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Background

“Whether in literary criticism or scientific investigation, the academic mind is best at
taking things apart. The complementary arts of integration are far less well developed.
As with any interdisciplinary pursuit, it is the bridging across disparate ways of knowing
that is the constant challenge.”

– Richard J. Borden, in: Ecology and Experience

In this chapter we present the background of the thesis. Owing to its interdisciplinary
nature, we cover a number of diverse topics, ranging from natural history, which is the
application context of this thesis (Section 2.1), to methods from two sub-fields of computer
science and artificial intelligence (AI): symbolic, and subsymbolic artificial intelligence,
each with their own academic legacy. We discuss both under the umbrella of the task
knowledge extraction (Section 2.2). We close the chapter by detailing the use cases and
datasets that formed the basis for analyses described in subsequent chapters (Section
2.3).

2.1 Natural History

Biodiversity research aims to understand the whole of life on earth, its evolution and
the various factors that generate its diversity. The field is usually subdivided into three
levels, in which diversity is measured and researched: species, genetics and ecology. In
this thesis, we focus on research into the diversity of species. Inherent to species research
is the comparison and classification of the various plants and animals that inhabit our
world. In order to realise this, naturalists in the field are challenged to develop methods
that moderate systematic descriptions. Expeditions to biodiverse areas allow naturalists
to record organism observations and identifications, enabling them to extend, improve or
challenge existing classifications.
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2. BACKGROUND

2.1.1 Taxonomy and Nomenclature

In the first part of the 18th century, Carl Linnaeus published his Systema Naturae, a
system that formed the basis for biological taxonomy and nomenclature. From then on,
naturalists and taxonomists started to use taxonomy and binomial nomenclature for the
hierarchical classification and systematic naming of organisms. Therefore, most historical
records found today in museums and other institutions (38), as well as contemporary
biodiversity datasets, use biological taxonomy and binomial nomenclature to classify and
describe their specimens and observation records.

Taxonomy. In the Systema Naturae, Linnaeus presented ideas for the hierarchical classifi-
cation of species. By his system of classification, the natural world was organised into three
kingdoms: the animal kingdom, the plant kingdom, and the mineral kingdom, although
his system for the classification of minerals was never widely adopted by the scientific
community. Species were grouped based on shared traits into units called taxa, which
were in turn organised hierarchically into six nomenclatural ranks that increasingly share
more traits: kingdom, class, order, genus, species and variety, according to a subsumption
relationship. For example: a common octopus is an octopod (of the order octopoda), as
well as a cephalopod (of the class cephalopoda), as well as an animal (of the kingdom
animalia), see Figure 2.1. More recent subdivisions that have been added over the years
are phyla, families and tribes, and subranks such as subspecies, or subtribes.

Animalia [kingdom]
Mollusca [phylum]

Cephalopoda [order]
Octopoda [class]

Octopodidae [family]
Octopus Cuvier, 1797 [genus]

Octopus vulgaris Cuvier, 1797 [species]

Figure 2.1: Classification of the species Octopus vulgaris Cuvier, 1797, a common octopus.1

Edges represent the “part–of” relationship.

Binomial nomenclature. Binomial nomenclature translates into two-term naming sys-
tem, and was introduced to formally name species according to one system. The idea of
a two-term naming system was first put forth by Linnaeus in 1753 in his work Species
Plantarum. A systematic name in binomial nomenclature is called a binomial name, also
known as a scientific name. Octopus vulgaris (Figure 2.1) is an example of a binomial
name. The first of the two terms identifies the genus to which the organism belongs, and

1https://www.gbif.org/species/2289671
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2.1 Natural History

the second is called the specific epithet, and points to the specific species within that
genus. Commonly, the binomial is followed by the name of the author who published the
name, and the date when the name was published in literature. It is also common for a
name to have more than one author. Figure 2.2 shows an example of a scientific species
name from a field note; it dates back to 1821.

Figure 2.2: A scientific name in binomial nomenclature: (a) Rhinolophus (genus) (b)
javanicus (specific epithet) (c) Hasselt (author of the name: Johan Coenraad van Hasselt)

Taxonomic Debates and Name Ambiguity. During the development of biodiversity
research, methods of biological classification were continuously subject to intense discussion
(39). Multiple theories emerged regarding collection practices and classification. In
particular in the early nineteenth century and before, naturalists were struggling to find
and agree upon one ‘true’ natural system. NHCs embody this search for a terminological
structure which could be used to order, describe and classify nature.

The lack of consensus on biological classifications, as well as the challenges that came with
the publication of scientific names—the very act of bringing home the actual observation
records as well as tensions that arose through top-down policy-making (16)—resulted in
species descriptions that are challenging to analyse within the present scientific paradigm,
but also within collections themselves: (i) biological classification systems implied in field
books cannot be directly mapped to present taxonomies (ii) taxa have various types of
synonyms and homonyms within collections, see Figure 2.3, and Figure 2.4, and (iii)
scientific names shift between genera and species (39; 29; 40).

