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Intersubject and Intrasubject Variability 
of Potential Plasma and Urine Metabolite 
and Protein Biomarkers in Healthy Human 
Volunteers
Kevin Duisters1,* , Shinji Ogino2,†, Tomohiro Andou3,†, Kazumi Ito4,†, Takafumi Akabane2,  
Amy Harms5 , Matthijs Moerland6, Yuka Hashimoto2, Ayumi Ando3, Yoshiaki Ohtsu2, Naoya Wada7, 
Hideo Yukinaga4, Jacqueline Meulman1,8, Hiroyuki Kobayashi3, Nobuhiro Kobayashi4, Kenichi Suzumura2 
and Thomas Hankemeier5

A limited understanding of intersubject and intrasubject variability hampers effective biomarker translation 
from in vitro/in vivo studies to clinical trials and clinical decision support. Specifically, variability of biomolecule 
concentration can play an important role in interpretation, power analysis, and sampling time designation. In the 
present study, a wide range of 749 plasma metabolites, 62 urine biogenic amines, and 1,263 plasma proteins 
were analyzed in 10 healthy male volunteers measured repeatedly during 12 hours under tightly controlled 
conditions. Three variability components in relative concentration data are determined using linear mixed models: 
between (intersubject), time (intrasubject), and noise (intrasubject). Biomolecules such as 3-carboxy-4-methyl-
5-propyl-2-furanpropanoate, platelet-derived growth factor C, and cathepsin D with low noise potentially detect 
changing conditions within a person. If also the between component is low, biomolecules can easier differentiate 
conditions between persons, for example cathepsin D, CD27 antigen, and prolylglycine. Variability over time does not 
necessarily inhibit translatability, but requires choosing sampling times carefully.

In many recently published studies, metabolomics and pro-
teomics have been used to find explorative biomarkers in plasma 
or urine for disease diagnosis, disease progression, or treatment 

outcome prediction.1–3 Moreover, biomarkers are increasingly 
applied in clinical and preclinical studies to support drug 
discovery and drug development. Finally, metabolomics and 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 When biomolecule variability of plasma or urine metabolites 
is segmented into between subject, time, and noise components, 
noise tends to be relatively large. This variability can jeopard-
ize translation from in vitro/in vivo situations to clinical trials 
or clinical decision support. Prediction of success on possible 
biomarker translation from in vitro/in vivo to humans is highly 
desirable.
WHAT QUESTION DID THIS STUDY ADDRESS?
 How can an integrative approach using absolute variance 
components on individual biomolecules inform clinical trial 
design and translatability from in vitro/in vivo to humans?

WHAT DOES THIS STUDY ADD TO OUR KNOW- 
 LEDGE?
 This work is the first to study absolute variance components 
of a wide array of 2,074 biomolecules (metabolites and proteins) 
in different sample compartments (plasma and urine) simulta-
neously. New tools supporting translation of potential biomark-
ers are presented based on individual biomolecule variability of 
healthy volunteers.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Our contributions include important implications for desig-
nation of meal/sampling times, statistical power analysis, and se-
lection of biomarkers with potential for translation to humans.
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proteomics have shown potential to predict drug efficiency or 
side effects, and could, therefore, be used in principle for pa-
tient stratification. Ideally, biomarkers for target engagement, 
disease progression, or predicting drug efficacy/toxicity discov-
ered and optimized in in vivo or in vitro models are translated to 
clinical studies and trials.

Identified biomarkers can only be utilized clinically if their mea-
surement is scalable, reliable, and affordable, which is increasingly 
ensured by modern analytical techniques, such as mass spectrom-
etry, nuclear magnetic resonance, and aptamer/antibody-based 
sensor arrays. However, the practical usability of biomarkers 
discovered in scientific studies has often been disappointing. 
Although metabolic and proteomic biomarkers have been used in 
drug research for decision support, so far only a few biomarkers 
discovered by metabolomics or proteomics were translated to clin-
ical applications and used in clinical trials for stratification.4 One 
important reason could be that, unlike the stability observed in 
genetics (a certain single nucleotide polymorphism, etc.), metab-
olites and proteins as biomarkers tend to be dynamic. Although 
these fluctuations are considered to be a tremendous source of in-
formation in fields such as personalized medicine,5,6 they simulta-
neously hamper translation to clinical practice.7

