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Coarse-grained hybrid simulation of liposomes

G. J. A. Sevink,* M. Charlaganov and J. G. E. M. Fraaije

We developed a new hybrid model for efficient modeling of complete vesicles with molecular detail.

Combining elements of Brownian dynamics (BD) and dynamic density functional theory (DDFT), we

reduce the computational load of an existing coarse grained particle-based dissipative particle dynamics

(DPD) model by representing the solvent as a continuum variable or a field, in a consistent manner.

Both particle and field representations are spatially unrestricted and there is no need to treat

boundaries explicitly. We focus on developing a general framework for deriving the parameters in this

hybrid approach from existing DPD representations, and validate this new method via a comparison to

DPD results. In addition, we consider a few proof of principle calculations for large systems, including a

vesicle of realistic dimensions (�45 nm radius) containing O (104) lipids simulated for O (106) time steps,

to illustrate the performance of the new method.
Introduction

Although membrane remodeling represents an important
functional mechanism in cells and liposomes, the detailed
principal mechanisms and the fundamentals of the accompa-
nying molecular rearrangements remain largely unknown.
Computational approaches could potentially clarify the essence
or ‘ousia’ in these systems, but there is a distinct trade-off
between (chemical) resolution and the length of a feasible
simulation pathway. In particular, the time resolution required
for stable numerical integration of transport equations is
dictated by the time scale of the fastest degree of freedom in the
simulation model. While phenomena in experimental
membrane remodeling take place in seconds or even longer,
approaches at the nest relevant level – atomistic molecular
dynamics (MD) – require a resolution in the order of femto-
seconds. It is easy to see that this scale gap, spanning many
orders of magnitude, renders atomistic simulation of these
larger-scale collective phenomena computationally intractable.

Consequently, the focus in recent years has been on the
development of coarse-grained approaches that reduce this gap,
by averaging over fast, and oen not decisive, degrees of
freedom, while conserving the essentials at these larger scales.
The latter, the issue of representability, i.e. whether the equiv-
alent model is a ‘good’ representation of the original (ner-
grained) model in terms of the underlying energy landscape, is a
major challenge and plays a role at almost all levels of
description, including atomistic models,1 although explicit
statements about the latter are seldom made.

Our starting point is a coarse-grained method that was
developed with these issues in mind, and that has provided
sity, P.O. Box 9502, 2300 RA Leiden, The
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substantial insight in several aspects of membrane dynamics.
We show how the molecular detail in this method could be
consistently linked to an even coarser continuum (eld) model,
to arrive at a new hybrid approach. Combining the efficiency of
a eld description (for the abundant solvent) with an explicit
particle model (for the lipids in the membrane) has serious
advantages, as it overcomes the restrictions of the individual
methods. First, we shortly discuss particular issues in coarse-
grained membrane modeling. We refer to a number of
reviews2–4 for a broader overview of lipid membrane modeling
efforts.

Two types of models are most frequently used for modeling
lipid membranes at a coarse-grained level, and are equivalent in
the incorporation of intramolecular forces, which are repre-
sented by bond, angle and torsion potentials with parameters
derived from more detailed simulations. Coarse-grained
molecular dynamics (CGMD) lumps atoms into supra-atomic
‘beads’ or chemical fragments, with non-bonded interactions
that are dened as Lennard-Jones type of potentials. The CGMD
parameters for these chemical fragments are obtained via an
optimization procedure, using atomistic simulations and/or
experiments to match, for instance, mutual bead solubilities.5

Although chemical specicity is sufficiently retained, and
CGMD simulations were shown to provide proper quantitative
agreement with experimental observables, the computational
requirements remain severe due to the ‘hard’ LJ potentials, that
dictate a relatively small time increment in Newton's equation
of motion. Dissipative particle dynamics (DPD), combining
aspects of MD and lattice-gas automata, acknowledges the
notion that centers of mass of beads can overlap, and uses a so
potential for non-bonded interactions instead. Since the
repulsive forces are much soer, the time step can be further
increased and beads can easily escape the cage formed of their
surrounding, accelerating the kinetics and bringing realistic
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Three dimensional simulation snapshots of dissipative particle dynamics
(left) and the new hybrid method (right), illustrating the concept of replacing all
solvent beads by a single solvent field. Field coloring is in agreement with solvent
concentration values, and the field was made transparent below a threshold
concentration. Particles are colored by their nature: head (red), tail (blue) and tail
terminus (grey). The molecular detail and specific interactions of lipids are
conserved in the hybrid method. The lipid concentration is equal in both cases
and was selected in agreement with vanishing membrane tension.
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experimental time- and length-scales, of collective phenomena
on a system level, within reach. However, as the number of
atoms per bead is roughly equal in CGMD and DPD, the number
of tracked positions is comparable and remains substantial.
Several groups have contributed to the development of CGMD
force-elds for lipids and more complicated molecules (see, for
instance, ref. 5 and 6). A rigorous approach in this context,
multiscale coarse-graining (MS-CG), that matches the forces in
atomistic MD to those in coarse-grained MD via a variational
principle, was recently used to bias a Gay–Berne (GB) ellipsoid
liquid-crystal model and access the time and length scale
associated with realistic liposomes.7 However, the use of the GB
model is primarily discussed in terms of enhancing the
congurational sampling required for force matching. An
overview of the DPD modeling efforts in this area can be found
in ref. 8 and 9. An early comparison of both CGMD and DPD to
atomistic MD simulations was carried out by the group of
Smit,10 and showed that DPD is a powerful method for realistic
lipid modeling, but that the parameterization should be
handled with care.

