC).

We build on work described in the previous chapter (Chapter 4), where an ontology
and software for semantic annotation of species observation records was constructed and
tested with domain experts. Here, we advance these methods by automating the process
of semantic annotation. We present a a novel approach to identify scientific names in
historical handwritten document images. Rather than first transcribing the text and
performing NERC afterwards on the digital text, we exploit characteristics of the document
images for identifying the domain specific salient named entities, using terms from the
NHC-Ontology1 to classify and organise them. We argue that the ability to quickly index
handwritten document images based on scientific names, ranks and authors, helps users to
navigate through large collections of documents in online libraries, such as the Biodiversity
Heritage Library (BHL).2 It opens up possibilities for faceted search, semantic querying
and semantic recommendations. Additionally, maintaining a link to the word image and
location in the full document image is important to generate ground truth for repetition of
image processing experiments as well as to allow researchers to view the original document
and therefore the extracted text in context.

5.2 Related Work
Organisations and researchers that dedicate themselves to the preservation of natural
history collections, such as IdigBio3 or the BHL (13), continuously develop new methods
to digitise specimen collections in a cost-e�ective and sustainable way, in order to facilitate
ongoing species research.

1http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
2https://www.biodiversitylibrary.org/
3https://www.idigbio.org/
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5.3 Data

The automatic extraction of scientific names from text is essential for the management of
archival resources. Therefore, there are several examples of methods for extracting and
disambiguating species names from printed texts, but extracting the same information
from handwritten texts is much more of a challenge. TaxonGrab (120), for example,
automatically extracts species names from printed biological texts. The BHL, which
aggregates scans of biodiversity publications and field notes, indexes scientific names
extracted from the publications—printed text—in their collection, to improve accessibility
for taxonomists. They match the text, extracted via OCR, with the Taxonomic Name
Server (TNS) to identify likely scientific names (13).

Similarly to the BHL, other researchers and institutes are exploiting the power of automatic
text processing for the digitisation of natural history collections. Software has been
developed to parse OCR output of printed text to formalised DwC entries for archival
and retrieval purposes (121). Drinkwater et al. (20) investigate the aid of OCR in
the digitisation of herbarium specimen labels, and found a significant increase in time
e�ectiveness using OCR output to (i) sort specimens prior to database submission, and
(ii) to add transform labels to minimal database records. Drinkwater et al. explicitly note
that OCR is currently only possible for typed and printed labels and not for handwritten
text.

As HTR is one of the more challenging tasks within the field of DIAR, mainly due to the
huge variety in writing styles and languages, paper degradation, overlapping words and
historical handwriting (Chall.6). The recognition of named entities can help document
understanding and searchability of the text, and can potentially aid HTR (86). Formerly,
NERC was a task solely used on digital text, but it has recently also been applied directly
to handwritten text (85; 84; 86). Especially when few instances of words exist and a
collection consists of many di�erent hands and connected words, making it di�cult to create
character-based representations, the identification of key words can help make the text
searchable, and potentially aid HTR. Moreover, in many cases, full-text transcriptions of
entire pages of field books are not required in order to make them digitally accessible.

5.3 Data

Transcribed field books exist online, but (to the best of our knowledge) no segmented
and annotated images of handwritten species observations are available online. For this
purpose, word images from 240 field notes from a natural history collection have been
segmented and semantically annotated. The process of annotation has been carried out in
the context of this work. However, the process of segmenting digital images into word
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5. AUTOMATING SEMANTIC ANNOTATION

zones has been carried out by the MONK system for the project Making Sense of Illustrated
Handwritten Archives 1 (19), and this is reflected in Figure 5.1.

From a field book on mammals, we selected field notes from four di�erent writers, to
account for di�erent handwriting styles and structures, ensuring a representative dataset
to demonstrate how the automated methods perform on heterogeneous, real-world data.
The segmented word images were obtained from a nichesourcing e�ort, with the help of a
handwriting recognition system MONK and a group of domain expert labellers. The word
images were subsequently manually annotated using four classes, as shown in Table 5.1.
Two of four classes are taxonomic entities. The third class refers to the publisher of the
taxonomic name, and lastly we have the class Other, which includes all words that do not
belong to any of the previously mentioned classes.