Variance components
Fluctuations in biomolecule measurements can be divided into 
three mutually exclusive, commonly exhaustive variance compo-
nents. Intersubject variability is generated by structural (biolog-
ical) differences between experimental units (here: individuals). 
This component is a key predictor in many investigations, for ex-
ample, in clinical studies discriminating cases vs. controls, in clini-
cal trials or in clinical diagnostics predicting (non-)responders to a 
particular treatment. Therefore, intersubject variability is a desir-
able form of fluctuation when the goal is to differentiate individu-
als. Intrasubject variability finds its origin within the experimental 
unit. Two sources of intrasubject variability can be identified: time 
and noise. If an individual is measured at separate occasions in time, 
the time variance component describes the structural (biological) 
fluctuation of biomolecule abundance. Such changes could, for in-
stance, be caused by food intake or the circadian rhythm. Without 
accounting for these patterns, the clinical reliability of biomarkers 
used to discriminate between groups may be reduced substantially. 
Finally, the noise component of variation is determined by a set 
of remaining factors impacting reproducibility of biomolecule 
abundance from the same subject at the same time of day. These 
factors could be biological (e.g., in samples collected on different 
days) and/or technical (e.g., due to small uncontrolled changes of 
analytical settings). Even if variability over time is known or under 

control, clinical decision making becomes challenging whenever 
the noise component is relatively large with respect to that between 
subjects. Summarizing, the fluctuation of biomolecule abundance 
can be described by: between, time, and noise variance.

Related literature
Recently, attention for biomarker variability has increased.8–11 
Kim et  al.8 studied the proportions of variance components in 
121 plasma metabolites and 294 urine metabolites measured sev-
eral times over 3 days. The study involved 13 healthy volunteers 
and 13 with autosomal dominant polycystic kidney disease not 
taking medication (46% men, 58% Caucasian, age 33 ± 10.9, and 
body mass index (BMI) 24.3 ± 3.3) in a tightly controlled environ-
ment. Their main findings were that the noise source of variation 
is relatively large, most time variability occurs in the morning, 
and metabolites show more variation in urine than plasma on av-
erage. Maitre et al.9 studied 44 urine metabolites in 20 Caucasian 
children, measured in the morning and at night during 6 days. 
As in ref. 8, these authors report that variance proportions range 
widely from one metabolite to another and that the noise tends 
to outweigh the between subject and time component. Floegel 
et al.10 link the between variance proportion in plasma to biomol-
ecule family (high for hexose, sphingolipids, amino acids, and 
glycerophospholipids; low for most acylcarnitines). Nicholson 
et al.11 studied fasting plasma (198 metabolites) and urine (328 
metabolites) of 154 twins, all postmenopausal healthy Caucasian 
women. The authors conclude 47% (urine) to 60% (plasma) of 
biological variation to be stable on average. Sampson et  al.12 
measured 385 plasma metabolites in 60 Asian postmenopausal 
women. Their findings suggest technical reliability to be high, 
but again within subject fluctuation dominated that between sub-
jects. To our knowledge, our paper is the first to simultaneously 
investigate different sources of fluctuation (between, time, and 
noise) of a wide array of biomolecules (metabolites and proteins) 
in different sample compartments (plasma and urine) by an inte-
grative approach using absolute variance components.

