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Abstract

Natural history collections (NHCs) provide invaluable sources for researchers with di�erent
disciplinary backgrounds, aspiring to study the geographical distribution of flora and fauna
across the globe as well as other evolutionary processes. They are of paramount importance
for mapping out long-term changes: from culture, to ecology, to how natural history is
practiced.

This thesis describes computational methods for knowledge extraction from archives related
to NHCs—here referring to handwritten manuscripts and hand-drawn illustrations. As we
are dealing with heterogeneous real-world data, the task becomes exceptionally challenging.
Small samples and a long-tailed distribution, sometimes with very fine-grained distinctions
between classes, hamper model learning. Prior knowledge is therefore needed to bootstrap
the learning process. Moreover, archival content, such as scientific names and their authors,
can be di�cult to interpret and integrate. Archival content should therefore be formally
described for data integration within and across collections. By serving extracted knowledge
to the Semantic Web, collections are made amenable for research and integration with
other biodiversity resources on the Web.

We demonstrate how to leverage domain expert involvement and prior knowledge, such as
the natural world’s systematic organisation, in the development of state-of-the-art methods
from the fields of computer vision and the Semantic Web for the task of knowledge
extraction from natural history archival collections.

Keywords— Natural history, Biodiversity, Semantic Web, Knowledge extraction, Prior
knowledge, Computer vision
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1
Introduction

“Wandering the warren of collection facilities and scientific laboratories that the public
rarely sees at the National Museum of Natural History is like peeking into a recon-
struction of Noah’s Ark. Filling every drawer, cabinet and shelf in sight are millions of
taxidermic birds and mammals, preserved worms and fishes, skeletons and fossils, and
so much more.”

– Maya Wei-Haas, Smithsonian Magazine

In the following chapter, we outline the contents of this thesis. We start by describing
the main motivation of our work (Section 1.1). We then present the research questions
(Section 1.2), and our approach that deals with these questions (Section 1.3). Eventually,
we describe the context in which the work was carried out (Section 1.4).

1.1 Access to Archives

1.1.1 Natural History Archival Collections

In 1821, a German naturalist observed a specimen of a bat noting curiously in his field
book that “die Zunge ist erstaundend lang, 0,1,3, schmal und pfriemförmig.” (“the tongue
is surprisingly long, 0,1,3 thin, and awl-shaped.”)1 Based on his observations, he consulted
the existing literature, and classified the specimen as the species Pteropus minimus Geo�.
The naturalist had been part of the Committee for Natural History of the Netherlands
Indies (“Natuurkundige Commissie voor Nederlands-Indië”) (NC), sent to the Indonesian
Archipelago to study natural resources and discover and describe the various species that
had their home in the island’s rich ecosystem.

Naturalists have been recording field observations—such as the one described above—for
several hundred years (1; 2) during expeditions to remote parts of the world, often at

1MMNAT01_AF_NNM001001033_004.jpg, a field note taken from the collection of the Committee
for Natural History of the Netherlands Indies (“Natuurkundige Commissie voor Nederlands-Indië”) (NC),
physically kept at the Naturalis Biodiversity Center (NBC).

1
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the risk of their own lives. Field observation records—e.g., field notes and hand-drawn
illustrations describing observations of species—contain a wealth of information about
scientific practices, important events, and the behaviour, habitat and appearance of
organisms and collected specimens. Field observation records are therefore invaluable
for increasing the scientific worth of such specimens, which are often accompanied by
little descriptive data, see Figure 1.1. They provide detailed accounts of the habitat and
behaviour of organisms, colourful histories that specimens alone do not tell. We describe
the content of these various resources further in Subsection 2.1.2.

Figure 1.1: A specimen of the Loligo vulgaris Lamarck, 1798 species from the Naturalis–
Zoology and Geology catalogues.1 Images free of known restrictions under copyright law
(Public Domain Mark 1.0).

Records from early expeditions are currently held in archives of collection facilities spread
out across the globe, such as in natural history museums, botanical gardens and scientific
laboratories. One such facility is the impressive 200-feet high tower of the Naturalis
Biodiversity Center (NBC) in Leiden, which stores 42 million natural heritage objects,
amongst which are specimens—fluid-preserved whole organisms or parts, frozen tissues,
pinned insects, pressings, skins, skeletons, nests and other items (3)—as well as archives.
You will find a stu�ed rhinoceros, drawers with pinned butterflies, a jar with the face of
a gorilla, the skeleton of a killer whale,2 a beautifully detailed illustration of a jellyfish
(see back of this thesis), and a handwritten description of the behaviour and dissection of
a fruit bat. For colourful accounts of such collections and their history, we refer to the
following books: (4) and (5).

An example collection at the NBC is the collection of the Committee for Natural History of
the Netherlands Indies (“Natuurkundige Commissie voor Nederlands-Indië”) (NC), which
consists of roughly 8,000 field notes and 2,000 illustrations, and is related to approximately
10,000 specimens. The specimens and archival materials in this collection provide a unique

1https://bioportal.naturalis.nl/multimedia/RMNH.MOL.5009890_0
2https://bioportal.naturalis.nl/multimedia/RMNH.MAM.2559_0

2
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view on the distribution of plants and animals in the Indonesian archipelago in the first
half of the nineteenth century.

Researchers interested in natural history and biodiversity endeavour to find their way
through these vast, labyrinthine collections and archives. In doing so, they are challenged
by the complexity of the material. The archival handwritten and illustrated content is
especially di�cult to process. Even those with expertise in paleography, the study of ancient
and historical handwriting, consider natural history archives to be di�cult resources. They
require researchers to understand and deal with di�erent collection and documentation
practices which have evolved over time, and the di�erent European, indigenous and
scientific—e.g., Latin and Greek—languages, used to describe the collected flora and
fauna.

1.1.2 Collection Digitisation

There are roughly 2.5–3 billion specimens housed in collections worldwide (6; 7; 3), and
many of them are accompanied by archival materials and illustrations. Industrial-scale
digitisation projects have been set up to produce high-resolution digital renditions of
physical collection objects (8; 9; 10; 7), such as the one displayed in Figure 1.1. Over
recent years, the World Wide Web has become an important hub for natural history
museums,1 to publish their digitised material (11; 12; 13). Where earlier, artifacts such as
specimens, field notes and illustrations, were only accessible to researchers or experts with
access to research institute or museum facilities, the Web allows for widespread access to
digital high resolution images of collection objects. NHCs have therefore become more
widely available, even to the layperson, from any location, at any given time.

Publishing NHCs to the Web introduces new opportunities for data reuse and integration.
Museums and other institutions use collection metadata2 (descriptive data about data)
to support accessibility and integration of collection objects. We take the definition of a
collection from the Collection Descriptions (CD) interest group (14):

Definition 1.1. A collection can be seen as any group of items that share some common
characteristics such that they are useful to describe as a group.

Defining these common characteristics computationally—e.g., their implicit semantics—
makes collections searchable and allows for the inference of new knowledge. For instance,
through indexing of collection metadata in searchable resources, web services, such as
search engines, can aid users by focusing search, for instance to collections with a specific

1Part of the collection from the NBC can be found online: https://bioportal.naturalis.nl/
2Metadata are machine understandable information about web resources or other things, https:

//www.w3.org/DesignIssues/Metadata

3
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1. INTRODUCTION

topic, such as “fishes and birds”. Often, archival collection metadata are described with
a controlled vocabulary—a fixed set of terms—or ontology, so as to virtually reunite
distributed collections (14). Further details are described in Subsection 2.2.2.

For archival resources specifically, we find it useful to distinguish four levels to which
metadata can be assigned, see Table 1.1, organised from the coarsest level to the most
fine-grained level.

Table 1.1: Levels of archival collection metadata

Metadata levels Examples Example metadata

1. collection-level
A collection of objects
collected during an expe-
dition

collection name, associated persons,
collection type, temporal coverage, ge-
ographical coverage, . . .

2. item-level A field book, a diary type, title, author, subject, . . .

3. page-level A field note, a page from
a book

type (e.g., field note), part of, contents
. . .

4. content-level
A region in a page. A
word (e.g., a named en-
tity), a table, a depiction

type (e.g., a location), language, prove-
nance (e.g., annotator, annotation
date) . . .

In this thesis, the focus lies on metadata coupled to the content-level of archives. More
specifically, on the transformation from archives—specifically digital renditions of hand-
written and illustrated observation records—to machine-readable data.

1.1.3 From Archives to Databases

The growing role of archives in creating a global online knowledge base of biodiversity
data, creates new challenges and opportunities for the creation of workflows and best
practices for their digitisation. It is often unclear what the term ‘digitisation’ of archives
precisely entails, so we define it here as consisting of four stages: (1) scanning, (2)
transcription, (3) representation of knowledge and (4) integration with other historical as
well as contemporary digital sources. Below, we first describe general challenges related
the process of reading and interpreting archival content. Thereafter, we detail some of the
challenges related to stage (2), after which we briefly detail opportunities related to stage
(3), using Semantic Web technologies and methods from the field of computer vision,
which lead us to our approach and main contributions (Section 1.3).

Challenges Elucidating content of handwritten and illustrated observation records is a
complex and intricate task that largely depends on domain expertise. Early records were
often written in hard-to-read handwriting as well as in multiple languages (15), and the

4
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1.1 Access to Archives

evolution of species names, concepts and place names, makes interpretation of the content
challenging.

Another challenge has to do with the distribution of collection objects over various institutes
and collections. It was, for instance, common for naturalist to trade resources or send them
elsewhere for observation or publication (16). Moreover, in the course of the nineteenth
and twentieth centuries, natural history museums separated specimens from field notes
as well as illustrations. The physical distribution of collection objects across institutes
hampers the use of historical observation records for specimen studies. Written references
to specimens, literature, illustrations and other field notes are lost and di�cult to retrace.
Hence, re-establishing links between specimens and archives allows for better integration
of their content. These challenges are discussed in more detail in Chapter 2.

To summarise, Table 1.2 shows challenges researchers face when aiming to read and
interpret archival content related to NHCs.

Chall.1 Hard-to-read historical handwriting
Chall.2 Evolving scientific paradigms

(a) The evolution of concepts
(b) Changing scientific practices
(c) The evolving (visual) style of a single alphabet

Chall.3 Multilingualism: the use of multiple languages within collections, often
even within one page.

Chall.4 Term ambiguity
(a) Homonymy, polysemy and synonymy
(b) Abbreviations

Chall.5 Physical distribution of collection objects related to NHCs

Table 1.2: Challenges that come with reading and interpreting the content of archives of
NHCs

Without the aid of computational processes for search and integration of data, making sense
of such complex and heterogeneous collections becomes an intractable problem.

Manual Transcription Manual full-text transcription is often used to transform hand-
written text to digital machine-readable text, e.g., (17; 15; 18), as it produces high-quality
data and, through search engines such as Apache Lucene,1 facilitates computational
indexing of terms and full-text search. However, manual full-text transcription is a time-
consuming labour-intensive process that heavily depends on domain expertise. Moreover,
even though it is not a property of manual transcription, we note that transcriptions

1https://lucene.apache.org/
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often exist in unstructured or semi-structured text files. Unstructured transcriptions do
not stimulate scholarly discussions over challenging or ambiguous content, related to
the interpretation-related challenges mentioned above, nor do they facilitate the use of
automated methods such as computer vision for Handwritten Text Recognition (HTR),
when transcribed words are decoupled from their digital representations (no ground truth1

is created).

Automated transcription Automated methods such as Optical Character Recognition
(OCR) o�er another solution to the problem, promising to unburden domain experts by
taking over part of the transcription process. Even though OCR is seen by many as a
solved task, it only allows the processing of homogeneous manuscripts, homogeneous in
terms of layout, writing style and lexicon (19; 20; 21; 22; 23). OCR systems rely on the
identification of single characters, and knowledge about how these are configured to form
words and sentences. Therefore, OCR systems are required to know the script of a text, as
well as the language it expresses (23). HTR from heterogeneous content—where writings
can be multilingual, follow curved lines, are interspersed with depictions and tables, and
contain inter-word connections—is still a highly complex task. Compared with manual
full-text transcription, HTR systems gain a decrease in transcription time, but sacrifice
data quality, as error rates for historical documents with large vocabularies are often high
(24; 25). Consequently, Schomaker (2016) (23) argues that the target objective needs to
be adjusted: rather than taking a character approach, and positioning HTR as a function
for full-text transcription, it should function in word retrieval and search systems.

When taking a word-oriented approach to HTR, out-of-vocabulary (OOV) or zero-shot
learning (ZSL) strategies are required to deal with the long-tailed distribution of manuscript
content (26; 27). Both strategies aim to recognise content not yet observed by a classifier
during training, which is crucial for our purpose. Success of machine learning methods for
automated detection and classification (discussed in Subsection 2.2.1) commonly depends
on large samples for training, ≥thousands of examples per class. Interesting content in
observation records (e.g., nouns such as species names, persons, locations, depictions of
rare items or species (28)) lie in the long tail of the distribution, meaning that they have a
low occurrence rate compared with common content (e.g., articles, prepositions).

To summarise, Table 1.3 shows challenges researchers face when aiming to use automated
methods for the transcription of archival content related to NHCs. Moreover, both
aforementioned solutions prove time-consuming and labour-intensive, and commonly

1Ground truth in computer vision refers to the mapping between an observation of an object in an
image (a whole image or a region of an image) to a discreet categorisation that we use in language to
refer to the object.
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produce flat, unstructured or syntactically structured data that are di�cult to understand,
integrate and search computationally. Researchers studying the material are expected
to search through indexed keywords or using full-text search, requiring them to have
considerable prior knowledge concerning the material. For observation records, search is
further complicated by use of multiple languages, and writing in which historical terms,
name ambiguity, hypernymy and homonymy are common (29). Such challenges ask for
more ‘intelligent’ web technologies.

Chall.6 Heterogeneous material
(a) Multiple modalities, often on one page
(b) Multilingualism (same as Chall.3)
(c) Curved lines (challenging for line segmentation)
(d) Poor paper quality and bleed-through of ink, varying material
(e) Intra-class variations (e.g., the evolving (visual) style of a single alphabet,

multiple viewpoints)
Chall.7 Labelling or annotation of the content requires domain expertise
Chall.8 Long-tailed distribution of data: many classes having only few instances

(and those are often the most interesting classes, such as rare species)

Table 1.3: Challenges that come with the automated extraction of information from archives
of NHCs

Knowledge extraction Knowledge extraction is the process of producing knowledge
from sources, such as unstructured texts or images, by organising their contents according
to some formalised semantic data model. Semantic annotation, for instance, is the process
of annotating named entities 1 in an (often digital) text with semantic concepts such as
a class to which the entity belongs—e.g., a person—relevant for text interpretation and
document retrieval. Coupling named entities with background knowledge, and linking them
through formal, ontological descriptions, provides connectivity throughout the documents
(31). Recognising and classifying named entities automatically is a sub-task of knowledge
extraction, called named entity recognition and classification (NERC). NERC techniques
work, similarly to semantic annotation, commonly on digital texts rather than on text
images. A first step in the semantic annotation or NERC process is therefore often
full-text transcription. Techniques related to knowledge extraction are further described in
Subsection 2.2.2.

1Named entity is a term coined during the Sixth Message Understanding Conference (MUC-6) by R.
Grishman & Sundheim in 1996 (30). Named entities are the central units of a text; they form the general
semantics of a text. Examples of named entities are person, organization and location names, and numeric
expressions including time, date, money and percent expressions.

7
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1. INTRODUCTION

FAIR data and the Semantic Web Due to technological developments and an increase
in the amount of data available on the Web, scholars increasingly rely on computational
support to deal with complex research data. To improve the infrastructure that supports
the accessibility and reuse of scholarly data, research institutes have set up the Findable,
Accessible, Interoperable, and Reusable (FAIR) data principles.1 Publishing scholarly
content to the Web as FAIR data leads to high quality digital publications that facilitate
data and knowledge integration and reuse, and thereby cooperation and the discovery of
knowledge (32).

FAIR data largely depends on the technical way in which metadata are published and
curated, and therefore align for a large part with ideas of the Semantic Web, and the
Linked Data principles for publishing interlinked datasets to the Semantic Web:2

1. Use Uniform Resource Identifiers (URIs) as names for things (reusable).

2. Use HTTP URIs so that names can be looked up (findable and accessible).

3. Provide useful information when someone looks up a URI, using standards (interop-
erable and reusable).

4. Include links to other URIs, so that someone can discover more things (interoperable).

The use of globally unique and persistent identifiers—such as URIs3 or Internationalised
Resource Identifiers (IRIs)4—uniquely define (meta)data, such as named entities and their
metadata, which is crucial when dealing with highly ambiguous names. Using HTTP
URIs such as Uniform Resource Locators (URLs) make data findable and accessible, and
through the use of accessible and shared formalisations (such as RDF and SPARQL, which
we discuss in Subsection 2.2.2) for available metadata, data become understandable by
machines, and thereby interoperable. Using the principles of Linked Data to structure the
handwritten and illustrated content of archives allows scholarly discussions about their
interpretation, as well as comparative research across distributed collections, global studies
and studies that span generations.

Computational methods—such as the ones mentioned above—can assist researchers
interested in biodiversity and documentation practices in the formation of an encompassing
knowledge base with respect to the current and past variability of organisms and their
distribution across the globe, and thereby with the formation of a global picture of

1https://www.force11.org/fairprinciples
2https://www.w3.org/DesignIssues/LinkedData.html
3https://www.w3.org/TR/uri-clarification/
4IRIs complement URIs and are sequences of characters from the Universal Character Set (Unicode/ISO

10646) https://www.ietf.org/rfc/rfc3987.txt
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1.2 Research Questions

biodiversity. Such a knowledge base serves as an information source for research in a wide
range of other research domains, amongst which are environmental and climate change,
public health, wildlife diseases, economics and biosecurity (8; 33; 9; 10). By analysing
NHCs, researchers can identify key drivers of changes in biodiversity. Identifying such
drivers is crucial given the biodiversity crisis the world is currently facing (34; 7).

1.2 Research Questions

The main objectives of this thesis are: to (i) extract knowledge from archives of NHCs,
given items Chall.1 to Chall.8, to make them amenable for research, and (ii) to publish
the digitised archives and the extracted (meta)data online for global access and integration
with other collections (related to Chall.5). From these objectives, we distilled the most
important research questions. Each of the questions relates to our approach (Section 1.3),
and to one of the chapters.

Various types of software applications exist that aim to make digital archives computationally
searchable: some of these we detailed in Section 1.1. Through the first research question
(Q.1), we investigate the most common types of software system designs and their trade-
o�s. From the output of Q.1, we propose an approach for knowledge extraction from
manuscripts related to NHCs.

Q.1 What are the trade-o�s of various system designs for the disclosure of digital archives?
(Chapter 3)

Through the second research question we investigate what kind of knowledge domain
experts aim to extract, in order to facilitate rich queries over the content. We divide this
question into two sub-questions. Through the first (Q.2a), we investigate what the main
semantic concepts mentioned in these complex and heterogeneous archival collections are,
in order to organise these according to an ontology (background described in Subsection
2.2.2). Through the second (Q.2b), we investigate how we can use the ontology to make
the content machine-readable, in order to facilitate rich queries over the content that are
in line with domain expert’s research questions.

Q.2 What types of research questions do domain experts formulate regarding archives
of NHCs, and how can we make the content of these archives machine-readable to
facilitate such queries? (Chapter 4)

(a) What are the general semantics of historical species observations and how do
they di�er from present day observations?

9
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1. INTRODUCTION

(b) How do we extract important content and its semantics (e.g., core elements and
their relationships) from the archives so that they become machine-readable,
allowing rich queries over their content?

An example process in biodiversity research that is of paramount importance to the field,
is the process of determining the status of scientific names in a contemporary classification
system, and their relationship to other names. An example is taxonomic referencing:
linking a legacy name from a historical field note or other source to a scientific name
accepted in current taxonomy (35). Through Q.3, we investigate how important links,
such as taxonomic referencing, can be created and maintained using the FAIR principles.
By doing so, references are made accessible to and reusable by any researcher, allowing
references to be subjected to scientific discourse. Examples of other important references
are links to literature, depictions, other resources, or named entities on the Web such as
people or locations.

Q.3 How can we accommodate a transparent and FAIR approach to enriching the archival
content of NHCs, facilitating and encouraging scientific discourse over the content?
(Chapter 4)

Lastly, extracting information from heterogeneous, historical material is time-consuming
and requires domain expertise. Through Q.4, we demonstrate methods that exploit prior
knowledge for the development of automated methods that can help domain experts with
the extraction and organisation of knowledge from archives of NHCs.

Q.4 How can we use automated methods for knowledge extraction from archives of
NHCs? (Chapter 5 and 6)

1.3 Approach and Main Contributions
The main theme of our approach is prior or background knowledge—e.g., community-
developed data standards, domain background knowledge, and auxiliary datasets from the
domain—and how it can be leveraged in the development of computational techniques for
knowledge extraction from archives of NHCs.

By exploring various system design patterns for the transformation from manuscripts to
databases, we aim to answer Q.1, leading to the first contribution:

C.1 A survey of system designs for turning manuscripts into databases (Chapter 3).

The output of this research has informed our approach for investigating items Q.2 to Q.4,
which in turn have lead us to formulate a generic system design for the disclosure of

10
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1.3 Approach and Main Contributions

manuscripts from NHCs. We discuss the approach and its main contributions in the
following paragraph.

Semi-Automated Semantic Annotation The observation of a species is based on a
specific set of units. Experts in the field have described these with a set of core terms
for the purpose of sharing and integration of information about biological diversity (36).1

Investigating Q.2 has led us to formulate an approach that leverages these community-
defined core terms and their ascribed interpretations for the purpose of knowledge extraction
from observation records in manuscripts. Specifically, our approach focuses on the semantic
annotation of salient named entities in images of field notes and illustrations, referring to
the principal named entities that are visually used to structure a text such as scientific
names and their authors, or the location and date of an observation event.

By using formal semantics to describe the named entities in handwritten and drawn
observation records, richer querying and reasoning over the content becomes possible.
Investigating Q.3 has led us to formulate an approach to serve the annotated data as
Linked Open Data (LOD) to the Semantic Web, where it can be interlinked and integrated
with other collections using Semantic Web technologies. The approach has materialised
into our second and third contribution:

C.2 The NHC-ontology2 (Chapter 4).

C.3 The Semantic Field Book Annotator (SFB-Annotator)3 (being further developed
within the LInking Notes of NAturE (LINNAE) project),4 (Chapter 4).

Investigating Q.4 has led us to formulate an approach for NERC from field notes and
illustrations detailing species observations. As these carefully employ the systematic
organisation of species variations, computational techniques can exploit the systematic
organisation of the document content. We use background knowledge on the structure of
field notes and nomenclature, to design a computer vision-based deep learning model that
can recognise and classify named entities from text images of field notes semi-automatically,
with input and curation from domain experts. We refer to our approach by the term salient
named entity recognition and classification (SNERC) to stress the recognition of principal
entities in text images. See Figure 1.2 for an overview of our approach.

C.4 A method for SNERC from text images of field notes. (Chapter 5).
1https://www.tdwg.org/standards/dwc/
2http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
3https://github.com/LINNAE-project/SFB-Annotator,https://www.research-software.nl/

software/sfb-annotator
4https://github.com/LINNAE-project
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Figure 1.2: The proposed design pattern for the task of SNERC from text images of field
notes.

Zero-Shot Classification The classification of scientific illustrations requires specific
strategies that rely on prior knowledge, see the automation-related challenges in Subsection
1.1.3. Investigating Q.4 has led us to formulate an approach for the classification of
illustrations for the extreme scenario in which a classifier is asked to classify an image
from a class it has not yet seen before during the learning process (zero-shot learning).
Such learning relies on the sharing of knowledge between seen and unseen classes, by
learning from auxiliary datasets that, jointly, possess knowledge about the union of seen
and unseen classes. For our purpose, we use multimodal datasets from the domain (a
biological taxonomy, historical texts and photographs) to train a classifier for zero-shot
classification of illustrations. The output of the classification process is structured according
to a contemporary biological taxonomy. The approach has lead to our fourth and fifth
contribution:

C.5 A method for the classification of scientific illustrations from NHCs in a zero-shot
classification scenario (Chapter 6).

C.6 The Zoological Illustration and Class Embedding (ZICE) dataset for zero-shot
classification of zoological illustrations from NHCs (Chapter 6).

1.4 Project Context
The project Making Sense of Illustrated Handwritten Archives 1 ran between 2016 and 2020.
The aim of the project was to develop a technologically advanced and user-centered digital
environment for the disclosure of handwritten and illustration archives of NHCs, enabling

1http://www.makingsenseproject.org
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the study of underexplored scientific heritage collections in general. As a use case, the
project focused on computationally interpreting the notes and illustrations of the Committee
for Natural History of the Netherlands Indies (“Natuurkundige Commissie voor Nederlands-
Indië”) (NC), which we further discuss in Subsection 2.3.2. The NC collection accumulated
between 1820 and 1850 by 17 European naturalists and draftsmen and local helpers,
and contains an account of natural historical exploration in the Indonesian Archipelago
during that time period. The strength of the project was its interdisciplinary approach.
The consortium had domain expertise in cultural history, the history of science (STePS,
NBC) taxonomy (NBC), HTR (ALICE), computer vision and knowledge representation
(LIACS). Results were consolidated into one digital infrastructure, the environment Natural
Committee Online (NCO) (37),1 co-developed by the publishing house Brill (Leiden).

1.5 Outline of Chapters
This thesis is based on a series of publications. The chapters each present work that has
been peer reviewed and published, with the exception of this chapter, and Chapter 2,
which serves as background for the thesis. Each chapter is self-contained, but contributes
to the overall goal of semi-automated knowledge extraction from archives of NHCs. The
thesis is structured as follows:

Chapter 1 has served as an introduction to the thesis, and is loosely based on the
position paper of the project Making Sense of Illustrated Handwritten Archives:

˛ Weber, A., Ameryan, M., Wolstencroft, K., Stork, L., Heerlien, M., and Schomaker,
L. Towards a digital infrastructure for illustrated handwritten archives. In M.
Loannides, editor, Digital Cultural Heritage, volume 10605 of Lecture Notes in
Computer Science, pages 155–166. Springer International Publishing, April 2018.
https://doi.org/10.1007/978-3-319-75826-8_13

Chapter 2 starts o� with a background on natural history research and introduces
techniques, datasets and use cases used for analyses in the chapters that follow.

Chapter 3 presents the state of the art relating to digitisation of archival content, and
is based on the following conference paper:

˛ Stork, L., Weber, A., Herik, J. van den, Plaat, A., Verbeek, F., and Wolstencroft,
K. From handwritten manuscripts to linked data, In: Méndez E., Crestani F.,

1https://labs.brill.com/makingsense/,https://dh.brill.com/nco/
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Ribeiro C., David G., Lopes J. (eds) Digital Libraries for Open Knowledge. TPDL
2018. volume 11057 of Lecture Notes in Computer Science, Springer, Cham
https://doi.org/10.1007/978-3-030-00066-0_34

Chapter 4 presents our infrastructure and tooling for the transformation of digitised
archives to structured knowledge bases. The chapter is based on the following journal
paper and conference abstract:

˛ Stork, L., Weber, A., Gassó Miracle, E., Verbeek, F., Plaat, A., Herik, J. van
den, and Wolstencroft, K. Semantic annotation of natural history collections.
Web Semantics: Science, Services and Agents on the World Wide Web (2018),
https://doi.org/10.1016/j.websem.2018.06.002

˛ Stork, L., Weber, A., Gassó Miracle, E., and Wolstencroft, K., A workflow for the
semantic annotation of field Books and specimen labels, in Biodiversity Information
Science and Standards 2: e25839 (2018) https://doi.org/10.3897/biss.2.25839

Chapter 5 presents a method for automating part of the tooling discussed in Chapter 4,
and is based on the following conference paper:

˛ Stork, L., Weber, A., Van den Herik, J., Plaat, A., Verbeek, F., Wolstencroft, K.,
Automated semantic annotation of species names in handwritten texts, In: Fuhr,
N., Azzopardi, L., Stein, B., Hau�, C., Mayr, P. & Hiemstra, D. (eds.) Advances in
Information Retrieval: 41st European Conference on Information Retrieval Research
(ECIR), 2019. vol. 11437 of Lecture Notes in Computer Science, Springer, Cham.
667-680 14 p. https://doi.org/10.1007/978-3-030-15712-8_43

Chapter 6 discusses the classification of zoological illustrations, and presents an approach
to deal with such statistically highly complex data: heterogeneous content, and a long-
tailed scenario where many categories have only few or no examples for training. The
approach exploits multimodal historical and contemporary data sources from the Web.
The chapter is based on the following journal paper:

˛ Stork, L., Weber, A., van den Herik, J., Plaat, A., Verbeek, F., & Wolstencroft, K.
(2021). Large-scale zero-shot learning in the wild: Classifying zoological illustrations.
Ecological Informatics, 62, 101222. https://doi.org/10.1016/j.ecoinf.2021.101222

In Chapter 7, we conclude our thesis with an overview of findings and their broader
implications.
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Background

“Whether in literary criticism or scientific investigation, the academic mind is best at
taking things apart. The complementary arts of integration are far less well developed.
As with any interdisciplinary pursuit, it is the bridging across disparate ways of knowing
that is the constant challenge.”