Here, we select DPD as a starting point for our hybrid
method, and focus on the representation of Shillcock and Lip-
owsky,11 where each bead represents a small number (4–5) of
solvent molecules or a lipid fragment. It should be noted that
this choice is not essential here, since our aim is to constitute a
functional relationship between DPD and hybrid model
parameters. The simulation results of Shillcock et al. were
shown to reproduce several experimental macroscopic
membrane properties, including thickness, lateral uidity and
stiffness, reasonably well. The non-uniqueness of this repre-
sentation, on the other hand, is illustrated by the fact that the
DPD model was later re-parameterized, due to the unrealistic
lipid exchange rates between adhering bilayers, stemming from
an almost vanishing energy barrier for lipid exchange, for the
original parameter set.

The considerations that prompted the development of our
hybrid approach are related to the arguments for introducing
implicit solvent, so we shortly review. When modeling a small
vesicle, of radiusR, a simulation volume of size L�R is needed to
avoid strongboundary effects. As thepart of the volumeoccupied
by the sheet-like membrane scales like the area (R2), the fraction
of themembrane component decreases with increasing radius R
like R2/L3� 1/R. The efficiency of coordinate-basedmethodology
can thus be signicantly enhanced by sacricing the solvent,
which forces membrane formation through hydrophobic inter-
actions locally and, on a larger scale, transports momentum and
thus affects the dynamics of the system. Although the latter role
of solvent is unlikely to be incorporated in any effective model,
replacing the degrees of freedom associated with the solvent by
implicit solvent is a popular route. The formidable theoretical
effort of systematically averaging over solvent degrees of freedom
is oen replaced by the simpler but computationally challenging
task of identifying phenomenological potentials that replace the
explicit solvent–lipid interactions. The resulting solvent-free
approaches were applied for the study of several membrane
phenomena, with considerable success.4,12 It seems advanta-
geous to also replace solvent beads in DPD by a more efficient
This journal is ª The Royal Society of Chemistry 2013
description, moreover, a description that circumvents the
tedious parameterization procedures associated with a new
methodology by exploiting existing and validated
representations.

Our goal in this paper is to introduce such a method, that is
efficient both in terms of memory and computational require-
ments, and serves as a starting point for further balancing
(molecular) resolution and efficiency. Themodel presented here
allows for a continuum (eld) and coordinate-based (so-core
beads) representations in a single simulation volume, where the
premise is that we couple the bead and eld representations in
a thermodynamically consistent fashion. If this condition is
satised, the solvent beads can be freely replaced by a solvent
concentration eld, and, owing to the fact that the eld–bead
interactions are local, the total computational effort is signi-
cantly reduced. Fig. 1 illustrates this concept, for lipid DPD
parameters of Shillcock and Lipowsky and the mapped new
hybrid coupling parameters for lipid–solvent interactions.
Although we focus on the fundamentals, we perform a proof of
principle. Using a pre-assembled sheet, we analyze the
membrane properties in the hybrid and the DPD model, and
demonstrate that the hybrid model reproduces important DPD
membrane properties such as structure and thickness. We show
that lipids dispersed in solvent indeed self-assemble into larger
domains in the hybrid model. To illustrate efficiency, we show
that the hybrid model can simulate closing up of a large
punctured vesicle.

An important observation is that this model serves as a
stepping stone for further developments of more accurate and
efficient membrane modeling tools. For instance, the current
diffusive dynamic models (Brownian dynamics for the beads
and Langevin model for the elds) can in principle be replaced
by a hydrodynamic description, i.e. the standard DPD kinetic
equation for the beads and a Navier–Stokes solver for the
continuous (eld) component. Moreover, replacing solvent
beads by a eld can be seen as a rst and necessary step towards
the rigorous development of a DPDmodel with implicit solvent.
Such extensions will be the subject of future work.
Soft Matter, 2013, 9, 2816–2831 | 2817
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General theory

From a conceptual viewpoint, the hybrid method allows for
different representations of constituents, either coordinate-
based (beads) or continuous (bead concentration elds), in a
single simulation volume. To clearly distinguish between the
two, we refer to coordinate-based beads as particles in the
remainder. The heterogeneity of representation distinguishes
this method from multi-scale approaches that aim at
combining atomistic and mesoscopic representations in a
hierarchical, sequential manner (mapping results from one
level to another)13 of using the quasi-instantaneous eld
generated by the coordinate-based system for the efficient
calculation of intermolecular interactions.14,15 We note,
however, that such a hierarchical procedure is certainly not
excluded in the current approach, and that this procedure
potentially benets from the particle–eld mapping that is
developed and validated in this hybrid method.
The hybrid free energy