Study design
This paper studies 10 healthy, Caucasian men (age 23.8  ±  3.1; 
BMI 23.3 ± 2.4) in a tightly controlled environment comparable 
to a phase I clinical trial design. The study was conducted by the 
Centre for Human Drug Research Leiden in conformity with the 
study plan approved by the Ethical Committee. EDTA plasma 
and urine were collected several times over the course of 12 hours. 
Volunteers entered the facility 1  day prior to sample collection, 
upon which temperature, food intake, and exercise were standard-
ized. Table 1 lists sample collection and food intake times used 

Table 1 Study design: sample and food intake times

      09:00       12:00       16:30     19:00    

Panel −2 −0.5 0 0.5 1.5 3 3.5 4 4.5 6 7.5 8 9.5 10 11 12

a   x

Breakfast

x x x

Lunch

  x x

Snack

  x

Dinner

x x

B x         x     x     x

C   x x x x     x   x   x

a, plasma metabolites; B, urine amines; C, plasma proteins.
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to obtain our results. Three platforms were deployed to analyze 
the samples: 749 plasma metabolites were measured on a global 
metabolomics platform (A: Metabolon), 62 urine biogenic amines 
were measured using a targeted metabolomics platform of the 
Biomedical Metabolomics Facility Leiden (B: BMFL), and 1,263 
proteins were measured in plasma using an aptamer-based pro-
teomics platform (C: SomaLogic). Design and protocol details are 
included as Supplemental Information.

RESULTS
The Introduction has identified three important explanations of 
biomolecule variability: between, time, and noise. In this section, 
these components are analyzed and their relation to underlying 
biochemical processes and clinical practice is studied. One of the 
novelties of this paper is the use of a statistical method that allows 
preventing overestimation of noise. It does so by accounting for co-
variates age and BMI, nonequally spaced measurement times, and 
dynamic covariance matrix structures that capture correlations in 
samples from the same individual.

Quantifying variability
The statistical model estimates between, time, and noise variance 
components for each of the (749 + 62 + 1,263 = 2,074) biomol-
ecules. Importantly, the relative concentration data have been 
normalized such that the absolute variance components may be 
compared across metabolites and proteins in plasma and urine. 

Figure 1 illustrates between subject variability on the vertical axis 
against noise variability on the horizontal axis. Variability over 
time (στ) is visualized proportional to the area of the circle, col-
ored by platform.

Clinical translation
The overview of variance components in Figure 1 can be used to 
identify biomolecules that have potential for clinical translation, 
especially if the effect size of a biomolecule as biomarker is known. 
Generally speaking, biomolecules with a low noise variability may 
have potential to detect changing conditions within a person. 
Table 2 lists the “top” 10 (of 2,074) biomolecules with the lowest 
noise square root variance component (σε). Note that a biomole-
cule with a low noise component can still have high between and/
or time variability.

If in addition to the noise, also the variability between subjects 
is low, biomolecules may be able to differentiate conditions be-
tween persons as biomarkers. In Figure  1, biomolecules with a 
low sum of the between and noise square root variance compo-
nent (σb + σε) can be found in the bottom left corner. Table 3 
again lists their “top” 10. A complete list of results is available in 
Table S1.

To understand the practical implications of these variance com-
ponents, Figure 2 exhibits four biomolecule profiles as an exam-
ple, including 3-carboxy-4-methyl-5-propyl-2-furanpropanoate 
(CMPF; from Table  2), cathepsin D (from Table  3),  lactate (a 

Figure 1 Variance components of each biomolecule on the square root scale (i.e., standard deviations). The area of each circle is proportional 
to its standard deviation over time (στ), and colors indicate the analytical platform.
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known biomarker in plasma13, treated in the Discussion), and 
L-valine (a known biomarker in urine14). In each plot, the intuition 
being that (σb + σε) is roughly proportional to the length of the 
error bars, whereas στ is linked to the fluctuation in mean profile. 
One may observe the remarkable difference of CMPF (large σb, 
very low στ, and very low σε) vs. cathepsin D (very low σb, moder-
ate στ, and very low σε) due to between subject variability, and that 
of CMPF vs. lactate (low σb, high στ, and moderate σε) due to vari-
ability over time. The profile of L-valine (moderate σb, very low στ, 
and moderate σε) behaves roughly like that of CMPF, except it has 
been collected in urine less frequently. These profiles can guide the 

translation of biomarkers into clinical trial use and clinical decision 
support, and several strategies are provided in the Discussion sec-
tion. For instance, a large variability over time does not necessarily 
dismiss a biomolecule from clinical translation because its impact 
can be mitigated by the designation of appropriate sampling times. 