– Richard J. Borden, in: Ecology and Experience

In this chapter we present the background of the thesis. Owing to its interdisciplinary
nature, we cover a number of diverse topics, ranging from natural history, which is the
application context of this thesis (Section 2.1), to methods from two sub-fields of computer
science and artificial intelligence (AI): symbolic, and subsymbolic artificial intelligence,
each with their own academic legacy. We discuss both under the umbrella of the task
knowledge extraction (Section 2.2). We close the chapter by detailing the use cases and
datasets that formed the basis for analyses described in subsequent chapters (Section
2.3).

2.1 Natural History

Biodiversity research aims to understand the whole of life on earth, its evolution and
the various factors that generate its diversity. The field is usually subdivided into three
levels, in which diversity is measured and researched: species, genetics and ecology. In
this thesis, we focus on research into the diversity of species. Inherent to species research
is the comparison and classification of the various plants and animals that inhabit our
world. In order to realise this, naturalists in the field are challenged to develop methods
that moderate systematic descriptions. Expeditions to biodiverse areas allow naturalists
to record organism observations and identifications, enabling them to extend, improve or
challenge existing classifications.

15
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2. BACKGROUND

2.1.1 Taxonomy and Nomenclature

In the first part of the 18th century, Carl Linnaeus published his Systema Naturae, a
system that formed the basis for biological taxonomy and nomenclature. From then on,
naturalists and taxonomists started to use taxonomy and binomial nomenclature for the
hierarchical classification and systematic naming of organisms. Therefore, most historical
records found today in museums and other institutions (38), as well as contemporary
biodiversity datasets, use biological taxonomy and binomial nomenclature to classify and
describe their specimens and observation records.

Taxonomy. In the Systema Naturae, Linnaeus presented ideas for the hierarchical classifi-
cation of species. By his system of classification, the natural world was organised into three
kingdoms: the animal kingdom, the plant kingdom, and the mineral kingdom, although
his system for the classification of minerals was never widely adopted by the scientific
community. Species were grouped based on shared traits into units called taxa, which
were in turn organised hierarchically into six nomenclatural ranks that increasingly share
more traits: kingdom, class, order, genus, species and variety, according to a subsumption
relationship. For example: a common octopus is an octopod (of the order octopoda), as
well as a cephalopod (of the class cephalopoda), as well as an animal (of the kingdom
animalia), see Figure 2.1. More recent subdivisions that have been added over the years
are phyla, families and tribes, and subranks such as subspecies, or subtribes.

Animalia [kingdom]
Mollusca [phylum]

Cephalopoda [order]
Octopoda [class]

Octopodidae [family]
Octopus Cuvier, 1797 [genus]

Octopus vulgaris Cuvier, 1797 [species]

Figure 2.1: Classification of the species Octopus vulgaris Cuvier, 1797, a common octopus.1

Edges represent the “part–of” relationship.

Binomial nomenclature. Binomial nomenclature translates into two-term naming sys-
tem, and was introduced to formally name species according to one system. The idea of
a two-term naming system was first put forth by Linnaeus in 1753 in his work Species
Plantarum. A systematic name in binomial nomenclature is called a binomial name, also
known as a scientific name. Octopus vulgaris (Figure 2.1) is an example of a binomial
name. The first of the two terms identifies the genus to which the organism belongs, and

1https://www.gbif.org/species/2289671
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the second is called the specific epithet, and points to the specific species within that
genus. Commonly, the binomial is followed by the name of the author who published the
name, and the date when the name was published in literature. It is also common for a
name to have more than one author. Figure 2.2 shows an example of a scientific species
name from a field note; it dates back to 1821.

Figure 2.2: A scientific name in binomial nomenclature: (a) Rhinolophus (genus) (b)
javanicus (specific epithet) (c) Hasselt (author of the name: Johan Coenraad van Hasselt)

Taxonomic Debates and Name Ambiguity. During the development of biodiversity
research, methods of biological classification were continuously subject to intense discussion
(39). Multiple theories emerged regarding collection practices and classification. In
particular in the early nineteenth century and before, naturalists were struggling to find
and agree upon one ‘true’ natural system. NHCs embody this search for a terminological
structure which could be used to order, describe and classify nature.

The lack of consensus on biological classifications, as well as the challenges that came with
the publication of scientific names—the very act of bringing home the actual observation
records as well as tensions that arose through top-down policy-making (16)—resulted in
species descriptions that are challenging to analyse within the present scientific paradigm,
but also within collections themselves: (i) biological classification systems implied in field
books cannot be directly mapped to present taxonomies (ii) taxa have various types of
synonyms and homonyms within collections, see Figure 2.3, and Figure 2.4, and (iii)
scientific names shift between genera and species (39; 29; 40).

Scotophilus kuhlii temminckii (Horsfield, 1824) [current name]
Vespertilio temminckii Horsfield, 1824 [synonym]
Vespertilio fulvus Kuhl & Van Hasselt [synonym]

Figure 2.3: Synonyms of the current taxon Scotophilus kuhlii temminckii. Courtesy:
E. Gassó Miracle (2016)

Due to this, taxonomic referencing (resolving historic scientific names to current scientific
names) of historical observation records, as well as establishing links between scientific
names in general, are important processes in species research. Thomer et al. (2012) (35)
describe taxonomic referencing as the process of linking a legacy name to its valid scientific
name. They mention the process is analogous to that of georeferencing for localities.
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Similarly to georeferencing, the process helps to integrate data related to the same entities,
as well as separate data from unrelated ones.

Orestias elegans [hemihomonym]
Orestias elegans Garman, 1895 [accepted name]
Orestias elegans Ridley, 1887 [accepted name]

Figure 2.4: Hemihomonymy, an accepted form of homonymy where two species have the
same name, but come from distinct kingdoms: the first referring to an animal (a pupfish),
and the second to a plant (an orchid).1

2.1.2 Multimodal Field Observations

Early field observations exist in natural history museums as physical specimens, accompa-
nied by archival material such as handwritten field books, and illustrations. Museums
keep historical records for comparison with contemporary records. Many collections date
back 100 years or more (3). Through more recent next-generation techniques such as
photogrammetry, laser scanning, and computed tomography, rich digital representations
of specimens as well as manuscripts (e.g., the Dutch Metamorfoze programme2) can be
created (7). Below we discuss each modality and its characteristics.

Specimens. Specimens that are commonly kept in natural history museums are: fluid-
preserved whole organisms and organism parts, frozen tissues, pinned dried insects, pressings
and seeds or spores of plants, dried skins, skeletons, nests of birds and eggs of birds and
insects (3). Figure 2.5 shows a skeleton of a Pteropus vampyrus from the Naturalis
Biodiversity Center (NBC).

It is common for such specimens to be accompanied by labels containing metadata
regarding the specimen, such as the name of the collector, the scientific name, location
and date of collection, although metadata are often limited to a location or naturalist
that performed the identification or collected the specimen. In most cases, labels include
scientific names, but do not record any scientific context (29), for instance regarding the
literature used for classification. As alternative views on taxonomy exist, mentioned earlier
in Subsection 2.1.1, one name can point to two very distinct species. Linking the physical
specimens to observation records becomes crucial. When a specimen is accompanied by
a record of the organism’s latent, faded or internal traits and attributes (e.g. behaviour,
coat colour, or intestines), identification of the preserved specimen can be revisited and its
value for use in long-term scientific studies therefore increases.

1https://species.wikimedia.org/wiki/Orestias_elegans
2https://www.metamorfoze.nl/kennis-onderzoek/lexicon/preservation-imaging
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Figure 2.5: A specimen from the Naturalis - Zoology and Geology catalogues.1

Field Books. Since the onset of field work in biodiversity expeditions, naturalist have
been manually recording species observation data. The containers that preserve these
observation records are fittingly named field books (41), see Figure 2.6. They provide rich
descriptions of species-specific traits such as measurements of specific organs or other body
parts, the environmental conditions in which organisms are discovered and information
about how organisms were collected, classified and described. Because of this, field books
provide rich insight into the daily practices, methods, and results of the research field
(33).

The interpretation of historical field records is an intricate and complex task. We demon-
strate this complexity with the use of an example. The field note shown in Figure 2.6
describes an occurrence of an organism identified as the Titthaecheilos javanicus Nobis
(right page, upper left corner).

Nobis is latin for by us. The space behind the binomial name is reserved for the author of
the species. Therefore, the term by us refers to the authors of the field book: according to
them, they were the first ones to have identified, described and named the organism. The
name Titthaecheilos javanicus has, however, never been published in any classification
system. Most likely, the name served as a basionym2 for the published name Pteropus
titthaecheilus Tem. (upper right corner) believed to have been added to the field note
in Leiden, years later, by Jacob Coenraad Temminck, a dutch zoologist and museum
director. The name can be found in older classification systems as the name Pteropus

1https://data.biodiversitydata.nl/naturalis/specimen/RMNH.MAM.33245.a Images free of known
restrictions under copyright law (Public Domain Mark 1.0).

2A basionym is a synonym on which a later scientific name is based.
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titthaecheilus (Temminck 1825). In turn, that name served as a basionym for the accepted
name Cynopterus titthaecheilus (Temminck, 1825).

Moreover, below the scientific name we find another name type: Buitenzorg, a place name.
Historically, Buitenzorg was the name for the large city of Bogor, close to the capital of
Java, Jakarta. The city houses the largest botanical garden in the world, the botanical
garden of Bogor, which served as the headquarters of the NC. Last, the field note is
written in a distinct, historical style, and mixes three languages: the note starts in Dutch,
continues in German, and ends in Latin.

Figure 2.6: A page from the annotated field book describing the species
Titthaecheilos javanicus Nobis. Pteropus titthaecheilus Tem (upper right corner) is be-
lieved to have been added later in Leiden by Jacob Coenraad Temminck, http://viaf.org/
viaf/69703180, a dutch zoologist and museum director. The written annotation is thus an
additional identification of the observed organism. Collection Naturalis Biodiversity Center,
MMNAT01_AF_NNM001001033_013.1 Image free of known restrictions under copyright
law (Public Domain Mark 1.0).

Illustrations. Historically, collectors were accompanied by professional illustrators, who
produced detailed drawings of organisms, as shown in Figure 2.7. The habitus illustration—
a scientific illustration of a species’ physical appearance—was the most important medium
to convey a species’ characterising traits to other scientists. In illustrations, scientists are
capable of delineating and highlighting minuscule details, often more so than photographs.
Habitus illustrations were routinely and abundantly created and commonly served as
examples for the description of newly discovered species, so-called holotypes. Additionally,
they sometimes recorded the habitat or behaviour of an organism.

1https://dh.brill.com/nco/view/nco_NNM001001033_013/makingsense
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In illustrations, the background (natural habitat) is often omitted and species are depicted
in the form of collages of multiple (smaller) depictions of their external and internal anatomy
(e.g., bones, organs, limbs). These appear in a combination of various views (e.g., frontal,
dorsal, lateral). Moreover, illustrations exist as rough pencil sketches and/or detailed
colour drawings and commonly contain handwritten captions. Often, they are published
in digital archives with limited or no identifications. When illustrations contain captions
with handwritten historical names, these are mostly unpublished or obsolete within today’s
taxonomy. The left illustration in Figure 2.7 says Asterias tesselatus (Lamarck, 1816), an
unaccepted name, and Asterias granularis Kuhl, an unknown name. The current accepted
name of the starfish is the Goniaster tessellatus (Lamarck, 1816). The middle photograph
has some unreadable text in the upper right corner, and a pencil annotation that most likely
reads Noae Lam., appearing to refer to a genus published by Jean-Baptiste de Lamarck.1

The current accepted name of the species is Arca noae (Linnaeus, 1758).

Figure 2.7: Zoological illustrations from Iconographia Zoologica online2 (best viewed in
colour). Images free of known restrictions under copyright law (Public Domain Mark 1.0).

The identification of an organism from a photograph or illustration without reference to a
scientific name, is a complex and delicate task, even for domain experts (42).

2.2 Knowledge Extraction

In this section, we introduce the preliminaries used throughout this thesis. Our approach
employs techniques from subsymbolic AI (e.g., computer vision) well as symbolic AI (e.g.,
Semantic Web) , for the purpose of knowledge extraction.

1Jean-Babtiste de Lamarck, a French naturalist. URI: https://viaf.org/viaf/41849820/
2https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html
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We take the definition of the term information extraction from (43), and use this as a red
thread that weaves through the thesis:

Definition 2.1. “Information extraction is the process of extracting information and
turning it into structured data. This may include populating a structured knowledge base
with information from an unstructured knowledge source. The information contained in
the structured knowledge base can then be used as a resource for other tasks, such as
answering natural language queries, or improving on standard search engines with deeper
or more implicit forms of knowledge than that expressed in the text”.

Knowledge extraction is a form of information extraction. It uses similar methods, but
the main criteria is that results of the extraction process are structured according to
formalised semantics such as taxonomies or ontologies (which we will discuss in Subsection
2.2.2).

Examples of information and knowledge extraction tasks are semantic annotation and
named entity recognition and classification (NERC), both described earlier in Subsection
1.1.3, in which ontologies—formal specifications of concepts and their relationships—play
a large role in the information extraction process. A similarity between these tasks and
our work is that we leverage domain specific ontologies and taxonomies for knowledge
extraction. One major distinction between these and our work is that we extract knowledge
from digital images, whereas commonly, an intermediate step transforms the content of
images to digital text, to which then information extraction is applied.

In the following sections, we will detail the most important notations, concepts and tech-
niques used throughout this thesis, which fall under the umbrella of machine learning,
used to automatically extract patterns (subsymbolic AI, Subsection 2.2.1) and knowl-
edge representation and reasoning (KRR), used to organise the patterns semantically
(symbolic AI, Subsection 2.2.2).

2.2.1 Machine Learning

In machine learning, learning algorithms learn from data to perform a certain task: e.g.,
hypothesise to which category y or target value t a sample belongs. The type of learning
algorithm or model that is used depends on a number of things, such as (i) the structure
of the data, (ii) the task, (iii) the kind of experience the models are allowed to have
during the learning process (simulating certain real-world situations) (44).

Data Structures. Examples of data types often used in machine learning tasks—and
that we will use in this thesis—are digital images, sequences such as sentences.
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˛ Digital images are digital captions of scenes or pictorial materials. They represent
a coherent collection of focus points of light rays coming from an object. A digital
image divides the real image into a grid of real numbers, called pixels, which discretise
properties of the underlying areas such as brightness and hue. The process of digitisation
of the spatial domain is called sampling. Discretising the range in which these real
numbers fall is called quantisation (45). A gray-scale image is a 2-dimensional (2D)
digital image, of which each value represents a pixel that samples the brightness of
that pixel. Commonly, the brightness range is encoded in 256 (28) levels (values
from 0 to 255), corresponding with an 8-bit discretisation. RGB images sample three
values per pixel, also called channels: the brightness of the red, green and blue values.
Similarly to gray-scale images, these three channels are commonly encoded in 256
levels. Both sampling and quantisation depend on the imaging device that is used.
The resulting multidimensional array of real numbers can be stored and handled by a
digital computer.

We define a digital image (either gray-scale or RGB), with m rows and n columns, as
follows:

Definition 2.2. A gray-scale digital image X is a 2D numerical array, or matrix, with
xij œ R being the gray value of the pixel in the i-th row of and the j-th column, see
the matrix representation in Equation (2.1) below.

X =

S

WWWU

x1,1 x1,2 ... x1,n

x2,1 x2,2 ... x2,n
...

...
...

...
xm,1 xm,2 ... xm,n

T

XXXV
(2.1)

An RGB image is a multi-channel digital image in which each channel represents a
colour layer. This can be considered a 3D numerical array, or tensor, with xijk œ R
being the value of the pixel in the i-th row, the j-th column, and k-th colour channel.
A tensor representation of an RGB image is shown in Equation (2.2) below.

X =

x1,1,1 x1,2,1 ... x1,n,1
x2,1,1 x2,2,1 ... x2,n,1

...
...

...
...

xm,1,1 xm,2,1 ... xm,n,1

x1,1,2 x1,2,2 ... x1,n,2
x2,1,2 x2,2,2 ... x2,n,2

...
...

...
...

xm,1,2 xm,2,2 ... xm,n,2

x1,1,3 x1,2,3 ... x1,n,3
x2,1,3 x2,2,3 ... x2,n,3

...
...

...
...

xm,1,3 xm,2,3 ... xm,n,3

(2.2)

˛ Sequences are digital representations of values that are meaningful in a certain
arrangement, such as sentences, digital texts or even sequences of images that represent
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words in a sentence.

We define a sequence of values as:

Definition 2.3. A sequence s is a finite set of values (x(1), . . . , x(t)) that are tightly
interrelated, where t indicates the length of the sequence, and x(i) the i≠th value of
the sequence.

In classical machine learning, “raw” data are first transformed into features (numerical
representations of raw data) that represent the variations in the data well. This process is
called feature engineering.

Machine Learning Tasks. Below, we discuss two machine learning tasks used in this
thesis, but many more exist (e.g., regression or clustering).

˛ Classification: In a classification task, a machine is asked to infer to which of k

categories some input belongs. The learning algorithm is asked to produce a function
(a model) f : Rn æ {1, . . . , k} (44). An example of this is image classification, in
which an image X is mapped to the category y œ {1, . . . , k} to which the machine
thinks the image belongs, each number representing a class. For example, an image X
of a bear gets mapped to the label y(i) that encodes the bear class, or an image of
the word Pteropus gets mapped to the label y(i), representing the class Pteropus. A
machine learning model trained for classification generally produces a decision boundary,
see Figure 2.8, that separates data from distinct classes (in Figure 2.8, the decision
boundary separates instances from the red class from that of the black class). The
model classifies a new data point as belonging to a certain class by calculating on
which side of the boundary it lies.

˛ Classification with structured output: In classification with structured output, a
machine is asked to produce, given some input, several values that are all tightly
interrelated : a sequence s. Examples are (i) image captioning, where a machine
receives an image as an input and outputs a sentence that describes the image, or (ii)
NERC, where a machine receives a sentence, and returns the same sentence with its
named entities annotated with terms from a structured knowledge base.

Learning from Experience. Below, we discuss two types of learning strategies that vary
in the amount of experience they are allowed to have during the learning process.

˛ Supervised learning: Most types of learning algorithms get to “see” all training
examples x œ Rn and their labels y œ Y tr (classification) or targets t œ Rn (regression),
and are therefore supervised in the sense that they are instructed as to what the output
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y

x

w
· x

+ b =
0

w

Figure 2.8: Example decision boundary of a binary classifier.

for a certain input should be. From the training data, the machine learning algorithm
is asked to learn the mapping between input and output, and use it for extrapolation
to new data from a test-set.

˛ Zero-shot learning (ZSL): ZSL is an extension of supervised learning in which the
test-set represents a distinct set of classes y œ Y ts, for which Y tr fl Y ts = ÿ. The goal
of ZSL is that a classifier learns representations for data from a set of seen classes Y tr

(seen by the algorithm) with medium to large samples, which are then transferred to
classify classes from another set of unseen classes Y ts, for which no or small samples
are available for training.

An appealing characteristic of ZSL techniques is that it is possible to exploit data from
auxiliary data sources to share representations between classes, and hereby push the
boundaries of automated recognition for a specific problem. As with regular supervised
learning, it can be di�cult in some cases to control which features are shared.

Other popular types of learning are unsupervised learning and semi-supervised learning,
but these are out of the scope of this thesis.

Deep Learning Models. Deep learning is a subfield of machine learning that brings
forth a specific type of machine learning models, called deep (artificial) neural networks
(DNNs). DNNs are able to learn representations of data from data (46), replacing part of
the feature engineering pipeline. These learned representations then allow computers to
perform a machine learning task. Artificial neural networks (ANNs) are models that are
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inspired by the human brain, as they are trained to strengthen and weaken connections
between input variables, much like the brain’s networks of neurons. DNNs are types of
ANNs that are trained to learn deep, hierarchical representations of data—with multiple
levels of abstraction (46). For the purpose of classification, they define a mapping between
an input array x = (x1, . . . , xn) and an output y, y = f(x; ◊), and learn the value of
parameters ◊ that defines the best function approximation.

Below we discuss types of DNNs that are used in this thesis.

˛ Multi-layer perceptrons (MLPs): An MLP is an example of the simplest type of
DNN, see Figure 2.9. It is a type of feed-forward neural network, meaning that the
multiplications flow ‘forward’ in one direction through the network. Although the
network represented here has one level of abstraction (one hidden layer), DNNs usually
have many. By adding multiple hidden layers, we increase the network’s depth. In
Figure 2.9, each connection represents a multiplication with a weight. In this figure,
there are two weight matrices W(i), the superscript denoting the i-th weight matrix,
one between the input and the hidden layer, and one between the hidden layer and the
output. We call these layers fully connected, as each node in one layer is connected
with every other node in the next layer, i.e., has its own weight.

...

...
...

x1

x2

x3

xn

h1

hm

o1

ok

Input
layer

Hidden
layer

Ouput
layer

Figure 2.9: An example of an MLP with one layer of abstraction. The network has an
n-dimensional input, m hidden nodes and k outputs (classes).

See Equations (2.3) to (2.5) for the network’s mapping between x and y. Equation
(2.3) and (2.4) are called node activations. They show an additional parameter b(i)

j ,
which stands for bias and serves to shift the activation function and thereby the
classification boundary by adding a constant.
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hi =
ÿ

j

w(1)
ij xj + b(1)

j (2.3)

oi =
ÿ

j

w(2)
ij xj + b(2)

j (2.4)

y = argmax(o) (2.5)

While an MLP is a linear model, most ANNs employ at least one layer in which a
non-linearity function g, called activation function, is applied to the activation of each
of the neurons in a hidden or output layer, as in Equation (2.6). Common activation
functions are the ReLU or the softmax functions.

hi = g

A
ÿ

j

w(1)
ij xj + bi

B
(2.6)

The activation of the last layer (often a softmax function applied to the activation
of the last layer) produces a distribution over output classes, also called confidence
values, which correspond to the distance of an instance to the decision boundary, and
thereby how confident the classifier is about that class being the one represented in
the data. This intuitively makes sense, as when our instance lies very close to the
decision boundary (or boundaries for multi-class classification), it is more likely to
actually belong to the other class than when it’s further away.

˛ Convolutional neural networkss (CNNs): Whereas the MLP is used for processing
1D arrays, CNNs are used for processing grid data. They are often used in computer
vision for classification of images. Characteristically, they use a mathematical operation
called a convolution. In image classification, a convolution is a function that extracts
features from regions of pixels in an image (47). The kernel K, a small matrix of
integers, acts as a sliding window that is moved over the digital image X and produces
a weighted average with the underlying pixels, see Equation (2.7) (44).

S(i, j) = (X ú K)(i, j) =
ÿ

m

ÿ

n

X(i ≠ m, j ≠ n)K(m, n). (2.7)

Hence, instead of acting on the full input, kernels act on subregions of an image.
Digital images exist of large 2D or 3D arrays, so employing kernels makes networks
easier to train: parameters are shared over multiple regions of the input, so a much
smaller number of parameters need to be optimised then when the layer would be fully
connected.
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Convolving regions in an image with kernel K results in an output matrix called a
feature map, which gives an indication of whether or not the features in the kernel
are present in certain regions of the image: similar regions produce similar output
values. CNNs are types of DNNs as they stack layers of convolutional operations
to extract image features on various levels of granularity, from fine-grained features
such as corners and edges to coarser, class-specific features such as eyes, feathers, a
beak—even though these coarser features are never that clear-cut. Similarly to an
MLP, classification happens in the last fully connected layer, see Figure 2.9. The array
of 2D feature maps is re-arranged to a 1D array and act as input to a fully connected
layer. Often, engineers employ some fully connected layers before the final classification
layer.

˛ Recurrent neural networks (RNNs): RNNs (48) are other types of DNNs for
processing sequences of values t = (x(1), . . . , x(t)). Like CNNs, they share weights and
perform a single computation multiple times over a di�erent part of the input, here
called x(t) with time step t. Di�erent from CNNs, they have a recurrence property,
which means they use output at time t to serve as auxiliary input to a hidden layer
at the next time step t + 1. E�ectively, the recurrence property serves as a memory
that uses past computations ht≠1 to influence present computations ht. Their basic
operations are detailed below in Equation (2.8) and (2.9):

ot = f(ht; ◊) (2.8)

ht = g(ht≠1, xt; ◊) (2.9)

where ot is the output at time t, ht the state of the hidden layer at time t, and xt the
input array at time t. f and g serve as activation functions.

Long short-term memory networks (LSTMs) are types of RNNs that overcome some of
the issues that occur with regular RNNs. They have a bilateral variety, the bilateral long
short-term memory network (BLSTM), that can additionally use future computations
ht+1 to influence present computations ht.

˛ Prototypical neural networks: Prototypical networks are networks developed for low-
shot learning strategies such as few-shot learning (FSL) or ZSL (49). They compute
M -dimensional class representations ck œ RM called class prototypes. In contrast
to the other DNNs that we discussed, classification does not happen based on a
distribution (softmax activation) over the last fully connected layer. Instead, the last
fully connected layer maps instances to a metric space, and a distribution over distances
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2.2 Knowledge Extraction

from an instance to class prototypes is produced. Example distance functions are
euclidean distance, see Equation (2.10), and cosine similarity, see Equation (2.11).

d (p, q) =
ı̂ıÙ

nÿ

i=1
(qi ≠ pi)2 (2.10)

cos(p, q) =
qn

i=1 piqiqn
i=1 (pi)2

qn
i=1 (qi)2

(2.11)

To calculate prototypes for FSL, support points (example datapoints) are mapped to
a metric space, and per-class averages of the resulting embedded support points are
calculated, see Equation 2.12. In Equation 2.12, Sk refers to the set of support points
for class k, and ck refers to its calculated prototype. We further refer to this metric
space by the term prototype space.

ck = 1
|Sk|

ÿ

(xi,yi)œSk

f„(xi) (2.12)

For ZSL, Snell et al. (49) mention that rather than embedding support points in
prototype space, prototypes can be constructed by embedding auxiliary information,
such as class embeddings in the form of attribute annotations (50; 51), in prototype
space. Attribute embeddings encode whether a certain attribute—from a set of
predefined attributes—is present for a specific class. Attribute embeddings can be
either binary or continuous, e.g., {wing: 0.1, red: 0.4, tail: 0.7}.

Training and Evaluation. After model selection, the model’s parameters ◊ are learned
through iterative minimisation of the training error. One iteration commonly consists of
minimally three basic steps.

1. The model is applied to a batch of training data (data from the training-set T tr).

2. A loss function is applied to the output of the model, which calculates the training
error—a function over the di�erence between the output y and the desired output ŷ.

3. The training error is propagated backwards through the model using the backpropa-
gation algorithm, and parameters ◊ are adjusted via an optimisation algorithm (such
as gradient descent).
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How well the model performs on real-world data should be evaluated on a dataset that is
separate from the training-set, the test-set, T ts. It often happens that the representations
learned by the model too closely fit the variation in the training-set, and will therefore
generalise poorly to new data. This phenomenon is called overfitting, and can for instance
happen when samples in the training-set are too small to obtain a good representation, or
when there are too many parameters in the model, causing it to learn too much of the
variance in the data. A metric that is most used for classification is the average accuracy,
see Equation (2.13) (in percentages).

Accuracy = n correct predictions
n total predictions ú 100 (2.13)

The average accuracy metric is not always the best choice, as it does not correctly portray
the predictive power of a model, especially when data are imbalanced (52). Let us first
consider a binary classification problem, and a dataset with a uniform distribution over its
classes. We produce a naive model, let us call it model g, that for every input predicts
the class cm, the class in which the majority of the data resides, i.e., the majority guess:
g : Rd æ cm. The estimated average accuracy on the test-set would already be as high as
50%. Imagine now a classifier h, that is trained on a 5-class classification problem with
a similar uniform distribution over its classes. If such a classifier h produces an average
accuracy of 50%, it will have learned a much better data representation than our naive
binary classifier, even though the average accuracy produced would be equal.