We dene a mesoscopic hybrid energy functional of the form

F ¼ Ep + F f + Fpf (1)

where Ep and Ff are the potential energy and the free energy of
the particle and eld subsystem, respectively, and Fpf is a
‘coupling’ term that accounts for bringing the particles and
elds together in one simulation volume. One should realize
that this expression is very straightforward and generic, and
only states that the hybrid functional reduces to the unper-
turbed eld- or particle-based functionals for pure systems. The
peculiarity is in the choice of two models with a similar coars-
ened molecular representations, and the requirement that a
representation in either discrete or continuum variables is
analogous. For the particles, we follow the conventions of
dissipative particle dynamics (DPD) for so-core particles. The
potential energy Ep for monomeric uids is explicitly given in
terms of coordinates by

Ep ¼
X
k

X
cl:rkl\rc

akl

2rc
ðrkl � rcÞ2 (2)

where rkl ¼ krk � rlk2 is the distance between particles l and k
and rc is the cut-off distance that is, in accordance with stan-
dard practice, used as the unit of length. The pairwise interac-
tion potential is characterized by the interaction strength akl,
which only varies between different particle types. Bond, angle
and/or torsion potentials of various kinds can be added to
account for internal molecular properties and they contribute to
Ep. For the continuous elds, i.e. concentrations for different
types of particles rI(r), we select the free energy16

F f[rI] ¼ F id[rI] + F coh[rI] + F comp[rI] (3)

of the dynamic density functional theory (DDFT) (see, for
details, van Vlimmeren et al.16), which is very similar to the free
energy in the well-known self-consistent eld (SCF) theory. The
molecular representation is that of a fully exible chain of
2818 | Soft Matter, 2013, 9, 2816–2831
particles with Gaussian chain statistics, and the free energy in
terms of rI(r) is obtained using the assumption that chains are
always in local equilibrium. Besides an ideal Fid and pressure or
compressibility Fcomp terms, the free energy contains a mean-
eld interaction term Fcoh that relates to standard Flory–Hug-
gins theory. We can now specify the hybrid energy eqn (1) as

F [{rk},{rI}] ¼ Ep({rk}) + F f[{rI}] + Fpf({rk},{rI}) (4)

with Ep and Ff the standard potential energy for so-core DPD-
like particles and the DDFT free energy, respectively. A reason-
able choice for the particle–eld coupling interaction free
energy is

Fpf
�frkg; frIg� ¼

ð
V

dr
X
Ik

cIkrI ðrÞKðr� rkÞ; (5)

where a normalized Gaussian smoothing kernel

KðrÞ ¼
�

1

s2p

�3=2

exp
�� r2=s2

�
(6)

is used to map particles coordinate rk into elds (see Appendix A
for discussion of the spread s). The set of scalar coupling
parameters cIk denes the strength of interaction between the
eld of type I and the particle k. In the remainder, we use
dimensionless units, unless mentioned otherwise. Energies are
discussed in units kBT, with T the temperature and kB the
Boltzmann constant, and, as mentioned, the cut-off distance rc
of the particle model is used as a unit of length.

There is a clear distinction in the way cohesive interactions
and excluded volume are incorporated into DDFT and DPD. In
the continuum DDFT model, these effects are separated into
two different contributions to the free energies, Fcoh and Fcomp,
and governed by the mean-eld interaction parameters cIJ and
Helfand compressibility parameter kH.16 In the particle
description, the parameter aij in the pairwise interaction
potentials plays a dual role, and for this reason it is commonly
written as aij¼ aii + Daij, where aii relates to the excluded volume
and Daij to cohesive interactions. Usually, aii ¼ a0 is assumed to
be independent of the particle-type. Its proper value was previ-
ously determined17 from simulations for a monomeric DPD
liquid by tting pressures calculated using the viral theorem to
a quadratic equation of state

pp ¼ rp + aa0rp
2, (7)

with rp the particle density or number of particles per unit cell
and a ¼ 0.101 � 0.001 a tting parameter. Subsequently, the
inverse isothermal compressibility is set to k�1 ¼ 1 + 2aa0rp ¼
16, the value for water at room temperature, providing a0 ¼
75/rp.17 Since the used a is the asymptotic value for rp /N, the
procedure is only valid in a restricted rp-range. In their seminal
paper, Groot and Warren17 mention rp > 2. For rp ¼ 3, the
density that is also considered in the DPD simulations of
Shillcock and Lipowsky,11 one obtains the value a0 ¼ aii ¼ 25.

Incorporating excluded volume or pressure coupling
through a penalty function for (small) density uctuations,
which are assumed to be local and harmonic, was introduced
This journal is ª The Royal Society of Chemistry 2013
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and discussed by Helfand.18 In practice, a proper value for kH in
DDFT is determined by a rule of thumb, i.e. kH should be ‘large
enough’ to allow only for small concentration uctuations (or,
alternatively, ensure an almost constant pressure), and ‘small
enough’ to not completely damp any uctuation. These rather
loose conditions are usually monitored via Fcomp during a
calculation. We note that replacing the incompressibility
condition SImI ¼ 0, with I the eld index, by slight compress-
ibility in DDFT is not compulsory,19,20 but that the numerical
efficiency benets substantially from resolving (part of) the
stiffness of the set of dynamic equations that stems from the
incompressibility condition.