Time effects including food intake
A large time variance component is caused by f luctuation in the 
mean profile of a biomolecule, whereas a στ close to zero corre-
sponds to a nearly constant normalized relative concentration. 
A biomolecule can show interesting (nonconstant) behavior 
around times surrounding food intake or due to the circadian 
rhythm, for example. This can be clearly seen in a heatmap of 
the top 10 biomolecules with highest στ across all platforms, 
as depicted in Figure S1. Here, several mean profiles seem to 
f luctuate around the morning and/or evening. More formally, 
Figure S2 pinpoints statistically significant changes per data 
type (plasma metabolites, urine amines, and plasma proteins) 
based on comparisons of all pairwise differences over time along 
the estimated mean profile. By comparing all pairwise differ-
ences, including those between nonadjacent times, the analysis 
allows for heterogeneous dynamics. For instance, the effect of 
food intake may be noticeable instantly in metabolites related 
to energy, but could take several hours in lipids. The results sug-
gest the plasma metabolites have relatively many pairwise dif-
ferences, which is consistent with evidence from Figure 1 and 
Figure S1. In particular, it seems, on average, that the profiles 
are different in the morning compared with both the afternoon 
as well as the evening. Moreover, for the plasma proteins, a clear 
distinction between the −0.5-hour and 1.5-hour samples ap-
pears. Again, the −0.5-hour vs. 12-hour difference stands out 
as well.

Variance components by biochemical class
To assess whether differences in underlying biochemical processes 
have a general impact on variance components, such as observed 
for the time effects, Figure 3 illustrates variance components in 
plasma metabolites segmented by their biochemical class. Note 
that in each of the three dimensions, the segmentation is infor-
mative and separates most classes by median variability, except 
for lipids and amino acids, whose median between, time, and noise 
variance components are close. For example, cofactors and vita-
mins vary more between subjects than carbohydrates do, which 
may be explained by the fact that carbohydrate levels (aided by 
quick absorption and dissimilation) are more tightly controlled 
than endogenous cofactor and vitamin levels.

Variance proportions
Converting absolute variance components to variance propor-
tions allows for a comparison with earlier findings reported by 
other studies in Table  4. Here, πb, πτ, and πε denote the aver-
age of the between, time, and noise variance proportions for each 
metabolomics/proteomics dataset. For comparability purposes, 
πw  =  πτ  +  πε is included, the within (or intra) subject variance 
proportion. The intraclass correlation coefficient (ICC), de-
fined as σ2

b
∕(σ2

b
+σ2

τ
+σ2

ε
), is summarized by its median across all 

Table 2 The top 10 biomolecules with lowest σε

Biomolecule Panel

Inter Intra Intra

σb στ σε

3-Carboxy-4-methyl-5-
propyl-2-furanpropanoate

a 1.15 0.02 0.05

Platelet-derived growth 
factor C

C 1.21 0.05 0.07

Cathepsin D C 0.00 0.31 0.07

Mitogen-activated protein 
kinase 11

C 0.95 0.06 0.08

PILR alpha-associated 
neural protein

C 1.16 0.05 0.08

anterior gradient protein 
2 homolog

C 1.02 0.10 0.08

CD27 antigen C 0.03 0.32 0.09

Delta-like protein 4 C 1.07 0.12 0.09

artemin C 1.06 0.12 0.10

androsterone sulfate a 1.09 0.07 0.10

all parameters are defined in detail in the Methods section.
a, plasma metabolites; B, urine amines; C, plasma proteins; σb represents the 
square root variance component between subjects, στ that over time, and σε 
the noise.