The accuracy metric is especially vulnerable to bias that skewed data introduces. If we
would apply our naive classifier g to a dataset where 90% of the data are of class 0 and
the rest of class 1, we would obtain an average accuracy of 90%.

Further details of specific models, learning strategies, evaluation metrics and other, can be
found in the respective chapters.

2.2.2 Knowledge Representation and Reasoning

The field of knowledge representation and reasoning (KRR) is quite extensive, so we limit
ourselves to techniques for structuring data and data about data (metadata), with a focus
on the representation of data in the form of knowledge graphs. Through the use of
schemas and ontologies, which impose constraints or assign attributes to data, new
knowledge can be inferred (reasoning). We furthermore discuss the principles of Linked
Data (LD), which allow knowledge graphs served on the Web to link together, forming a
Web of semantic data, called the Semantic Web.
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2.2 Knowledge Extraction

Structured data, in contrast to unstructured data, are data that are structured according
to some data model, and can therefore be interpreted by machines. Unstructured data,
such as free text, can be made machine understandable by adding structure to capture
the implicit semantics. Below we define what it means to make implicit semantics of data
accessible to machines (53), turning data into machine-understandable knowledge.

We distinguish three levels for structuring data, that vary based on their capability to
express implicit semantics (54):

˛ Controlled vocabularies: Controlled vocabularies include shared terminologies and
nomenclatures and define terms to formally describe concepts within a domain.

In the biodiversity domain, for instance, community collaboration is used to create
shared knowledge representations, in order to make e�ective use of existing data (36).
For broad-scale analyses, biodiversity information must be readily available in digital
form, published as FAIR data. Below, in listing 2.1, we show a piece of Extensible
Markup Language (XML), taken from the Simple Darwin Core documentation1 that
structures biodiversity data according to the Darwin Core (DwC)2 standard, a glossary
of terms (properties) for the description of biodiversity records. Such a basic form of
structuring data allows intelligent machine search over data, for example the aggregation
of scientific names across distributed collections using the term dwc:scientificName.

<?xml version ="1.0" encoding ="UTF -8"?>
<SimpleDarwinRecordSet

xmlns="http ://rs.tdwg.org/dwc/xsd/simpledarwincore /"
xmlns:dc="http :// purl.org/dc/terms/"
xmlns:dwc="http ://rs.tdwg.org/dwc/terms/"
xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"
<SimpleDarwinRecord >

<dwc:basisOfRecord >Taxon </dwc:basisOfRecord >
<dwc:scientificName >Centropyge flavicauda Fraser -Brunner 1933
</dwc:scientificName >
...
<dwc:kingdom >Animalia </dwc:kingdom >
<dwc:phylum >Chordata </dwc:phylum >
<dwc:class >Osteichthyes </dwc:class >
<dwc:order >Perciformes </dwc:order >
<dwc:family >Pomacanthidae </dwc:family >
<dwc:genus >Centropyge </dwc:genus >
<dwc:specificEpithet >flavicauda </dwc:specificEpithet >
<dwc:taxonRank >species </dwc:taxonRank >
...

</SimpleDarwinRecord >
</SimpleDarwinRecordSet >

Listing 2.1: A piece of simple darwin core

1https://dwc.tdwg.org/simple/
2https://dwc.tdwg.org/
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Other than an unique definition of terms within a domain, the XML document does
not capture a lot of meaning that can be interpreted by machines. A machine does not
know how the term Centropyge relates to the term flauvicauda, or would not know
the di�erence between the specific epithet flauvicauda, part of the genus Centropyge,
and the epithet flauvicauda belonging to a di�erent genus (should such a scientific
name exist).

˛ Taxonomies extend controlled vocabularies with “is–a” (subsumption) relationships
between terms and thus add hierarchy to ’flat’ controlled vocabularies.

A biological taxonomy, used to structure the scientific name in Figure 2.10, shows an
example of how pieces of data can be related through the subsumption relationship,
where a class lower in the hierarchy is connected to the one above it using the is–a≠≠æ
relationship.

Animalia
Chordata

Osteichthyes
Perciformes

Pomacanthidae
Centropyge

Centropyge flavicauda (Fraser-Brunner 1933)

Figure 2.10: A hierarchy of the species Centropyge flavicauda (Fraser-Brunner 1933), where
the edges (from top to bottom) refer to the “is–a” subsumption relationship

˛ Schemas and Ontologies further extend taxonomies by distinguishing (hierarchically
organised) types and properties (relationships), and allow the modelling of constraints,
axioms and rules.

Ontology in philosophy is the study of existence. More specifically, the study concerns
itself with questions that relate to what types of entities exist, and how they relate to
one another. In computer science, an ontology refers to a data structure that can be
processed by machines (11; 55):

Definition 2.4. An ontology is a formal, explicit specification of a shared conceptuali-
sation (56).

¶ formal: an ontology has well-defined syntax and semantics,
¶ explicit: an ontology can be represented and processed algorithmically
¶ shared: an ontology is agreed upon in a community and facilitates communication

between its member agents, and
¶ conceptualisation: an ontology presents a model of the real world
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2.2 Knowledge Extraction

Similarly to philosophy, an ontology in computer science consists of a formally defined
set of terms, and relationships (properties) that define how the terms are related (53).
We will denote these consistently in the same script throughout this thesis: e.g., class

for classes, property
≠≠≠≠≠æ

for properties, instance for instances of classes, and “literal” for
literals (a value of some datatype).

Knowledge graphs use ontologies and database schemas to structure data according to a
directed graph data model. We use the following definition:

Definition 2.5. A knowledge graph is a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose edges
represent relations between these entities (57).

The Semantic Web. The Semantic Web is a network of shared, structured data and
metadata. It is based on directed labelled graphs as data models for resources and
their relationships, and IRIs such as HTTP URLs1 for the description of these resources
and relationships. The Resource Description Framework (RDF) is the World Wide Web
Consortium (W3C)2 recommended data format for graph data on the Semantic Web. The
RDF data model uses triples for the description of resources, in the form:

Èsubject, predicate, objectÍ (2.14)

An example being: È:img.jpg,:creator≠≠≠≠æ,“Heinrich Kuhl”Í. Each such triple forms a single
arc in a directed labelled graph.

RDF Schema3 and the Web Ontology Language (OWL)4 are formalisms that provide
vocabularies for structuring knowledge for various levels of expressiveness. Properties of
terms can be used for reasoning over data, i.e., inferring new facts from a set of asserted
axioms.

A simple example term that can be used to infer new facts from assertions is the term
owl:TransitiveProperty , and it is defined as follows:

Definition 2.6. A transitive relation x≠æ is a relation specifying that if A x≠æ B and B x≠æC, then A x≠æ C.

1Web-resolvable URIs
2The World Wide Web Consortium (W3C) is an international community for the development of

standards on the Web. https://www.w3.org/Consortium/
3https://www.w3.org/TR/rdf-schema/
4https://www.w3.org/OWL/
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Instances of the owl class owl:TransitiveProperty inherit this transitive property.
rdfs:subclassOf≠≠≠≠≠≠≠≠≠≠æ, for example, is an instance of owl:TransitiveProperty . If we define
each term from Figure 2.10 as a class that is connected to the class above it with
the property rdfs:subclassOf≠≠≠≠≠≠≠≠≠≠æ, machines can infer from this statement that the class
Centropyge is also a subclass of every class above it, such as the class Chordata .

The SPARQL Protocol and RDF Query Language (SPARQL)1 is one of the query languages
with which RDF graphs can be queried, making use of their graphical structure.

Through shared formalisms, distributed directed labeled graphs on the Web are linked
together. The collection of directed labeled graphs on the Web are referred to as Linked
data. Tim Berners-Lee, one of the inventors of the Web, suggests a 5-star scheme with
which to deploy Linked Data, in which each step assumes employment of the previous
step(s):2

FF FFFFFFFF publish data on the Web in any format (e.g., PDF, JPEG) accompanied by
an explicit Open License (expression of rights).

FFF FFFFFF publish structured data on the Web in a machine-readable format (e.g., XML).
FFFF FFFF publish structured data on the Web in a documented, non-proprietary data

format (e.g., CSV, KML).
FFFFF FF publish structured data on the Web as RDF (eg Turtle, RDFa, JSON-LD,

SPARQL)
FFFFFF In your RDF, have the identifiers be links (HTTP URLs) to useful data

sources.

These also relate to the Linked Data principles, mentioned earlier in Subsection 1.1.3.
Serving data to the Web of Linked Data has many benefits: (i) the adoption of HTTP
URIs for the representation of entities (such as named entities) ensures more accurate
content descriptions and thereby allows for the computational disambiguation of terms, (ii)
through the use of shared conceptualisations, data become interoperable, and (iii) through
use of Semantic Web services, data can be federated and integrated between distributed
collections (11).

2.3 Data Sources and Use-Cases
In this section, we discuss contemporary online biodiversity data sources relevant for
this thesis (Subsection 2.3.1), and detail two NHC use-cases (Subsection 2.3.2) used for

1https://www.w3.org/TR/sparql11-query/
2https://dvcs.w3.org/hg/gld/raw-file/default/glossary/index.html#

x5-star-linked-open-data
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2.3 Data Sources and Use-Cases

analyses in further chapters.

2.3.1 Data Sources

˛ The Global Biodiversity Data Facility (GBIF) is an international network and data
infrastructure for biodiversity data on the Web (58). Through the use of data standards,
the organisation has pulled together hundreds of millions of species occurrence records.
These include record types from multiple sources, such as, museum specimens, scientific
expedition data and photos taken by amateur naturalists. GBIF provides an API,
allowing data to be downloaded as Darwin Core archives,1 a Biodiversity Information
Standards (TDWG) standard. Additionally, they provide other resources such as
the GBIF backbone taxonomy (59), a single taxonomy that organises all names
included in GBIF according to one taxonomic system, which integrates information
from external resources such as the Encyclopedia of Life (EOL),2 the International
Union for Conservation of Nature and Natural Resources (IUCN)3 and GenBank.4 It
includes knowledge such as whether a name is accepted, what synonyms it has, what
its higher classifications are.

˛ The Biodiversity Heritage Library (BHL)5 is an online library that provides open
access to biodiversity heritage literature from all over the world (13). The library has
employed OCR and automatically recognises scientific names in order to improve access
to the printed literature through full-text search.

˛ iNaturalist (60), is a citizen science project,6 that allows amateur naturalists to upload
photographs of organism encounters in the wild together with an identification and
geo-location. For their mobile application, they employ image recognition to help
naturalists with the identification of observed organisms.

2.3.2 Use Cases

˛ Committee for Natural History of the Netherlands Indies (“Natuurkundige
Commissie voor Nederlands-Indië”) (NC): The NC was founded by King William
I of the United Kingdom of the Netherlands. Consisting of a group of naturalist,
draftsmen and preparators7 from the Netherlands as well as German-speaking countries
1http://rs.tdwg.org/dwc/
2https://eol.org/docs/what-is-eol
3https://www.iucn.nl/over-iucn-nl
4https://www.ncbi.nlm.nih.gov/genbank/
5https://www.biodiversitylibrary.org/
6https://www.inaturalist.org/
7In the field of natural history preparators are those responsible for preparing plants and dead animals

so that they could be used for research. Those preparing only animals are also known as taxidermists
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and France (16), the committee was sent to the Indonesian archipelago. Their primary
task was the collection of information on natural resources in the Dutch Indies. In
addition, they were deployed to observe and describe the local flora and fauna. As
a result, many specimens, biological illustrations and observation descriptions were
brought back to the Netherlands for closer investigation, with the aim to publish results
on the natural diversity of the Dutch Indies.

Currently, the physical collection is stored at the Naturalis Biodiversity Center in
Leiden. In 2008 the archival part of the collection was digitised (scanned through the
Metamorfoze programme1), leading to a digitised collection of roughly 8,000 field book
pages, and 2,000 illustrations.

˛ The Iconografia Zoologica collection (IZ): The Iconographia Zoologica2 (short:
IZ) is a 19th century collection of biological illustrations from the Artis Library of
the University of Amsterdam. The collection was formed by three collectors: the
well-known collector and naturalist Th. G. van Lidth de Jeude, the zoologist R.T.
Maitland and the curator of the shell collection at the Amsterdam Zoo, Abraham
Oltman, together with the Amsterdam society Natura Artis Magistra. In the 21st
century, the collection was digitised and labelled with either complete binomial species
names (genus and specific epithet) or corresponding genera. The full online collection
contains over 26,500 sketches and drawings.

1https://www.metamorfoze.nl/kennis-onderzoek/lexicon/preservation-imaging
2https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html
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Manuscripts to Databases

“You who read me—are you certain you understand my language?”

– Jorge Luis Borges,The Library of Babel

Searching through historical manuscript collections can seem like an insurmountable task.
Misreading one word can change the entire reading of a text, and even a correct reading
of a historical text might not give any direct clues as to its meaning, as historical content
needs to be understood in the spirit of its own time. Tying images of handwritten text to
their symbolic representation (such as digital text), allows for computational exploration
of the content and facilitates their correct interpretation.

In this chapter, we aim to answer research question Q.1 (What are the trade-o�s of various
system designs for the disclosure of digital archives?).

3.1 Introduction

Galleries, Libraries, Archives and Museums (GLAMs) often provide web-accessible, digitised
images of historical manuscripts from various domains, e.g., medieval manuscripts,1

natural history field books,2 works on philosophy and jurisprudence,3 ancient religious
manuscripts,4 notarial acts,5 or biodiversity literature.6

In order to computationally access the content of text images, they can be transcribed
and/or annotated by the public at large through crowdsourcing (61; 17), or by human do-
main experts through nichesourcing (62; 63). By utilising human-generated transcriptions,

1https://dlmm.library.jhu.edu/en/digital-library-of-medieval-manuscripts/
2https://siarchives.si.edu/about/field-book-project
3https://blogs.ucl.ac.uk/transcribe-bentham/
4https://www.deadseascrolls.org.il/about-the-project/the-digital-library
5https://alleamsterdamseakten.nl/
6https://www.biodiversitylibrary.org/
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3. MANUSCRIPTS TO DATABASES

automated techniques such as HTR (23; 64) and keyword spotting (65) can further take
up transcription. Figure 3.1 shows example historical manuscripts from three di�erent
datasets available from the comprehensive IAM-HistDB1 research database:

(a) (b) (c)

Figure 3.1: Sample pages from the: (a) George Washington, (b) Saint Gall, and (c) Parzival
datasets, taken from the IAM-HistDB research database.

Computational systems that produce machine-readable content from historical manuscripts,
such as the ones in Figure 3.1 commonly contain three components that each digest the
output from the previous component (see also Figure 3.2) (66):

Comp.1 Pre-processing of the heterogeneous content through document image analysis
(DIA): e.g., segmentation of the heterogeneous content into page elements such as
paragraphs, lines and word zones.

Comp.2 Manual or automated transcription of the segmented lines or word zones.

Comp.3 Some form of information extraction or retrieval techniques. The former often
by means of natural language processing (NLP) techniques over transcribed texts.

Segmentation Word zones
Transcription

/HTR Transcriptions NLP/IR

Figure 3.2: Three typical steps in historical document processing. Blue square boxes indicate
processes while red rounded boxes indicate output of these processes.

1https://diuf.unifr.ch/main/hisdoc/iam-histdb
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3.2 System Designs

In this chapter we discuss various systems used in the literature for the enrichment of
historical manuscripts. We divide the systems into three groups based on a set of properties
that we define (Section 3.2). Based on a final discussion, we propose an approach for
knowledge extraction from digital images of field books and scientific illustrations (Section
3.3).

3.2 System Designs
We analyse systems for the enrichment of manuscripts in a slightly less conventional way, for
the purpose of optimising and streamlining knowledge extraction. In the literature, systems
are often discussed based on types of algorithms used for Comp.1 (related to binarisation,
segmentation, text-line normalisation (66)) and for Comp.2, techniques for HTR and
OCR and their performance on standard benchmarks (such as the ones from Figure 3.1).
Comp.3 is often looked at separately, after realisation of Comp.1 and Comp.2. We
focus on component Comp.2 and Comp.3 in conjunction, and look at three properties in
specific: agents that aid in the transcription and annotation process, the proportion of
the content that is transcribed, and richness of content descriptions:

˛ Agents: The agents that are involved in the process of digitisation of the text: (1)
the public at large, (2) the expert community, (3) a machine.

˛ Proportion: The proportion of text that is transcribed, whether it is attempting full
verbatim transcription or retrieval of keywords, in which each step includes the previous
step(s): (1) named entities, (2) keywords (3) full text.

˛ Richness: The level of richness with which the content is described, in which each
step assumes employment of the previous step(s): (1) verbatim, (2) locally defined
semantic tags, (3) terms from controlled vocabulary or schemas, (4) IRIs, (5) terms
from an ontology.

We define a set of terms in the context of manuscript enrichment, as the terminology may
vary between studies:

˛ Transcription: The digital representation of a written text. Transcribing in this
context is the act of transforming the verbatim handwritten text in a digital image of
a manuscript to digital text.

˛ Label: The representation of a region of interest (ROI) in a digital image as digital
text. Labelling in this context is the act of “attaching” a digital label to a ROI using
some computational system. The ROI together with its representation as digital text
can be used as training data for machine learning.
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3. MANUSCRIPTS TO DATABASES

˛ Annotation: digital or written notes or comments added to an image or digital text;
they point to a specific ROI (for images) or range (for digital text), and add comments
or metadata such as a free text description or a semantic type (semantic annotation).

˛ Keyword: A word that is key in describing the content of a document, such as a word
that would be used to search a set of documents using a search engine.

˛ Named entity: “Information units like names, including person, organization and
location names, and numeric expressions including time, date, money and percent
expressions (30).”

.TIFF.JPEG

 “Heinrich Kuhl”

.JPEG

Label tool

backend

Word-zone

.TXT

backend

Transcription tool

 “Heinrich Kuhl ...”
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Figure 3.3: Manuscript enrichment design patterns.

We discuss our predefined properties for three types of systems: 1 manual full-text
transcription, 2 semi-automated transcription, and 3 semantic annotation of text
images, which we graphically represent in Figure 3.3. In total, we discuss a selection of 10
systems that in our opinion represents the breadth of the literature well. In the coming
subsections we describe each system type, for which we discuss example frameworks and
projects.

3.2.1 Manual Full-Text Transcription.

GLAMs around the world are beginning to notice the potential of crowdsourcing for full-
text transcription (see Figure 3.3, system type 1 ). In crowd- or nichesourcing, scholars,
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experts or the public at large, take on the task of digitisation of the verbatim content of
manuscripts (17; 61; 62). Many examples of initiatives now exist that manually transcribe
manuscripts in full. We discuss three examples below, specifically including two that
digitise handwritten field books:

˛ The Field Book Project 1 (15) is a project set up by the Smithsonian Institution Archives
in collaboration with the National Museum of Natural History. The project uses a
crowd of what they call “volunpeers”2 to harvest full-text transcriptions from field
books (67), through their transcription center.3 Controlled vocabularies such as the
Natural Collections Description (NCD) are used to describe metadata on levels above
content-level (see Figure 1.1). Their approach, described in (68), mentions the use of
geo-tagging for future work, to disambiguate localities.

˛ The Transcribe Bentham initiative4 has digitised and, through crowdsourcing, success-
fully transcribed 24,833 (update: 27th of November 2020) manuscript pages from jurist
Jeremy Bentham (1748-1832), stored in the University College London digital archive,
through a customised version of the MediaWiki5 transcription interface (17; 61).6

Manuscripts are transcribed, and transcriptions are marked-up with Text Encoding
Initiative (TEI)7-compliant XML. They indicate a survey pointed out most volunteers
took an interest in the history and life of Bentham, and that reasons which kept
volunteers from transcribing were di�culties deciphering the hand of Bentham. Within
another project, tranScriptorium8 (22), the transcriptions are used to further transcribe
the manuscripts using HTR techniques.

˛ The project From Documents to Datasets (35) provides a design for the conversion
from digitised handwritten field books to datasets, see Figure 4.2, structured according
to terms from the DwC standard. They propose first to fully transcribe the texts
together with experts, then upload those texts together with the image scans to a
MediaWiki9 server. Via templates, the taxa, locations and dates, are annotated by
researchers through a crowdsourcing initiative. Annotators can resolve verbatim names
to current ones (taxonomic referencing) during the semantic annotation process. The
1https://siarchives.si.edu/about/field-book-project
2A combination of the word volunteer and peer. The term is coined by Meghan Ferriter of the

Smithsonian Transcription Center, and is used to refer to a skilled volunteer working at a professional
level. https://siarchives.si.edu/blog/growing-community-volunpeers-communication-discovery

3https://transcription.si.edu/
4https://blogs.ucl.ac.uk/transcribe-bentham/
5https://www.mediawiki.org/wiki/MediaWiki
6https://blogs.ucl.ac.uk/transcribe-bentham/
7TEI is a standard for the representation of texts in digital form, in order to represent structure and

content of the text, such as page layout and physical properties https://tei-c.org/
8http://transcriptorium.eu/
9https://wikisource.org/
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annotations are then extracted and converted manually to DwC terms, in order to
publish them to the GBIF 1 data server (69).

Agents. Full-text transcription o�ers a good solution for GLAMs aiming to digitise their
manuscript collections, but we note that manuscripts with heterogeneous hard-to-read
historical handwriting and content can be too challenging to transcribe by the public
at large (Chall.6, in line with Chall.7). Multiple crowdsourcing techniques exist that
secure data quality,2 but motivation can drop when tasks are too challenging. Although
transcription projects often mention they leverage the crowd, most valuable e�ort appears
to come from the community (domain enthusiasts, volunpeers, domain experts, citizen
scientists, amateur experts). Transcription and annotation of heterogeneous, multilingual,
hard-to-read manuscripts is a knowledge-intensive task, and (amateur) experts have more
domain knowledge to perform the tasks, and are intrinsically motivated to produce high-
quality data (62). In this sense we note that the term crowdsourcing is an ambiguous one,
as there is a significant distinction between the public at large, and the smaller community
crowd. We therefore prefer to use the term nichesourcing (coined by de Boer et al. (62))
to refer to the act of leveraging a smaller “crowd” of domain (amateur) experts for such
knowledge-intensive tasks.

Proportion. As the term full-text transcription suggests, the aim of most crowd- or
nichesourcing e�orts through transcription tools aim at transcribing a text in full. One
thing to note is that full-text transcription is time-consuming, and success depends on
many factors, such as the complexity of the material and the involvement (motivation)
of the community crowd. Full-text transcription can mitigates semantic enrichment,
since the manipulation of digital text is computationally more straightforward than the
manipulation of text images. However, much of the digitised textual content serves human
comprehension, the “glue” that connects the truly interesting pieces of information, and is
often not used as search terms.

Richness. Although some systems discussed above employ some form of semantic
enrichment (richness level 2), most transcription systems in the literature, however,
produce unstructured or semi-structured—usually based on syntax rather than semantics—
XML files. This is useful for further searching and processing (e.g. using text mining
techniques), but does not enable content to be semantically queried, or integrated with
other collections.

1http://www.gbif.org/
2http://manuscripttranscription.blogspot.com/2012/03/quality-control-for-crowdsourced.

html
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3.2.2 Semi-Automated Transcription

Transcription can be partly taken on by HTR techniques (see Figure 3.3, system type
2 ). Human experts take on the task of labelling segmented lines or word zones (ROIs

containing written words), which are in turn used to automatically increase searchability of
other parts of the text. An increase in human-generated transcriptions invokes an increase
in the ability of HTR and word spotting techniques to accurately transcribe words in other
parts of the texts. Common techniques include supervised deep learning methods such as
BLSTMs for classification of characters, full words or sentences, or clustering techniques
such as keyword spotting, where “clouds” of visually similar word zones are labelled by
experts, rather than single word zones. In our discussion we omit systems that employ
OCR, as the content of historical manuscripts is too heterogeneous (see Chall.6) for OCR
to produce any usable results.

˛ The HisDoc project1 is an example of a HTR system: experts transcribe individual
text lines, and these are used as input to a supervised learning system that aims to
learn models for single characters (64). As their system performs HTR at word level, a
lexicon (a set of valid words) is required for automated transcription. As an alternative,
they experiment with lexicon-free word spotting techniques (65). In the literature,
keyword spotting is referred to as a recognition-free approach (70): word images are
matched to visually similar images, often through a form of clustering of word images
in a feature space (71). In order to deal with name variants and misspellings, they
define word confusion candidates as synonyms (72).

˛ A 17th-century botanical manuscript “Historia de las plantas” has been digitised (73),
using the the Computer Assisted Transcription of Text Images (CATTI) framework
(74; 75). The framework performs layout analysis and allows users to transcribe the
extracted line segments. The framework also o�ers HTR technology as an “assistant”
that helps users transcribe the text. The HTR technology is based on Hidden Markov
Models (HMMs) that operate on single characters, and language models that use as
input N -grams. Toselli et al. (73) indicate that the CATTI system primarily aims
at producing high-quality professional manuscripts, but indicate that potentially, the
crowd could be leveraged, as was done in the Transcribe Bentham project.

˛ Transkribus is a platform developed for the enrichment and searching of historical
documents (76). A user can transcribe sentences which are then used for training
using HTR (21). Similarly to the HisDoc project, Transcribus uses keyword spotting
techniques that allow users to search the texts. The project implements a form of
1https://diuf.unifr.ch/main/hisdoc/
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semantic enrichment: users can use locally defined, user-created semantic tags to label
transcriptions or segments.

˛ The MONK system is a search engine for processing multilingual, multi-script historical
text, developed by Schomaker (23). It implements HTR as a function for word retrieval.
The goal of MONK is therefore not necessarily full-text transcription, but rather to
create a searchable index (77). The system has already processed many documents,
amongst which the Dead Sea Scrolls;1 Hebrew manuscripts encountered in the Qumran
Caves near the Dead Sea.

Agents. Machines, through HTR techniques, can take part in a transcription e�ort, but
have trouble transcribing content that is too heterogeneous (see Chall.6), as good results
rely on many human-labelled examples. Character-based methods rely on language models
and are therefore dependant on a statistical language model or lexicon, whereas an object
recognition approach that looks at whole words (such as the one taken by MONK, or
word spotting techniques) has to deal with Chall.8, as interesting words lie in the long
tail of the word distribution. Historical handwriting recognition is far from solved (23),
and especially for heterogeneous content, often produces poor results that are di�cult to
interpret.

Proportion. It appears that, for many HTR systems and their users, the eventual goal is
full-text transcription of complete manuscript collections. Other systems aim at creating
a searchable index, which does not necessarily require all content to be transcribed.
Ultimately, the process is never linear for HTR systems: more transcriptions lead to an
increasing number of accurately recognised words. A partly transcribed collection can also
be published online as a “living” document of which the proportion of machine-readable
content continues to grow.

Richness. The main goal of HTR systems is verbatim transcription (richness level 1),
although some allow for semantic enrichment, often no further than richness level 2. It is
worthwhile to note that automated tasks such as NERC that further enrich the verbatim
content to capture any implicit semantics commonly rely on NLP, a technique that relies
on the context of words rather than words in isolation, and therefore depends on the
transcription of that context. Although full-text transcription is not required to make a text
searchable (not many scholars would be interested to find all instances of the word “the”
in a collection), we do argue that undirected (as in: unguided by formalisms) word-zone

1https://www.deadseascrolls.org.il/about-the-project/the-digital-library
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labelling or keyword spotting limits or hampers automated extraction of any semantics
before manuscripts are fully transcribed.

3.2.3 Semantic Annotation of Text Images.

GLAMs make increasing use of Semantic Web technologies to enrich and publish their
collection items (78; 79; 80). Several systems on the web aim for semantic annotation of
textual resources (31; 81), but digitised manuscripts are not often enriched in the same
way. There are, however, a couple of example systems that directly annotate text images
with semantic concepts. Similarly to word-zone labelling, scholars, experts or the public at
large can be employed to semantically annotate online documents (see Figure 3.3, system
type 4 ).

˛ Accurator 1 is an example of a web application that uses an expert crowd to annotate
digital images, in specific digitised items from cultural heritage collections, such as
paintings. Web users can help museums describe their collection items by providing
expert knowledge. They are prompted to annotate digital renditions of items from
cultural heritage collections with terms from controlled vocabularies, carefully selected
for the target domain of the collection. For each collection, experts were even involved
in the process of determining a goal for proper enrichment, in order to improve access
to the collection in question. Annotations are stored in RDF format and linked to the
digital images using the Web Annotation Vocabulary2 (82).