Scotophilus kuhlii temminckii (Horsfield, 1824) [current name]
Vespertilio temminckii Horsfield, 1824 [synonym]
Vespertilio fulvus Kuhl & Van Hasselt [synonym]

Figure 2.3: Synonyms of the current taxon Scotophilus kuhlii temminckii. Courtesy:
E. Gassó Miracle (2016)

Due to this, taxonomic referencing (resolving historic scientific names to current scientific
names) of historical observation records, as well as establishing links between scientific
names in general, are important processes in species research. Thomer et al. (2012) (35)
describe taxonomic referencing as the process of linking a legacy name to its valid scientific
name. They mention the process is analogous to that of georeferencing for localities.

17
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Similarly to georeferencing, the process helps to integrate data related to the same entities,
as well as separate data from unrelated ones.

Orestias elegans [hemihomonym]
Orestias elegans Garman, 1895 [accepted name]
Orestias elegans Ridley, 1887 [accepted name]

Figure 2.4: Hemihomonymy, an accepted form of homonymy where two species have the
same name, but come from distinct kingdoms: the first referring to an animal (a pupfish),
and the second to a plant (an orchid).1

2.1.2 Multimodal Field Observations

Early field observations exist in natural history museums as physical specimens, accompa-
nied by archival material such as handwritten field books, and illustrations. Museums
keep historical records for comparison with contemporary records. Many collections date
back 100 years or more (3). Through more recent next-generation techniques such as
photogrammetry, laser scanning, and computed tomography, rich digital representations
of specimens as well as manuscripts (e.g., the Dutch Metamorfoze programme2) can be
created (7). Below we discuss each modality and its characteristics.

Specimens. Specimens that are commonly kept in natural history museums are: fluid-
preserved whole organisms and organism parts, frozen tissues, pinned dried insects, pressings
and seeds or spores of plants, dried skins, skeletons, nests of birds and eggs of birds and
insects (3). Figure 2.5 shows a skeleton of a Pteropus vampyrus from the Naturalis
Biodiversity Center (NBC).

It is common for such specimens to be accompanied by labels containing metadata
regarding the specimen, such as the name of the collector, the scientific name, location
and date of collection, although metadata are often limited to a location or naturalist
that performed the identification or collected the specimen. In most cases, labels include
scientific names, but do not record any scientific context (29), for instance regarding the
literature used for classification. As alternative views on taxonomy exist, mentioned earlier
in Subsection 2.1.1, one name can point to two very distinct species. Linking the physical
specimens to observation records becomes crucial. When a specimen is accompanied by
a record of the organism’s latent, faded or internal traits and attributes (e.g. behaviour,
coat colour, or intestines), identification of the preserved specimen can be revisited and its
value for use in long-term scientific studies therefore increases.

1https://species.wikimedia.org/wiki/Orestias_elegans
2https://www.metamorfoze.nl/kennis-onderzoek/lexicon/preservation-imaging
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2.1 Natural History

Figure 2.5: A specimen from the Naturalis - Zoology and Geology catalogues.1

Field Books. Since the onset of field work in biodiversity expeditions, naturalist have
been manually recording species observation data. The containers that preserve these
observation records are fittingly named field books (41), see Figure 2.6. They provide rich
descriptions of species-specific traits such as measurements of specific organs or other body
parts, the environmental conditions in which organisms are discovered and information
about how organisms were collected, classified and described. Because of this, field books
provide rich insight into the daily practices, methods, and results of the research field
(33).

The interpretation of historical field records is an intricate and complex task. We demon-
strate this complexity with the use of an example. The field note shown in Figure 2.6
describes an occurrence of an organism identified as the Titthaecheilos javanicus Nobis
(right page, upper left corner).

Nobis is latin for by us. The space behind the binomial name is reserved for the author of
the species. Therefore, the term by us refers to the authors of the field book: according to
them, they were the first ones to have identified, described and named the organism. The
name Titthaecheilos javanicus has, however, never been published in any classification
system. Most likely, the name served as a basionym2 for the published name Pteropus
titthaecheilus Tem. (upper right corner) believed to have been added to the field note
in Leiden, years later, by Jacob Coenraad Temminck, a dutch zoologist and museum
director. The name can be found in older classification systems as the name Pteropus

1https://data.biodiversitydata.nl/naturalis/specimen/RMNH.MAM.33245.a Images free of known
restrictions under copyright law (Public Domain Mark 1.0).

2A basionym is a synonym on which a later scientific name is based.
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titthaecheilus (Temminck 1825). In turn, that name served as a basionym for the accepted
name Cynopterus titthaecheilus (Temminck, 1825).

Moreover, below the scientific name we find another name type: Buitenzorg, a place name.
Historically, Buitenzorg was the name for the large city of Bogor, close to the capital of
Java, Jakarta. The city houses the largest botanical garden in the world, the botanical
garden of Bogor, which served as the headquarters of the NC. Last, the field note is
written in a distinct, historical style, and mixes three languages: the note starts in Dutch,
continues in German, and ends in Latin.

Figure 2.6: A page from the annotated field book describing the species
Titthaecheilos javanicus Nobis. Pteropus titthaecheilus Tem (upper right corner) is be-
lieved to have been added later in Leiden by Jacob Coenraad Temminck, http://viaf.org/
viaf/69703180, a dutch zoologist and museum director. The written annotation is thus an
additional identification of the observed organism. Collection Naturalis Biodiversity Center,
MMNAT01_AF_NNM001001033_013.1 Image free of known restrictions under copyright
law (Public Domain Mark 1.0).