Table 3 The top 10 biomolecules with lowest (σb + σε)

Biomolecule Panel

Inter Intra Intra

σb στ σε

Cathepsin D C 0.00 0.31 0.07

CD27 antigen C 0.03 0.32 0.09

Prolylglycine a 0.00 0.93 0.50

Neuronal cell adhesion 
molecule

C 0.00 0.47 0.53

Retinol-binding protein 4 C 0.25 0.33 0.31

Cystatin-Sa C 0.27 0.45 0.29

Ubiquitin C 0.00 0.43 0.59

Fructose a 0.00 0.85 0.61

4-acetylphenyl sulfate a 0.30 0.95 0.31

Fatty acid-binding pro-
tein, liver

C 0.00 0.52 0.61

all parameters are defined in detail in the Methods section.
a, plasma metabolites; B, urine amines; C, plasma proteins; σb represents the 
square root variance component between subjects, στ that over time, and σε 
the noise.
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biomolecules in the respective dataset. A high πb or ICC shows 
that the between variance component is relatively important in ex-
plaining total variability of a biomolecule as opposed to the time 
and noise components.

Table  4 shows that our variance proportions are comparable 
with those reported in the literature. This comparison of variance 
component proportions is merely indicative given differences in 
targeted biomolecules, populations under study, and deployed 
analytical methods. Furthermore, different preprocessing and nor-
malization strategies were used. Nevertheless, the median ICC 
found by refs. 9,12 is comparable with the results established here; 
the median ICC of ref. 10 is somewhat higher. Compared against 
ref. 8, which is closest in study design, on average, our results seem 
to have captured more variance between subjects and noise has re-
duced relatively. A possible explanation could be that our statistical 

approach based on linear mixed models (see Methods) describes 
several aspects in detail that would otherwise have been classified 
as noise by analysis of variance (ANOVA)-style methods. Taking 
effects due to covariates of age and BMI, correlations between ob-
servations from the same individual, and mathematical flexibility 
for nonequally spaced sampling times (Table 1) into account, al-
lows to filter more signal (between) from noise (within). Figure S3 
illustrates the distribution of variance proportions for the plasma 
metabolites, urine amines, and plasma proteins. However, although 
presenting a relevant summary, this paper intends to emphasize the 
added value contained in studying absolute variance components 
(e.g., Figure 1) in addition to these proportions. For instance, there 
is no direct relation between a biomolecule proportion or ICC and 
its position on the absolute (σε, σb)-plane, which in many practical 
settings is of great importance as the Discussion will argue.

Figure 2 Mean profiles (dots) of normalized relative concentrations for a healthy man (age 22, body mass index (BMI) 20) including 95% 
pointwise prediction intervals for observed measurement occasions. Dashed lines only serve as illustration in between these sampling times. 
The following biomolecules (σb, στ, and σε) are depicted: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (1.15, 0.02, and 0.05) in plasma, 
cathepsin D (0.00, 0.31, and 0.07) in plasma, lactate (0.38, 0.73, and 0.67) in plasma, and L-valine (0.79, 0.21, and 0.63) in urine.
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DISCUSSION
In this study, a widely used phase I clinical trial design was fol-
lowed, with typical inclusion criteria, environmental control, and 
sample size. Variability components between, time (including food 

intake), and noise were quantified for a diverse set of metabolites 
in urine and plasma, and proteins in plasma. Knowledge of the 
absolute variance components per metabolite or protein is crucial 
in the process of biomarker development and translation as this 

Figure 3 Median variance components for the plasma metabolites per biochemical class on the square root scale (i.e., standard deviations). 
The area of the circles is proportional to the class median standard deviation over time (στ). Note the points for lipids (0.67, 0.62, and 0.34) 
and amino acids (0.68, 0.63, and 0.37) visually coincide.
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Table 4 Variance proportions: overview of related results

Study Medium Method

Mean Median

πb πτ πε πw ICC

Kim et al.8 Plasma LC/MS 32 3 65 68 –

Kim et al.8 Urine MS/MS 25 8 67 75 –

Maitre et al.9 Urine 1H-NMR – – – – 40

Floegel et al.10 Plasma MS/MS 51 – – 49 57

Nicholson et al.11 Urine 1H-NMR 43 7 51 58 –

Sampson et al.12 Plasma (LC,GC)/MS – – – – 43

a: Metabolites Plasma MS 41 17 42 59 37

B: amines Urine MS/MS 36 19 45 64 38

C: Proteins Plasma aptamer 46 12 42 54 44

πb, πτ, and πε denote the average of the between, time, and noise variance proportions for each metabolomics/proteomics dataset. πw = πτ + πε represents 
the within (or intra) subject variance proportion. ICC is the intraclass correlation coefficient (σ2