˛ Ebert et al. (2010) (83) perform ontology-based information extraction (OBIE) from
handwritten documents. They are one of the first ones to introduce the topic to the
field of HTR. Interestingly, their system employs a dialogue between a component
that deals with HTR and a OBIE component. Their system is based on digital ink as
input (using the MyScript3 system for HTR) and the scope of their experiments is
homogeneous handwriting (they experiment with modern English handwritten texts)
rather than the heterogeneous material from historical manuscript collections, which
additionally needs to deal with historical multilingual text (Chall.6).

˛ Adak at al. (2016) (84) perform named entity recognition (NER) on unstructured
handwritten text images, without employing any character or word recogniser. After
word segmentation, they extract engineered structural and positional features from
word zones, which are used in a BLSTM for NER. Classification of the named entities
is out of the scope of their paper. The methodology presented in the paper does not
1http://www.accurator.nl/
2https://www.w3.org/TR/annotation-vocab/
3https://developer.myscript.com/docs/concepts/introduction/
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increase searchability of the text, but can be combined with a controlled vocabulary
for NERC to automatically enrich the handwritten content semantically. We therefore
included it in this section. The article presents a nice overview of how relevant page
elements such as named entities can be identified in text images with hard-to-read
historical texts.

Agents Semantic annotation of texts is a more knowledge-intensive task than mere
verbatim transcription of a text, as a level of interpretation is required. Therefore, human
(amateur) experts are required to take part in the annotation process. Additionally, quite
some time is spent selecting or re-engineering vocabularies or ontologies to fit the target
domain. However, an application ontology formalises the minimal information required for
annotation, thereby driving the enrichment process. Moreover, machines can take part in
the semantic annotation process, as is shown by Adak et al. (84).

Proportion The systems mentioned above operate on text (or multimodal) images, and
focus on the annotation of information units, such as named entities, rather than just
any word or full text. Prior to the annotation e�ort, the expert community decides on
interesting concepts and their meanings, and use these to semantically enrich ROIs through
a nichesourcing initiative, which users eventually use to navigate and understand the
resulting knowledge base, and join distributed collections.

Richness At a minimum, semantic annotation systems annotate texts or text images
with semantic concepts, for instance through a combination of supervised HTR and NERC
from features of the handwritten text (85; 84; 86) (richness level 2). Examples exist that
even use terms from controlled vocabularies or schemas (richness level 3), or that use
HTTP URIs for better content descriptions (richness level 4) (82; 31; 81).

3.3 More Product, Less Process

Coming back to Q.1 (What are the trade-o�s of various system designs for the disclosure
of digital archives?), we note that the enrichment of manuscripts is often a highly time-
consuming process that depends on community engagement. This is no di�erent for field
book manuscripts, which are exceptionally challenging to make sense of, given Chall.1
to Chall.5.

At the same time, if we look back at Chall.6 to Chall.8, we note that it seems unavoidable
that humans play a large part in the enrichment process, although machines can be employed
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to speed up this process, given that their results are presented in a transparent, human-
understandable way. Systems with high recall but low precision1 increase retrievability of
words, but results can clutter the enrichment process when not presented well. Moreover,
unless character-based out-of-lexicon methods are employed, words that occur more often
are the first to be recognised accurately, while they are more likely to be less relevant. A
third thing to note is that enrichment e�orts often result in unstructured or syntactically
structured digital text, that require a crucial enrichment step in order to be understood
and reused by scholars and the general public.

We have observed in Subsection 2.1.2 and systems discussed in the previous section, that
the content in manuscripts from NHCs is organised around a systematic regularity that is
intrinsic to the field of biodiversity, in which researchers attempt to systematise the natural
world. This systematic organisation is not commonly encountered in other manuscripts. At
the same time, community standards are set up to formalise these systematics.2 In terms
of e�ciency; should “volunpeers” not maximise their impact by focussing not only on
transcription, but also on systematics, using standard formalisms from the domain?

Greene et al. (87) already noted in 2005 in their article More Product, Less Process that
there exists a huge backlog of unprocessed archival material (for the most part the authors
refer to cataloguing of archives on a collection- and item-level for minimal collection
access, but we argue that the same concerns apply to enrichment of and access to archival
content). They mention that processing of archival material should: “describe materials
su�cient to promote use.” To strengthen their argument, they quote an article already
published three decades ago on the same topic:

We rarely ask the question: when is this collection processed? Instead, we process
all collections to an ideal standard level. The second problem is that by processing
all collections to the ideal standard level, we cannot keep up with the collections
we have on hand or with the new collections coming in. The result tends to be a
small number of beautifully processed collections available for use and an extensive
backlog of collections that are closed while they wait to be processed (88).

This idea is in line with the idea of Minimum Information about a Digital Specimen
(MIDS)3 from the Collection Descriptions (CD) interest group, on the formalisation of
su�cient digitisation:

A harmonizing framework captured as a TDWG standard can help clarify levels
(depth) of digitization and the minimum information captured and published at
each level.This would help to ensure that enough data are captured, curated and
published against specific requirements so they are useful for the widest range of

1recall refers to the percentage of all words that is correctly retrieved, while precision refers to the
percentage of words that is correctly retrieved from all retrieved words.

2https://www.tdwg.org/
3https://www.tdwg.org/community/cd/mids/

47

https://www.tdwg.org/
https://www.tdwg.org/community/cd/mids/


560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork
Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021 PDF page: 56PDF page: 56PDF page: 56PDF page: 56

3. MANUSCRIPTS TO DATABASES

possible purposes; as well as making it easier to consistently measure the extent of
digitization achieved over time and to set priorities for remaining work (89).

We extend these ideas to the digitisation of manuscript content. We claim that at a mini-
mum, information extraction from manuscripts should promote document understanding,
rather than full-text transcription of each manuscript to an ideal level.

We therefore opt for a targeted approach, in which the expert community decides the
semantic concepts relevant for document understanding and search, maps these to existing
ontologies and IRIs, and uses these to guide the annotation e�ort by semantically annotating
and transcribing the relevant word zones in text images through a nichesourcing initiative.
Texts are made searchable, pointing users to interesting bits of the text documents, while
ground truth is generated for semi-automated semantic annotation (similar to NERC) as
well as verbatim transcription. In an end-to-end approach, a named entity recogniser can
then benefit from output of the handwriting recogniser, and vice versa.

Although some extra work is required to semantically annotate texts with Linked Data
(LD), omitting full-text transcription means having to annotate only a small percentage
of the content; e.g., focussing on the transcription and semantic annotation of those
named entities that allow users to construct rich semantic queries or aggregate informative
content across archival collections.

Pre-populating knowledge bases with background knowledge, such as collection-specific
locations from the Geonames database or collection-specific persons from the Virtual
International Authority File (VIAF) authority IRIs, helps annotators to use the correct
named entities for annotation. Using LD for annotation helps remove ambiguity as IRIs
contain rich descriptions. The name “Heinrich Kuhl”, for instance, is ambiguous. If we
instead use the IRI https://viaf.org/viaf/45106482/, we agree on the reference of the
verbatim name to the person “Heinrich Kuhl” (1797-1821), a German zoologist.

Lastly we argue that annotation provenance is a dimension that is often overlooked, but
should be seen as a critical step in the elucidation process. With data provenance we
refer to data concerning the lineage of data: why, when, and how they were produced or
changed, and measures of their quality (90; 91; 92). Storing provenance of annotations
contributes to publishing annotation knowledge graphs in a FAIR way, allowing scholarly
discussions over the content and reproducibility of hypotheses and results.
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Semantic Annotation

“There is no true interpretation of anything; interpretation is a vehicle in the service of
human comprehension. The value of interpretation is in enabling others to fruitfully
think about an idea.”

– Andreas Buja, as quoted in: The Elements of Statistical Learning

Semantics concerns itself with meaning, or reference. David Lewis, a famous American
philosopher of the twentieth century, wrote on the topic of semantics the following:

I distinguish two topics: first, the description of possible languages or grammars as
abstract semantic systems whereby symbols are associated with aspects of the world;
and, second, the description of the psychological and sociological facts whereby a
particular one of these abstract semantic systems is the one used by a person or
population (93).

In Section 2.1, we have discussed the languages and grammars used in historical and
contemporary species research, in the light of challenges Chall.2 and Chall.4. In this
chapter, guided by domain experts, we extract references hidden in historical field books
(implicit semantics). We discuss how we can use machines to make these implicit semantics
accessible to researchers, allowing for scholarly discussions over the content, through a
process called semantic annotation.

Specifically, this chapter aims to answer two research questions Q.2 (What types of research
questions do domain experts formulate regarding the archival content of NHCs, and how
can we make the content machine-readable to facilitate such queries?) and Q.3 (How
can we accommodate a transparent and FAIR approach to enriching the archival content
of NHCs, facilitating and encouraging scientific discourse over the content?).

4.1 Introduction
We have established in earlier chapters that interpretation of field observation records is
challenging, even for domain experts (see challenges Chall.1 to Chall.5). Ideas should
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therefore be developed for the use of computational processes to disclose collection content
and semantics in a transparent way. Doing so ensures that interpretations of field book
content not only exist in inaccessible ledgers or text files of individual researchers, but also
somewhere accessible and understandable by the public at large, biodiversity researchers
as well as those studying natural and cultural history.

Through the emergence of digitisation projects (8; 15), new possibilities arise to disclose
hand-written manuscript collections with digital tools. Some initiatives, such as the
Field Book Project (discussed in Chapter 3), use manual full-text transcription to make
collections available to the general public. In this chapter we propose to disclose archives,
in the domain of natural history, through semantic annotation of the content. Many
definitions exist but we take it to be the process of producing structured annotations
from the named entities in texts. These named entities form the general semantics of
these texts. Coupling them with background knowledge, and linking them through formal
descriptions, provides connectivity throughout the documents (31).

Work has already been done linking collections on a collection- and item-level using
controlled vocabularies (see Table 1.1), the principles of Linked Data, and/or ontologies,
not only regarding biodiversity collections (13; 68), but cultural heritage (CH) collections
in general (94; 95; 96; 79; 97; 98; 99). This is also the case for collections of manuscripts,
but fewer examples exist that semantically link the multimodal field observations on a
content-level. Such an approach would facilitate content aggregation as well as the
use of structured queries and reasoning over the content, and, through the use of IRIs,
disambiguation of named entities, which is crucial in the field of biodiversity. Therefore,
this chapter makes the following contributions to the field:

1. We provide a semantic model, an application ontology written in OWL,1 to structure
drawing captions and historical occurrence records in field books. Relevant concepts
were defined by domain experts, and modelled by integrating ontologies developed
for the biodiversity domain, a geographical database, and for annotation provenance.

2. We present a semantic annotation tool, the SFB-Annotator, which uses the applica-
tion ontology, and enables domain experts to produce structured annotations from
digitised natural history archival collections using the ontology. In addition, the tool
documents the provenance of annotations.

3. We provide the results of a qualitative evaluation of the proposed model and
annotation process. The annotations will subsequently inform the development of an

1https://www.w3.org/OWL/
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adaptive learning approach leading to semi-automated annotation, which we discuss
in Chapter 5.

We show the applicability of the ontology and annotation system on a selection of field
notes from the digitised NC collection (mentioned in Subsection 2.3.2), which contains
approximately 8,000 field note scans.

This chapter is structured as follows: in Section 4.2 we discuss the model development
method and process, Section 4.3 describes the semantic annotation approach using the
model, and in Section 4.4 we evaluate the approach qualitatively and discusses annotation
data acquired from semantically annotating a collection of field book pages from the use
NC use case. Lastly we discuss results, describe limitations and outline future work in
Section 4.5.

4.2 Development of a Semantic Model
The development process for the semantic model followed the ontology development
process described by Fernández et al (100). The emphasis in the development process
of our model was on the re-use and re-engineering of existing semantic models. We
thus followed the ontology development process as outlined in scenario 4 of the NeOn
methodology for ontology engineering (101). Furthermore, we support a user-centered
design, where the focus is on the needs of the end user, similar to a method for database
design described by Gray (102), where questions of domain experts become requirements
for the design and evaluation of the system.

4.2.1 Requirements

The requirements for the semantic model describe user requirements for elucidating content
from text images, and requirements for adhering to the principles of sharing data in the
Semantic Web.

Elucidating Content

R.1 The model should formalise the general semantics of species observations described
in field books and illustrations.

(a) The model should include the named entities that domain experts use when
constructing queries in order to answer their research questions.

(b) The model should reveal relations between the named entities and their char-
acteristics, for instance, hierarchical or transitive relations, so that these can
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be exploited in rich content queries. The model should thus be written in an
ontology language such as the recommended W3C1 standard language, OWL.

R.2 The model should be able to deal with variants of terms and their context. Examples
are historical terms, synonyms and homonyms, scientific names and their vernacular
names, and abbreviations.

(a) Standardised terms for resources, such as IRIs, should be used to represent
named entities so that name variants can be linked and dissimilar entities with
a similar name can be disambiguated.

(b) The context of name variants should be made explicit so that name variants
are understandable in their context, for domain experts as well as automated
reasoners.

Serving Structured Annotations to the Semantic Web

R.3 The model should re-use existing ontologies and vocabularies to facilitate data
aggregation on the web.

R.4 The model should store annotation provenance to enable the sources of annotations
to be traced and to facilitate scientific discourse over the content.

(a) The annotations should track metadata regarding the annotation process;
annotator, date/time, and interpretation.

(b) The annotations should store metadata regarding their span in text images:
multiple pages, single pages or fragments from pages, to keep track of the
provenance of annotations in relation to the collection. Linking image fragments
to their annotations and annotation metadata can be used in further research
for salient named entity recognition and classification (SNERC), and facilitates
repetition of experiments by other researchers.

4.2.2 Semantics for Biodiversity

Below we discuss available state-of-the-art standards and ontologies regarding semantics
for biodiversity.

1The World Wide Web Consortium (W3C) is an international community for the development of
standards on the Web. https://www.w3.org/Consortium/
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The Darwin Core. The biodiversity data standard that is most commonly used to model
species occurrences is the DwC standard (36). It has been developed through community
consensus and thus describes which concepts in observation records are most important to
the community. The DwC describes these key concepts with standardised terms. Its main
classes are: dwc:Organism , dwc:Taxon , dwc:Identification, dwc:Occurrence and
dwc:Event . The standard therefore satisfies R.1, and thus proves to be a suitable baseline

for our model.

For our purpose, the DwC alone does not su�ce. Firstly, the DwC does not satisfy R.1b.
Although the terms from the DwC were converted to be used with RDF (103), the standard
does not allow all properties to be used within its dwciri: namespace, adopted to refer
to IRIs (103). This means that not all relations can be used to point to IRIs, hindering
the linking of entities from handwritten observation records during an annotation e�ort.
The current standard lacks properties to interconnect its main classes and does not exceed
the semantics of RDF Schema. This means it does not include types of properties and
property axioms that we require, such as equivalence and transitivity.

Moreover, the DwC does not model taxonomies explicitly, so reasoning algorithms cannot
benefit from their inherently hierarchical nature. It models classification systems by
connecting a taxon identifier to a literal through a rank property, e.g.,: nc:taxon1

dwc:order≠≠≠≠≠≠æ “Chiroptera”. Finally, the DwC’s use of literals for named entities does not fulfill
our requirements. As literals are multi-interpretable, they do not serve as unique identifiers
within RDF. In the field of biological taxonomy, and especially historical taxonomy, where
multiple interpretations of species and naming conventions exist, being able to disambiguate
between terms with the same name is crucial (29). In these respects, the DwC does non
satisfy R.2a and R.2b.

The Darwin Core Semantic Web. The Darwin Core Semantic Web (DSW)1 ontology
extends the DwC by providing properties to link the main classes of the DwC (104). It
hereby addresses the limitations of the DwC regarding R.1b. The DSW also introduces a
new class, the dsw:Token class, to link the graphical model to evidence in the form of
a dwc:Specimen , dwc:HumanObservation or other class on which the identification of
an organism during an occurrence event is based. However, the DSW ontology does not
allow biological taxonomies to be graphically modelled, a requirement that is included in
R.1b. Finally, to the extent of our knowledge, the applicability of the DSW ontology has
not yet been demonstrated on large datasets.

1https://github.com/darwin-sw/dsw
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TaxMeOn. The TaxMeOn1 Meta-Ontology of Biological Names is an ontology that
models biological taxonomies (105). The ontology uses IRIs for taxa and introduces
hierarchy by connecting the taxa to each other using the transitive isPartOfHigherTaxon

≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
property. This property is made transitive so that logically inferred, the scientific name
is not only a part of its own higher taxon, but all higher taxa. This way of modelling
classification systems is suitable for our purpose: taxa can be linked during the annotation
process, recreating the historical taxonomy and allowing subsequent querying of the archive
for all species from a certain class or order. Moreover, the instances are modelled as IRI,
avoiding name ambiguity. Its conceptualisation, however, is subtly di�erent than the DSW
ontology: TaxMeOn models taxa as instances of a rank class such as genus whereas the
DSW ontology only models taxa as instances of the class dwc:Taxon .

In summary, present-day biodiversity records can be described using terms from the
DwC and the DSW, but some alterations need to be considered for the description of
NHCs. Domain experts’ interests were explored to complement the existing vocabularies
to satisfy (R.1a) and to address R.1b, the DSW ontology was re-structured so that the
biological taxonomies could be modelled based on the structure of the TaxMeOn ontology.
Furthermore, the terms in the field books were linked to standardised terms from other
datasets. This accommodates the linking of di�erent spellings and abbreviations (R.2a),
the inclusion of context metadata (R.2b) and enables data aggregation on the web (R.3).
Finally, the storage of provenance metadata of annotations (R.4) was addressed. The
modelling process is explained in the coming subsections.

4.2.3 Data Elucidation by Domain Experts

To inform the design process, the interests of domain experts were assessed via qualitative
interviews and a test annotation procedure, addressing R.1a.

Seven domain experts participated in the interviews that were set up to acquire knowledge
about interesting concepts in field books; two cultural historians, two information specialists
handling collection queries from within the Naturalis Biodiversity Center (NBC) and
three biologists interested in taxonomy and the history of biodiversity. A subset of 59
pages from our use case was selected for inspection. These pages contained all species
descriptions within the collection belonging to the order Chiroptera, an order of mammals
that consists of the bats. The subset consisted of 40 pages of observation descriptions
and 19 drawings.

1http://schema.onki.fi/taxmeon/
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First, participants were asked to describe their research interests and denote research
questions they would like to address with access to a natural history archive. Examples
included “Are the species named directly in the field or do they receive a number or
a temporary name?” and “Did specific naturalists have a specialisation, such as the
description of plants?”. Subsequently, they were asked to note down conceptual elements
they would expect to find in historical observation records that would help them answer
their research questions. Being primed to think in concepts, they were asked to use these
concepts to annotate the field book pages and depictions with a digital tool, to allow the
addition of new concepts to the semantic model should these be discovered during the
annotation process.

Table 4.1: Conceptual elements domain experts expected to find in observation records,
organised by topic. Similar concepts were merged, e.g., Linnean Name and Species Name.
The number c indicates how often the concept was used for annotation of the field note
subset, accumulated for all participants, and the number n-7 indicates that n of the 7
participants used the concept for annotation.

Topic Annotated Concepts c, (n-7)
Classification Linnean name: 30, (7-7) Vernacular name: 2, (2-7)

Literature used: 2, (2-7) Synonyms: 6, (4-7)
New namings: 3, (2-7)
Additional class.: 6, (4-7)

Species Rarity: 5, (2-7) Use by locals: 0
Range: 5, (2-7)

Expedition Person: 23, (7-7)
˛ Collector: 2, (1-7)
˛ Author: 6, (2-7)
˛ Companion: 0
˛ Local person: 0
˛ Illustrator: 5, (3-7)

Role of indigenous population in
knowledge retrieval: 0
Collection practices: 2, (2-7)
Drawing property: 5, (3-7)
Language peculiarity: 0
Observation date: 10, (7-7)

Observation place: 22, (7-7) Publication: 0
Organism Link to specimen: 1, (1-7) Link to Drawing: 2, (1-7)

Drawing 17, (7-7)
˛ parts 7, (2-7)
˛ views 4, (3-7)

Condition: 0
˛ Living: 0
˛ Dead: 0

Preservation 0 Anatomy: 40, (7-7)
Measurement: 5, (5-7) Gender: 1, (1-7)
Quality: 14, (7-7)

˛ Colour: 2, (2-7)
˛ Behaviour: 8, (2-7)
˛ Morphology: 5, (5-7)

Count: 1, (1-7)
˛ Specimen 0
˛ Anatomy term: 1, (1-7)

Table 4.1 lists the concepts that were identified by the domain experts, followed by a number
c indicating how often the concept was used for annotation of the subset, accumulated
for all participants, and a number n-7 indicating how many of the 7 participants used
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the concept for annotation. If a more specific subclass was used for annotation, it was
included in the count for both the general class as well as the more specific class. They
can be broadly divided into concepts relating to species classifications, their abundance
and use, expedition details and characteristics of the observed organism.

Within our experiment, cultural historians appeared most interested in expedition practices,
more than in the specimens or species described. During the annotation process, they
were searching for clues in the text as to why certain languages were used interchangeably,
in what ways knowledge was recorded, which indigenous people were helping to find new
species, what methods naturalists used to find and gather the specimens or what adjectives
were used to describe the behaviour or appearance of organisms. The biologists appeared
to be more interested in classification systems, naming conventions, species characteristics
and literature used for classification. The output from the interviews and annotation
procedure was used to aid the design process of the semantic model. The questions from
domain experts were used to test the output of the annotated field book in Subsection
4.2.4.

The most important named entities from table 4.1 which were extensively annotated by
the experts in the field books, but which are not included in the DSW ontology, are
dates, additional classifications (synonyms and later classifications), additional occurrences
(species range and rarity), and structured organism descriptions (anatomical parts, qualities
and measurements). We thus adopt these in the final model.

4.2.4 The NHC-Ontology

In this section we explain further design choices for the natural history collection (NHC)-
Ontology (NHC-Ontology1) and describe the adoption and application of the classes and
properties. The ontology extends the DSW ontology with two classes and seven properties
in order to address the remaining limitations mentioned in Subsection 4.2.2. Figure 4.1
provides a graphical overview of the model. Two classes and all new properties are added
within our own namespace, indicated by the dashed lines and the nhc: namespace.

Classifications and Taxonomies. The class nhc:TaxonRank connects to the DSW
model. All taxa are modelled as instances of the class dwc:Taxon and all taxon ranks
as instances of the class nhc:TaxonRank . We adopt a derivative of the DwC property
dwc:taxonRank≠≠≠≠≠≠≠≠≠≠æ, see figure 4.1. As the DwC standard does not have an analogous property
in the dwciri: namespace, we adopt it in our namespace. To represent hierarchy in
the classification system we created the transitive property nhc:belongsToTaxon

≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
to link a

1http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
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Figure 4.1: The NHC-Ontology, an extension of the DSW ontology for annotating NHCs.
Gray striped classes indicate classes from external ontologies, whereas classes and properties
with a dotted line pattern indicate additions to the DSW ontology.

taxon to a taxon higher in rank. Because of this transitive property we can, for example,
query a collection for all families belonging to a specific order, e.g., “Show me all families
that belong to the order Chiroptera”.

In the semantic model, we model a scientific name (discussed in Subsection 2.1.1) as a
single unit representing a species.1 The author of the scientific name is linked separately, as
domain experts indicated they have special interest in retrieving authors and their scientific
names. For instance, all taxonomic names from a specific author to obtain knowledge
concerning which species they named and to establish personal naming conventions. To
link the publisher to the scientific name, we use the DwC term scientificNameAuthorship

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
which we also adopt in our namespace as it does not yet have an equivalent in the dwciri:

namespace.

When writing up observation records in field books, authors sometimes use the term
“Nobis”, Latin for “by us”, or any other place holder for the name of the scientific publisher,
as discussed in Subsection 2.1.2. “Nobis” in this case refers to a scientific author name,
namely the writers of the field book. Annotating the region with the class foaf:Person ,

1Exceptions where a genus is modelled individually are field book pages that describe characteristics
of a specific genus without mentioning a species.
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and linking it to the taxon with the property nhc:scientificNameAuthorship
≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ

is useful, as
placeholders can be matched with the names of the authors of the field book, allowing the
taxonomic names to be resolved.

Evidence for Identification. In the DSW ontology, the class dwc:Token is used to link
an identification to the resource on which the identification was based. This class can be
replaced with the more specific dwc:PreservedSpecimen or dwc:HumanObservation

class. The human observation represents a single observation record from a field book or
a drawing. Therefore, we let an instance of the dwc:HumanObservation class point to
multiple field book pages describing one record. This way, users can retrieve observation
records, drawings and specimen relating to their research interests, e.g., “show me all
observations recorded on Java”.

As domain experts were interested in the measurements used for classification of an organ-
ism, as is visible in Table 4.1, we adopt the dwc:MeasurementOrFact class in the ontology,
a class taken from the DwC standard. The dwc:MeasurementOrFact class is connected to
the dwc:Token class with the dsw:derivedFrom≠≠≠≠≠≠≠≠≠≠≠æ property or its inverse dsw:hasDerivative≠≠≠≠≠≠≠≠≠≠≠≠æ
to indicate that it is derived from, or a part of, the observation record, see Figure 4.1. As the
dsw:derivedFrom≠≠≠≠≠≠≠≠≠≠≠æ property is transitive, the measurement is also derived from the specific
organism, beneficial for querying and reasoning. We use the dwc:MeasurementOrFact

class to annotate measurement tables or paragraphs with organism fact descriptions that
cover full paragraphs. We adopt the property nhc:measuresOrDescribes≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ in our model to
link an instance of the class dwc:MeasurementOrFact to a term relating to an anatomical
entity ( UBERON:0001062 ), such as “liver”, or a property or attribute ( ncit:C20189 )
of the organism, such as a “colour”, which are measured or described in the table or
paragraph. To omit annotation of a full paragraph, we can annotate only the entity that
is being described. This way, we can use the entity to point users to a table or free
text description of an organism’s characteristic. One cultural historian was, for instance,
interested in the adjectives used when describing the colour and morphology of anatomical
entities. Pages describing a specific anatomical entity could be retrieved in single query
e.g. “Show me all observation records from person X that measure a liver”.

Verbatim Date. A further addition is the class nhc:Date . This class is used to annotate
verbatim dates: An instance of the class, e.g., nc:date1 is given a label such as “10 Apr.
1821” or “Sept”. It is connected to the dwc:Event class using the dwc:verbatimEventDate≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
to indicate this. The verbatim date will be converted to a standard format and linked
to the dwc:Event class using the dwc:year

≠≠≠≠≠æ
, dwc:month≠≠≠≠≠≠≠æ and dwc:day

≠≠≠≠≠æ
properties. This

way, dates can be used for querying using filters. Dates are an important part of species
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descriptions and are easily annotated as they are formally formatted and have a prominent
position on the page.

Written Annotations. Field books often contain manual annotations or revisions written
above or adjacent to the original text. Types of annotations that occur a lot in our use
case relate to the classification of an observed organism or an additional observation. A
naturalist, for instance, classified an observed organism as a di�erent taxon at a later date,
based on further research of the described traits and anatomical parts or based on other
literature. Whether this represents a shift in naming conventions, a new interpretation
of the metadata or merely additional information or synonymy is unclear. Additionally,
naturalists made side notes of observations of the same species by di�erent naturalists at
di�erent locations, such as “In Batavia according to Diard”.

In our qualitative analysis, biologists indicated that they were interested in exploring these
annotations. They indicated that it was relevant for them to be able to discern which
text was written at the time of the original observation, belonging to the original record,
and which was added later. To emphasise these structures we added two properties; the
nhc:additionalIdentification≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ and the nhc:additionalOccurrence≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ property. These are both
added as sub-properties of the property nhc:additional≠≠≠≠≠≠≠≠≠æ such that all additional annotations
can be accentuated or queried using this property.

Linking to External Ontologies and Datasets. The ontology connects to classes
from other ontologies and thesauri (indicated by a striped fill in Figure 4.1) such as
Uberon1 for anatomical entities (106) and the NCI Thesaurus2 for species attributes
(107), both used for the identification of a taxon, the GeoNames Database3 for geo-
graphical locations (108) and VIAF4 for referring to persons (109) as instances of the
class foaf:Person from the Friend Of A Friend (FOAF) language,5 a vocabulary of
properties and classes that makes use of the RDF technology. Linking to these vocab-
ularies gives us three benefits. (1) the entities can be resolved, (2) queries can utilise
the structures of these ontologies for querying and reasoning purposes, (3) the ontologies
provide extra metadata. Instances from the GeoNames Database, for instance, are mapped
to di�erent historical name variants, abbreviations and modern names. As an example,
the entity http://sws.geonames.org/1648473 is linked to the modern name “Bogor”
and simultaneously to the historical name “Buitenzorg”, a term used in the field books.