Illustrations. Historically, collectors were accompanied by professional illustrators, who
produced detailed drawings of organisms, as shown in Figure 2.7. The habitus illustration—
a scientific illustration of a species’ physical appearance—was the most important medium
to convey a species’ characterising traits to other scientists. In illustrations, scientists are
capable of delineating and highlighting minuscule details, often more so than photographs.
Habitus illustrations were routinely and abundantly created and commonly served as
examples for the description of newly discovered species, so-called holotypes. Additionally,
they sometimes recorded the habitat or behaviour of an organism.

1https://dh.brill.com/nco/view/nco_NNM001001033_013/makingsense
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In illustrations, the background (natural habitat) is often omitted and species are depicted
in the form of collages of multiple (smaller) depictions of their external and internal anatomy
(e.g., bones, organs, limbs). These appear in a combination of various views (e.g., frontal,
dorsal, lateral). Moreover, illustrations exist as rough pencil sketches and/or detailed
colour drawings and commonly contain handwritten captions. Often, they are published
in digital archives with limited or no identifications. When illustrations contain captions
with handwritten historical names, these are mostly unpublished or obsolete within today’s
taxonomy. The left illustration in Figure 2.7 says Asterias tesselatus (Lamarck, 1816), an
unaccepted name, and Asterias granularis Kuhl, an unknown name. The current accepted
name of the starfish is the Goniaster tessellatus (Lamarck, 1816). The middle photograph
has some unreadable text in the upper right corner, and a pencil annotation that most likely
reads Noae Lam., appearing to refer to a genus published by Jean-Baptiste de Lamarck.1

The current accepted name of the species is Arca noae (Linnaeus, 1758).

Figure 2.7: Zoological illustrations from Iconographia Zoologica online2 (best viewed in
colour). Images free of known restrictions under copyright law (Public Domain Mark 1.0).

The identification of an organism from a photograph or illustration without reference to a
scientific name, is a complex and delicate task, even for domain experts (42).

2.2 Knowledge Extraction

In this section, we introduce the preliminaries used throughout this thesis. Our approach
employs techniques from subsymbolic AI (e.g., computer vision) well as symbolic AI (e.g.,
Semantic Web) , for the purpose of knowledge extraction.

1Jean-Babtiste de Lamarck, a French naturalist. URI: https://viaf.org/viaf/41849820/
2https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html
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We take the definition of the term information extraction from (43), and use this as a red
thread that weaves through the thesis:

Definition 2.1. “Information extraction is the process of extracting information and
turning it into structured data. This may include populating a structured knowledge base
with information from an unstructured knowledge source. The information contained in
the structured knowledge base can then be used as a resource for other tasks, such as
answering natural language queries, or improving on standard search engines with deeper
or more implicit forms of knowledge than that expressed in the text”.

Knowledge extraction is a form of information extraction. It uses similar methods, but
the main criteria is that results of the extraction process are structured according to
formalised semantics such as taxonomies or ontologies (which we will discuss in Subsection
2.2.2).

Examples of information and knowledge extraction tasks are semantic annotation and
named entity recognition and classification (NERC), both described earlier in Subsection
1.1.3, in which ontologies—formal specifications of concepts and their relationships—play
a large role in the information extraction process. A similarity between these tasks and
our work is that we leverage domain specific ontologies and taxonomies for knowledge
extraction. One major distinction between these and our work is that we extract knowledge
from digital images, whereas commonly, an intermediate step transforms the content of
images to digital text, to which then information extraction is applied.

In the following sections, we will detail the most important notations, concepts and tech-
niques used throughout this thesis, which fall under the umbrella of machine learning,
used to automatically extract patterns (subsymbolic AI, Subsection 2.2.1) and knowl-
edge representation and reasoning (KRR), used to organise the patterns semantically
(symbolic AI, Subsection 2.2.2).

2.2.1 Machine Learning

In machine learning, learning algorithms learn from data to perform a certain task: e.g.,
hypothesise to which category y or target value t a sample belongs. The type of learning
algorithm or model that is used depends on a number of things, such as (i) the structure
of the data, (ii) the task, (iii) the kind of experience the models are allowed to have
during the learning process (simulating certain real-world situations) (44).

Data Structures. Examples of data types often used in machine learning tasks—and
that we will use in this thesis—are digital images, sequences such as sentences.

22
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˛ Digital images are digital captions of scenes or pictorial materials. They represent
a coherent collection of focus points of light rays coming from an object. A digital
image divides the real image into a grid of real numbers, called pixels, which discretise
properties of the underlying areas such as brightness and hue. The process of digitisation
of the spatial domain is called sampling. Discretising the range in which these real
numbers fall is called quantisation (45). A gray-scale image is a 2-dimensional (2D)
digital image, of which each value represents a pixel that samples the brightness of
that pixel. Commonly, the brightness range is encoded in 256 (28) levels (values
from 0 to 255), corresponding with an 8-bit discretisation. RGB images sample three
values per pixel, also called channels: the brightness of the red, green and blue values.
Similarly to gray-scale images, these three channels are commonly encoded in 256
levels. Both sampling and quantisation depend on the imaging device that is used.
The resulting multidimensional array of real numbers can be stored and handled by a
digital computer.