In the hybridmodel, however, the compressibility term in the
free energy plays a very signicant role and kH should be carefully
chosen. We illustrate this by a simple example and assume a
system containing particles and a single (solvent) eld. The
particles will affect the eld by creating (eld) cavities through
the coupling interactions. Since the DDFT part of the hybrid free
energy only considers the solvent eld, the chemical potential
due to the compressibility term, mcomp, generates a solvent ux
towards this cavity, the magnitude of which scales with kH. In
equilibrium, mcomp(kH, rS) and the coupling chemical potential
mcp are balanced. The value of kH, a global variable, could be
derived based on desired global features of the hybrid system,
but such an exercise is complicated by the calculation of the
pressure, either via the virial route17,21 or via compressibility, that
requires simulation to access the ensemble-averaged contribu-
tion of particles to the hybrid energy eqn (4). Here, we prefer the
direct route of matching chemical potentials in a mixed system
or pressures in pure monomeric systems of particles and eld.
The second condition ensures that replacing all particles by a
singleeld reproduces thedensityuctuations that are known to
be sufficiently captured by the (so-core) particle model.17

Pressure effects by the solvent on themembranewere found tobe
absent for systems where the particle self-repulsion aii is the
same for all species, which is the case here, leading to the
conclusion that such a system is more like a one-component
(water) system than a multi-component system.22 This could be
expected, since the pressure will mainly depend on the density.
For this reason, we conclude that mixed systems with a xed
density and only excluded volume interactions will be mechan-
ically stable when brought into contact, if the pressure in the
pure systems is sufficiently matched.

It is worthwhile to note that different routes, i.e. via pressure
or chemical potential, will not necessarily yield exactly the same
result. This asymmetry is caused by the Harmonic equation of
state for the pressure, that is exact in the case of DDFT, as a
consequence of the chosen Helfand term, and semi-empirical
for the particle model. The few percent deviations for the
particle case are enough to shi chemical potentials, and
render it impossible to exactly match the pressure and the
chemical potential simultaneously. As a solution, one may
consider replacing the Helfand term in DDFT by one containing
a cubic term in the density and use the additional coefficient in
a tting procedure. Nevertheless, we consider this issue not very
important at this stage and only report and discuss the results
for the two different routes.
This journal is ª The Royal Society of Chemistry 2013
Equation of state for the pressure of the eld

For a monomeric eld, the density of the eld free energy
functional F f is16

f fðrÞ ¼ rfðrÞln rfðrÞ þ
kH

2
rfðrÞ2 (8)

where rf(r) is the density eld for solvent monomers and kH is
the Helfand compressibility parameter. For simplicity, we have
omitted the reference eld in the compressibility term,16 since it
gives rise to a constant and homogeneous contribution to the
chemical potential. In the absence of particles, i.e. with
coupling parameters c ¼ 0, the only non-zero term in the hybrid
energy functional eqn (4) is the free energy F f[rf]. The hybrid
method reduces to the standard DDFT theory, and the pressure
pf is given by23

pf ¼ �
 
vF f

vV

!
n;T

¼ rf þ
kH

2
rf

2 (9)

where rf ¼ n/V (a homogeneous ideal gas). Comparing eqn (9)
and (7), it is easy to see that the equivalent equation of state for
the pressure is obtained by setting kH ¼ 2aa0, provided that we
choose rp ¼ rf. Consequently, the Helfand (eld) compress-
ibility parameter corresponding to a0 ¼ 25 is kH ¼ 5.0. The
alternative route, directly via the isothermal compressibility of
water at room temperature k�1 ¼ 1 + kHrf ¼ 16, provides the
same value kH ¼ 5.0 for rf ¼ 3.

This matching procedure suggests precision, but the proce-
dure for calculating the DPD pressure deserves a closer exami-
nation. The a considered in eqn (7) is the asymptotic value for
(p � rpkBT)/(a0rp

2), see Fig. 4 in ref. 17 and the authors claim
that this asymptotic value is valid for rp $ 3. Nevertheless, a
closer look at this gure shows that the curve is monotonically
increasing for the whole rp-range. One could argue that the
observed density dependence of a, which becomes prominent
for low rp, stems from the selection of a xed cutoff distance rc
or a density-dependent overlap probability. The same argument
was previously used to dene a density dependent cutoff
distance to render DPD scalable.24 The actual pressure in the
so-core particle system is thus somewhat lower than suggested
by eqn (7). Although there are good reasons for considering a0
that are independent of the particle density, our pressure
matching procedure should consider the real pressure, i.e. we
should use a(r) instead of a constant a. From a(3) z 0.09,
determined using the curve of Groot and Warren,17 we obtain
kH ¼ 2a(3)a0 z 4.5 for rp ¼ rf ¼ 3. The route via the isothermal
compressibility of water provides