1http://purl.obolibrary.org/obo/
2https://ncit.nci.nih.gov
3http://sws.geonames.org/
4http://viaf.org/viaf/
5http://www.foaf-project.org/

59

http://sws.geonames.org/1648473
http://purl.obolibrary.org/obo/
https://ncit.nci.nih.gov/
http://sws.geonames.org/
http://viaf.org/viaf/
http://www.foaf-project.org/


560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork560738-L-bw-Stork
Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021Processed on: 15-6-2021 PDF page: 68PDF page: 68PDF page: 68PDF page: 68

4. SEMANTIC ANNOTATION

They distinguish a gn:alternateName
≠≠≠≠≠≠≠≠≠≠≠≠æ

with a language tag such as <gn:alternateName

xml:lang="id">Kota Bogor</gn:alternateName> from a gn:name
≠≠≠≠≠æ

, revealing indigenous
namings. Further, the property gn:shortName

≠≠≠≠≠≠≠≠≠æ
is used for abbreviations and gn:o�cialName

≠≠≠≠≠≠≠≠≠≠æ
for o�cial names.

We choose not to link to IRIs from biological taxa in external datasets, as the same
scientific name can sometimes refer to di�erent organisms (discussed in Subsection 2.1.1).
Disambiguation of species names requires metadata such as place of observation, date and
biologist who performed the classification. We propose to create unique identifiers for each
taxon within the namespace of the collection. After a careful analysis of the annotation
data after the annotation process, these taxa can be resolved and linked to each other
and taxa from external datasets. This preserves the verbatim content of the field books
and allows scholars to link to distinct taxonomic datasets and species after the process of
taxonomic referencing, should this be required to represent di�erent theories.

Documenting Provenance of Annotations. Provenance is crucial in the disclosure of
archival collections. The provenance of data extracted from collections contributes to their
interpretation and value, and allows researchers to repeat experiments. To link semantic
annotations to their provenance, the Web Annotation Vocabulary1 was used. Reasons for
adoption of the model are the use of the principles of Linked Data, its ability to address
segments or fragments of media sources, and the fact that it is a W3C recommendation.
Using the provenance data model, we can link instances of classes from the ontology
depicted in Figure 4.1 to the image scans. Listing 4.1 shows an example annotation.

@prefix ex: <http :// example.org/terms/> .
@prefix oa: <http ://www.w3.org/ns/oa#> .
@prefix dcterms: <http :// purl.org/dc/terms/> .

<http :// example.org/anno54 > a oa:Annotation ;
oa:hasBody <https :// viaf.org/viaf /45106482/ >;
oa:hasTarget ex:image1.jpg#xywh=x,y,h,w ;
dcterms:created "2020 -10 -13 T13 :00:00Z" ;
dcterms:createdBy <https :// orcid.org /0000 -0002 -2146 -4803 > ;
oa:motivatedBy oa:linking .

Listing 4.1: An example annotation

The resulting application ontology, a combination of the NHC-Ontology and the Web
Annotation Vocabulary, provides a framework for annotating important named entities
in the data. It is made accessible to users through a semantic annotation tool, the

1https://www.w3.org/TR/annotation-vocab/
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SFB-Annotator, that enables the semantic annotation of digitised images of hand-written
text and illustrations. The tool is discussed in the next section.

4.3 Semantic Annotation
In recent years, projects that create platforms for the storage, transcription and annotation
of digitised historical documents on the web have begun to emerge. The Field Book
Project (15), discussed in Subsection 3.2, was formed in 2010 as a joint initiative between
the Smithsonian National Museum of Natural History (NMNH) and the Smithsonian
Institution Archives (SIA). The project was set up to bring together field books from
multiple NHCs and make them available for the general public.
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Manual Full-text Transcription
Taxonomic Referencing

Data for Publishment to GBIF

ConversionExtraction Conversion

Figure 4.2: From Documents to Datasets (35) system design

The Field Book Project makes use of the NCD1 standard for storing metadata on a
collection-level. Further, the project uses the Metadata Object Description Schema
(MODS)2 to create item-level metadata (68). The BHL3 describe their data using XML
and MODS or Dublin Core (DC).4 None of the above mentioned projects, however, aims
to annotate the content from items within NHCs. Responding to this need, the project
From Documents to Datasets (also discussed in Subsection 3.2) (35) provides a design
for the conversion from digitised handwritten field books to a semi-structured annotated
corpus, see Figure 4.2, using terms from the DwC standard. They propose first to fully
transcribe the texts together with experts, then upload those texts together with the image
scans to a MediaWiki5 server. Via templates, the taxa, locations and dates, are annotated

1http://rs.tdwg.org/ontology/voc/
2http://www.loc.gov/standards/mods/
3http://www.biodiversitylibrary.org/
4http://dublincore.org/
5https://wikisource.org/
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4. SEMANTIC ANNOTATION

by researchers through a crowdsourcing initiative. Annotators can resolve verbatim names
to current ones (taxonomic referencing) during the semantic annotation process. The
annotations are then extracted and converted manually to DwC terms, in order to publish
them in the GBIF 1 data server (69). This project provides an excellent methodology
to structure named entities from field books. We thus build upon this methodology and
extend it to fit our needs.

4.3.1 System Design

Similar to the projects mentioned at the beginning of Section 4.3, we use the NCD standard
and the DC to enrich NHCs on a collection and item level. On a content level, our approach
di�ers from the approach in Figure 4.2. In a similar fashion, semantics are added to the
named entities. However, we use IRIs to describe the named entities, we link the IRIs
together where possible to form a connected graph, and add hierarchical descriptions of
classes and properties. The data become readable and interpretable by machines and
can be interlinked and aggregated with other biodiversity data on the web, such as GBIF
(see Subsection 2.3.1). To link the named entities together we use the NHC-Ontology,
described in Subsection 4.2.4, which also enables rich querying and reasoning. Our system
design is shown in Figure 4.3.

  Triple Store

.TIFF.TIFF.TIFF

class

class
class

class

class

.TIFF

ROI

interface ROI tool

backend
<viaf:45106482>rdf:type <foaf:Person>

 D wC-A data

Application Ontology

Image Scan Collection

Semantic Annotation Taxonomic Referencing

Conversion

Data for Publishment to GBIF

Storage of Triples

SPARQL Querying

  OWL Reasoning

Figure 4.3: The proposed system for semantically annotating manuscripts from NHCs.

In contrast to design pattern 3 (see Section 3.2 and Figure 3.3), our approach omits the
step of full-text transcription, and allows users to directly annotate text images (pattern
4 ). To the best of our knowledge, no other system exists that uses an ontology to

1http://www.gbif.org/
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4.3 Semantic Annotation

annotate named entities in digital images of manuscript pages. We argue that annotation
of the most important entities from the field books already allows biodiversity researchers
to create models and search the texts, simultaneously minimising annotation e�orts.

Furthermore, we suggest that the process of taxonomic referencing of species and genera
should occur after all named entities from a field book or collection are annotated and
linked. As mentioned earlier, fully linked field books allow for a thorough comparison
between di�erent taxonomies and naming conventions. After a careful analysis, these taxa
can be resolved and linked to other taxa, but we argue that this should be decoupled from
the first stage of the annotation process. Moreover, we argue that, especially with historical
biodiversity data, multiple interpretations of the data should be able to exist in parallel.
We therefore choose to annotate classification hierarchies in the collection verbatim, to
facilitate multiple researchers adding their own layers of interpretations.

Additionally, researchers can attach free-text metadata to classes from the
application ontology, using the properties from the DwC standard such as
dwc:habitat≠≠≠≠≠≠≠æ or dwc:samplingProtocol

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
which can be attached to the dwc:Event

instance, dwc:organismRemarks
≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ

to an instance of the class dwc:Organism or
dwc:identificationReferences≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ to add literature referenced in the manuscripts to the
dwc:Identification class.

4.3.2 The Semantic Field Book Annotator

The Semantic Field Book Annotator (SFB-Annotator) is a web application, developed for
domain experts, to harvest structured annotations from field books using the NHC-Ontology
and proposed design.

Users can draw bounding boxes over ROIs in image scans, as shown in Figure 4.3 and
4.4, to which annotations can be attached. The ROI tool makes use of the Annotorious
annotation Application Programming Interface (API)1 to select a ROI and create an
annotation object, see Figure 4.4. The annotation object is connected with its provenance
and metadata: a target—a page or a ROI—and a body which links the ROI to either a
transcription or an IRI. The geometry of the ROI is connected to the annotation object
using oa:hasSelector≠≠≠≠≠≠≠≠≠æ and oa:FragmentSelector , see also Figure 4.5. In order to make
the manuscript images zoomable, Annotorious is used together with the OpenSeaDragon
API.2

1https://annotorious.github.io/
2https://openseadragon.github.io/
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Anno = {”src”:”http://domain/image1.tif”,
   “type”:”Taxon”,
   “shapes”:{”type”:”rect”,
        “geometry”:{”x”:2852,”y”:67,“width”:169,
        ”height”:39}},
   “date”:”2017-04-16”,
   “annotator”: “https://orcid.org/0000-0002-2146-4803”,
   “target”: “image1.tif#xywh=2852,67,169,39”,
   “textualbody: ”Vivera genetta”@la, 
         “semanticbody”:”http://makingsense.liacs.nl/rdf/nc#taxon53”,
   “belongstotaxon”:”http://makingsense.liacs.nl/rdf/nc#taxon45”,
   “taxonrank”:”http://makingsense.liacs.nl/rdf/nc#species”,
   “identifiedby”:”http://viaf.org/viaf/45106482/”,
   “organismID”:”35”}   

Figure 4.4: The annotation process using the Semantic Field Book Annotator

For storage, we use a servlet that pushes the annotation to an annotation server. In the
servlet, annotation objects written in JavaScript Object Notation (JSON) are converted
to RDF triples using the RDF4J API, an open source Java framework for processing RDF
data. For storage of annotations we use the Virtuoso quad store as it is a well evaluated
store for data-intensive server applications (110). Moreover, it can be accessed via the
RDF4J API.

In the annotation process, a distinction is made between explicit and implicit classes.
Explicit classes, in comparison to implicit classes, refer to the group of named entities that
are easily observed in the field books, and therefore can be pulled out of the text more
easily by annotators, and finally by automated processes. We refer to these with the term
salient named entities. These are: the taxonomic name, location, date, scientific publisher,
writer, anatomical entities, properties and tables. The implied classes serve to connect
the explicit classes. However, they can also be used to link to class-specific meta-data
encountered in the field books. The Darwin Core (DwC)’s dwc:organismRemarks

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
can, for

instance, be used to store free text descriptions from the field book about the organism
under observation, as is also mentioned at the end of Subsection 4.3.1.

During the annotation process, a user first links a ROI to a class c from the set of
explicit classes Ce = {c1, c2, ...., cn} of the application ontology. In figure 4.4 this is
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the ncit:C20189 or property or attribute class. The user then specifies a predicate p

from the set of predicates P = {p1, p2, ...., pn}, although this is only required in the case
where multiple predicates are possible such as with the class foaf:Person . We however
argue that it makes the annotation process more transparent and thus less error-prone.
The predicates are displayed in a readable way, e.g., Measures or describes: property or

attribute, such as visible in Figure 4.4, or for instance Additional occurrence recorded
at: location. When a class and predicate are specified, optional metadata fields appear
such as: uberon: IRI, in case of an anatomical entity.

During annotation, a single occurrence is given a unique code through the property
dwc:occurrenceID≠≠≠≠≠≠≠≠≠≠≠≠æ. To create connections between all entities in one record that belong to
a single occurrence, every time an instance is annotated, the entire base model, excluding
the measurements, is instantiated, as visible in Figure 4.1. Unique identifiers for instances
are created based on the unique occurrenceID, such as nc:identification+occurrenceID,
such that new information will be added to the same organism occurrence graph. Even if
entities are missing, IRIs exist but remain without a label until they are annotated by the
user. More information about the SFB-Annotator and the annotation procedure can be
found online.1

4.3.3 Towards Semi-Automated Annotation

As a first step towards semi-automated annotation, we pre-populated the knowledge base
(a triple store) with domain knowledge concerning the collection, such as locations and
names of researchers that participated in the expeditions. This contextual knowledge
can aid annotators with the annotation process using autocomplete to retrieve candidate
instances, such as http://viaf.org/viaf/69703180/, the VIAF record for Coenraad
Jacob Temminck. The user can choose to annotate the verbatim text with a IRI from a set
of candidate IRIs that exist in the triple store. If no instance yet exists or if it is an implicit
instance such as one from the organism class, a (globally) unique IRI is created.

In Chapter 5, we further research methods for semi-automated annotation, using salient
named entity recognition and classification (SNERC) for automated identification and
classification of explicit salient named entities in digital field note images. The identification
of these entities and their classifications can guide the retrieval of candidate instances for
semantic autocomplete.

1https://github.com/LINNAE-project/SFB-Annotator
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4.4 Qualitative Evaluation

In concordance with a domain expert from the field of natural history, one of the field
books from the NC collection, named ‘Manuscripten van de leden der Natuurkundige
commissie: Mammalien, van Kuhl’, was semantically annotated using the SFB-Annotator.
This book contains observation records of species from three di�erent orders: the order
Chiropterae, or bats, the order Quadrumana, Latin for the four-handed ones, referring
to the apes, and lastly the order Falculatae, a historical order referring to a collection of
mammals such as the shrew, the badger and the bear. The coming sections will qualitatively
evaluate the annotation process (Subsection 4.4.1) the resulting data (Subsection 4.4.2),
and possibilities for querying using the concepts and questions composed by the domain
experts, mentioned in Subsection 4.2.3.

4.4.1 The Annotation Process

Annotating a page from the field book using the Semantic Field Book Annotator ranged
between approximately 1 to 10 minutes, depending upon the amount of named entities on
the page and the di�culty of interpreting a named entity. Taxonomic names such as the
one in Figure 2.6, (Titthaecheilos javanicus) can be di�cult to read. When the order of
pages is shu�ed, the correct interpretation of links between entities is further hampered.
Other names, however, are easier to read and connect to related named entities. As the
layout of the document hints to the location of the named entities, the annotation process
quickly becomes easier. Taxonomic names, scientific publishers of names, and locations
are likely to appear on the top of a page.

As the time spent annotating a named entity largely depends upon its readability and
interpretability, we argue that the biggest di�erence between our approach and the one in
Figure 4.2 is the omission of one processing step. Where other approaches first transcribe
the entire text and then look for named entities to be semantically enriched, we omit the
first step and directly search for named entities to be enriched. Consequently, we argue
that this results in faster processing of field books to graphs in a knowledge base. We do
realise that linking to other entities might be a process that can prove more challenging
than merely annotating the class of an entity.
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4.4.2 The Data

From the annotated field book, 98 single pages1 were semantically annotated and their
annotations validated by a natural history expert. Table 4.2 shows the number of named
entities that were extracted from the field book pages, the size of the triple store and the
per page, per class and notable per predicate statistics.

In the case that a named entity is absent in a linked observation record, for instance if an
annotator omitted the annotation of a named entity, querying the data is not hampered and
can even, together with graphic visualisations of the data, help control data quality. When
a named entity is not annotated, for instance the location of the organism observation, the
IRI lacks a label, a link to an annotation object and thereby a span in the image (a ROI),
as mentioned at the end of Subsection 4.3.2. Observation records of which the location is
absent or not yet annotated can be found by querying the knowledge base for locations
without a label or annotation.

Table 4.2: Annotation specifications

Total Annotations
Pages Size Observ. NEs Triples NEs per page

MB Records µ ‡

98 1.5 34 371 9921 5 2.8

Annotations per class
Class n Class n
dwc:Taxon 52 nhc:Date 6
foaf:Person 47 uberon:0001062 160
dcterms:Location 15 ncit:C20189 28
dwc:MeasurementorFact 13 Total 371

Predicate specifics
Class Predicate≠≠≠≠≠≠æ n
foaf:Person nhc:scientificNameAuthorship

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
41

dwciri:recordedBy
≠≠≠≠≠≠≠≠≠≠≠≠æ

35
dwciri:identifiedBy
≠≠≠≠≠≠≠≠≠≠≠≠æ

39
dwc:Organism nhc:additionalOccurrence≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ 3

nhc:additionalIdentification≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ 15

1During the digitisation process, the field notes were scanned two pages at a time. One page here
refers to one physical page containing text, rather than one digital image.
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4.4.3 Semantic Queries

In this section we evaluate, using the annotated data, which questions are common in
terms of search requirements, determine if and how the questions can be answered using
SPARQL and the NHC-Ontology, and demonstrate the gain in comparison to full-text
search.

Domain Expert’s Queries. The evaluation in Subsection 4.2.3 resulted in a list contain-
ing 53 research questions.1 18 questions were from biologists, 28 from cultural historians
and 7 from information specialists.

To estimate the nature of common research questions, the questions were grouped together
on the basis of types of named entities. Most common questions were: a question
combining a type of resource and a person name, e.g., “Show me all field notes from
person X”, and a question combining the person class and a taxon name, e.g., “Did
specific naturalists have a specialisation such as plants or animals?”. The entities used in
the queries were all covered by the model, except for some more specific person classes
such as a local helpers or illustrators.

From the 53 questions, 7 did not relate to the content of the field books and were therefore
excluded from the question set. They could potentially be addressed with other parts of
the archive. For instance, “How was a day organised” relates to the field observation
practices, something that is more likely to be found in the diaries within the archive.
Another example is “Are there letters from person X to person Y in the collection?”. Such
a question could be answered by querying the collection for both person X and Y, making
use of their IRI to overcome name ambiguity. Both diaries and letters are however beyond
the scope of this paper.

Four of the questions related specifically to specimens and their preservation. Although we
did not annotate specimens, the semantic model does allow these type of queries. The label
of a physical specimen or its digital image can also be used for semantic annotation, as
mentioned in Subsection 4.2.4. The class dwc:PreservedSpecimen is then used instead
of dwc:HumanObservation .

For clarification a distinction is made between six types of queries, see Table 4.3. The
table includes a count of how often each type of question occurred in the question set.
“Which” and “Where” questions were often seen as entity retrieval tasks, except in the
case of “which page” or ‘where in the archive’, and open questions were seen as document
retrieval tasks. Closed questions that can be answered with a “yes” or “no” were also seen

1https://github.com/lisestork/NHC-Ontology/blob/master/Questions_orderedByEquality.xlsx
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as document retrieval tasks, as these are usually questions that require further inspection
of a document. For both query variants, queries were evaluated with regards to relevance
of the search results and if extra e�ort is required by the user after retrieval.

Table 4.3: Types of expert queries

Query type Count
T1: “All documents containing keyword k.” 1
T2: “All documents matching structure s.” 18
T3: “All documents matching structure s and keyword k.” 7
T4: “All entities containing keyword k.” 0
T5: “All entities matching structure s” 7
T6: “All entities matching structure s and keyword k 13

Structured vs. Full-Text Queries Where structured query-languages such as SPARQL
are better at querying the structure of the data, full-text queries are better at querying the
content (111). Here, we demonstrate that in the case of field books, structured or hybrid
queries (112) using the NHC-Ontology are able to provide more relevant query results
than full-text queries.

It is notable from table 4.3 that few questions involved simple keyword searches. The only
question that can be answered directly using a keyword is: “Show me all resources (lists,
drawings and observations concerning a specific species k.” k being the keyword, as no
limit is imposed on the type of resource that should be retrieved. For 5 of the questions of
type T3, full-text search can also provide an answer, although not directly. Examples are
the following questions: “What did person k find?” or “Which drawings were made by
person k”. However, all resources that in any way relate to person k would be retrieved,
thus retrieving irrelevant documents alongside relevant ones.

Most common queries are structured queries retrieving specific documents (T2) such as
“Show me all drawings with a head of a fish” and hybrid queries retrieving named entities
(T6) such as “Which anatomical entities were used for the classification of the family
Pteropodidae”. When transformed to hybrid queries, 25 out of 46 queries will provide
a direct answer to the original question. For the remaining 21 of 46 queries, document
pages are presented to the user that will likely contain an answer to their question, an
example being: “How were habitats described in the collection between dd-mm-yyyy and
dd-mm-yyyy?”. The semantic query can point a user to the pages that adhere to these date
restrictions, but the user will have to inspect them to answer his or her question.

Listing 4.2 to 4.5 below presents 4 of the 46 questions in SPARQL form, two for cultural
history two for biology research. Listings 4.2 and 4.3 are example SPARQL queries for
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cultural history research, and provide an indirect answer to the questions mentioned in the
listing captions:

PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX dwciri: <http ://rs.tdwg.org/dwc/iri/>
PREFIX dsw: <http :// purl.org/dsw/>
PREFIX viaf: <http :// viaf.org/viaf/>
PREFIX oa: <http :// www.w3.org/ns/oa#>
SELECT ?label ?page WHERE {

?identification dwciri:toTaxon ?taxon .
?taxon rdfs:label ?label .
?organism dsw:hasIdentification ?identification .
?occurrence dwciri:recordedBy viaf :45106482 .
?occurrence dsw:hasEvidence ?observationRecord .
?anno oa:hasBody ?observationRecord .
?anno oa:hasTarget ?page }

Listing 4.2: How were species collected by Heinrich Kuhl, viaf:45106482?

PREFIX nhc: <http :// makingsense.liacs.nl/rdf/nhc/>
PREFIX dwc: <http ://rs.tdwg.org/dwc/terms/>
PREFIX dsw: <http :// purl.org/dsw/>
PREFIX oa: <http :// www.w3.org/ns/oa#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
SELECT ?page ?label WHERE {

?event dwc:year ?year
FILTER ( ?year >= 1820 ) .
FILTER ( ?year <= 1821 ) .
?event nhc:verbatimEventDate ?date .
?date rdfs:label ?label .
?event dsw:eventOf ?occurrence .
?occurrence dsw:hasEvidence ?observationRecord .
?anno oa:hasBody ?observationRecord .
?anno oa:hasTarget ?page }

Listing 4.3: How were habitats described in the collection between 1820 and 1821?

Listings 4.4 and 4.5 below are examples of queries for biology research, and provide a
direct answer to the questions mentioned in the captions. More example queries can be
found online.1

PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX nhc: <http :// makingsense.liacs.nl/rdf/nhc/>
PREFIX nc: <http :// makingsense.liacs.nl/rdf/nc#>
PREFIX dwc: <http ://rs.tdwg.org/dwc/>
PREFIX dwciri: <http ://rs.tdwg.org/dwc/iri/>
PREFIX dsw: <http :// purl.org/dsw/>
PREFIX viaf: <http :// viaf.org/viaf/>
PREFIX oa: <http :// www.w3.org/ns/oa#>
PREFIX gn: <http :// www.geonames.org/ontology#>
SELECT DISTINCT ?label WHERE {

?taxon rdfs:label ?label .
?taxon nhc:taxonRank nc:species .
?taxon nhc:belongsToTaxon ?order .
?order rdfs:label ?Chiropterae .
FILTER regex(? Chiropterae , "Chiropterae") .

1https://github.com/lisestork/NHC-Ontology
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?identification dwciri:toTaxon ?taxon .
?organism dsw:hasIdentification ?identification .
?occurrence dsw:occurrenceOf ?organism .
?occurrence dwciri:recordedBy viaf :45106482 .
?occurrence dsw:atEvent ?event .
?event dsw:locatedAt ?location .
?location dwciri:inDescribedPlace ?place .
?place gn:parentFeature ?parent .
?parent gn:alternateName ?name
FILTER regex(str(?name), "Java", "i") }

Listing 4.4: Which chiroptera species were collected by Heinrich Kuhl, viaf:45106482, on
Java?

PREFIX dwciri: <http ://rs.tdwg.org/dwc/iri/>
PREFIX dsw: <http :// purl.org/dsw/>
PREFIX uberon: <http :// purl.obolibrary.org/obo/>
PREFIX ncit: <http :// identifiers.org/ncit/>
PREFIX nhc: <http :// makingsense.liacs.nl/rdf/nhc/>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
SELECT DISTINCT ?label2 ?uberon
WHERE { ?identification dwciri:toTaxon ?taxon .

?taxon rdfs:label ?label
FILTER regex (?label , "Pteropus")
?identification dsw:isBasedOn ?token .
?token dsw:hasDerivative ?measurement .
?measurement nhc:measuresOrDescribes ?anatomy .
?anatomy rdfs:label ?label2 .
?anatomy rdf:type ?uberon .
?uberon rdfs:subClassOf uberon:UBERON_0001062 }

Listing 4.5: Which anatomical entities were used for the classification of the genus Pteropus?

We finally argue that, as Virtuoso is equipped with full-text indices that can be queried
via SPARQL (110), queries can be formulated both as full-text, semantic or hybrid queries.
However, as most queries make use of the structure of the data in combination with
keywords, making use of semantic queries is beneficial for the retrieval process.

We note that the average user should not be required to write complex SPARQL queries.
To take on this problem, methods have been developed that bridge the gap between the
Semantic Web and the domain expert users (113; 114; 115).

For further observation, the ontology can be found online together with the domain
experts’ questions, the questions transformed to queries and a visualisation of one fully
linked observation record.1 The semantic annotations can be accessed through a SPARQL
endpoint2 which can be queried using a SPARQL query editor.3 The code for the SFB-
Annotator and annotation guidelines can also be found online,4 and will be updated once
newer versions are available.

1https://github.com/lisestork/NHC-Ontology
2http://makingsense.liacs.nl/rdf4j-server/repositories/NC
3An example query editor is the Yasgui editor: http://yasgui.org/, accessed: 30-03-2018
4https://github.com/LINNAE-project/SFB-Annotator
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4. SEMANTIC ANNOTATION

4.5 Conclusions

In this chapter, we presented a semantic model and tool for the semantic annotation
of field books. Through the semantic annotation of one field book, we evaluated the
model and demonstrated the annotation approach. This approach will eventually lead to
a structured dataset constructed from the NC collection, available through a SPARQL
endpoint. It is an example of how the content of historical collections in general could be
disclosed using semantic annotation.

The qualitative evaluations demonstrated that the application ontology adheres to our
requirements and is usable by domain experts both for the process of creating structured
annotations as well as answering common research questions. Answers to structured queries
will either point users to specific pages, to enable closer inspection of the original text, or
provide them with lists or graphical output. However, as the model we propose is centered
around the observation and collection of organisms from field books, it currently serves
the requirements of the biologists and taxonomists better than the cultural historians. We
anticipate that extensions to the model will be required when annotating other artifacts in
the collection. Letters and diaries from the collection, for example, describe the economy,
villages, cultures and inhabitants of colonial Indonesia, and accompanying drawings depict
environmental conditions. A base model for these resources would provide a useful addition
to the semantic model we propose.

4.6 Ongoing and Future Work

Recently, the SFB-Annotator has become part of a project called the LInking Notes of
NAturE (LINNAE).1 Within this project, we worked together with a research software
engineer from the eScience center2 to bring the SFB-Annotator online for use in the
biodiversity domain (116).3 Amongst others, developments include the refinement of
the data model (exemplified with an example annotation in Figure 4.5), packing of the
application in a Docker container4 to ease installation, and the migration of the tool’s
infrastructure to the International Image Interoperability Framework (IIIF),5 which is
becoming a standard for viewing and annotating cultural heritage manuscripts online, see
Figure 4.6.

1https://github.com/LINNAE-project
2https://www.esciencecenter.nl/
3https://research-software.nl/software/sfb-annotator
4https://www.docker.com/
5https://iiif.io/
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4. SEMANTIC ANNOTATION

Through the Cantaloupe image server, images and their metadata are retrieved, converted
to JPG and sent to the IIIF viewer. RDF annotations can be retrieved through the IIIF
manifest server and appended to the manifest.json, a template to present images in the
viewer, although this is still ongoing work. As an image viewer, we depend on the Mirador
IIIF viewer,1 which includes OpenSeaDragon for zoomable images and uses the Web
Annotation Data Model2 for annotations. To query the final knowledge graph, we employ
the GRLC tool (117), which translates SPARQL queries to Linked Data Web APIs.3 This
work is supported by the Netherlands eScience Center (Grant Number: 27019P01).

     Archive          images +         metadata
        RDF        Store

      ROI
Annotator

Figure 4.6: Proposed architecture of the SFB-Annotator.4 Courtesy: A. Kuzniar (2020)

In our next steps, the usability of the SFB-Annotator will be further improved; we will
continue to evaluate the model with a small expert crowd to assess if the annotation task
is well defined and to retrieve more accurate annotation time estimates.