b
∕(σ2

b
+σ2

τ
+σ2

ε
)), here, the median across all biomolecules 

in the respective dataset. Replication details for related literature are given as follows: in ref. 8 Table 2 (time of day), Patient = between; Meal = time; 
Residuals = noise; in ref. 10 Tables 2–5 were used to imply variance components; in ref. 11 plasma (all peaks) and urine (all peaks): πb= (σ2

d
+σ2

m
+σ2

e
)∕σ2, 

πτ =σ2
w
∕σ2, πb= (σ2

ε
+σ2

w
)∕σ2; with σ2=σ2

d
+σ2

m
+σ2

e
+σ2

w
+σ2

v
+σ2

ε
.

GC, gas chromatography; ICC, intraclass correlation coefficient; LC/MS, liquid chromatography/mass spectrometry; MS/MS, tandem mass spectrometry; NMR, 
nuclear magnetic resonance.
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variation can jeopardize the use of a biomolecule as a biomarker. 
The size of the three variance components can predict whether a 
biomarker with a known or expected effect size will be able to dif-
ferentiate between two human conditions, and whether it is neces-
sary to control the variation due to time, or not. To illustrate the 
potential of such information in clinical practice, some use-cases 
and limitations are addressed.

Clinical trial design
Suppose that a clinical trial uses a stratification biomarker to include 
patients into the study and to predict the desired outcome of the 
intervention. In a translational setting, an effect size for humans is 
extrapolated from in vitro/in vivo studies and computational mod-
eling. Combined with assumed (equal) case/control variances, this 
effect size is then used to estimate suitability of such a biomarker 
and/or power calculations of necessary sample sizes (e.g., refs. 11,12).

Instead, healthy baseline profiles (Figure 2) can be used to de-
rive optimal sampling times in a clinical trial (i.e., to choose sam-
pling times where the lowest sample size is needed or the statistical 
power is maximized). If one knows that the concentrations of a 
biomarker in question fluctuate heavily in the afternoon but do 
not around breakfast, it is reasonable to designate the sampling 
time accordingly to avoid variability of the concentration due to 
the chosen experimental design of the clinical study. Moreover, 
these concerns could be a reason for focusing attention on specific 
biomarkers (e.g., those with small variability associated with time 
would be preferable in pharmacokinetic/pharmacodynamic set-
tings). Finally, biomarkers with small between subject variability are 
of greater concern in parallel designs, where each cohort is treated 
differently than in crossover clinical trials.

Clinical decision support and health monitoring
The second use-case is about disease diagnosis and/or prediction 
whether an intervention to treat, prevent, or retard a disease will 
result in the desired outcome. Again, knowing the absolute varia-
tion over time reveals whether choice of sampling time is import-
ant, and what the effect size has to be in relation to the known 
variation (between subjects and noise) in order for a biomarker to 
diagnose or predict properly at the individual level. One exam-
ple is lactate in plasma, illustrated in Figure 2, which has been 
reported as indicative of acute illness.13 As with clinical trial de-
sign, f luctuations of the mean profile and associated prediction 
interval lengths over time have a direct impact on whether an ob-
served concentration should be classified as abnormal. Suppose a 
clinician diagnoses a Caucasian man of age 22 and BMI 20. On 
the normalized relative scale of Figure 2, a lactate level of 3.0 at 
20:00 (10.5 hours since breakfast) seems fairly normal for a pop-
ulation of healthy, Caucasian, male volunteers of age 22 and BMI 
20, whereas such a level around breakfast would fall well outside 
the estimated 95% prediction interval at that time, which could 
be a reason for concern. Given the low sample size, this example 
should be considered conceptual. Note that in practice it is more 
realistic to consider decision rules based on absolute concentra-
tions, which is a straightforward next step after exploratory anal-
ysis using the methods presented in this paper.