Table 5.1: Dataset class count

class Genus Species Author Other Total
y 0 1 2 3
n 177 167 144 17309 17797

The final counts of examples per class are shown in Table 5.1. The process of labelling
and annotating words is time-consuming and, in our case, requires expert knowledge.
Therefore, limited training data is available. As machine learning methods generally require
a very large number of labelled samples, methods have to be adjusted to the dataset size
to acquire a predictive model that generalises well. These adjustments are described in
Section 5.4 and 5.5. This is also one of the challenges of projects working with real-world
data where obtaining labelled data is expensive or simply not feasible. Models that use
prior knowledge are better able to generalise from noisy data and small samples. The
dataset used in this work can be found online.2

5.4 Scientific Name Extraction Model
Below we describe our contribution. The full pipeline is shown in Figure 5.1, the blue
rectangle indicating the scope of this work.

We used the MONK handwriting recognition system (23; 26), developed by Schomaker,
for word segmentation (122; 123; 124). First, the system segments handwritten document
images into lines and second, relative to those lines, into word zones that potentially hold
words. The system allows the labelling of word images and transcription of sentences by

1http://www.makingsenseproject.org
210.5281/zenodo.2545573
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5.4 Scientific Name Extraction Model

Segment Word images Classify Predictions

Annotate
Knowledge

base

Figure 5.1: The full pipeline: automated semantic annotation of scientific names

domain experts. It then uses these labels for HTR. In this work, the word images were
manually annotated using four semantic concepts, or classes: genus , species , author

and other . The classification of each word image to its corresponding semantic class is
discussed in Subsection 5.4.1. In Subsection 5.4.2, we discuss the semantic annotation of
the classified word images using the NHC-Ontology1 for species observations.

5.4.1 Classification of Word Images

To classify the word images to one of four classes, we use three distinct features; visual
structural features, position and context. We chose to create one single neural architecture,
built with help of Keras (125), that could be trained end-to-end, so that the classification
error is only propagated once, in contrast to using predictions from multiple classifiers
and combining them after training to form a single prediction. The final architecture is
explained visually in Figure 5.2, and will be discussed below.

Visual Structural Features. The feature detector that was used in this work for the
detection of visual structural features is a CNN (126). It has been shown that CNNs outper-
form other ANNs on image recognition tasks (127), see Section 2.2.1. The basic network
used here is a deep CNN for object recognition developed and trained by Oxford’s Visual
Geometry Group (VGG) and called the VGG network (127). We use their configuration,
with 16 convolutional layers, and import weights pre-trained on the ImageNet task by the
VGG (128). Previous work (129) has demonstrated that transferring image representations
with CNNs overcomes the problem of training with limited training data, e.g., less than a
few thousand training images, despite di�erences in image statistics between the source
dataset and target dataset. By, for instance, training on the ImageNet task, the VGG
model learns filters on various di�erent scales, which can be used as feature extractors for

1http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
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1024 hidden nodes 4 hidden nodes

              Auxiliary input Pretrained  Deep ConvNet, VGG16 

            Main input

 4 hidden nodes

Softmax activation

  LSTM, 256 units

“Genus” “Species”

(rows, columns, channels) image (x,y) centroid (rows, columns, channels) image(x,y) centroid

1024 hidden nodes

Pretrained  Deep ConvNet, VGG16 

            Main input

              Auxiliary input

1024 hidden nodes

t = 1 t = 2

Softmax activation

1024 hidden nodes

  LSTM, 256 units

Figure 5.2: The CNN–MLP–BLSTM architecture, “unrolled” for both time steps t.

other types of images. These features, extracted from handwritten documents with help
of the convolutional part of the VGG network, are used for training a simple MLP on our
task.