We define a digital image (either gray-scale or RGB), with m rows and n columns, as
follows:

Definition 2.2. A gray-scale digital image X is a 2D numerical array, or matrix, with
xij œ R being the gray value of the pixel in the i-th row of and the j-th column, see
the matrix representation in Equation (2.1) below.

X =

S

WWWU

x1,1 x1,2 ... x1,n

x2,1 x2,2 ... x2,n
...

...
...

...
xm,1 xm,2 ... xm,n

T

XXXV
(2.1)

An RGB image is a multi-channel digital image in which each channel represents a
colour layer. This can be considered a 3D numerical array, or tensor, with xijk œ R
being the value of the pixel in the i-th row, the j-th column, and k-th colour channel.
A tensor representation of an RGB image is shown in Equation (2.2) below.

X =

x1,1,1 x1,2,1 ... x1,n,1
x2,1,1 x2,2,1 ... x2,n,1

...
...

...
...

xm,1,1 xm,2,1 ... xm,n,1

x1,1,2 x1,2,2 ... x1,n,2
x2,1,2 x2,2,2 ... x2,n,2

...
...

...
...

xm,1,2 xm,2,2 ... xm,n,2

x1,1,3 x1,2,3 ... x1,n,3
x2,1,3 x2,2,3 ... x2,n,3

...
...

...
...

xm,1,3 xm,2,3 ... xm,n,3

(2.2)

˛ Sequences are digital representations of values that are meaningful in a certain
arrangement, such as sentences, digital texts or even sequences of images that represent

23
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words in a sentence.

We define a sequence of values as:

Definition 2.3. A sequence s is a finite set of values (x(1), . . . , x(t)) that are tightly
interrelated, where t indicates the length of the sequence, and x(i) the i≠th value of
the sequence.

In classical machine learning, “raw” data are first transformed into features (numerical
representations of raw data) that represent the variations in the data well. This process is
called feature engineering.

Machine Learning Tasks. Below, we discuss two machine learning tasks used in this
thesis, but many more exist (e.g., regression or clustering).

˛ Classification: In a classification task, a machine is asked to infer to which of k

categories some input belongs. The learning algorithm is asked to produce a function
(a model) f : Rn æ {1, . . . , k} (44). An example of this is image classification, in
which an image X is mapped to the category y œ {1, . . . , k} to which the machine
thinks the image belongs, each number representing a class. For example, an image X
of a bear gets mapped to the label y(i) that encodes the bear class, or an image of
the word Pteropus gets mapped to the label y(i), representing the class Pteropus. A
machine learning model trained for classification generally produces a decision boundary,
see Figure 2.8, that separates data from distinct classes (in Figure 2.8, the decision
boundary separates instances from the red class from that of the black class). The
model classifies a new data point as belonging to a certain class by calculating on
which side of the boundary it lies.

˛ Classification with structured output: In classification with structured output, a
machine is asked to produce, given some input, several values that are all tightly
interrelated : a sequence s. Examples are (i) image captioning, where a machine
receives an image as an input and outputs a sentence that describes the image, or (ii)
NERC, where a machine receives a sentence, and returns the same sentence with its
named entities annotated with terms from a structured knowledge base.

Learning from Experience. Below, we discuss two types of learning strategies that vary
in the amount of experience they are allowed to have during the learning process.

˛ Supervised learning: Most types of learning algorithms get to “see” all training
examples x œ Rn and their labels y œ Y tr (classification) or targets t œ Rn (regression),
and are therefore supervised in the sense that they are instructed as to what the output

24
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y

x

w
· x

+ b =
0

w

Figure 2.8: Example decision boundary of a binary classifier.

for a certain input should be. From the training data, the machine learning algorithm
is asked to learn the mapping between input and output, and use it for extrapolation
to new data from a test-set.

˛ Zero-shot learning (ZSL): ZSL is an extension of supervised learning in which the
test-set represents a distinct set of classes y œ Y ts, for which Y tr fl Y ts = ÿ. The goal
of ZSL is that a classifier learns representations for data from a set of seen classes Y tr

(seen by the algorithm) with medium to large samples, which are then transferred to
classify classes from another set of unseen classes Y ts, for which no or small samples
are available for training.

An appealing characteristic of ZSL techniques is that it is possible to exploit data from
auxiliary data sources to share representations between classes, and hereby push the
boundaries of automated recognition for a specific problem. As with regular supervised
learning, it can be di�cult in some cases to control which features are shared.

Other popular types of learning are unsupervised learning and semi-supervised learning,
but these are out of the scope of this thesis.

Deep Learning Models. Deep learning is a subfield of machine learning that brings
forth a specific type of machine learning models, called deep (artificial) neural networks
(DNNs). DNNs are able to learn representations of data from data (46), replacing part of
the feature engineering pipeline. These learned representations then allow computers to
perform a machine learning task. Artificial neural networks (ANNs) are models that are
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inspired by the human brain, as they are trained to strengthen and weaken connections
between input variables, much like the brain’s networks of neurons. DNNs are types of
ANNs that are trained to learn deep, hierarchical representations of data—with multiple
levels of abstraction (46). For the purpose of classification, they define a mapping between
an input array x = (x1, . . . , xn) and an output y, y = f(x; ◊), and learn the value of
parameters ◊ that defines the best function approximation.