k�1 ¼
 
vpp

vrp

!
T

¼ 1þ va
�
rp
�

vrp
a0rp

2 þ 2a
�
rp
�
a0rp (10)

and inserting rp ¼ rf ¼ 3, a0 ¼ 25 and va/vrp z 0.007 and a z
0.09 shows that equal isothermal compressibility is obtained for
kH z 4.55, very close to the value determined via pressure
matching. The alternative route, matching the excess chemical
potentials for a mixed system of monomeric particles and elds
numerically, provides kH z 4.9. It is clear that kH should be
chosen in the small range [4.5, 4.9] and that the actual value
Soft Matter, 2013, 9, 2816–2831 | 2819
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depends on the property that one would like to match. Since
a0 ¼ 25 is determined via the isothermal compressibility, we set
kH ¼ 4.6 in the remainder.

The good correspondence between the theoretical mean eld
value and the DPD simulations should be no surprise: it has
since long been known that the so potentials render DPD
almost exactly mean eld, where the correspondence becomes
better the higher the density, i.e. the more so particles will
overlap.25 In fact, in the well-known Groot–Warren parametri-
zation of the a-parameter (ref. 17, more on that below), one
makes use of the close agreement between Flory–Huggins and
DPD simulations in calculating phase diagrams of polymer
blends. Phase boundaries in block copolymer melts were also
found to coincide.26
Mixed systems: relating coupling parameters to Flory–
Huggins c and DPD a parameter

It seems natural to adapt the DPD concept and separate the
coupling parameter cIk into two contributions c0 and DcIk, rep-
resenting the excluded volume and cohesive particle–eld
interactions, respectively. Determining c0 directly by analytical
means is complicated by the heterogeneity of the system.
Nevertheless, we can analyze the pressure in a mixed mono-
meric particle and eld system when considering the limiting
case of sufficiently high particle concentration. We will validate
the generality of these ndings by numerical means later on.

The starting point is a mixture of a monomeric particles and
eld, with a single coupling parameter c. We introduce a density
of particles X

k

Kðr� rkÞ ¼ rpðrÞ (11)

and use as a key assumption that the particle density is high
enough to consider eqn (11) as a stationary eld, owing to
sufficient overlap of individual smoothed particle elds. In that
case, since the coupling chemical potential mpf(r) ¼ crp(r) does
not depend on uctuations in the particle subsystem, the eld
also does not change with time. In particular, the coupling
energy and the free energy of the eld subsystem provide a
constant contribution to the ensemble-average of the hybrid
energy eqn (4), given by

hF[{rk},{rf}]i ¼ hEp({rk})i + F f[rf] + Fpf(rp, rf) (12)

Thepressures for theeld andcoupling term,pf andpc, canbe
calculated in the standard (eld) way, using the derivative with
respect to volume, equivalent to eqn (9). For the pressure due to
the particle subsystem,we use the phenomenological expression
eqn (7). The general expression for pf and pc is given by

pf ¼ nf

V
þ kH

2V

ð
V

rfðrÞ2dr

pc ¼ c

V

ð
V

rpðrÞrfðrÞdr
(13)

where we have used the assumption that rf(r) + rp(r) ¼ �r ¼
(np + nf)/V, with np and nf the total number of particles in the
2820 | Soft Matter, 2013, 9, 2816–2831
particle and eld representation respectively, for deriving the
expression for the coupling pressure. Next, we consider the case
that particles and elds are homogeneously distributed, i.e.
rf(r) ¼ nf/V and rp(r) ¼ np/V. Insertion into eqn (13) gives rise to
the simple expression

pf þ pc ¼ rf þ
kH

2
rf

2 þ crprf : (14)

Combining eqn (14) and (7), we obtain the total pressure for
the hybrid system

p ¼ pp þ pf þ pc ¼ rp þ aa0rp
2 þ rf þ

kH

2
rf

2 þ crprf

¼ rp þ rf þ
kH

2

�
rp

2 þ rf
2
�
þ crprf : (15)

where we exploited the relationship kH ¼ 2aa0 for the conver-
sion of excluded volume interactions in pure particle and eld
systems. We note that this relationship is independent of
particular values of kH and a0. Rewriting eqn (15) as

p ¼ rp þ rf þ
kH

2

�
rp þ rf

�2þðc� kHÞrprf (16)

shows that the equation of state for the total pressure of the
hybrid system adapt the usual form, i.e. quadratic in �r, only for
c ¼ kH ¼ 2aa0.