Position. In addition to visual features, the position of a word in a document, especially
(semi)-structured ones such as field observation records, often provides a good descriptive
feature for the recognition of a named entity. The position is therefore often used as a
feature in the field of NERC, however, it has been used more often in digital text, e.g.,
(130) than in digital images, e.g., (85; 84; 86; 83). In this work, we use the relative
centroid of the word images, c = (x, y), relative to the image borders, as input features to
a simple MLP with two inputs, x and y, and one hidden layer of size 4. To train the entire
model end-to-end, we concatenated the last hidden layers of both models. The merged
hidden layer therefore has a size of 1024 + 4 = 1028.

Context. As a third feature type, we introduce context: the characteristics of adjacent
word images, specifically bi-grams. Figure 5.3 shows frequencies for word image bi-grams.
First, horizontal pairwise alignment was calculated per word w(i) and w(j). They were
seen as horizontally aligned if y1(i) < yc(j) < y2(i), where i and j indicate the i-th
and j-th word image, y1(i) the first y coordinate of w(i), y2(i) the second, and yc(j)

the y coordinate of the centroid of w(j). Second, the right neighbouring word of w(i)

was retrieved by calculating all pairwise vertical distances for the horizontally aligned
words: distij = cxi ≠ cxj , where cxi refers to the x coordinate of the centroid of w(i).

82



560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork
Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

5.4 Scientific Name Extraction Model

Figure 5.3: Adjacency matrix that shows frequencies for word bi-grams (sequences of two
adjacent words). E.g., ’genus’ was left of ‘species’ 91% of the time ‘genus’ was encountered.

The smallest negative distance, within a certain bound, indicated right adjacency. The
adjacency matrix only takes into account instances that actually have an adjacent word,
as it could be that a word is surrounded by white space on every side.

As expected, the di�erent classes have strong co-occurrence dependencies. Therefore, we
converted the dataset to sequences of size two (bi-grams), and added a last layer to the
model architecture for sequence prediction. For an adequate prediction we used a BLSTM
neural network (discussed in Subsection 2.2.1) that is able to learn long-term dependencies
between features. By using the bidirectional variant of the LSTM, dependencies can be
learned in both horizontal orientations, see Figure 5.2.

5.4.2 Semantic Annotation of Word Images

The NHC-Ontology1 is an ontology for species observations, based on the DSW ontology,
and written in OWL.2 The ontology is centered around the description of meta-data
relating to the observation of an organism, and allows a researcher to describe as which
various taxon groups an organism has been identified. The model uses the Web Annotation
Vocabulary3 to link bounding boxes of word images to their semantic labels. In the
example listing below, Listing 5.1, two images refer to a genus and a species, which
together constitute one taxonomic name ex:taxon1 of rank ex:species. They are linked
to the publisher of the name with the nhc:scientificNameAuthorship

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
property.

1http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
2https://www.w3.org/OWL/
3https://www.w3.org/TR/annotation-vocab/
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5. AUTOMATING SEMANTIC ANNOTATION

@prefix nhc: <http :// makingsense.liacs.nl/rdf/nhc/> .
@prefix ex: <http :// example.org/terms/> .
@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#> .
@prefix oa: <http ://www.w3.org/ns/oa#> .
@prefix dwc: <http ://rs.tdwg.org/dwc/terms/> .
@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

ex:taxon1 rdf:type dwc:Taxon ;
nhc:scientificNameAuthorship ex:author1 ;
nhc:taxonRank ex:species .

ex:author1 rdf:type foaf:Person .

ex:anno1 rdf:type oa:Annotation ;
oa:hasBody ex:taxon1 ;
oa:hasTarget ex:image1.jpg#xywh=x,y,h,w ;
oa:hasTarget ex:image1.jpg#xywh=x,y,h,w .

ex:anno2 rdf:type oa:Annotation ;
oa:hasBody ex:author1 ;
oa:hasTarget ex:image1.jpg#xywh=x,y,h,w .