Below we discuss types of DNNs that are used in this thesis.

˛ Multi-layer perceptrons (MLPs): An MLP is an example of the simplest type of
DNN, see Figure 2.9. It is a type of feed-forward neural network, meaning that the
multiplications flow ‘forward’ in one direction through the network. Although the
network represented here has one level of abstraction (one hidden layer), DNNs usually
have many. By adding multiple hidden layers, we increase the network’s depth. In
Figure 2.9, each connection represents a multiplication with a weight. In this figure,
there are two weight matrices W(i), the superscript denoting the i-th weight matrix,
one between the input and the hidden layer, and one between the hidden layer and the
output. We call these layers fully connected, as each node in one layer is connected
with every other node in the next layer, i.e., has its own weight.

...

...
...

x1

x2

x3

xn

h1

hm

o1

ok

Input
layer

Hidden
layer

Ouput
layer

Figure 2.9: An example of an MLP with one layer of abstraction. The network has an
n-dimensional input, m hidden nodes and k outputs (classes).

See Equations (2.3) to (2.5) for the network’s mapping between x and y. Equation
(2.3) and (2.4) are called node activations. They show an additional parameter b(i)

j ,
which stands for bias and serves to shift the activation function and thereby the
classification boundary by adding a constant.
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2.2 Knowledge Extraction

hi =
ÿ

j

w(1)
ij xj + b(1)

j (2.3)

oi =
ÿ

j

w(2)
ij xj + b(2)

j (2.4)

y = argmax(o) (2.5)

While an MLP is a linear model, most ANNs employ at least one layer in which a
non-linearity function g, called activation function, is applied to the activation of each
of the neurons in a hidden or output layer, as in Equation (2.6). Common activation
functions are the ReLU or the softmax functions.

hi = g

A
ÿ

j

w(1)
ij xj + bi

B
(2.6)

The activation of the last layer (often a softmax function applied to the activation
of the last layer) produces a distribution over output classes, also called confidence
values, which correspond to the distance of an instance to the decision boundary, and
thereby how confident the classifier is about that class being the one represented in
the data. This intuitively makes sense, as when our instance lies very close to the
decision boundary (or boundaries for multi-class classification), it is more likely to
actually belong to the other class than when it’s further away.

˛ Convolutional neural networkss (CNNs): Whereas the MLP is used for processing
1D arrays, CNNs are used for processing grid data. They are often used in computer
vision for classification of images. Characteristically, they use a mathematical operation
called a convolution. In image classification, a convolution is a function that extracts
features from regions of pixels in an image (47). The kernel K, a small matrix of
integers, acts as a sliding window that is moved over the digital image X and produces
a weighted average with the underlying pixels, see Equation (2.7) (44).

S(i, j) = (X ú K)(i, j) =
ÿ

m

ÿ

n

X(i ≠ m, j ≠ n)K(m, n). (2.7)

Hence, instead of acting on the full input, kernels act on subregions of an image.
Digital images exist of large 2D or 3D arrays, so employing kernels makes networks
easier to train: parameters are shared over multiple regions of the input, so a much
smaller number of parameters need to be optimised then when the layer would be fully
connected.
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Convolving regions in an image with kernel K results in an output matrix called a
feature map, which gives an indication of whether or not the features in the kernel
are present in certain regions of the image: similar regions produce similar output
values. CNNs are types of DNNs as they stack layers of convolutional operations
to extract image features on various levels of granularity, from fine-grained features
such as corners and edges to coarser, class-specific features such as eyes, feathers, a
beak—even though these coarser features are never that clear-cut. Similarly to an
MLP, classification happens in the last fully connected layer, see Figure 2.9. The array
of 2D feature maps is re-arranged to a 1D array and act as input to a fully connected
layer. Often, engineers employ some fully connected layers before the final classification
layer.

˛ Recurrent neural networks (RNNs): RNNs (48) are other types of DNNs for
processing sequences of values t = (x(1), . . . , x(t)). Like CNNs, they share weights and
perform a single computation multiple times over a di�erent part of the input, here
called x(t) with time step t. Di�erent from CNNs, they have a recurrence property,
which means they use output at time t to serve as auxiliary input to a hidden layer
at the next time step t + 1. E�ectively, the recurrence property serves as a memory
that uses past computations ht≠1 to influence present computations ht. Their basic
operations are detailed below in Equation (2.8) and (2.9):

ot = f(ht; ◊) (2.8)

ht = g(ht≠1, xt; ◊) (2.9)

where ot is the output at time t, ht the state of the hidden layer at time t, and xt the
input array at time t. f and g serve as activation functions.

Long short-term memory networks (LSTMs) are types of RNNs that overcome some of
the issues that occur with regular RNNs. They have a bilateral variety, the bilateral long
short-term memory network (BLSTM), that can additionally use future computations
ht+1 to influence present computations ht.