One can interpret the result eqn (16) by considering the pres-
sure contribution pcoh due to F coh, the mean-eld cohesive inter-
actions in theDDFTmodel.16For the situation considered so far, a
singleeld of type I, the cohesive term vanishes due to cII¼ 0 and
this contributioncanbedisregarded. Forablendof twomonomer
types, I and J, in the eld description that are fully miscible, i.e.
rI(r) ¼ rI and rJ(r) ¼ rJ, the pressure contribution is given by

pcoh ¼ cIJrIrJ (17)

with cIJ ¼ c the usual Flory–Huggins parameter. We note that
the monomers are miscible for c < 2 and that by convention
cII ¼ cJJ ¼ 0. We can now compare the total pressure pf for this
system,

pf ¼ rI þ rJ þ
kH

2
ðrI þ rJÞ2þcrIrJ ; (18)

to the pressure in the mixed system eqn (16). Evidently, the
representations are completely equivalent in terms of pressure
if we identify an ‘effective’ Flory–Huggins parameter, for the
mixed system of particles and eld, as

c ¼ c � kH (19)

Moreover, as the non-ideal part of the DDFT free energy
reduces to the compressibility term F comp for c ¼ 0, we nd by
equivalence that c0 ¼ kH accounts for the excluded volume
interactions in the hybrid model. Since kH was determined for
rf ¼ 3 in the previous subsection, we need to account for an
average eld concentration �r ¼PI�rI, with

rI ¼
1

V

ð
V

rI ðrÞdr; (20)

that deviates from unity. Simple scaling analysis for the particle
volume in DDFT shows that the standard Flory–Huggins
This journal is ª The Royal Society of Chemistry 2013
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parameter scales with 1/�r. Consequently, eqn (19) in the most
general form is given by

c

r
¼ c� kH/c ¼ rðc� kHÞ (21)

We note that homogeneity is a sufficient but not a necessary
condition for the derivation of this equivalency. The present
result can rather straightforward be extended to the case of
inhomogeneous elds rp(r) and rf(r), provided that the
spreading factors in the kernels in Fcoh and Ffp are matched.

To relate the coupling parameters directly to so-core
particle interactions, we use the effective mapping between
Flory–Huggins c > 2 and Da determined by Groot and Warren,17

c ¼ ð0:286� 0:002ÞDa rp ¼ 3

c ¼ ð0:689� 0:002ÞDa rp ¼ 5
(22)

Combining eqn (21) and (22) for rp ¼ 3, we end up with the
desired relationship

0.286Da ¼ 3(c � 4.6) (23)
Dynamics

The hybrid free energy eqn (4) is minimized via a set of
stochastic Langevin equations for particles and elds, much in
the same spirit as the procedure for pure elds in DDFT. The
uctuating/noise terms in the Langevin equation for the eld
and BD for the particles can be chosen independently.27 The
resulting fully diffusive pathway mimics the experimental
structure evolution in the case that hydrodynamics does not
play an important role. An illustration of such a situation is a
(viscous) ABA block copolymer thin lm, where the simulated
(by DDFT) and experimental pathways of a phase transition
matched reasonably well, even in detail.28 For membrane
forming systems, eld-based models with the same dynamic
description were shown to reproduce all distinctive structures
in the experimental sequence from a homogeneous mixture to
closed vesicles.29–31 From a quantitative point of view, however,
the literature shows that proper coarse-grained modeling of
lipid membrane dynamics is a complex task. Three sources of
dissipation are associated with membrane motion and should
be accounted for: solvent and membrane viscous dissipation,
and a sliding friction between the leaets, which occurs
whenever there is membrane curvature. The relatively high
viscosity within themembrane (�103hW, with hW the viscosity of
water) suggests that momentum transfer is sufficiently damped,
i.e. that Brownian motion suffices to capture the translational
diffusion of lipids within each of the leaets. However, the
longer-range interactions due to momentum transfer with the
surrounding solvent are known to be particularly important for
membrane formation and remodeling, and speed up collective
motion in these phenomena. Coarse-grained MD with implicit
solvent represents an intermediate in this context, as it neglects
momentum transfer between solvent and membrane but
accounts for these contributions within the membrane. For the
moment, we are tied to a purely diffusive description and
This journal is ª The Royal Society of Chemistry 2013
acknowledge this limitation. The introduction of Lattice Boltz-
mann in this new framework will resolve this issue, and will be
considered at a later stage, as mentioned in the introduction.

Particle positions are updated according to position Lange-
vin dynamics,

drk ¼ Mk fkdt + rRk (24)

describing particle diffusion in a viscous polymeric medium
(overdamped limit), where Mk is the constant mobility coeffi-
cient for particle k. In contrast to DPD, the friction force on a
particle does not depend on surrounding particles, but is
given by

f fk ¼ �f k
vrk
vt

(25)

with a friction coefficient fk related to the diffusion constant Dk

by the Einstein relationship fk¼ kBT/Dk. The mobility coefficient
is dened asMk ¼ f �1

k , which can be rewritten as kBTMk ¼ Dk. A
standard choice is Dk ¼ D and elds rI are treated as indepen-
dent variables. The rst term in eqn (24) is the dri term, with a
force

f k ¼ � vF

vrk
¼ � vEp

vrk
� vFpf

vrk
¼ f nbk þ f pfk ; (26)

that gives rise to a reduced F, independent of the temperature T.
It comprises forces due to particle–particle (f nb

k ) and particle–
eld (f pfk ) interactions. The forces due to particle–particle
interactions are the standard ones from DPD, notably the
conservative forces due the non-bonded potentials eqn (2)
given by