The annotations that were harvested during the first evaluation of the SFB-Annotator (see
1https://projectmirador.org/
2https://www.w3.org/TR/annotation-model/
3https://github.com/CLARIAH/grlc
4Figure is derived from https://iiif.github.io/training/intro-to-iiif/SOFTWARE.html
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4.6 Ongoing and Future Work

Subsection (4.4.2) will serve as a dataset for automating part of the annotation process.
With fully transcribed texts, NLP can be used for the purpose of semi-automated semantic
annotation. As we use text images instead of digital texts, we require alternative, computer
vision methods for NERC, which rely on structural and positional features of words for
annotation (84; 118; 119). We present first experiments of this process in the following
chapter, Chapter 5.
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5
Automating Semantic Annotation

“Perhaps the deepest accomplishment of cognitive development is the construction of
larger-scale systems of knowledge: [...] Building these systems takes years, much longer
than learning a single new word or concept, but on this scale too the final product of
learning far outstrips the data observed.”

– Joshua B. Tenebaum, Charles Kemp, Thomas L. Gri�ths, Noah D. Goodman, in: How to
Grow a Mind: Statistics, Structure, and Abstraction

Biological nomenclature and systematics (discussed in Chapter 2), forms the basis of
worldwide scientific discourse about the biodiversity of our planet. Employing such prior
knowledge about biological structures in machine learning models, enables the process of
learning to retrieve these structures accurately from only small data samples that encode
them. At the same time, historical field observations, even more than contemporary ones,
contain fierce discussions about systematics and nomenclature. Biological taxonomies,
once extracted from archives, can be used to search historical records. Systems can exploit
extracted taxonomies through query expansion techniques, or allow users to semantically
query, or browse through, archival collections.

In this chapter, we aim to answer research question Q.4: How can we use automated
methods for knowledge extraction from archives of NHCs? by aiming to automate part of
the pipeline for knowledge extraction from field books.

5.1 Introduction

Automatic knowledge extraction from field book manuscripts and illustrations is challenging
as content is too heterogeneous to process using common HTR techniques (Chall.6).
HTR is one of the more challenging tasks within the field of Document Image Analysis and
Recognition (DIAR), mainly due to the huge variety in writing styles and languages, paper
degradation, overlapping words and historical handwriting. Creating labelled examples
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5. AUTOMATING SEMANTIC ANNOTATION

for HTR requires domain expertise (Chall.7), and interesting words lie in the long tail of
the distribution of words (Chall.8). Examples of interesting content that lies in this long
tail, are scientific names. In Chapter 4, we saw that domain experts were interested in
retrieving such names, see Table 4.1.

Here, we use computer vision and Semantic Web technologies to (i) identify the elements
of scientific species names in handwritten document images, and (ii) link and structure
the elements, using an ontology for species observations. We use the MONK handwriting
recognition system (23) to segment the document images into single word images. Our
main contribution is the automatic identification and semantic annotation of word zones
in manuscripts that contain species names, and the goal is to integrate such a system with
a system for HTR, together tackling the task of named entity transcription and salient
named entity recognition and classification (SNERC).

We build on work described in the previous chapter (Chapter 4), where an ontology
and software for semantic annotation of species observation records was constructed and
tested with domain experts. Here, we advance these methods by automating the process
of semantic annotation. We present a a novel approach to identify scientific names in
historical handwritten document images. Rather than first transcribing the text and
performing NERC afterwards on the digital text, we exploit characteristics of the document
images for identifying the domain specific salient named entities, using terms from the
NHC-Ontology1 to classify and organise them. We argue that the ability to quickly index
handwritten document images based on scientific names, ranks and authors, helps users to
navigate through large collections of documents in online libraries, such as the Biodiversity
Heritage Library (BHL).2 It opens up possibilities for faceted search, semantic querying
and semantic recommendations. Additionally, maintaining a link to the word image and
location in the full document image is important to generate ground truth for repetition of
image processing experiments as well as to allow researchers to view the original document
and therefore the extracted text in context.

5.2 Related Work
Organisations and researchers that dedicate themselves to the preservation of natural
history collections, such as IdigBio3 or the BHL (13), continuously develop new methods
to digitise specimen collections in a cost-e�ective and sustainable way, in order to facilitate
ongoing species research.

1http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
2https://www.biodiversitylibrary.org/
3https://www.idigbio.org/
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5.3 Data

The automatic extraction of scientific names from text is essential for the management of
archival resources. Therefore, there are several examples of methods for extracting and
disambiguating species names from printed texts, but extracting the same information
from handwritten texts is much more of a challenge. TaxonGrab (120), for example,
automatically extracts species names from printed biological texts. The BHL, which
aggregates scans of biodiversity publications and field notes, indexes scientific names
extracted from the publications—printed text—in their collection, to improve accessibility
for taxonomists. They match the text, extracted via OCR, with the Taxonomic Name
Server (TNS) to identify likely scientific names (13).

Similarly to the BHL, other researchers and institutes are exploiting the power of automatic
text processing for the digitisation of natural history collections. Software has been
developed to parse OCR output of printed text to formalised DwC entries for archival
and retrieval purposes (121). Drinkwater et al. (20) investigate the aid of OCR in
the digitisation of herbarium specimen labels, and found a significant increase in time
e�ectiveness using OCR output to (i) sort specimens prior to database submission, and
(ii) to add transform labels to minimal database records. Drinkwater et al. explicitly note
that OCR is currently only possible for typed and printed labels and not for handwritten
text.

As HTR is one of the more challenging tasks within the field of DIAR, mainly due to the
huge variety in writing styles and languages, paper degradation, overlapping words and
historical handwriting (Chall.6). The recognition of named entities can help document
understanding and searchability of the text, and can potentially aid HTR (86). Formerly,
NERC was a task solely used on digital text, but it has recently also been applied directly
to handwritten text (85; 84; 86). Especially when few instances of words exist and a
collection consists of many di�erent hands and connected words, making it di�cult to create
character-based representations, the identification of key words can help make the text
searchable, and potentially aid HTR. Moreover, in many cases, full-text transcriptions of
entire pages of field books are not required in order to make them digitally accessible.

5.3 Data

Transcribed field books exist online, but (to the best of our knowledge) no segmented
and annotated images of handwritten species observations are available online. For this
purpose, word images from 240 field notes from a natural history collection have been
segmented and semantically annotated. The process of annotation has been carried out in
the context of this work. However, the process of segmenting digital images into word
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5. AUTOMATING SEMANTIC ANNOTATION

zones has been carried out by the MONK system for the project Making Sense of Illustrated
Handwritten Archives 1 (19), and this is reflected in Figure 5.1.

From a field book on mammals, we selected field notes from four di�erent writers, to
account for di�erent handwriting styles and structures, ensuring a representative dataset
to demonstrate how the automated methods perform on heterogeneous, real-world data.
The segmented word images were obtained from a nichesourcing e�ort, with the help of a
handwriting recognition system MONK and a group of domain expert labellers. The word
images were subsequently manually annotated using four classes, as shown in Table 5.1.
Two of four classes are taxonomic entities. The third class refers to the publisher of the
taxonomic name, and lastly we have the class Other, which includes all words that do not
belong to any of the previously mentioned classes.

Table 5.1: Dataset class count

class Genus Species Author Other Total
y 0 1 2 3
n 177 167 144 17309 17797

The final counts of examples per class are shown in Table 5.1. The process of labelling
and annotating words is time-consuming and, in our case, requires expert knowledge.
Therefore, limited training data is available. As machine learning methods generally require
a very large number of labelled samples, methods have to be adjusted to the dataset size
to acquire a predictive model that generalises well. These adjustments are described in
Section 5.4 and 5.5. This is also one of the challenges of projects working with real-world
data where obtaining labelled data is expensive or simply not feasible. Models that use
prior knowledge are better able to generalise from noisy data and small samples. The
dataset used in this work can be found online.2

5.4 Scientific Name Extraction Model
Below we describe our contribution. The full pipeline is shown in Figure 5.1, the blue
rectangle indicating the scope of this work.

We used the MONK handwriting recognition system (23; 26), developed by Schomaker,
for word segmentation (122; 123; 124). First, the system segments handwritten document
images into lines and second, relative to those lines, into word zones that potentially hold
words. The system allows the labelling of word images and transcription of sentences by

1http://www.makingsenseproject.org
210.5281/zenodo.2545573
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5.4 Scientific Name Extraction Model

Segment Word images Classify Predictions

Annotate
Knowledge

base

Figure 5.1: The full pipeline: automated semantic annotation of scientific names

domain experts. It then uses these labels for HTR. In this work, the word images were
manually annotated using four semantic concepts, or classes: genus , species , author

and other . The classification of each word image to its corresponding semantic class is
discussed in Subsection 5.4.1. In Subsection 5.4.2, we discuss the semantic annotation of
the classified word images using the NHC-Ontology1 for species observations.

5.4.1 Classification of Word Images

To classify the word images to one of four classes, we use three distinct features; visual
structural features, position and context. We chose to create one single neural architecture,
built with help of Keras (125), that could be trained end-to-end, so that the classification
error is only propagated once, in contrast to using predictions from multiple classifiers
and combining them after training to form a single prediction. The final architecture is
explained visually in Figure 5.2, and will be discussed below.

Visual Structural Features. The feature detector that was used in this work for the
detection of visual structural features is a CNN (126). It has been shown that CNNs outper-
form other ANNs on image recognition tasks (127), see Section 2.2.1. The basic network
used here is a deep CNN for object recognition developed and trained by Oxford’s Visual
Geometry Group (VGG) and called the VGG network (127). We use their configuration,
with 16 convolutional layers, and import weights pre-trained on the ImageNet task by the
VGG (128). Previous work (129) has demonstrated that transferring image representations
with CNNs overcomes the problem of training with limited training data, e.g., less than a
few thousand training images, despite di�erences in image statistics between the source
dataset and target dataset. By, for instance, training on the ImageNet task, the VGG
model learns filters on various di�erent scales, which can be used as feature extractors for

1http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
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5. AUTOMATING SEMANTIC ANNOTATION

1024 hidden nodes 4 hidden nodes

              Auxiliary input Pretrained  Deep ConvNet, VGG16 

            Main input

 4 hidden nodes

Softmax activation

  LSTM, 256 units

“Genus” “Species”

(rows, columns, channels) image (x,y) centroid (rows, columns, channels) image(x,y) centroid

1024 hidden nodes

Pretrained  Deep ConvNet, VGG16 

            Main input

              Auxiliary input

1024 hidden nodes

t = 1 t = 2

Softmax activation

1024 hidden nodes

  LSTM, 256 units

Figure 5.2: The CNN–MLP–BLSTM architecture, “unrolled” for both time steps t.

other types of images. These features, extracted from handwritten documents with help
of the convolutional part of the VGG network, are used for training a simple MLP on our
task.

Position. In addition to visual features, the position of a word in a document, especially
(semi)-structured ones such as field observation records, often provides a good descriptive
feature for the recognition of a named entity. The position is therefore often used as a
feature in the field of NERC, however, it has been used more often in digital text, e.g.,
(130) than in digital images, e.g., (85; 84; 86; 83). In this work, we use the relative
centroid of the word images, c = (x, y), relative to the image borders, as input features to
a simple MLP with two inputs, x and y, and one hidden layer of size 4. To train the entire
model end-to-end, we concatenated the last hidden layers of both models. The merged
hidden layer therefore has a size of 1024 + 4 = 1028.

Context. As a third feature type, we introduce context: the characteristics of adjacent
word images, specifically bi-grams. Figure 5.3 shows frequencies for word image bi-grams.
First, horizontal pairwise alignment was calculated per word w(i) and w(j). They were
seen as horizontally aligned if y1(i) < yc(j) < y2(i), where i and j indicate the i-th
and j-th word image, y1(i) the first y coordinate of w(i), y2(i) the second, and yc(j)

the y coordinate of the centroid of w(j). Second, the right neighbouring word of w(i)

was retrieved by calculating all pairwise vertical distances for the horizontally aligned
words: distij = cxi ≠ cxj , where cxi refers to the x coordinate of the centroid of w(i).
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5.4 Scientific Name Extraction Model

Figure 5.3: Adjacency matrix that shows frequencies for word bi-grams (sequences of two
adjacent words). E.g., ’genus’ was left of ‘species’ 91% of the time ‘genus’ was encountered.

The smallest negative distance, within a certain bound, indicated right adjacency. The
adjacency matrix only takes into account instances that actually have an adjacent word,
as it could be that a word is surrounded by white space on every side.

As expected, the di�erent classes have strong co-occurrence dependencies. Therefore, we
converted the dataset to sequences of size two (bi-grams), and added a last layer to the
model architecture for sequence prediction. For an adequate prediction we used a BLSTM
neural network (discussed in Subsection 2.2.1) that is able to learn long-term dependencies
between features. By using the bidirectional variant of the LSTM, dependencies can be
learned in both horizontal orientations, see Figure 5.2.

5.4.2 Semantic Annotation of Word Images

The NHC-Ontology1 is an ontology for species observations, based on the DSW ontology,
and written in OWL.2 The ontology is centered around the description of meta-data
relating to the observation of an organism, and allows a researcher to describe as which
various taxon groups an organism has been identified. The model uses the Web Annotation
Vocabulary3 to link bounding boxes of word images to their semantic labels. In the
example listing below, Listing 5.1, two images refer to a genus and a species, which
together constitute one taxonomic name ex:taxon1 of rank ex:species. They are linked
to the publisher of the name with the nhc:scientificNameAuthorship

≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ
property.

1http://www.makingsense.liacs.nl/rdf/nhc/,https://github.com/lisestork/nhc-ontology/
2https://www.w3.org/OWL/
3https://www.w3.org/TR/annotation-vocab/
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@prefix nhc: <http :// makingsense.liacs.nl/rdf/nhc/> .
@prefix ex: <http :// example.org/terms/> .
@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#> .
@prefix oa: <http ://www.w3.org/ns/oa#> .
@prefix dwc: <http ://rs.tdwg.org/dwc/terms/> .
@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

ex:taxon1 rdf:type dwc:Taxon ;
nhc:scientificNameAuthorship ex:author1 ;
nhc:taxonRank ex:species .

ex:author1 rdf:type foaf:Person .

ex:anno1 rdf:type oa:Annotation ;
oa:hasBody ex:taxon1 ;
oa:hasTarget ex:image1.jpg#xywh=x,y,h,w ;
oa:hasTarget ex:image1.jpg#xywh=x,y,h,w .

ex:anno2 rdf:type oa:Annotation ;
oa:hasBody ex:author1 ;
oa:hasTarget ex:image1.jpg#xywh=x,y,h,w .

Listing 5.1: Example of a semantically annotated species name

5.5 Experiments and Results

To analyse the influence of the three features on the predictive performance of the model,
we conducted multiple experiments where we tested the performance of the pre-trained
CNN, CNN–MLP and CNN–MLP–BLSTM.

5.5.1 Experimental Methodology

Before training, the images were scaled by dividing them by 255 so that they would fall
within the range [0-1]. All images were re-sized to the average image dimensions: y = 74,
x = 139. No data augmentation was used. Based on horizontal adjacency, as explained in
Subsection 5.4.1, image bi-grams were constructed, sequences of l = 2, as input to the
BLSTM.

The word images were shu�ed, keeping together word images from the same page, and
thereafter split into a train and test set. As one word image could occur in two bi-grams,
we hereby avoid that word images from the test set were also in the training set, which
would bias the classification results. However, by shu�ing the pages, we still ensure that
the model does not overfit to one writing style or structure. We used 80% of the word
images for training and the remaining partition as test set, making sure that 20% of
the scientific name elements were in the test set. As classes in the word bi-grams were
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5.5 Experiments and Results

highly imbalanced, we used random minority oversampling with replacement, to increase
the counts of samples from minority classes in the training data. When training a CNN,
oversampling is thought to be the best method to deal with imbalanced datasets with
few examples in minority classes, and appears to work best if the oversampling totally
eliminates the imbalance (52).

However, as we are dealing with sequences rather than singular samples, we chose to
oversample sequences, e.g., species–author. Converted back to singular images, this would
result in a step imbalance with a small imbalance ratio p = ±1.1 rather than a large
imbalance ratio of p = ±16 (52).

The networks were all trained using the Adam classifier with a learning rate of 10≠4 and
categorical cross-entropy loss. Each network was trained using early stopping with patience
2, meaning that training was stopped when, for two epochs, the validation error was
increasing. Per epoch, the weights were only stored if the predictive performance had
increased compared to the previous epoch. In the testing phase, thresholding was applied
to the output of the networks to compensate for oversampling the data during training, as
oversampling alters prior probability distributions. One way to perform thresholding is to
simply correct for these prior probabilities, by dividing the output of the network for each
class, then seen as posterior probabilities, by the estimated prior probabilities. In our case,
the imbalance was not completely eliminated, so the thresholds were calculated as the
ratio between the original class counts and those after oversampling.

As a final step, the output of the model that performed best was used to test the whole
pipeline. Word images from the test set, that were classified as scientific names, were
assigned IRI e.g., ex:taxon1. The names were linked and semantically enriched using
terms from the ontology and transformed to the RDF format. The code can be found
online.1

5.5.2 Results and Discussion

Table 5.2 summarises the final classification results for each network. Due to a large
class imbalance, precision and recall were used to assess the predictive power of the
classifier. Reporting accuracies would be misleading, as they would portray the underlying
distribution, rather than the predictive power of the model (if the model would always
predict “other”, it would be a bad predictor for the task, but the accuracy would be 93%,
as the “other” class accounts for 93% of the data).

1https://github.com/lisestork/asa-species-names
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Table 5.2: Classification precision, recall and F 1 results for each network. Support indicates
the number of actual occurrences of that class in the given subset.

Method Class Precision Recall F1-score Support
1. CNN Genus 0.80 0.78 0.79 36

Species 0.64 0.97 0.77 33
Author 0.78 0.78 0.78 32
Other 1.00 0.97 0.98 525
avg / total 0.82 0.77 0.80 626

2. CNN–MLP Genus 0.85 0.81 0.83 36
Species 0.81 0.88 0.84 33
Author 0.78 0.78 0.78 32
Other 0.99 0.99 0.99 525
avg / total 0.96 0.96 0.96 626

3. CNN–MLP–BLSTM Genus 0.86 0.89 0.88 36
Species 0.94 0.91 0.92 33
Author 0.78 0.88 0.82 32
Other 1.00 0.99 0.99 525
avg / total 0.98 0.97 0.98 626

Bold F1 scores indicate statistical superiority over F1 scores for that same class within
the cell of the preceding method. The table indicates that the BLSTM produced the
highest average F1 scores for each class. The addition of the BLSTM layer specifically
increases precision and recall scores for the author names. This makes sense; without
context these appear similar to regular words. The input of centroid data to the network
does not have an e�ect on the recall or precision of author names, but does increase
precision for the retrieval of species names. Figure 5.4 shows 4 images from the test set
that were misclassified. While both the CNN and CNN–MLP network misclassify most of
the same word images, the output of the CNN–MLP–BLSTM is quite di�erent. Image
(a) and (b) were both misclassified by the networks without the BLSTM layer, but were
correctly classified by the final model. Image (a) for example, was classified as “species”,
while actually being labelled as an author name. Visually, it resembles a species name; it is
underlined and appears in a similar position on the page. Without context of other words
it is challenging to correctly classify such images without proper historical knowledge of
the domain. Image (b) was misclassified as “other”, but correctly identified as an author
name in the BLSTM model, most likely due to the visual characteristics of the word image
that is left adjacent. On the other hand, image (c) and (d) are together misclassified as a
species name and its author by the BLSTM network, while they were correctly classified
by the other networks. Examining the images, we see that they are adjacent and visually
resemble these classes (capitals, underlining).
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(a) y = 2, ŷ = 1 (b) y = 2, ŷ = 0 (c) y = 3, ŷ = 1 (d) y = 3, ŷ = 2

Figure 5.4: Four misclassified examples. Classlabels relate to those discussed in table 5.1

In Table 5.3, we present retrieval scores for the identification of complete scientific names
from field book pages. A python script parsed the recognised species elements from the
test set, and connected them together using the NHC-Ontology. A total of 27 out of
36 species names were retrieved, with an F1 score of 0.86. Interestingly, there were no
false-positives among the final predictions. Figure 5.5 shows one of the correctly classified
scientific names. The final RDF dataset can be queried through our online SPARQL
endpoint.1

Table 5.3: Final classification precision, recall and F 1 results for the detection of scientific
names.

Method Class Precision Recall F1-score Support Total
CNN–MLP–BLSTM Scientific names 1.0 0.75 0.86 27 36

(a) y = 0, ŷ = 0 (b) y = 1, ŷ = 1 (c) y = 2, ŷ = 2

Figure 5.5: A correctly classified scientific species name: (a) Genus (b) Species (c) Person

5.6 Conclusions and Future Work
In this chapter we show that we can accurately identify and classify components of
handwritten species observation records from di�erent features: visual structural features,
position and context. We show that our methods are applicable even though the dataset
contains four authors with di�erent handwriting styles and di�erent processes of recording
their species observations. A major challenge of working with handwritten text is its
irregularity. Our results show that we can mitigate this challenge by building up multiple
pieces of evidence for classification by learning from multiple features. Each of the di�erent

1http://makingsense.liacs.nl/rdf4j-server/repositories/SN, can be queried through a query
editor such as: https://yasgui.org/
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5. AUTOMATING SEMANTIC ANNOTATION

features we examine in our model adds information and improves the overall results. In
addition, as the results are extracted and structured in RDF format as part of the process,
they are immediately available for search and comparison with other archives - historical
or present day.

The dataset used for experiments in this chapter is part of the same expedition archive
(the NC collection, see Subsection 2.3.2). Although we represent multiple authors and
styles, the next step would be to demonstrate the generic nature of our results by analysing
biodiversity records from other expeditions. Once we establish that, we will extend our
methods to identify other common classes from biodiversity data, for example, locations,
dates and anatomical entities.

It is our aim to integrate the new methods with established methods for automated
handwriting recognition, using a fruitful dialogue between our system and a system for
HTR, in which the hypotheses (highest confidence values) of both systems work together
for the transcription and semantic annotation of named entities in manuscripts.
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6
Classification of Biological Illustrations

“Ludwig Wittgenstein once said that names are the only things that exist in the world.
Maybe that’s true, but the problem is that as time passes by, names do not remain the
same—even if they don’t change.”

– Victor Pelevin

Historically, naturalists created hand-drawn scientific illustrations for the documentation of
new species. These scientific illustrations often contain captions with handwritten historical
names, as is demonstrated in Figure 2.7 and 6.1, which can be used to compare the
illustrations with other collection objects and online resources. However, many names are
unpublished or obsolete within today’s taxonomy, and are therefore di�cult to understand.
By linking these illustrations to contemporary binomial names and taxonomies, they can
be understood in their context.

In this chapter, we aim to answer research question Q.4: How can we use automated
methods for the extraction of knowledge from archives of NHCs?, by researching how we can
automatically classify—or help domain experts to classify—biological illustrations.

6.1 Introduction
Over the last 250 years, a large number of zoological species have been observed and
documented through the use of scientific illustrations. Research into these scientific
illustrations is complicated by several challenges. First, most illustrations are stored in
museum repositories and archives that are not disclosed for generic use. Digitisation
projects are currently ongoing worldwide to address this challenge, but as of now, most
collections remain o�ine (7). Second, illustrations published as online digital collections
can be used for research, but are often published with doubtful or no identifications (unique
labels), which are required to study the illustrations. Finally, the identification of an
organism from a photograph or illustration, using the system of biological classification,
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

is a complex and delicate task, even for domain experts (42). Automated methods can
significantly reduce the time and e�ort required by scholars to identify and classify the
images. Easy access to taxonomic classifications of illustrations facilitates research into
the historical abundance, range and variation of species.

Automated Classification of Scientific Illustrations Automated species identification
is a much researched problem within the computer vision and pattern recognition domain,
but, to the best of our knowledge, no approaches have been described to deal with the
wealth of detailed scientific illustrations (examples shown in Figure 2.7). Reasons could
be that samples are small due to the nature of the data—many rare species have been
depicted in small quantities—and because numerous institutions have yet to start with the
digitisation of their collections (131).

Photographs and illustrations of species are quite distinct, As described in Subsection 2.1.2.
To illustrate the di�erences between photographic and illustration data, three depictions
and two photographs of the species Lepas (Anatifa) anserifera Linnaeus, 1767 can be
observed in Figure 6.1 and 6.2.

1https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html

(a) (b) (c)

Figure 6.1: Scientific illustrations from the Iconographia Zoologica1 of Lepas (Anatifa)
anserifera Linnaeus, 1767, with handwritten (historical) name Anatifa laevis Bruguière, 1789
(best viewed in colour). (a) Species within shell, (b) shell of species, (c) species without
shell. Images free of known restrictions under copyright law (Public Domain Mark 1.0).
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6.1 Introduction

The dissimilarity of the two modes demands training or fine-tuning a (pre-trained) classifier
on the illustrations. However, this is a non-trivial task due to a couple of challenges, of
which we name two:

1. for classifying zoological illustrations, only small samples from a subset of species
described in modern taxonomy are available for training, and these samples are
smaller for rarer species (see also Chall.6 to Chall.8). Therefore, standard supervised
classification models overfit the training data, and do not capture the totality of the
problem.

2. testing a classification model on a test-set does not guarantee its value ’in the wild’.
Due to various factors, there is always a divergence that a�ects performance: a
change in distribution or di�erences in feature space (132). Illustrations, for instance,
vary in use of materials, drawing style and method, and can portray zoological
species unknown to the model.

(a) (b)

Figure 6.2: Photographs of the species Lepas (Anatifa) anserifera Linnaeus, 1767 (Goose
Barnacle), taken from iNaturalist.1 (best viewed in colour). (a) Observation © David R.2

(b) Observation © mervyngreening.3 Images are licensed under CC BY-NC 4.0.

Approach Below we formulate a research approach that copes with the aforementioned
challenges. To address the first challenge, our approach uses a non-standard learning
strategy called zero-shot learning (ZSL). With ZSL, it is possible to exploit data from
auxiliary data sources to form semantic descriptions of classes, which can help to classify
images from unseen classes: classes that are not observed by the classifier during training,
and hereby to push the boundaries of automated recognition for a specific problem. Such
a classifier is also more flexible to deal with new definitions of classes, and therefore better

1https://www.inaturalist.org/
2https://www.inaturalist.org/observations/25983495
3https://www.inaturalist.org/observations/34793791
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

formulates real world conditions. This is especially useful for biological taxonomy, where the
solution space is large, new class definitions can be introduced, and old ones can be revisited.
To avoid overfitting, our approach additionally exploits image representations learned from
another task—the recognition of zoological photographs—to extract meaningful features
for our task (129). Moreover, we use a biological taxonomy as a label hierarchy for
training (through Hierarchical Prototype Loss (HPL)), and hereby have access to a larger
number of labelled examples for groups higher up the label hierarchy. We evaluate our
approach on the ZICE dataset, that we introduce in this paper. The dataset consists of
14,502 zoological illustrations of 7973 species from the animal kingdom, and is formed by
consolidating data used and managed by the biodiversity research community.1

To address the second challenge, we evaluate the trained model “in the wild”, on a dataset
collected under di�erent conditions. To this end, our approach uses a second independent
collection of illustrations without annotations, to analyse the final species embedding
model.

Our contribution is threefold:

1. We introduce the Zoological Illustration and Class Embedding (ZICE) dataset
constructed from real-world data. It consists of: (i) 14,502 biological illustrations of
7973 species from the animal kingdom, with labels organised hierarchically, and (ii)
class embeddings from 3 di�erent sources - a hierarchy (taxonomy), historical texts
and photographs.

2. We introduce and evaluate a zero-shot learning (ZSL) approach for fine-grained
hierarchical classification. We use the prototypical networks introduced by Snell et al.
in (49) and introduce: Fused Prototype (FP), and HPL. Our approach is evaluated
on the ZICE dataset.

3. We provide a qualitative analysis of the performance of our ZSL approach in a real-
world scenario on an independent verification-set: a collection of 1,088 unlabelled
zoological illustrations, collected during a historical biodiversity expedition (16).

The rest of this chapter is organised as follows. In Section 6.2 we discuss related work
on automated species classification and ZSL. We discuss the data in Section 6.3, the
methodology in Section 6.4, the experimental setting in Section 6.5 and the experiments
in Section 6.6. We close the paper with an analysis and discussion of the results in Section
6.7, and our conclusions in Section 6.8.

1https://geheugen.delpher.nl/nl/geheugen/pages/collectie/Iconographia+Zoologica:
+een+papieren+dierenrijk
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6.2 Related Work

6.2 Related Work

Below, we discuss datasets related to computer vision and biodiversity, where we briefly
mention recent work that leverages contextual information for fine-grained classification,
and provide a short survey of the field of ZSL.

