Knowledge extraction from archives of natural history collections
Stork, L.

Citation
Stork, L. (2021, July 1). Knowledge extraction from archives of natural history collections. Retrieved from https://hdl.handle.net/1887/3192382

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3192382

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/3192382 holds various files of this Leiden University dissertation.

Author: Stork, L.
Title: Knowledge extraction from archives of natural history collections
Issue date: 2021-07-01
Knowledge Extraction from Archives of Natural History Collections

by Lise Stork
Knowledge Extraction from Archives of Natural History Collections

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op donderdag 1 juli 2021
klokke 13.45 uur

door

Lise Stork

geboren te Eindhoven, Nederland
in 1990
Promotiecommissie

Promotores: Prof. Dr. A. Plaat
 Prof. Dr. Ir. F.J. Verbeek
Co-promotor: Dr. K.J. Wolstencroft

Overige leden: Prof. Dr. M.M. Terras University of Edinburgh
 Prof. Dr. T.R. van Andel
 Prof. Dr. H.C.M. Kleijn
 Prof. Dr. M.S.K. Lew
 Dr. V. de Boer Vrije Universiteit Amsterdam
 Dr. A. Weber University of Twente

Copyright © 2021 Lise Stork.
Cover illustrations by G. van Raalten and P. van Oort
Cover design by Dirk Meijer, Marius van Leeuwen and Lise Stork
Layout design by Hao Wang and Lise Stork
Printed by: Gildeprint, Enschede, the Netherlands

This work is supported by the Netherlands Organisation for Scientific Research (NWO) and Brill publishers, grant number 652.001.001 (the Making Sense of Illustrated Handwritten Archives Project). The project was a collaboration between the Leiden Centre of Data Science (LCDS), Naturalis Biodiversity Center (NBC), the university of Leiden (LIACS), Twente (STePS), Groningen (ALICE), and Brill publishers as creative industry partner.

1Collection Naturalis Biodiversity Center, MMNAT01_AF_NNM001000192 (front) MMNAT01_AF_NNM001000236 (back). Images free of known restrictions under copyright law (Public Domain Mark 1.0).
Abstract

Natural history collections (NHCs) provide invaluable sources for researchers with different disciplinary backgrounds, aspiring to study the geographical distribution of flora and fauna across the globe as well as other evolutionary processes. They are of paramount importance for mapping out long-term changes: from culture, to ecology, to how natural history is practiced.

This thesis describes computational methods for knowledge extraction from archives related to NHCs—here referring to handwritten manuscripts and hand-drawn illustrations. As we are dealing with heterogeneous real-world data, the task becomes exceptionally challenging. Small samples and a long-tailed distribution, sometimes with very fine-grained distinctions between classes, hamper model learning. Prior knowledge is therefore needed to bootstrap the learning process. Moreover, archival content, such as scientific names and their authors, can be difficult to interpret and integrate. Archival content should therefore be formally described for data integration within and across collections. By serving extracted knowledge to the Semantic Web, collections are made amenable for research and integration with other biodiversity resources on the Web.

We demonstrate how to leverage domain expert involvement and prior knowledge, such as the natural world’s systematic organisation, in the development of state-of-the-art methods from the fields of computer vision and the Semantic Web for the task of knowledge extraction from natural history archival collections.

Keywords—Natural history, Biodiversity, Semantic Web, Knowledge extraction, Prior knowledge, Computer vision
Contents

Abstract i

1 Introduction 1
 1.1 Access to Archives ... 1
 1.1.1 Natural History Archival Collections 1
 1.1.2 Collection Digitisation 3
 1.1.3 From Archives to Databases 4
 1.2 Research Questions .. 9
 1.3 Approach and Main Contributions 10
 1.4 Project Context .. 12
 1.5 Outline of Chapters .. 13

2 Background 15
 2.1 Natural History .. 15
 2.1.1 Taxonomy and Nomenclature 16
 2.1.2 Multimodal Field Observations 18
 2.2 Knowledge Extraction .. 21
 2.2.1 Machine Learning ... 22
 2.2.2 Knowledge Representation and Reasoning 30
 2.3 Data Sources and Use-Cases 34
 2.3.1 Data Sources .. 35
 2.3.2 Use Cases .. 35

3 Manuscripts to Databases 37
 3.1 Introduction ... 37
 3.2 System Designs .. 39
 3.2.1 Manual Full-Text Transcription 40
 3.2.2 Semi-Automated Transcription 43
 3.2.3 Semantic Annotation of Text Images 45
3.3 More Product, Less Process ... 46

4 Semantic Annotation ... 49
 4.1 Introduction ... 49
 4.2 Development of a Semantic Model 51
 4.2.1 Requirements .. 51
 4.2.2 Semantics for Biodiversity 52
 4.2.3 Data Elucidation by Domain Experts 54
 4.2.4 The NHC-Ontology .. 56
 4.3 Semantic Annotation .. 61
 4.3.1 System Design ... 62
 4.3.2 The Semantic Field Book Annotator 63
 4.3.3 Towards Semi-Automated Annotation 65
 4.4 Qualitative Evaluation ... 66
 4.4.1 The Annotation Process 66
 4.4.2 The Data .. 67
 4.4.3 Semantic Queries ... 68
 4.5 Conclusions .. 72
 4.6 Ongoing and Future Work 72

5 Automating Semantic Annotation 77
 5.1 Introduction .. 77
 5.2 Related Work ... 78
 5.3 Data ... 79
 5.4 Scientific Name Extraction Model 80
 5.4.1 Classification of Word Images 81
 5.4.2 Semantic Annotation of Word Images 83
 5.5 Experiments and Results 84
 5.5.1 Experimental Methodology 84
 5.5.2 Results and Discussion 85
 5.6 Conclusions and Future Work 87

6 Classification of Biological Illustrations 89
 6.1 Introduction .. 89
 6.2 Related Work .. 93
 6.3 The Data .. 95
 6.3.1 The ZICE Dataset ... 95
 6.3.2 The Verification-Set 98
 6.4 Methodology .. 98
CONTENTS

6.4.1 Zero-Shot Learning Model 98
6.4.2 Image Embeddings 99
6.4.3 Class Embeddings 100
6.4.4 Combining Class Embeddings 101
6.4.5 Hierarchical Prototype Loss 103
6.5 Experimental Setting 103
 6.5.1 Dataset Splits 103
 6.5.2 Data Augmentation 105
 6.5.3 Evaluation Criteria 105
6.6 Experimental Results 106
 6.6.1 Supervised Classification and Visualisation 107
 6.6.2 Fine-Grained Zero-Shot Learning 108
6.7 Analysis and Discussion 114
6.8 Conclusions 116

7 Conclusions 117
 7.1 Research Questions Revisited 118
 7.2 Ongoing and Future Developments 122

Bibliography 125

Summary 147

Samenvatting 149

Curriculum Vitae 153

List of Publications 155

Acknowledgements 157