˛ Prototypical neural networks: Prototypical networks are networks developed for low-
shot learning strategies such as few-shot learning (FSL) or ZSL (49). They compute
M -dimensional class representations ck œ RM called class prototypes. In contrast
to the other DNNs that we discussed, classification does not happen based on a
distribution (softmax activation) over the last fully connected layer. Instead, the last
fully connected layer maps instances to a metric space, and a distribution over distances
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from an instance to class prototypes is produced. Example distance functions are
euclidean distance, see Equation (2.10), and cosine similarity, see Equation (2.11).

d (p, q) =
ı̂ıÙ

nÿ

i=1
(qi ≠ pi)2 (2.10)

cos(p, q) =
qn

i=1 piqiqn
i=1 (pi)2

qn
i=1 (qi)2

(2.11)

To calculate prototypes for FSL, support points (example datapoints) are mapped to
a metric space, and per-class averages of the resulting embedded support points are
calculated, see Equation 2.12. In Equation 2.12, Sk refers to the set of support points
for class k, and ck refers to its calculated prototype. We further refer to this metric
space by the term prototype space.

ck = 1
|Sk|

ÿ

(xi,yi)œSk

f„(xi) (2.12)

For ZSL, Snell et al. (49) mention that rather than embedding support points in
prototype space, prototypes can be constructed by embedding auxiliary information,
such as class embeddings in the form of attribute annotations (50; 51), in prototype
space. Attribute embeddings encode whether a certain attribute—from a set of
predefined attributes—is present for a specific class. Attribute embeddings can be
either binary or continuous, e.g., {wing: 0.1, red: 0.4, tail: 0.7}.

Training and Evaluation. After model selection, the model’s parameters ◊ are learned
through iterative minimisation of the training error. One iteration commonly consists of
minimally three basic steps.

1. The model is applied to a batch of training data (data from the training-set T tr).

2. A loss function is applied to the output of the model, which calculates the training
error—a function over the di�erence between the output y and the desired output ŷ.

3. The training error is propagated backwards through the model using the backpropa-
gation algorithm, and parameters ◊ are adjusted via an optimisation algorithm (such
as gradient descent).
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How well the model performs on real-world data should be evaluated on a dataset that is
separate from the training-set, the test-set, T ts. It often happens that the representations
learned by the model too closely fit the variation in the training-set, and will therefore
generalise poorly to new data. This phenomenon is called overfitting, and can for instance
happen when samples in the training-set are too small to obtain a good representation, or
when there are too many parameters in the model, causing it to learn too much of the
variance in the data. A metric that is most used for classification is the average accuracy,
see Equation (2.13) (in percentages).

Accuracy = n correct predictions
n total predictions ú 100 (2.13)

The average accuracy metric is not always the best choice, as it does not correctly portray
the predictive power of a model, especially when data are imbalanced (52). Let us first
consider a binary classification problem, and a dataset with a uniform distribution over its
classes. We produce a naive model, let us call it model g, that for every input predicts
the class cm, the class in which the majority of the data resides, i.e., the majority guess:
g : Rd æ cm. The estimated average accuracy on the test-set would already be as high as
50%. Imagine now a classifier h, that is trained on a 5-class classification problem with
a similar uniform distribution over its classes. If such a classifier h produces an average
accuracy of 50%, it will have learned a much better data representation than our naive
binary classifier, even though the average accuracy produced would be equal.

The accuracy metric is especially vulnerable to bias that skewed data introduces. If we
would apply our naive classifier g to a dataset where 90% of the data are of class 0 and
the rest of class 1, we would obtain an average accuracy of 90%.

Further details of specific models, learning strategies, evaluation metrics and other, can be
found in the respective chapters.

2.2.2 Knowledge Representation and Reasoning

The field of knowledge representation and reasoning (KRR) is quite extensive, so we limit
ourselves to techniques for structuring data and data about data (metadata), with a focus
on the representation of data in the form of knowledge graphs. Through the use of
schemas and ontologies, which impose constraints or assign attributes to data, new
knowledge can be inferred (reasoning). We furthermore discuss the principles of Linked
Data (LD), which allow knowledge graphs served on the Web to link together, forming a
Web of semantic data, called the Semantic Web.

30



560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork
Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021 PDF page: 39PDF page: 39PDF page: 39PDF page: 39
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Structured data, in contrast to unstructured data, are data that are structured according
to some data model, and can therefore be interpreted by machines. Unstructured data,
such as free text, can be made machine understandable by adding structure to capture
the implicit semantics. Below we define what it means to make implicit semantics of data
accessible to machines (53), turning data into machine-understandable knowledge.

We distinguish three levels for structuring data, that vary based on their capability to
express implicit semantics (54):

˛ Controlled vocabularies: Controlled vocabularies include shared terminologies and
nomenclatures and define terms to formally describe concepts within a domain.

In the biodiversity domain, for instance, community collaboration is used to create
shared knowledge representations, in order to make e�ective use of existing data (36).
For broad-scale analyses, biodiversity information must be readily available in digital
form, published as FAIR data. Below, in listing 2.1, we show a piece of Extensible
Markup Language (XML), taken from the Simple Darwin Core documentation1 that
structures biodiversity data according to the Darwin Core (DwC)2 standard, a glossary
of terms (properties) for the description of biodiversity records. Such a basic form of
structuring data allows intelligent machine search over data, for example the aggregation
of scientific names across distributed collections using the term dwc:scientificName.