Computer Vision and Biodiversity Recognising and identifying species in images is a
well researched problem within the computer vision field. Most popular datasets contain
classes of animals, (often birds), or plants (60; 133; 134; 135; 136; 137; 138). A citizen
science project called iNaturalist (discussed in Subsection 2.3.1), allows users to upload
photographs of organism encounters in the wild. Since 2017, a new dataset has been
published every year as part of the iNaturalist Competition FGVC6 for fine-grained image
classification.1 Computer vision models trained on such datasets are much better prepared
for the automatic identification of species in the wild. Nevertheless, much variation still
exists among data captured for various tasks, such as between observation data from
iNaturalist, and data collected from motion-triggered camera traps.2 Recent datasets
therefore combine data captured for distinct tasks to model the variation that exists among
photographs of species observations (138).

To improve automated classification of species in images, recent work has demonstrated
the usefulness of leveraging contextual data for the improvement of classification models,
for instance the use of spatio-temporal data often accompanying observations to aid
fine-grained classification (139; 140; 141). Moreover, zero-shot learning methodologies
allow researchers to leverage contextual information from multimodal sources to calculate
measures of similarity between classes (142; 143). Such contextual information can greatly
aid a model to distinguish between visually similar classes where small samples are available
for training.

In addition to photographs of species, there are examples of models trained for the
automated classification of plants in herbaria (144). While a great deal of work is spent
capturing often unclear images of species in the wild, a wealth of detailed zoological
illustrations are under-utilised. Reasons could be that samples are small, many classes are
under-represented, and numerous institutions have yet to start with the digitisation of
their collections (131).

1https://www.kaggle.com/c/inaturalist-2019-fgvc6
2https://github.com/microsoft/CameraTraps
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Zero-Shot Learning While standard supervised image classification methods learn to
recognise images from classes observed during training, ZSL aims to recognise images
from classes not observed during training, y œ Yts, from examples of classes observed
during training, Ytr, by using between-class feature transfer. With a training set T =
{(x1, y1), ..., (xN , yN )} where y œ Ytr, and embedding functions Ï : Y æ Ỹ and
◊ : X æ X̃ , the task is to learn a compatibility function f : X̃ æ Ỹ. At test time, the
function is used to assign test images to classes from Yts.

With ◊, every image xi œ RD from Ytr, is embedded in visual feature space, ◊(xi) œ RM ,
called an image embedding. Most commonly, ◊ is a CNN. After training the CNN, the
top of the network - often just the softmax layer - is removed and an image embedding
function remains.

With Ï, every class yi œ {1, ..., K} is mapped to a vector in semantic embedding space,
Ï(yi) œ RM , called a class embedding. The semantic embedding space is either (i) created
manually, through class annotations or attributes (50; 51), or (ii) learned from auxiliary
information such as taxonomies (145; 146) or texts (147; 148; 149). Attribute embeddings
encode whether a certain attribute - from a set of predefined attributes - is present for a
specific class. Attribute embeddings can be either binary or continuous, e.g., {wing: 0.1,
red: 0.4, tail: 0.7} and fall within the interval [0,1]. Learned embeddings are continuous
and represent similarities between classes more abstractly. Class embeddings from various
sources can be used to complement one another; combining them often results in a higher
accuracy (142; 143; 150). Combining class embeddings can be done in di�erent ways, for
instance by concatenating the class embeddings or combining compatibility scores. We
refer to (143) for an extensive evaluation of class embeddings.

Most common ZSL methods learn either a linear (150; 151; 143; 152) or a non-linear
(153; 154) compatibility function between the two feature spaces. Prototypical networks
(49) belong to the latter group. They learn deep visual-semantic models, such as DeViSe
(151) and Cross-modal transfer (CMT) (154), in which the visual object recognition
network is trained to predict the class embedding vector in semantic embedding space,
which is learned from auxiliary data. While all methods achieve impressive results on
small- and medium-scale datasets, the more realistic variant generalised zero-shot learning
(GZSL), that aims to classify both seen and unseen classes, performs poorly for unseen
classes (154): the model overfits to seen classes and therefore favours seen over unseen
classes at test time. Hence, ZSL models embedded in real world applications should include
a method for dealing with this issue.
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6.3 The Data

Datasets have been set up to facilitate progress in the field and demonstrate the possibilities
and advantages of zero-shot learning (155; 156; 50). We argue that there is a need for
research that analyses the performance of ZSL models on complex real-world data, collected
to fulfill a need within a certain domain, e.g., such as for the identification of tree species
from remote sensing images (142), for mapping the worlds’ biodiversity (60), or for the
estimation of species populations and richness (138). Specifically data from domains where
the solution space is large and complex, and obtaining labels for training is costly or simply
not feasible. When algorithms are evaluated on highly imbalanced large-scale datasets,
results are often poor. Xian et al. show that experiments of state-of-the-art zero-shot
learning algorithms achieve only ≥ 1.3% top-1 per-class accuracy on the 5,000 least
populated classes in ImageNet, and only ≥ 0.4% top-1 accuracy for GZSL (157), where
the classifier must choose the correct class from both seen and unseen classes.

For an extensive comparison of state-of-the-art of ZSL and GZSL methods and datasets,
we point to the work of Xian et al. (157). In our work we use prototypical networks for
zero-shot learning because they are state-of-the-art models within the few- and zero-shot
learning domain (49).

6.3 The Data

In this section, we discuss the ZICE dataset (see Subsection 6.3.1), used for training,
validating and testing our ZSL approach, and an independent verification-set (in Subsection
6.3.2) used to analyse the ZSL results in a real-world scenario (in Section 6.7).

6.3.1 The ZICE Dataset

The Zoological Illustration and Class Embedding (ZICE) dataset contains illustrations,
from the Iconographia Zoologica online collection,1 and class embeddings corresponding
to the classes represented in the illustrations.

Illustrations The Iconographia Zoologica is a nineteenth century collection of biological
illustrations from the Artis Library of the University of Amsterdam. The collection was
formed by three collectors: the well-known collector and naturalist Th. G. van Lidth de
Jeude, the zoologist R.T. Maitland and the curator of the shell collection at the Amsterdam
Zoo, Abraham Oltman, together with the Amsterdam society Natura Artis Magistra. In
the twenty-first century, the collection was digitised and labelled with either complete

1https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

binomial species names (genus and specific epithet) or corresponding genera. The full
online collection contains over 26,500 pages of zoological illustrations.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.3: Cropped example illustrations from the ZICE train-set (best viewed in colour).
Image (f), depicts the skull of a Rhinosceros unicornis and image (j) the tail of a Squilla
hoevenii. Images free of known restrictions under copyright law (Public Domain Mark 1.0)

We have cross-referenced the illustration labels with the June 2018 backbone taxonomy
(59) of the GBIF (discussed in Subsection 2.3.1),1 a central repository for biodiversity
occurrence data. For 14,502 illustrations of 7973 species, labels could be cross-referenced
directly with GBIF without extra domain expert curation. Matches were only accepted
when the names had the status “accepted” in the GBIF taxonomy, as using labels with the
status “unaccepted" or “synonym" to train a ZSL model could prove problematic. Some

1https://www.gbif.org/
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6.3 The Data

synonyms, for example, refer to both a plant and an animal. As a result, visual features
would map to incorrect semantic representations. By the automated matching process,
all classes in the ZICE dataset are organised according to a taxonomy. Figure 6.3 shows
twelve example illustrations.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.4: Cropped example illustrations from the verification-set (best viewed in colour).
Labels are unknown. Images free of known restrictions under copyright law (Public Domain
Mark 1.0)

Notation A biological taxonomy can be seen as a tree data structure, in which species
are represented as leaf nodes, and parent classes represent their higher classifications based
on features shared with other species. In the rest of this paper, we refer to the biological
taxonomy by the term label hierarchy, and we refer to the various ranks (depths of the tree)
by levels. The hierarchy consists of seven levels: kingdom, phylum, class, order, family,
genus, species (genus + specific epithet). We use D = {(x1, y1, t1), ..., (xN , yN , tN )} to
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

refer to the ZICE dataset, where each xi œ RD represents a D-dimensional feature vector
of an image, each yi œ {1, ..., K} represents its species label, where K thus indicates the
number of leaf nodes of the label hierarchy, and ti =

#
t1, . . . , tL

$
represents its full

path of labels, one from each level and ordered from fine-grained to course-grained such
that ti[1] = yi, and where L indicates the number of levels in the label hierarchy.

Class embeddings To train our ZSL model, we have generated class embeddings whose
classes match those from the illustrations. They come from three di�erent sources: (i) the
GBIF backbone taxonomy (59), (ii) literature from the BHL (13) and (iii) photographs
from the iNaturalist 2018 challenge dataset (60). Information on how these embeddings
are produced is given in Section 6.4.

6.3.2 The Verification-Set

For the verification-set, we use 1,088 illustrations from the collection of the Natural
Comittee (discussed in Subsection 2.3.2) to evaluate the model in a realistic setting.
Example illustrations are presented in Figure 6.4.

6.4 Methodology
In this section, we describe the mathematical formulation of our approach: the ZSL (in
Subsection 6.4.1), image embeddings (in Subsection 6.4.2), class embeddings (in Subsection
6.4.3), our method for (i) combining class embeddings: FP (in Subsection 6.4.4), and (ii)
for calculating HPL based on the label hierarchy (in Subsection 6.4.5).

6.4.1 Zero-Shot Learning Model

Prototypical networks for few-shot learning, as described in (49), compute M -dimensional
class representations ck œ RM called class prototypes. They do so by embedding Ns

support points {(x1, y1), ..., (xN , yN )} œ S from Nc classes with an embedding function
f„ : RD æ RM , and taking the per-class average of the resulting embedded support
points, see Equation 6.1. In Equation 6.1, Sk refers to the set of support points for class
k, and ck refers to its calculated prototype. We further refer to the space Rm by the term
prototype space.

ck = 1
|Sk|

ÿ

(xi,yi)œSk

f„(xi) (6.1)
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6.4 Methodology

To train the network, Prototypical Network Loss (PNL) is calculated by mapping a set
of Nq query points: {(x1, y1), ..., (xN , yN )} œ Q from the same Nc classes to prototype
space. In prototype space, distances from the query points to the class prototypes are
computed so that, based on a softmax over these distances, a distribution over classes is
obtained. Parameters „ are learned by minimising the negative log-probability of the true
class k via Stochastic Gradient Descent (SGD). The network is trained with mini-batches.
Each mini-batch consists of Nc classes, Nq query points and Ns support points, and is
called an episode.

For ZSL, Snell et al. (49) mention that rather than embedding support points in prototype
space, prototypes can be constructed by embedding auxiliary information, e.g., class
embeddings in the form of attribute annotations, in prototype space. In their paper they
use binary attribute vectors from the CUB-200-2011 dataset (156). They extract features
from di�erent crops of the images using a pre-trained model and map them to prototype
space using a one-layer linear model. Similarly, they use a one-layer linear model to map
the attributes to prototype space and prototypical training proceeds as in the few-shot
setting. Rather than relying on one source (such as attributes), we rely on a combination
of class embeddings from three distinct sources.

6.4.2 Image Embeddings

We embed images x œ X of zoological illustrations in a lower dimensional feature space
using a deep CNNs ◊(x) : X æ X̃ . We will use ◊ to refer to the image embeddings. To
make sure we don’t learn features specific to our dataset (such as an illustrator’s mark
or a label). We transfer image representations learned from photographs (the source
dataset) to illustrations (the target dataset) (129). We use the inception V3 model (158),
and import weights learned on the iNaturalist 2018 competition dataset.1 For zero-shot
learning, image embeddings are often generated using CNNs pre-trained on a source task
(e.g., the ImageNet task (128)). The choice of model is crucial as the quality of the image
embeddings has a big impact on the performance of the ZSL model. Therefore, we have
chosen to use a model that was trained on a task more similar to ours. Xian et al. (157)
mention that class overlap between classes from the source and target dataset leads to an
unwanted positively biased result. However, our goal is not to compare between various
state-of-the-art ZSL methods, but rather to provide insights for training a model that is
able to generalise to new data within the target domain.

1https://github.com/macaodha/inatcomp2018
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

6.4.3 Class Embeddings

Below we describe details concerning the embedding functions that map classes yi œ Y,
the set of leaf nodes from the label hierarchy, to vectors Ï(yi) œ RM in M-dimensional
semantic embedding space: Ï : Y æ Ỹ. As each embedding comes from a di�erent
domain, all embeddings are l2-normalised. For brevity, we use Ïi

k to refer to the class
embeddings of source i for class k.
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Figure 6.5: A subset of Y from the ZICE dataset, covering the phylum Anthropoda, with
the corresponding label hierarchy (from left to right: phylum to species). Bold names
indicate classes from Ytr, and numbers indicate number of instances within that class.
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6.4 Methodology

A hierarchy (Ïh) Through the GBIF backbone taxonomy, we had access to the ground
truth list of higher taxon labels for nearly all classes (see Table 6.1 for class statistics). For
53 classes, no (or an incomplete) higher classification was available. Using the deterministic
algorithm from Barz et al. (145), we have projected all 7920 classes onto a unit sphere of
dimensionality N - where N is the number of classes. The negated dot product between
classes on the sphere represents their semantic similarity. This similarity is based on
the ratio of overlap between their ground truth list of higher taxon labels—nodes in the
hierarchy. Part of the label hierarchy is given in Figure 6.5.

Texts (Ït) To facilitate semantic search over large textual biodiversity archives, Nguyen
et al. have constructed an inventory of name variants and synonyms from a large textual
biodiversity corpus (BHL) (159). For this task, they have computed word embeddings from
multi-word terms–"chipping sparrows" becomes "chipping_sparrows"–mentioned in the
corpus. They compared multiple methods for computing word embeddings: continuous-
bag-of-words (CBOW) (160), count-based (161) and Global Vectors (GloVe) (148). From
these three, we rely on the 300 dimensional multi-word GloVe embeddings.

Photographs (Ïp) Features in photographs are quite distinct from those in illustrations,
but their features capture the semantic similarity of the di�erent classes they represent in
a similar way. Hence, we have extracted 2048 dimensional features from the iNaturalist
2018 dataset photographs, using the inception V3 model trained on the corresponding
dataset (previously mentioned in Subsection 6.4.2).

6.4.4 Combining Class Embeddings

Below we describe two methods for generating singular class prototypes for prototypical
learning (see Subsection 6.4.1) from three distinct embeddings, each with a di�erent
dimensionality.

Concatenated Embeddings (CEs) One method that is often employed to combine the
di�erent embeddings is concatenation, in which the dimensions of each class embedding
(from distinct sources) are concatenated together. This results in one sparse matrix with
a large dimensionality. Similarly to Snell et al. (49), we learn a one-layer linear model
on top of the concatenated class embeddings Ï and on top of the image embeddings ◊,
mapping them to prototype space.
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Figure 6.6: FP (best viewed in colour). Figure derived from (49). Features from Ïi (here i
is replaced by: a hierarchy (h), texts (t), and photographs (p)) are mapped into prototype
space using separate one-layer linear models f„i , and fused into one prototype per class ck.
To illustrate HPL, example temporary parent-class prototypes pk are depicted in transparent
grey.

Fused Prototypes (FPs) We implement FPs, see Figure 6.6. Essentially, FPs fuse
prototypes from a variable number of multimodal sources into a single prototype per
class. We derive our implementation from the prototypical FSL approach. Instead of using
support points s œ S, we use Ïi œ �, the set of class embeddings from distinct sources
{Ï1, ..., ÏN }. A simple one-layer linear model is learned on top of the feature space of
each of the distinct Ïi’s as well as the image embeddings ◊, mapping both to prototype
space. In prototype space, the embedded Ïi’s are fused together, similarly to the way
support points are fused to form class prototypes for FSL, see Equation 6.2.

ck = 1
|�|

ÿ

(Ïi
k

,yk)œ�
f„i(Ïi

k) (6.2)

In that equation, ck refers to the class prototype for class k, where N is the number of
sources, and fi„ refers to the linear model that maps the individual class embeddings from
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6.5 Experimental Setting

Ïi to prototype space. We hypothesise that fused prototypes will perform better than
concatenated embeddings, as the latter introduce one large sparse input space whereas
fused prototypes are optimised from multiple dense input spaces.

6.4.5 Hierarchical Prototype Loss

HPL extends PNL, and is defined as the sum of the losses for each level of the label
hierarchy (see Figure 6.5). The loss for a specific level l is calculated by first computing
temporary parent-class prototypes pk œ RM for that level from the set of class prototypes
C = {(c1, y1, t1), ..., (cK , yK , tK)}, see Figure 6.6 and Equation 6.3. In the Equation,
Ck refers to the subset of C containing all prototypes (ci, yi, ti) such that ti[l] = k. As
described in Subsection 6.4.1, distances of the query points to the temporary parent-class
prototypes are then computed and the loss is calculated over these distances. HPL is
calculated by summing the losses for all L levels.

pk = 1
|Ck|

ÿ

(ci,yi,ti)œCk

ci (6.3)

By implementing HPL, we take a multi-granularity approach: we enforce a clearer separation
of classes not only for the finest grain, but also for coarser taxonomic groups. As more
labels are available for each level higher up in the label hierarchy, this intuitively supports
the discovery of more robust features for the classification of coarser classes.

6.5 Experimental Setting
In this section we discuss details regarding the settings of the experiment: the dataset splits
(in Subsection 6.5.1), data augmentation (in Subsection 6.5.2), and evaluation criteria (in
Subsection 6.5.3).

6.5.1 Dataset Splits

As recommended by (157), we split the classes Y for training and evaluation based on the
number of instances each of them contain. Since our dataset contains so few instances
per class, (nk œ [1, 283], µ: 1.79, ‡: 3.93). We have used all classes with n Ø 2 per class
for the training set Ytr. Two examples per class is not su�cient to learn a good class
representation, but the features of these illustrations are useful for between super-class
feature sharing. Moreover, we exploit them for learning representations of classes on a
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6.5 Experimental Setting

higher taxonomic level, since a larger number of instances are available higher up the label
hierarchy. All remaining classes with n = 1 were equally distributed over the validation
set Yv, and the test set Yts. Table 6.1 shows dataset statistics per super-class. Since
not all of the classes were represented in each source (GBIF, BHL and iNaturalist), each
embedding (Ïh, Ït, and Ïp respectively) represents a subset of Y. However, together
they span the totality of classes Y. The super-class Animalia is used for classes that are
not assigned to a phylum.

6.5.2 Data Augmentation

For training, we used image embeddings extracted from augmented versions of all images,
in order to increase the ability of the classifier to generalise the classification with respect to
the data. Before cropping all images, the largest side of each image was first resized to 300.
During resizing, we kept the aspect ratio identical to the original image. 2048-dimensional
features were extracted by applying the pre-trained Inception V3 model to crops (middle,
upper left, upper right, lower left and lower right) of each resized original illustration and
its horizontally flipped version. Crops containing only white space or text were manually
discarded.

6.5.3 Evaluation Criteria

In our experimental ZSL results (Subsection 6.6.2) we report two accuracy metrics: top-k
accuracy and hierarchical accuracy@k.

Top-k accuracy Flat top-1 accuracy does not always su�ciently portray the classifier’s
capabilities. When the solution space is large, it is valuable for domain experts to obtain
top-k predictions, as exemplified later in Figure 6.8. We therefore report top-k accuracy,
k œ {1, 2, 5, 10}. This metric is computed by the percentage of images for which the
correct label is among the top k predictions.

Hierarchical accuracy@k For our task, classifying an illustration of a Boiga nigriceps as
a Boiga dendrophila - both tree snakes - is less problematic than classifying it as a Procyon
lotor, a common raccoon. In the former case, the classifier has learnt important coarse
features specific to tree snakes, and has provided researchers with a partially incorrect,
but valuable classification nonetheless. For each illustration, we would therefore like to
shed light on the accuracy of the entire label path from the label hierarchy. Hence, we
additionally report hierarchical accuracy. Hierarchical @k precision is sometimes used as
a metric for hierarchical datasets (151). We report a new metric that we deem more
informative in our context: average per-level accuracy, or hierarchical accuracy. It is
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

computed by calculating the accuracy for each level in the label hierarchy and averaging
over these, see formula 6.4. In formula 6.4, L refers to the number of levels for which we
have labels and l to a specific level l.

Hierarchical acc =
Lÿ

l=1

n correct preds in l

n samples in l
(6.4)

Additionally, we report accuracies for labels k levels up the label hierarchy, where k œ
{1, 2, 3}, thus referring to the accuracy for labels one, two and three levels up the label
hierarchy respectively.

6.6 Experimental Results
The following section is divided as follows: first we evaluate the image embeddings (Task
1) in a supervised classification setting (Subsection 6.6.1), after which we evaluate each of
the elements of our zero-shot learning approach (Subsection 6.6.2): the class embeddings
(Task 2), combining class embeddings (Task 3), hierarchical prototypical loss (Task 4),
and an analysis of the final network, which incorporates results from Task 2-4 (Task
5).

(a) Class labels (b) Family labels

Figure 6.7: t-Distributed Stochastic Neighbour Embedding (t-SNE) plots showing image
embeddings of images from the ZICE dataset (should be viewed in colour). Plot (a) shows
class level labels and (b) family level labels. Family labels come from a selection of 12
families of which the binomial name was not present in the iNaturalist 2018 dataset. The
t-SNE algorithm was run for 5,000 iterations with perplexity 20.
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6.6 Experimental Results

6.6.1 Supervised Classification and Visualisation

For Task 1, we selected image embeddings from the set of species that is disjoint from
the set of species represented in the iNaturalist 2018 dataset (on which the embedding
function was trained), so as to obtain a deeper insight into the ability of image embedding
function to find generic features. From this selection, we again selected a subset for
classification and visualisation purposes: the 12 most populated classes from the family
level (two levels up the label hierarchy).

We show per-class, micro, macro and weighted average precision and recall results for a
Support Vector Machine (SVM) trained on the subset, see Table 6.2. Additional to family
labels (Table 6.2, 2nd column), we show higher-taxon labels from the class level (Table 6.2,
1st column). The weighted average alters the macro metric to account for label imbalance.
The support column indicates the number of actual occurrences of that class in the given
subset.

The SVM was trained using a stratified 80%-20% split for the train and test-set, respectively.
Note that the classification results serve to provide an insight into the quality of the features
rather than the di�culty of our task. For visualisation, we show a t-SNE (162) visualisation
of the subset with family labels (see Figure 6.7 (b)). Also here, we present higher-taxon
labels from the class level (see Figure 6.7 (a)).

Looking at Figure 6.7, we see that same-class image embeddings are visibly clustered.
However, classes within certain taxon groups overlap, for instance, families within the
class Mammalia, see the classes of Figure 6.7 (b) that are coloured brown in Figure 6.7
(a). This e�ect is reflected in Table 6.2 (see bold text): the image embeddings from
only one of four families subsumed under the class Mammalia can be classified correctly
(Canidae, with 100% recall). From the classifications and the precision value (48%) we
find that image embeddings from other classes subsumed under the class Mammalia are
also classified as Canidae, and thus a large part of the brown cluster from Figure 6.7 is
classified as the family Canidae (dog-like carnivores).

The results of Task 1 show us that the features learned from the iNaturalist 2018 task
are not su�ciently specific to properly classify all fine-grained classes in our task well.
Therefore, further improving the image embeddings would improve zero-shot learning
results, although the inter-class variation of species within certain taxon groups can be
quite small. Some species within the order Coleoptera (beatles), for instance, can only be
accurately identified after a close inspection of their genitalia (163). Visualisation of the
features can give an indication up to which grain the features within specific taxon groups
are su�ciently informative for proper classification.
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

Table 6.2: Classification precision, recall and F 1 results for Task 1 in % (rounded o� to
whole integers) for a SVM trained on the image embeddings belonging to 12 families (also
visualised in Figure 6.7 (b)). Support indicates the number of actual occurrences of that
class in the given subset. The top-1 per-class average accuracy is 43.58%.

Class Family Precision Recall F1 Support
Mammalia Bovidae 0 0 0 19
Mammalia Canidae 48 100 65 33
Insecta Carabidae 44 74 56 27
Insecta Cerambycidae 56 85 68 26
Mammalia Cercopithecidae 0 0 0 9
Gastropoda Conidae 87 98 92 41
Insecta Curculionidae 0 0 0 14
Mammalia Equidae 0 0 0 12
Insecta Melolonthinae 100 22 36 9
Gastropoda Muricidae 67 55 60 11
Insecta Staphylinidae 0 0 0 10
Bivalvia Veneridae 82 90 86 10

micro avg 60 60 60 221
macro avg 40 44 38 221
weighted avg 46 60 50 221

6.6.2 Fine-Grained Zero-Shot Learning

All prototypical networks were trained using the Adam optimisation algorithm from pytorch.1

Episodes for training were comprised of Nc = 50, Nq = 1 and Ns = 0, similar to a balanced
mini-batch of size 50. The validation loss was monitored during training and if, for 10
iterations, the loss did not decrease, the learning rate was decreased with a factor of 0.5.
We tuned hyper-parameters using hyper-parameter optimisation–tree-structured parzen
estimators–and ended up with a learning rate of 10≠4 and a weight decay of 10≠5. Early
stopping on the validation loss was used to determine the optimal number of epochs
for training. For each model, five di�erent networks were trained. As a statistical test
for comparing classifiers we used the McNemar test (164) for each classifier pair for all
predictions of 5 runs accumulated. It is a test that works well for testing statistical
significance when dealing with paired nominal data for comparing classifiers trained,
validated and tested multiple times on the same splits of a dataset. Bold numbers indicate
statistical superiority over other values within that column and cell (which separates tasks).
A final model was trained, again 5 times, with the configuration that we found to work
best. The last row of Table 6.3 indicates accuracy values for the majority guess, where
the model simply always predicts the majority class.

1https://pytorch.org/docs/stable/optim.html
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

Evaluation (Task 2, 3 and 4) First, Table 6.4 presents results for Task 2, which show
the performance of the networks trained, validated and tested with embeddings from
each unique source separately, and additionally each combination of the three distinct
embeddings E. In order for the results to be comparable between all combinations, we
used the totality of Y to train, validate and test the networks, despite the fact that each Ïi

spans only a subset of classes from Y (see the last row of Table 6.1). In case a class k was
not represented in Ïi, the dimensions for Ïi

k were set to zero. In this context, the results
inform us, first and foremost, about the contribution of each embedding to the overall
accuracy (Table 6.3, Task 2, last row). We discuss each embedding separately.

Ïh is the most complete and informative embedding. Ït spans many classes (3040 out of
7973), but appears less informative. The prototypical network trained with Ït performs
better than the majority guess for the top-k acc metric, but Ït seems to harm the learning
ability of the network when used in combination with other embeddings. This could be due
to a myriad of factors. We believe the two most likely factors are that (i) the embedding is
better suited for finding synonyms between taxon terms - as similar species are described
similarly, and, (ii) that some names in the BHL are ambiguous: referring to one species
in the historical texts, while they refer to another in modern taxonomy. Particularly,
any historical unpublished name could have been published today as a di�erent species.
Matching them with sources from a modern taxonomy could therefore be problematic.
Finally, the network trained with Ïp shows improvement over the majority guess, and Ïp

complements Ïh, as the network trained with {Ïh, Ïp} improves over the accuracy of
the model trained with just {Ïh (see Table 6.3, Task 2, row 1 and 5), specifically the
hierarchical acc@2 (13.23% to 14.24%) and @3 (43.74% to 45.69%). We hypothesise
that if we increase the number of instances and fine-grained classes used to generate Ïp,
results could be improved further.

Second, Table 6.3 presents results for Task 3: combining class embeddings. CE represents
the baseline model: it is comparable to the method used by Snell et al. (49) for zero-shot
learning. Results for Task 3 show us that by using our fused prototypes (FP) formulation,
we can increase the top-1 accuracy from 2.09% to 2.42% (see Table 6.3, Task 3). Such
an increase is non-trivial. As the test-set contains an instance per class, with a total of
2702 classes (on the finest grain), an increase of 0.33% for the top-1 accuracy equals the
capability of the classifier to correctly classify illustrations from an additional 9 unseen
classes from di�erent parts of the biological taxonomy. Fused prototypes also induce a
higher hierarchical accuracy @1 and @2 (from 5.45% to 5.98% and 13.42% to 14.23%,
respectively). When class embeddings from additional (informative) sources are used, we
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6. CLASSIFICATION OF BIOLOGICAL ILLUSTRATIONS

anticipate that this e�ect which we discuss in Subsection 6.4.4 will become more evident:
the value of using fused prototypes over concatenated embeddings will increase.

Third, Table 6.5 gives results for Task 4, which show that using HPL improves the average
hierarchical accuracy significantly - from 36.70% to 39.35%. However, a decrease is
measured for the top-1 and top-2 accuracy: from 2.42% to 2.12% and 4.29% to 3.88%
respectively. This e�ect demonstrates intra super-class variation of taxon groups, as it
appears that learning better coarser features slightly complicates the classification of some
fine-grained taxon groups.