Limitations
Although the study design resembles a typical phase I clinical 
trial, the small sample size (N  =  10) could be a concern when 
generalizing findings. Although it is safe to assume trends in 
variance components observed here are a reasonable reflection 
of typical phase I clinical trials, one cannot claim to have esti-
mated biomolecule profiles (e.g., Figure 2) over time including 
the influence of covariates of age and BMI precisely. A consider-
ably larger sample size is required to describe an average biomol-
ecule profile exactly than to claim a biomolecule changes (not) 
much between subjects, over time, or through noise. Furthermore, 
the study contained only healthy Caucasian men, which is pos-
sibly not generalizable to a broader population of (diseased) 
individuals.

CONCLUSION
Despite the aforementioned limitations, the statistical methodol-
ogy and resulting biomolecule profiles contain very relevant infor-
mation on potential fluctuations for drug and clinical researchers. 
Profiles indicating structural fluctuations over time on top of be-
tween subject variability and noise (Figure 2) are key in selection 
of sampling time(s) and conduct of pharmacokinetic/pharmaco-
dynamic analysis. Therefore, we have developed an interactive, 
web-based tool to make these plots available for all biomolecules 
investigated here (http://hbt.analy tical biosc iences.nl). Looking 
ahead, it is worthwhile to investigate biological drivers of variabil-
ity around food intake further. In addition to biomolecular class 
characteristics, pairwise differences observed in the data might 
result from diverging turnover rates between metabolites and pro-
teins in the body.15,16 Furthermore, our results (e.g., as visualized 
in our web-based tool) suggest that after meals, intermediates 
of glycolysis, taurocholate cycle, and branched chain amino acid 
metabolism increased, whereas acylcarnitines, glycerols, and free 
fatty acids decreased. This could indicate that the body depends 
more on glucose and amino-acid metabolism for energy produc-
tion than beta-oxidation after meals. Summarizing, the obtained 
insights into variability, and the conceptual framework of how to 
study these fluctuations, can contribute to implement metabolite 
and protein profiling for clinical decision making. With knowl-
edge of biomolecule variation in “healthy” individuals over time, 
the prediction of possible prevention interventions or early di-
agnosis of disease onset becomes feasible. Biomolecules such as 
CMPF, platelet-derived growth factor C, and cathepsin D (all 
in plasma) with low noise potentially detect changing conditions 
within a person. If the between component is also low, biomole-
cules may differentiate conditions between persons, for example, 
cathepsin D, CD27 antigen, and prolylglycine (all in plasma). 
Interestingly, some of these biomolecules have substantial vari-
ability over time potentially caused by food intake or circadian 
rhythm; this variation can be controlled in clinical practice when 
designating sampling times, as suggested by our method. It should 
be mentioned that this concept not only applies to single biomole-
cule biomarkers but also to biomarker “profiles” (i.e., multivariate 
combinations of biomolecules) for the diagnosis of diseases and 
patient stratification.

http://hbt.analyticalbiosciences.nl
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METHODS
This section contains the details underlying the Results and Discussion.

Summary of analytical techniques
A detailed description of all analytical techniques is included as 
Supplemental Information. In summary, the following procedures were 
followed:

• Plasma metabolite analysis at Metabolon. The metabolomics plat-
form consisted of four technologies: (i) reverse phase optimized for 
more hydrophilic compounds; (ii) more hydrophobic compounds; 
(iii) measured in positive ion mode, reverse phase in negative ion 
mode; (iv) and hydrophilic interaction liquid chromatography 
separation analyzed with negative ionization. Sample prepara-
tion was conducted using methanol extraction to remove proteins. 
Metabolites were quantified using area under the curve (AUC) on 
the mass spectrometry chromatogram. Each metabolite was normal-
ized relative to that in pooled plasma prepared from samples in all 
subjects.

• Urine amine analysis at Biomedical Metabolomics Facility Leiden. 
The amine platform was measured by the Biomedical Metabolomics 
Facility Leiden and covers amino acids and biogenic amines em-
ploying an Accq-tag derivatization strategy adapted from the pro-
tocol supplied by Waters  (Etten-Leur, The Netherlands). Acquired 
data were evaluated using MultiQuant Software for Quantitative 
Analysis (version 3.0.2; AB Sciex, Framingham, MA), by integration 
of assigned multiple reaction monitoring peaks and normalization 
using proper internal standards. For analysis of amino acids their 
“13C15N”-labeled analogues were used. For other amines, the closest 
eluting internal standard was used. All urine measurements were nor-
malized by their respective sample median to account for dilution.