<?xml version ="1.0" encoding ="UTF -8"?>
<SimpleDarwinRecordSet

xmlns="http ://rs.tdwg.org/dwc/xsd/simpledarwincore /"
xmlns:dc="http :// purl.org/dc/terms/"
xmlns:dwc="http ://rs.tdwg.org/dwc/terms/"
xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"
<SimpleDarwinRecord >

<dwc:basisOfRecord >Taxon </dwc:basisOfRecord >
<dwc:scientificName >Centropyge flavicauda Fraser -Brunner 1933
</dwc:scientificName >
...
<dwc:kingdom >Animalia </dwc:kingdom >
<dwc:phylum >Chordata </dwc:phylum >
<dwc:class >Osteichthyes </dwc:class >
<dwc:order >Perciformes </dwc:order >
<dwc:family >Pomacanthidae </dwc:family >
<dwc:genus >Centropyge </dwc:genus >
<dwc:specificEpithet >flavicauda </dwc:specificEpithet >
<dwc:taxonRank >species </dwc:taxonRank >
...

</SimpleDarwinRecord >
</SimpleDarwinRecordSet >

Listing 2.1: A piece of simple darwin core

1https://dwc.tdwg.org/simple/
2https://dwc.tdwg.org/
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Other than an unique definition of terms within a domain, the XML document does
not capture a lot of meaning that can be interpreted by machines. A machine does not
know how the term Centropyge relates to the term flauvicauda, or would not know
the di�erence between the specific epithet flauvicauda, part of the genus Centropyge,
and the epithet flauvicauda belonging to a di�erent genus (should such a scientific
name exist).

˛ Taxonomies extend controlled vocabularies with “is–a” (subsumption) relationships
between terms and thus add hierarchy to ’flat’ controlled vocabularies.

A biological taxonomy, used to structure the scientific name in Figure 2.10, shows an
example of how pieces of data can be related through the subsumption relationship,
where a class lower in the hierarchy is connected to the one above it using the is–a≠≠æ
relationship.

Animalia
Chordata

Osteichthyes
Perciformes

Pomacanthidae
Centropyge

Centropyge flavicauda (Fraser-Brunner 1933)

Figure 2.10: A hierarchy of the species Centropyge flavicauda (Fraser-Brunner 1933), where
the edges (from top to bottom) refer to the “is–a” subsumption relationship

˛ Schemas and Ontologies further extend taxonomies by distinguishing (hierarchically
organised) types and properties (relationships), and allow the modelling of constraints,
axioms and rules.

Ontology in philosophy is the study of existence. More specifically, the study concerns
itself with questions that relate to what types of entities exist, and how they relate to
one another. In computer science, an ontology refers to a data structure that can be
processed by machines (11; 55):

Definition 2.4. An ontology is a formal, explicit specification of a shared conceptuali-
sation (56).

¶ formal: an ontology has well-defined syntax and semantics,
¶ explicit: an ontology can be represented and processed algorithmically
¶ shared: an ontology is agreed upon in a community and facilitates communication

between its member agents, and
¶ conceptualisation: an ontology presents a model of the real world
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Similarly to philosophy, an ontology in computer science consists of a formally defined
set of terms, and relationships (properties) that define how the terms are related (53).
We will denote these consistently in the same script throughout this thesis: e.g., class

for classes, property
≠≠≠≠≠æ

for properties, instance for instances of classes, and “literal” for
literals (a value of some datatype).

Knowledge graphs use ontologies and database schemas to structure data according to a
directed graph data model. We use the following definition:

Definition 2.5. A knowledge graph is a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose edges
represent relations between these entities (57).

The Semantic Web. The Semantic Web is a network of shared, structured data and
metadata. It is based on directed labelled graphs as data models for resources and
their relationships, and IRIs such as HTTP URLs1 for the description of these resources
and relationships. The Resource Description Framework (RDF) is the World Wide Web
Consortium (W3C)2 recommended data format for graph data on the Semantic Web. The
RDF data model uses triples for the description of resources, in the form:

Èsubject, predicate, objectÍ (2.14)

An example being: È:img.jpg,:creator≠≠≠≠æ,“Heinrich Kuhl”Í. Each such triple forms a single
arc in a directed labelled graph.

RDF Schema3 and the Web Ontology Language (OWL)4 are formalisms that provide
vocabularies for structuring knowledge for various levels of expressiveness. Properties of
terms can be used for reasoning over data, i.e., inferring new facts from a set of asserted
axioms.

A simple example term that can be used to infer new facts from assertions is the term
owl:TransitiveProperty , and it is defined as follows:

Definition 2.6. A transitive relation x≠æ is a relation specifying that if A x≠æ B and B x≠æC, then A x≠æ C.

1Web-resolvable URIs
2The World Wide Web Consortium (W3C) is an international community for the development of

standards on the Web. https://www.w3.org/Consortium/
3https://www.w3.org/TR/rdf-schema/
4https://www.w3.org/OWL/
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Instances of the owl class owl:TransitiveProperty inherit this transitive property.
rdfs:subclassOf≠≠≠≠≠≠≠≠≠≠æ, for example, is an instance of owl:TransitiveProperty . If we define
each term from Figure 2.10 as a class that is connected to the class above it with
the property rdfs:subclassOf≠≠≠≠≠≠≠≠≠≠æ, machines can infer from this statement that the class
Centropyge is also a subclass of every class above it, such as the class Chordata .

The SPARQL Protocol and RDF Query Language (SPARQL)1 is one of the query languages
with which RDF graphs can be queried, making use of their graphical structure.