Table 6.5: Generalised zero-shot learning (GZSL) classification results in % for final model

top-k acc Yts Hier. acc@k Yts

Method 1 2 5 10 1 2 avg
GZSL 0.04 0.21 1.24 3.25 4.47 16.03 38.19
M. guess 0.01 0.03 0.06 0.13 2.85 3.26 18.66

Final results (Task 5) A final model was trained 5 times using the best configuration
- {Ït, Ïp}, PNL and HPL. Although implementing HPL decreases the top-1 and top-2
accuracy, a substantial increase of the average hierarchical accuracy was measured. We
therefore chose to implement it in the final model.

Table 6.3 (Task 5) shows per-network averaged results for the final model on the test-set,
and Table 6.4 gives results for the final model’s best network, detailed per super-class.
Table 6.4 serves to provide a deeper insight into the trained network. Evidently, illustrations
from some super-classes were not recognised at all due to their limited contribution to the
training of the network–visible from the column avg Nts–as most feature sharing occurs
within super-classes. For reason of comparison we add the results for the leaf node level
(species).

On top of these results, Table 6.5 details results for GZSL. The top-k accuracies for GZSL
are poor: during classification, a network trained for ZSL tends to favour seen classes over
unseen classes (154). Logically, GZSL does not a�ect the average hierarchical accuracy by
much, as seen and unseen classes share parent-classes (see Figure 6.8).

Finally, we present and discuss four example images from the test-set with their top-
5 predictions (and corresponding confidence values), see Figure 6.8. Image (a) and
(b) have good top-5 predictions: the top-1 prediction of image (a) is incorrect (the
classifier is most confident about the label Brachirus macrolepis, while the correct label is
Brachirus panoides), but the top-1 prediction is correct up to the fine-grained genus level:
Brachirus.
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Figure 6.8: Top 5 predicted classes and their confidence values for two example test images
(best viewed in colour). Labels are organised hierarchically (K: kingdom to S: species) to
show the diversity of predictions and how close–in the label hierarchy–the classifier is to the
real label. For image (c) the correct label was not among the top 5 predictions (therefore 6
are shown). Green paths, labels and confidence bars denote correct labels. Orange confidence
bars indicate incorrect predictions.
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Moreover, the top-3 predictions are all correct up to the genus level. For image (b),
the top-1 prediction is correct, and the remaining predictions are from the same correct
order.

The third image (c) has poor predictions, as (i) the correct label is not among the top
5 predictions, and (ii) almost all predictions are from a di�erent phylum. Interestingly,
however, the top-2 predictions (the Bittium reticulatum and Cyclura cornuta) have
something in common with the correct species (Cribrinopsis crassa): they share its most
salient feature - their skin is covered with small tubercles.

Lastly, for the fourth image (d) the correct label (Elephantulus intufi) belongs to the order
Macroscelidea (Elephant shrew), and the other predictions belong to the orders (from top
to bottom): Rodentia (Rodents) and Carnivora (Carnivores). The two predictions from
the Rodentia order are two di�erent mice species (Dipus sagitta and Holochilus brasiliensis.
Elephant shrew visually resemble mice. Interestingly, the most salient feature that would
allow a classifier to distinguish between a mouse and an elephant shrew, is cut o� from the
illustration: its long trunk-like nose, which resembles an elephant’s trunk. It is therefore
good to consider that cropping the image at its center in a standardised way can cause
the loss of information that is vital for proper classification.

6.7 Analysis and Discussion
Standard supervised classification o�ers limited solutions to deal with the full scope of the
problem presented above. ZSL models are better suited to deal with limited data (small
samples for only a subset of classes from the domain). For instance, Table 6.5 shows
that 20 Anthropod species could be correctly classified without any training examples,
from their similarity to 620 other seen Anthropod species. We note that this shows an
important gain: the labelling of these illustrations by domain experts is costly, and does
not necessarily guarantee high-quality annotations, due to the complex nature of species
classification (42). Especially prototypes optimised according to the label hierarchy can be
exploited in an expert support system to guide experts in the identification process.

In practice, it can be a real challenge to transfer results to real-world scenarios. We provide
two telling examples. First, Table 6.5 shows us that with GZSL, seen classes are favoured
over unseen classes during classification. In real-world applications, methods are required
that deal with this issue. If not, a classifier will often prefer classes from Ytr over Yts

for classification. Second, using a trained network in real-world applications can prove
problematic due to a domain shift between datasets. Our verification-set, that we have
presented in Subsection 6.3.2, serves to illustrate this issue. When using the final species
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Figure 6.9: A t-SNE plot showing all prototypes (closed circles) and instances (open
triangles), from the 12 most populated phyla, embedded by the final prototypical network
(should be viewed in colour). Instances from the verification-set (bottom cluster) are
indicated by the label ’unknown’. Note that t-SNE does not accurately preserve distances
between clusters. The t-SNE algorithm was run for 5,000 iterations with perplexity 100.

embedding model for classification of the verification-set, all instances are classified as
species of Anthropods, although it contains illustrations from a variety of phyla (among
which Chordates and Annelids, see Figure 6.4). The t-SNE visualisation, see Figure 6.9,
allows us to hypothesise about the results. The visualisation shows instances from the
verification-set (depicted as purple triangles, see bottom cluster), as well as instances and
prototypes from the ZICE dataset (all other open triangles and closed circles respectively),
all embedded by the species embedding model. The species embedding model appears
to have mapped instances from the verification-set to a di�erent manifold than those
from the ZICE dataset. Consequently, instances from the verification-set manifold are
classified as Anthropods, as its prototypes are closest (see the red prototype clusters in
Figure 6.9). We hypothesise that both datasets must come from a distinct marginal
probability distribution. Most likely, this domain shift is the result of di�erences in paper
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types, sketching techniques and materials.

Overcoming the aforementioned issues is key, but we argue that ZSL and hierarchical
learning methods (methods that exploit the label hierarchy) are fundamental for problem
domains such as the one described here: where labelling of images is expensive, but where,
at the same time, auxiliary data sources contain a wealth of domain knowledge maintained
by a community of experts.

6.8 Conclusions
In this chapter we have analysed the problem of classifying species in zoological illustrations.
For this purpose, we have introduced a dataset, with many classes and few samples,
and an independant (unlabelled) verification-set, both representative of the problem
domain.

From the experimental results, we conclude that auxiliary data sources have allowed us to
push the boundaries of automated recognition for this specific problem: illustrations from 80
classes, that contained zero example instances for training, could be classified correctly. We
furthermore conclude that our model improves over the baseline classifier. Compared with
the baseline, our FP implementation allowed us to classify instances from an additional 9
unseen fine-grained classes. Moreover, implementing HPL increased the average hierarchical
accuracy substantially (from 36.41% to 39.35%). Finally, from the results of the analysis
of the verification-set in Section 6.7, we show the complexity of our task. Aside from the
depicted illustrations, there are other di�erences between the digital images that impact
the predictive capabilities of the model. The illustrators’ technique, the physical drawing
materials and the chosen perspectives change significantly between illustrators. In order
for our zero-shot learning model to function well in an application, domain adaptation
methods should be employed to align domain marginal probability distributions (132)
between datasets, and therefore make the model illustrator-invariant.

Coming back to our main problem description, we conclude that biodiversity datasets,
storing domain knowledge and auxiliary data, can be exploited to develop models for
classification (especially when small samples are available for training). These models
can then serve as decision support systems for biodiversity researchers to help classify the
historical and present-day scientific illustrations from various species of living organisms,
which reside underutilised in natural history museums globally.
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Conclusions

“Biodiversity starts in the distant past and it points toward the future.”

– Frans Lanting

In this thesis, we presented methods for knowledge extraction from archives of NHCs,
informed by prior knowledge of the domain. Archives serve as important historical records,
and also crucial references for present-day research subjects, such as environmental studies
and climate change. The current biodiversity crisis increases the importance of historical
studies, as a longer-term view of changes to biodiversity may provide new insights. New
approaches to knowledge extraction from archival collections related to NHCs are required
to deal with hard-to-read handwriting, heterogeneous content and the change of species
names, genera and place names. Links need to be identified between related items within
a specific collection, as well as with external historical resources, such as the Biodiversity
Heritage Library (BHL), and contemporary resources, such as the Global Biodiversity Data
Facility (GBIF), the Catalogue of Life (COL), or iNaturalist, in order to discover new
knowledge.

First of all, we provided motivation for a “more product, less process” approach (87),
in which we leverage context, in the form of domain expert knowledge and community-
developed data standards, for the semantic annotation of digitised manuscripts. We
implemented this approach through the development of a semantic model, the NHC-
Ontology, and a semantic annotation tool, the SFB-Annotator, which we evaluated on
a use case from the domain. Second, we used the output of the semantic annotation
process to train a classifier for the detection of scientific names in text images, in which
context, in the form of prior knowledge about the syntax and semantics of nomenclature,
as well as about field books, drove the learning process. Last, we explored how distributed,
multimodal contextual knowledge from data providers within the domain, such as GBIF,
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iNaturalist, and BHL, could be used to extract knowledge (hierarchically structured
classifications) from biological illustrations.

In the following section (Section 7.1) we will revisit the research questions we introduced
in the introductory chapter (Chapter 1), followed by a discussion of the overall approach
and its implications, against the backdrop of developments in the fields of Semantic Web
and computer vision, and AI in general.

To conclude, we discuss ongoing and future developments (Section 7.2) related to the
work in this thesis.

7.1 Research Questions Revisited
The main objectives of this thesis were: to (i) extract knowledge from archives of NHCs,
given items Chall.1 to Chall.8, to make them amenable for research, and (ii) to publish
the digitised archives and the extracted (meta)data online for global access and integration
with other collections (related to Chall.5). In the introduction, we split these objectives
into four research questions that guided our work. We will revisit them below.

Q.1 What are the trade-o�s of various system designs for the disclosure of digital archives?
(Chapter 3)

To systematically answer Q.1, the first research chapter of this thesis (Chapter 3) discussed
three types of systems that transform manuscripts to machine-readable databases. We
focussed specifically on the agents that were expected to perform the enrichment (the
crowd, experts, or machines), the type of machine-readable data that was being produced (a
lexicon, an annotated corpus, or a knowledge graph), and how much of the manuscripts were
processed (manual or machine full-text transcription, user-guided labelling of keywords
with a focus on searchability, or enrichment targeted to central units such as named
entities).

From these discussions, and given Chall.1 to Chall.8, we derived a “more product, less
process” approach for knowledge extraction from field books. Instead of full-text or
user-guided keyword transcription, we opted for a targeted approach that depends on
domain experts for (i) steering the development of a formal application ontology for field
observation records, and (ii) using it for the semantic annotation of these observation
records.

Omitting full-text transcription means annotating only a small percentage of the hard-to-
read multilingual content, and the transcription and annotation process is streamlined:
both the verbatim reading of a text as well as the interpretation can be recorded. We do
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note that modelling of manuscript content becomes increasingly complex when content is
too unstructured to fit an ontology. However, the content of field books and illustrations
fit well into an ontology, as these are characterised by their systematic nature. Moreover,
we note that semantic annotation is a knowledge-intensive task that depends on an expert
community. Nevertheless, we envision that domain experts have higher intrinsic motivation
to take on a task that is relatively di�cult, and that relates to their field of interest.
Additionally, such tasks tap into a feeling of community contribution. Lastly, we note that
automating semantic annotation from text images is likely to be a more complex task than
from digital texts, as the structural and positional features of digital texts are much more
homogeneous than that of text images.

The research questions that followed, were targeted to the kind of knowledge that needed
to be extracted, how formal ontologies could be employed to do so, and whether resulting
knowledge graphs could be used to answer domain expert’s research questions:

Q.2 What types of research questions do domain experts formulate regarding archives
of NHCs, and how can we make the content of these archives machine-readable to
facilitate such queries? (Chapter 4)

Q.2a What are the general semantics of historical species observations and how do
they di�er from present day observations?

Q.2b How do we extract important content and its semantics (e.g., core elements
and their relationships) from the archives so that it becomes machine-readable
and facilitates rich queries?

First, qualitative interviews and a test annotation procedure were set up to answer research
question Q.2a. Experts were asked to note down research questions and concepts that
were related to the content of field books and illustrations, and subsequently to annotate
the digital manuscript pages with these (or new) self-defined semantic concepts.

To answer Q.2b, technologies from the field of knowledge representation and reasoning
(KRR) were used for the transformation of manuscripts to machine-readable knowledge in
the form of knowledge graphs. The concepts defined by domain experts were used for the
development of an ontology that represents the content of historical species observations.
Through the development of a semantic annotation tool based on the application ontology,
domain experts can elucidate the important named entities and their relations, and make
them available through a queriable triple store. Qualitative evaluations demonstrated
that the tool is usable by domain experts, both for the process of creating structured
annotations, as well as answering common research questions. We do note that a larger
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“crowd” is required to evaluate the tool and model quantitatively, for instance by measuring
inter-annotator agreement (IAA).

Importantly, annotations are produced and published in a FAIR way that stimulates
reuse of data and repetition of scholarly experiments. This relates to our third research
question:

Q.3 How can we accommodate a transparent and FAIR approach to enriching the archival
content of NHCs, facilitating and encouraging scientific discourse over the content?
(Chapter 4)

Requirements (R.3 and R.4) were set up for publishing the content of manuscripts from
NHCs to the Semantic Web as FAIR data. Classes and relations from well-established
domain ontologies and vocabularies were selected to represent expert user-defined concepts,
in line with the FAIR data principles and the vision of the Semantic Web (which encourages
knowledge sharing and reuse). We argued that provenance of annotation is often overlooked,
albeit being a very important step in the life of any digital object or statement, as it
contributes to meaning, value and reproducibility of experiments. To track the provenance
of semantic annotations, we used the Web Annotation Vocabulary?? and accompanying
data model.1 By tracing and publishing the provenance of annotations on the Semantic
Web as LOD, important links, such as those from a taxonomic referencing process (the
annotation of a legacy name with a reference to an accepted name in a present-day
biological taxonomy) become accessible by any researcher, and can be fruitfully discussed.
We should stress that an infrastructure for publishing and discussion of such statements in
a FAIR way is not yet available in the SFB-Annotator, but this will be taken up in future
developments.

Lastly, extracting information from heterogeneous, historical material is time-consuming
and requires domain expertise. Through Q.4, we investigated how we could exploit context-
driven automated methods to help domain experts with the extraction of knowledge from
field books and illustrations.

Q.4 How can we use automated methods for knowledge extraction from archives of
NHCs? (Chapter 5 and 6)

First, we developed a deep-learned model for the recognition and classification of scientific
names in field books. The model was based on structural (visual) and positional features
(salient named entity recognition and classification (SNERC), a term we use to define
a type of NERC in which entities that are visually salient in text images are recognised

1https://www.w3.org/TR/annotation-model/
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and classified). Our methods show applicability even though the dataset contained four
authors with di�erent handwriting styles and di�erent processes of recording their species
observations. We do realise that our experiments were based on limited data, as the
semantic annotation tool was not yet available for use by a small crowd of experts, which
limited the number of available domain experts that could be deployed for annotation.
Moreover, the experiments serve as a proof of concept: only a small percentage of the
classes were used for automated semantic annotation, and named entities were annotated
semantically, so far without transcription.

Second, we explored methods for the classification of biological illustrations. Historical
names that accompany historical biological illustrations are often unpublished or obsolete
within biological taxonomies that exist today. To aid the domain experts in the identifi-
cation of their biological illustrations as taxa from an established taxonomy (such as the
GBIF taxonomy backbone), we explored ZSL methods based on multimodal background
knowledge from multiple data providers within the domain, namely GBIF, iNaturalist
and BHL. Although results demonstrated the complexity of the task, we believe that
automated methods that map biological illustrations to scientific names within a con-
temporary taxonomy can act as decision support for the identification of rich historical
illustrations.

To conclude, we argue that the results discussed in our experimental chapters are en-
couraging. Methods driven by prior knowledge can build on the legacy of expert domain
knowledge, such as domain ontologies or models trained for ZSL, which are better suited to
deal with ambiguous content and limited data, and indicate potential for use of such models
in an expert support system for semantic annotation of field books and illustrations. At
the same time, the results stress the di�culty of our task, and specifically show a necessity
for research into methods that are able to learn from small samples and heterogeneous
content, especially for a field in which semantic modelling or generation of training data
heavily depend on domain expert’s involvement.

Archives of NHCs are crucial sources for research in a wide range of other subjects such as
environmental and climate change. The technologies proposed in this thesis aim at building
a technological infrastructure that will allow users to semi-automatically extract knowledge
from historical manuscript collections, and to present the extracted knowledge in a FAIR
way to researchers and the public at large. Using Semantic Web technologies for the
transformation of manuscripts to knowledge graphs allows users to construct rich semantic
queries or aggregate informative content across archival collections. Automated methods
such as HTR, NERC and ZSL can users to semi-automatically extract and organise the
content. It thus opens up new opportunities for scientific research, heritage institutions and
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publishers, while reducing the need for costly human intervention. Moreover, reconciling
historical and contemporary biodiversity data opens op possibilities for mapping out
long-term changes in biodiversity.

7.2 Ongoing and Future Developments

Currently, we are working on the implementation of an online version of the SFB-Annotator,
as more extensively discussed in Section 4.6. When published online, a small user-base
of experts can be deployed for annotation, which will, in turn, extend the annotation
knowledge graph. With access to a larger annotation knowledge graph, learning algorithms
can be deployed to infer new knowledge. We envision using learning over graphs to
predict links between multimodal resources (details discussed in Subsection 2.1.2) (entity
linking), or for instance between named entities that refer to the same entity (named
entity disambiguation).

Furthermore, we aim to further our SNERC implementation to include the transcription of
named entities, using techniques from HTR (preferably with ZSL for the recognition of
unseen out-of-vocabulary words) (165; 166).

Moreover, we aim to publish valuable statements about the content of field books and
illustrations—e.g., resolved ambiguous taxonomic names or locations—online as FAIR
data, thereby stimulating scholarly discussions over the content, and envision publishing
such statements as micro-contributions on the NanoBench1 for nano-publications.

The methodologies presented in this thesis have implemented what we call a “serving
hatch” approach to the combination of techniques from subsymbolic and symbolic AI.
What we mean by the analogy is that techniques from both fields are deployed to fruitfully
pass information back and forth. In our case, an application ontology informs a classifier
to look for instances of certain classes, and how these should be related, and the classifier
learns from experience where these are. The output of the classifier therefore allows for
some form of interpretation and reasoning. We argue that this is a first step in the creation
of an infrastructure that facilitates hybrid AI—in which techniques from both families
work together through combined inference and reasoning. In future work, we would like
to research hybrid techniques for knowledge extraction from archives of NHCs. Such
techniques could improve and accelerate learning from small samples and heterogeneous
data through the exploitation of the strengths of both fields. For instance, we envision
reasoning-based handwriting recognition and semantic annotation, in which inference is

1https://github.com/peta-pico/nanobench
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performed through a dialogue between both bottom-up induced (learned), and top-down
deduced (reasoned) facts.
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Summary

Descriptive knowledge about the natural world constitutes an understanding of the various
types of entities that inhabit it, how they influence and are influenced by their changing
environment, and the processes that bring about their variation. Such knowledge is
crucial when it comes to making better informed decisions for policies that impact the
world’s natural diversity, from organisms to ecosystems. For centuries, naturalists map out
expeditions to biodiverse areas to describe, illustrate, and collect various living organisms, in
order to acquire knowledge of biodiversity. Resulting collection objects such as specimens,
field notes, species illustrations, and other resources now exist in institutes and museums
across the globe. Unfortunately, many remain under-explored mostly due to their complex
context-dependant nature, implicit knowledge, and physical distribution.

Bringing together the multitude of historical and present-day collections to the Web as
one global natural history collection, allows for detailed spatio-temporal analyses into the
natural world and changing practices in natural history. Joining and distilling knowledge
from large collections of digital and physical natural history objects and storing the result as
structured, globally reusable, and accessible knowledge, facilitates cooperation within the
biodiversity community and therefore furthers research and the discovery of new knowledge.
The Semantic Web provides a framework for storing knowledge in such a way: giving
information on the Web well-defined meaning, better enabling computers and people to
work in cooperation.1

In this PhD thesis, we analyse di�erent methods to (i) extract rich knowledge detailed in
di�erent resources of archival NHCs and (ii) publish the result on the Semantic Web as
machine-readable knowledge for others to take up, reuse, and integrate with their own
collection data.

1A paraphrased fragment from an article published in May 2001 in the Scientific American, titled “The
Semantic Web”: “The Semantic Web is not a separate Web but an extension of the current one, in which
information is given well-defined meaning, better enabling computers and people to work in cooperation.”
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SUMMARY

First, we analyse system designs for the extraction of information from species observation
records in field notes and scientific illustrations. For the extraction of information and
knowledge from field notes, we argue for an approach that favors quality over quantity,
rich semantic annotation over full-text transcription. Field notes are challenging to work
with due to a variety of factors, such as the evolving visual style of a single alphabet and
historical hard-to-read handwriting. Semantic annotation intrinsically motivates domain
experts to produce high-quality data, and formalises minimal information required for
su�cient digitisation. Following from the approach, we analyse what type of semantic
information domain experts use to query collections, and what metadata they would use to
integrate their collection data. Subsequently, we analyse how knowledge should be stored
in a Findable, Accessible, Interoperable, and Reusable (FAIR) way, to encourage further
scientific discourse and discovery. As a result of the process described above, we describe
a web application for the semantic annotation of natural history archival collections, the
Semantic Field Book Annotator (SFB-Annotator). The semantic annotation application,
with its underlying semantic model, is being developed further within the LInking Notes of
NAturE (LINNAE)–project.

Additionally, we propose a method for the automation of the semantic annotation process.
The manual extraction of knowledge from archives is a time-consuming and labour-intensive
process. We show that we can identify and classify scientific names in handwritten field
notes, using strong assumptions based on expert’s knowledge about the structure and
content of observation records.

Finally, we analyse the extraction of knowledge from scientific illustrations. Automated
species identification is challenging in general due to the inherently long-tailed nature of
data, and the millions of classes in a species taxonomy, making it challenging to create
models that can identify common as well as rare species. We propose to tackle the
problem with zero-shot learning. Although open issues remain—e.g., distribution shifts
between illustration collections, originating from di�erences in paper types, illustration
style and granularity of depicted objects—zero-shot learning facilitates learning from prior
information, which we believe to be crucial for automated information extraction from
heterogeneous data.
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Samenvatting

Beschrijvende kennis over de natuurlijke wereld vormt begrip over de verschillende soorten
entiteiten die erin leven, hoe ze invloed uitoefenen op en beïnvloed worden door hun
veranderende omgeving, en de processen die hun diversiteit teweegbrengen. Dergelijke
kennis is cruciaal als het erom gaat beter geïnformeerde beslissingen te nemen voor beleid
dat van invloed is op de natuurlijke diversiteit van de wereld, van organismen tot aan
ecosystemen. Om kennis over biodiversiteit te vergaren, worden al sinds eeuwen expedities
opgezet naar biodiverse plekken om daar levende organismen te beschrijven, illustreren,
en verzamelen. Wereldwijd bestaan er vele verzamelde collectieobjecten zoals specimens,
veldnotities, soortillustraties, en andere bronnen, opgeslagen in musea en andere instituten.
Helaas blijven deze collectieobjecten vaak onderbelicht, vooral vanwege hun complexe
contextafhankelijke karakter, het feit dat ze kennis vaak slechts impliciet overdragen, en
dat objecten uit verzamelingen vaak verspreid zijn over verschillende collecties en instituten,
waardoor hereniging bemoeilijkt wordt en gegevens om deze reden soms incompleet
zijn.

Door de hoeveelheid aan historische en hedendaagse collecties samen te brengen op het
wereldwijde web (the World Wide Web), als één wereldwijde natuurhistorische collectie,
wordt het mogelijk gedetailleerde spatio-temporele analyses te maken van de natuurlijke
wereld en van veranderende praktijken in de natuurhistorie. Het bundelen en destilleren
van kennis uit grote collecties digitale en fysieke natuurhistorische objecten en het opslaan
van het resultaat als gestructureerde, wereldwijd herbruikbare, en toegankelijke kennis,
bevordert de samenwerking binnen de onderzoeksgemeenschap en bevordert daarmee het
onderzoek en de ontdekking van nieuwe kennis. Het semantisch web (the Semantic Web)
biedt een raamwerk om kennis op een zodanige manier op te slaan: informatie op het
wereldwijde web een goed gedefinieerde betekenis geven, waardoor computers en mensen
beter kunnen samenwerken aan deze informatie.1

1Een geparafraseerd fragment uit een artikel welke gepubliceerd is in de Scientific American van mei
2001, genaamd “Het Semantische Web”: “Het Semantische Web is een uitbreiding van het huidige web
waarin informatie een duidelijk gedefinieerde betekenis krijgt, waardoor computers en mensen beter kunnen
samenwerken (vertaling vanuit het Engels)”
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In dit proefschrift analyseren we verschillende methoden om (i) rijke kennis te extraheren
die opgeschreven staat in verschillende bronnen van natuurhistorische collecties en (ii)
het resultaat op het semantische web te publiceren als machinaal leesbare kennis, zodat
anderen deze kennis kunnen hergebruiken voor eigen onderzoek of integratie met eigen
collectiegegevens.

Eerst analyseren we systeemontwerpen voor het extraheren van informatie uit documenten
met daarin soortobservaties, zoals veldnotities en wetenschappelijke illustraties. Voor de
extractie van informatie en kennis uit veldnotities, pleiten we voor een benadering die
kwaliteit verkiest boven kwantiteit, rijke semantische annotatie boven volledige teksttran-
scriptie. Veldnotities zijn een uitdaging om mee te werken vanwege een verscheidenheid
aan factoren, zoals de evoluerende visuele stijl van een enkel alfabet en historisch, moeilijk
leesbaar handschrift. Semantische annotatie spoort domeinexperts aan om hoge kwaliteit
data te produceren en, door de kennis-intensieve aard van de taak zorgt voor intrinsieke
motivatie. Verder wordt hierbij ook de minimale hoeveelheid informatie geformaliseerd die
nodig is voor voldoende digitalisering.

Allereerst analyseren we welk type semantische informatie domeinexperts gebruiken om
collecties te doorzoeken en welke metadata ze nodig hebben om hun collectiegegevens
te integreren. Vervolgens analyseren we hoe dergelijke kennis opgeslagen kan worden
aan de hand van de principes van Findable, Accessible, Interoperable, and Reusable
(FAIR) data, om verder wetenschappelijk discours en ontdekking van nieuwe kennis aan
te moedigen. In het Nederlands vertaalt FAIR naar data die vindbaar, toegankelijk, in-
teroperabel, en herbruikbaar opgeslagen moeten worden. Als resultaat van het hierboven
beschreven proces beschrijven we een webapplicatie voor de semantische annotatie van
natuurhistorische archiefcollecties: de SFB-Annotator. De webapplicatie, met het on-
derliggende semantische model, wordt verder ontwikkeld binnen het LInking Notes of
NAturE (LINNAE)–project.

Daarnaast stellen we een methode voor om het semantische annotatie proces te au-
tomatiseren. Het handmatig extraheren van kennis uit archieven is een tijdrovend en
arbeidsintensief proces. We laten zien dat we wetenschappelijke namen kunnen identificeren
en classificeren in handgeschreven veldnotities, met behulp van sterke aannames gebaseerd
op de kennis van domeinexperts over de structuur en inhoud van observatierecords.

Ten slotte analyseren we de extractie van kennis uit wetenschappelijke illustraties. Geau-
tomatiseerde identificatie van soorten is een lastige taak vanwege het feit dat het grootste
deel van de kansmassa van soorten zich in de staart van de distributie bevindt en er miljoe-
nen klassen in huidige soortentaxonomiën bestaan. Hierdoor is het lastig om modellen te
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Samenvatting

creëren die zowel veelvoorkomende als zeldzame soorten kunnen herkennen. We stellen
voor om het probleem aan te pakken met zero-shot learning (ZSL). Hoewel openstaande
kwesties blijven bestaan—bijv., een verschuiving in distributie tussen collecties van weten-
schappelijke illustraties, voortkomend uit verschillen in papiersoorten, illustratiestijl, en
granulariteit van afgebeelde objecten—faciliteert ZSL het leren van een model met behulp
van achtergrondkennis, welke naar onze mening cruciaal is voor het leren van modellen die
automatisch kennis uit kleine datasets met heterogene gegevens kunnen extraheren.
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