Listing 5.1: Example of a semantically annotated species name

5.5 Experiments and Results

To analyse the influence of the three features on the predictive performance of the model,
we conducted multiple experiments where we tested the performance of the pre-trained
CNN, CNN–MLP and CNN–MLP–BLSTM.

5.5.1 Experimental Methodology

Before training, the images were scaled by dividing them by 255 so that they would fall
within the range [0-1]. All images were re-sized to the average image dimensions: y = 74,
x = 139. No data augmentation was used. Based on horizontal adjacency, as explained in
Subsection 5.4.1, image bi-grams were constructed, sequences of l = 2, as input to the
BLSTM.

The word images were shu�ed, keeping together word images from the same page, and
thereafter split into a train and test set. As one word image could occur in two bi-grams,
we hereby avoid that word images from the test set were also in the training set, which
would bias the classification results. However, by shu�ing the pages, we still ensure that
the model does not overfit to one writing style or structure. We used 80% of the word
images for training and the remaining partition as test set, making sure that 20% of
the scientific name elements were in the test set. As classes in the word bi-grams were
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5.5 Experiments and Results

highly imbalanced, we used random minority oversampling with replacement, to increase
the counts of samples from minority classes in the training data. When training a CNN,
oversampling is thought to be the best method to deal with imbalanced datasets with
few examples in minority classes, and appears to work best if the oversampling totally
eliminates the imbalance (52).

However, as we are dealing with sequences rather than singular samples, we chose to
oversample sequences, e.g., species–author. Converted back to singular images, this would
result in a step imbalance with a small imbalance ratio p = ±1.1 rather than a large
imbalance ratio of p = ±16 (52).

The networks were all trained using the Adam classifier with a learning rate of 10≠4 and
categorical cross-entropy loss. Each network was trained using early stopping with patience
2, meaning that training was stopped when, for two epochs, the validation error was
increasing. Per epoch, the weights were only stored if the predictive performance had
increased compared to the previous epoch. In the testing phase, thresholding was applied
to the output of the networks to compensate for oversampling the data during training, as
oversampling alters prior probability distributions. One way to perform thresholding is to
simply correct for these prior probabilities, by dividing the output of the network for each
class, then seen as posterior probabilities, by the estimated prior probabilities. In our case,
the imbalance was not completely eliminated, so the thresholds were calculated as the
ratio between the original class counts and those after oversampling.

As a final step, the output of the model that performed best was used to test the whole
pipeline. Word images from the test set, that were classified as scientific names, were
assigned IRI e.g., ex:taxon1. The names were linked and semantically enriched using
terms from the ontology and transformed to the RDF format. The code can be found
online.1

5.5.2 Results and Discussion

Table 5.2 summarises the final classification results for each network. Due to a large
class imbalance, precision and recall were used to assess the predictive power of the
classifier. Reporting accuracies would be misleading, as they would portray the underlying
distribution, rather than the predictive power of the model (if the model would always
predict “other”, it would be a bad predictor for the task, but the accuracy would be 93%,
as the “other” class accounts for 93% of the data).

1https://github.com/lisestork/asa-species-names
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5. AUTOMATING SEMANTIC ANNOTATION

Table 5.2: Classification precision, recall and F 1 results for each network. Support indicates
the number of actual occurrences of that class in the given subset.

Method Class Precision Recall F1-score Support
1. CNN Genus 0.80 0.78 0.79 36

Species 0.64 0.97 0.77 33
Author 0.78 0.78 0.78 32
Other 1.00 0.97 0.98 525
avg / total 0.82 0.77 0.80 626

2. CNN–MLP Genus 0.85 0.81 0.83 36
Species 0.81 0.88 0.84 33
Author 0.78 0.78 0.78 32
Other 0.99 0.99 0.99 525
avg / total 0.96 0.96 0.96 626

3. CNN–MLP–BLSTM Genus 0.86 0.89 0.88 36
Species 0.94 0.91 0.92 33
Author 0.78 0.88 0.82 32
Other 1.00 0.99 0.99 525
avg / total 0.98 0.97 0.98 626