Through shared formalisms, distributed directed labeled graphs on the Web are linked
together. The collection of directed labeled graphs on the Web are referred to as Linked
data. Tim Berners-Lee, one of the inventors of the Web, suggests a 5-star scheme with
which to deploy Linked Data, in which each step assumes employment of the previous
step(s):2

FF FFFFFFFF publish data on the Web in any format (e.g., PDF, JPEG) accompanied by
an explicit Open License (expression of rights).

FFF FFFFFF publish structured data on the Web in a machine-readable format (e.g., XML).
FFFF FFFF publish structured data on the Web in a documented, non-proprietary data

format (e.g., CSV, KML).
FFFFF FF publish structured data on the Web as RDF (eg Turtle, RDFa, JSON-LD,

SPARQL)
FFFFFF In your RDF, have the identifiers be links (HTTP URLs) to useful data

sources.

These also relate to the Linked Data principles, mentioned earlier in Subsection 1.1.3.
Serving data to the Web of Linked Data has many benefits: (i) the adoption of HTTP
URIs for the representation of entities (such as named entities) ensures more accurate
content descriptions and thereby allows for the computational disambiguation of terms, (ii)
through the use of shared conceptualisations, data become interoperable, and (iii) through
use of Semantic Web services, data can be federated and integrated between distributed
collections (11).

2.3 Data Sources and Use-Cases
In this section, we discuss contemporary online biodiversity data sources relevant for
this thesis (Subsection 2.3.1), and detail two NHC use-cases (Subsection 2.3.2) used for

1https://www.w3.org/TR/sparql11-query/
2https://dvcs.w3.org/hg/gld/raw-file/default/glossary/index.html#

x5-star-linked-open-data
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analyses in further chapters.

2.3.1 Data Sources

˛ The Global Biodiversity Data Facility (GBIF) is an international network and data
infrastructure for biodiversity data on the Web (58). Through the use of data standards,
the organisation has pulled together hundreds of millions of species occurrence records.
These include record types from multiple sources, such as, museum specimens, scientific
expedition data and photos taken by amateur naturalists. GBIF provides an API,
allowing data to be downloaded as Darwin Core archives,1 a Biodiversity Information
Standards (TDWG) standard. Additionally, they provide other resources such as
the GBIF backbone taxonomy (59), a single taxonomy that organises all names
included in GBIF according to one taxonomic system, which integrates information
from external resources such as the Encyclopedia of Life (EOL),2 the International
Union for Conservation of Nature and Natural Resources (IUCN)3 and GenBank.4 It
includes knowledge such as whether a name is accepted, what synonyms it has, what
its higher classifications are.

˛ The Biodiversity Heritage Library (BHL)5 is an online library that provides open
access to biodiversity heritage literature from all over the world (13). The library has
employed OCR and automatically recognises scientific names in order to improve access
to the printed literature through full-text search.

˛ iNaturalist (60), is a citizen science project,6 that allows amateur naturalists to upload
photographs of organism encounters in the wild together with an identification and
geo-location. For their mobile application, they employ image recognition to help
naturalists with the identification of observed organisms.

2.3.2 Use Cases

˛ Committee for Natural History of the Netherlands Indies (“Natuurkundige
Commissie voor Nederlands-Indië”) (NC): The NC was founded by King William
I of the United Kingdom of the Netherlands. Consisting of a group of naturalist,
draftsmen and preparators7 from the Netherlands as well as German-speaking countries
1http://rs.tdwg.org/dwc/
2https://eol.org/docs/what-is-eol
3https://www.iucn.nl/over-iucn-nl
4https://www.ncbi.nlm.nih.gov/genbank/
5https://www.biodiversitylibrary.org/
6https://www.inaturalist.org/
7In the field of natural history preparators are those responsible for preparing plants and dead animals

so that they could be used for research. Those preparing only animals are also known as taxidermists
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and France (16), the committee was sent to the Indonesian archipelago. Their primary
task was the collection of information on natural resources in the Dutch Indies. In
addition, they were deployed to observe and describe the local flora and fauna. As
a result, many specimens, biological illustrations and observation descriptions were
brought back to the Netherlands for closer investigation, with the aim to publish results
on the natural diversity of the Dutch Indies.

Currently, the physical collection is stored at the Naturalis Biodiversity Center in
Leiden. In 2008 the archival part of the collection was digitised (scanned through the
Metamorfoze programme1), leading to a digitised collection of roughly 8,000 field book
pages, and 2,000 illustrations.

˛ The Iconografia Zoologica collection (IZ): The Iconographia Zoologica2 (short:
IZ) is a 19th century collection of biological illustrations from the Artis Library of
the University of Amsterdam. The collection was formed by three collectors: the
well-known collector and naturalist Th. G. van Lidth de Jeude, the zoologist R.T.
Maitland and the curator of the shell collection at the Amsterdam Zoo, Abraham
Oltman, together with the Amsterdam society Natura Artis Magistra. In the 21st
century, the collection was digitised and labelled with either complete binomial species
names (genus and specific epithet) or corresponding genera. The full online collection
contains over 26,500 sketches and drawings.

1https://www.metamorfoze.nl/kennis-onderzoek/lexicon/preservation-imaging
2https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html
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