f consk ¼
X
rkl\1

aklð1� rklÞr̂kl (27)

where r̂kl is the unit vector pointing from particle l to particle k,
plus additional intramolecular forces due to bonded interac-
tions, like spring, angle and torsion forces. The second term in
eqn (26) is a coupling force due to particle–eld interactions,
given by

f pfk ¼ �
X
I

cIk

ð
V

vKðr� rkÞ
vrk

rI ðrÞdr

¼ 2

s2

X
I

cIk

ð
V

ðr� rkÞKðr� rkÞrI ðrÞdr (28)

or

f pfk ¼ �
X
I

cIk

ð
V

Kðr� rkÞVrI ðrÞdr (29)

via integration by parts. In our simulations, the coupling
parameters cIk are positive, and the coupling force points to the
direction of the fastest decrease in eld density. To conclude,
the second term in eqn (24) is the standard random
displacement

rRk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTMk

p
dWkðtÞ (30)

of Brownian dynamics (BD). In particular, dW(t) is a multivar-
iate Wiener process with hdWi(t)dWj(t)i ¼ dijdt. Numerical tests
Soft Matter, 2013, 9, 2816–2831 | 2821
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Table 1 The interaction parameter Daij used in Shillcock and Lipowsky11

Daij j ¼ H j ¼ C j ¼ W

i ¼ H 0 25 10
i ¼ C 25 0 50
i ¼ W 10 50 0
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showed that the uctuating contributions from the (solvent)
eld allow for omitting this random term in practice. However,
athermal particle evolution comes with a high risk of particle
freezing, especially in particle-rich domains that contain
(almost) no eld, so we decided to include a random term.

For the evolution of the eld subsystem, we can use any of
the available DDFT schemes. They differ only in the model for
the local kinetics, reected in the particular diffusion operator.
We choose external potential dynamics32

vUI

vt
¼ �DIV

2mI þ hI (31)

where DI is a diffusion coefficient for the I-type eld, hI is an
appropriately chosen noise eld and UI is the external potential
eld conjugate to the density eld rI. The densities and external
potentials are bijectively related, allowing us to freely exchange
between external potentials and densities. The intrinsic chem-
ical potentials follow from eqn (4)

mI ¼
dF

drI
¼ dF f

drI
þ dFpf

drI
(32)

where the rst term is given by the standard chemical potential
in DDFT.16 Hence, particles inuence the eld dynamics eqn
(31) via the coupling chemical potential

m
pf
I ¼ dFpf

drI
¼
X
k

cIkKðr� rkÞ: (33)

For a monomeric eld, the intrinsic chemical potential
becomes

mf ¼ ln rfðrÞ þ kHrfðrÞ þ
X
k

cKðr� rkÞ (34)

Results and discussion

This article focusses on the parametrization and the results will
be limited to a proof of principle for our hybrid method. First,
we challenge the analytically derived relationship eqn (23),
between the hybrid coupling and DPD a-parameters, by solu-
bility calculations for a mixed system of monomeric particles
and eld. Consequently, we compare the structural properties
of membranes in DPD and the hybrid method, focussing on the
membrane thickness and particle density prole within the
membrane, in order to see if these properties are sufficiently
reproduced. Finally, we use large-scale simulations to study the
spontaneous assembly from a homogeneous lipid–solvent
mixture and the repair mechanism for a large pre-assembled
vesicle that has been punctured. We start by considering the
simulation setup and parameters.

Simulation setup

Simulations were performed in a V ¼ Lx � Ly � Lz simulation
volume, with Li (i ˛ {x, y, z}) the length in each of the three
Cartesian directions in units of rc, the cut-off distance for the
particle interactions. Field values were calculated and stored on
an equidistant grid with discretization distance rc, i.e. r(irc, jrc,
krc) ¼ ri,j,k for i, j, k ˛ N, but the underlying molecular
2822 | Soft Matter, 2013, 9, 2816–2831
representation is essentially not restricted to the grid. The
particle description is mesh-free, but a computational grid is
introduced for efficient computation of conservative forces,
with an offset of rc/2 with respect to the eld grid. Domain
decomposition was used for parallellization, and periodic
boundary conditions are employed along all Cartesian direc-
tions, for both eld and particles.

We consider the H3(C4)2 representation for a DMPC lipid of
Shillcock and Lipowsky.11 Particles are assumed to have iden-
tical mass m (in kg) and radius, which are equal to the cut-off
distance rc (in m). For consistency and ease of notation, we
introduce dimensionless parameters. For the conservative
forces, they are given by l*0 ¼ l0/rc, k

*
2 ¼ k2rc

2/kBT, k
*
3 ¼ k3/kBT and

a*ij ¼ aijrc/kBT. Other dimensionless DPD parameters are the

density r* ¼ rrc
3, position r* ¼ r/rc, velocity v* ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
,

time t* ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mrc2

p
and friction coefficients

g*
ij ¼ gij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc2=mkBT

p
. The latter are related to the noise coeffi-

cients sij by the uctuation–dissipation theorem as sij
2 ¼

2gijkBT and we nd (s*ij)
2 ¼ 2g*

ij. All discussed parameter values
in the remainder are dimensionless, so we neglect the asterix.