• Plasma protein analysis at SomaLogic. Proteins covering a diverse set of 
major gene families, including receptors, kinases, growth factors, and 
hormones, and secreted, intracellular, and extracellular proteins or do-
mains were measured by the SOMAscan proteomic assay (SomaLogic, 
Boulder, CO17). The target protein levels were quantified in relative 
fluorescent units. The assay was conducted by SomaLogic under their 
quality system, which comprises facility control and strict standard op-
erating procedures.

Modeling strategy and data analysis
In addition to routine platform preprocessing and normalization, all data 
must be brought to the same scale for the statistical results to be inter-
pretable in absolute terms. To this end, data from each biomolecule are 
normalized to have mean zero and variance one. No logarithmic trans-
formation was applied.

Let Y (j)
it denote the normalized relative concentration of biomolecule j 

in (1,…, 2,074) from subject i in (1,…, n = 10) at occasion t. A linear mixed 
model18 has been used to estimate effects of time, corrected for age and 
BMI, as well as variance components for each biomolecule j.

Here, b(j)i ∼N(0,�
2(j)

b
) is a random effect accounting for dependence be-

tween measurements of the same individual. Fixed effects γ(j)1
 and γ(j)2  

control the relationship for differences in age and BMI. Furthermore, each 
measurement occasion t is associated with its own fixed effect β(j)

t
, leaving 

the metabolite or protein profile completely flexible. Depending on the 
platform, a total T of 9, 4, or 7 time-effects is included (Table 1). Finally, 
the length-T residual vector ε(j)i ∼N(0,Σ(j)) is assumed to be multivari-
ate normally distributed with T  ×  T covariance matrix Σ(j). This model 

allows for correlation between errors within the same individual. Such 
flexibility could be important because measurement times are nonequally 
spaced (Table 1). The Supplemental Information elaborates on the statisti-
cal methods used for parameter estimation (Eq. 1) and significance testing 
(Figure S2). All statistical analyses were conducted in R version 3.4.319 
and are available through an open Github repository (https ://github.com/
Kevin Duist ers/Human Baseline). The linear mixed models, including cova-
riance structures, were estimated using the nlme package version 3.1-137.20

Definitions
The following parameter estimates based on the statistical model (Eq. 1) 
underpin the presented results for each biomolecule j.

• Between (inter): �2(j)

b

• Time (intra): �2(j)
�
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• Noise (intra): �2(j)
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=
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∑T
t=1 �

2(j)

t

Here, �2(j)

t
 is the [t,t] diagonal element of the matrix Σ(j), and β(j)

t
 are 

the estimated fixed effects for time. Figure  2 uses the Σ(j) covariance 
matrix in detail instead of averaging over the diagonal as �2(j)

�
 does. 

Next to depicting a (new) subject’s expected mean profile, a (1 – α) pre-
diction interval 

[

mt−
n+1

n
cαst,mt+

n+1

n
cαst

]

 is included. Here, cα de-

notes the (1–α/2) quantile in Student’s t distribution with n – 1 = 9 
degrees of freedom. Dropping the (j) superscript for convenience, 
mt = βt + γ1age + γ2 BMI is the expected normalized relative biomole-
cule concentration at occasion t and st=

√

�
2

b
+�

2
�

 its estimated SE. 

Whenever a heterogeneous Σ structure is selected, �2

t  differs over time t 
and, hence, the pointwise prediction intervals (i.e., the error bars) in 
Figure 2 vary in width.

Data access
The authors have developed a Human Baseline Tool, in which profile 
plots (e.g., Figure 2) for each of the 2,074 normalized biomolecules can 
be visualized interactively. The Human Baseline Tool is illustrated in 
Figure S4 and publicly accessible via http://hbt.analy tical biosc iences.
nl, including an option to download all data used to generate the results.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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