Bold F1 scores indicate statistical superiority over F1 scores for that same class within
the cell of the preceding method. The table indicates that the BLSTM produced the
highest average F1 scores for each class. The addition of the BLSTM layer specifically
increases precision and recall scores for the author names. This makes sense; without
context these appear similar to regular words. The input of centroid data to the network
does not have an e�ect on the recall or precision of author names, but does increase
precision for the retrieval of species names. Figure 5.4 shows 4 images from the test set
that were misclassified. While both the CNN and CNN–MLP network misclassify most of
the same word images, the output of the CNN–MLP–BLSTM is quite di�erent. Image
(a) and (b) were both misclassified by the networks without the BLSTM layer, but were
correctly classified by the final model. Image (a) for example, was classified as “species”,
while actually being labelled as an author name. Visually, it resembles a species name; it is
underlined and appears in a similar position on the page. Without context of other words
it is challenging to correctly classify such images without proper historical knowledge of
the domain. Image (b) was misclassified as “other”, but correctly identified as an author
name in the BLSTM model, most likely due to the visual characteristics of the word image
that is left adjacent. On the other hand, image (c) and (d) are together misclassified as a
species name and its author by the BLSTM network, while they were correctly classified
by the other networks. Examining the images, we see that they are adjacent and visually
resemble these classes (capitals, underlining).
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5.6 Conclusions and Future Work

(a) y = 2, ŷ = 1 (b) y = 2, ŷ = 0 (c) y = 3, ŷ = 1 (d) y = 3, ŷ = 2

Figure 5.4: Four misclassified examples. Classlabels relate to those discussed in table 5.1

In Table 5.3, we present retrieval scores for the identification of complete scientific names
from field book pages. A python script parsed the recognised species elements from the
test set, and connected them together using the NHC-Ontology. A total of 27 out of
36 species names were retrieved, with an F1 score of 0.86. Interestingly, there were no
false-positives among the final predictions. Figure 5.5 shows one of the correctly classified
scientific names. The final RDF dataset can be queried through our online SPARQL
endpoint.1

Table 5.3: Final classification precision, recall and F 1 results for the detection of scientific
names.

Method Class Precision Recall F1-score Support Total
CNN–MLP–BLSTM Scientific names 1.0 0.75 0.86 27 36

(a) y = 0, ŷ = 0 (b) y = 1, ŷ = 1 (c) y = 2, ŷ = 2

Figure 5.5: A correctly classified scientific species name: (a) Genus (b) Species (c) Person

5.6 Conclusions and Future Work
In this chapter we show that we can accurately identify and classify components of
handwritten species observation records from di�erent features: visual structural features,
position and context. We show that our methods are applicable even though the dataset
contains four authors with di�erent handwriting styles and di�erent processes of recording
their species observations. A major challenge of working with handwritten text is its
irregularity. Our results show that we can mitigate this challenge by building up multiple
pieces of evidence for classification by learning from multiple features. Each of the di�erent

1http://makingsense.liacs.nl/rdf4j-server/repositories/SN, can be queried through a query
editor such as: https://yasgui.org/
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5. AUTOMATING SEMANTIC ANNOTATION

features we examine in our model adds information and improves the overall results. In
addition, as the results are extracted and structured in RDF format as part of the process,
they are immediately available for search and comparison with other archives - historical
or present day.

The dataset used for experiments in this chapter is part of the same expedition archive
(the NC collection, see Subsection 2.3.2). Although we represent multiple authors and
styles, the next step would be to demonstrate the generic nature of our results by analysing
biodiversity records from other expeditions. Once we establish that, we will extend our
methods to identify other common classes from biodiversity data, for example, locations,
dates and anatomical entities.

It is our aim to integrate the new methods with established methods for automated
handwriting recognition, using a fruitful dialogue between our system and a system for
HTR, in which the hypotheses (highest confidence values) of both systems work together
for the transcription and semantic annotation of named entities in manuscripts.
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