A lipid consists of three head (H) particles and two hydro-
carbon (C) tails of four particles each. Each C particle represents
3.5 CH2 groups. For convenience later on, the two terminating
particles are denoted by the letter E, but are further undis-
tinguishable from C particles, and are given a different color in
allgures in the remainder. Eachof the two tails is connected to a
different head (H) particle. Connectivity is facilitated by
harmonic springs, with an equilibrium length l0¼ 0.5 and spring
constant k2 ¼ 128, and stiffness is induced by an angle potential
(f0 ¼ 0) with bending constant k3 ¼ 20. Due to the monomeric
nature of the water particles (denoted by W) our mapping
procedure is only used to determine the coupling cHW and cCW
parameters. Table 1 recapitulates the values ofaij�a0¼Daijused
by Shillcock and Lipowsky. The interaction between like-parti-
cles aii¼ a0 was determined from the isothermal compressibility
of water, i.e. a0 ¼ 25 for a density r ¼ 3.

The time step Dt in DPD is a compromise between efficiency
and the equilibrium condition. Groot and Warren showed that
signicant deviations of the observed temperature from the
input T arise for both the Euler and Verlet integration schemes
if this time step is chosen too large.17 Moreover, the temperature
relaxation rate was shown to depend on the noise amplitude s,
and, guided by their numerical evaluation, reasonable values
were determined as Dt ¼ 0.04 and s ¼ 3. We note that updating
the forces and velocities consistently21 is the proposed solution
for this limitation, but such an algorithm was not considered
here. For the Verlet scheme used in our DPD implementation,
the default values are Ds ¼ 0.02 and sij ¼ 3. In Shillcock and
This journal is ª The Royal Society of Chemistry 2013
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Lipowsky’s work, the time step is not discussed and the friction
coefficients gij were chosen in agreement with sij ¼ 3 (gij ¼ 4.5),
except for gHC ¼ 9 and gCW ¼ 20.11 Although the particular
choice of gij is irrelevant for the equilibrium behavior, as long as
the system is properly thermostatted, we adapted these values
for gij in our DPD simulations.

The dimensionless variables and parameters for the eld
part of the hybrid model were previously published.16 We follow
the evolution of number density elds r*(r) ¼ nr(r), using an
external potential U*(r) ¼ U(r)/kBT and chemical potential
m*(r) ¼ m(r)/kBT, where n is the particle volume (for simplicity,
we consider n � rc

3). Apart from a scaling factor in the noise
amplitude, U ¼ 100, input parameters are the Flory–Huggins
interaction c ¼ 0, the step size Ds ¼ D*Dt*, with time t* ¼ t/tsc
and diffusion coefficient D* ¼ Dtsc/rc

2, and the compressibility
parameter k*H ¼ kHn/kBT. The time scale tsc (s) can be arbitrarily
chosen. In the particle description, the same parameters as
above are used for the conservative force, for positions r* ¼ r/rc
and step size Ds ¼ D*

kDt*, with time t* ¼ t/tsc and diffusion
coefficient D*

k ¼ kBTMktsc/rc
2. Default values for the diffusion

coefficients are D* ¼ 1.0 and D*
k ¼ 0.04. We introduce an

additional scaling factor
ffiffiffiffiffiffi
T*

p
(default: T* ¼ 1) in the noise

amplitude, similar to the eld case. The hybrid part is made
dimensionless by s* ¼ s/rc, c

*
Ik ¼ cIk/kBTrc

3 and K*(r) ¼ K(r)rc
3,

where we have set the particle volume nk ¼ n. In all simulations,
we use a spread of the Gaussian kernel s ¼ 0.8. We employed a
Crank–Nicolson scheme (with CN parameter g ¼ 0.5) for the
eld updates and an explicit Euler scheme for the particle
updates. We introduce a possibility of desynchronization:
particle positions and eld values are not necessarily updated
every time step. The frequency of eld updates, i.e. the number
of time steps between a eld update, is denoted as fup.
Preparation of the starting structure

Depending on our objective, we either start our hybrid simula-
tions from a homogeneous situation or a pre-assembled
membrane. Unless mentioned otherwise, the solvent is intro-
duced as a spatially homogeneous eld r(r) ¼ NW/N, where
NW ¼ N � 11Nl (each lipid contains 11 particles) is the number
of water particles that r(r) represents and N ¼ rLxLyLz, the total
number of particles in a full particle representation. Homoge-
neous conditions are imposed by setting U(r)¼ 0 for the solvent
eld and random initial positions for the lipid chains. Pre-
assembled at or curved membranes were prepared via a more
involved procedure. Initially, the simulation volume is lled
with Nl ¼ Nl,i + Nl,o lipids. The number of lipids Nl,i and Nl,o in
the inner and outer membrane leaets are calculated based on
the desired area per lipid Aj/Nl,j (j ¼ i or o), where A is the
dimensionless area of an unperturbed leaet. Subsequently,
both lipid portions are distributed over each of the leaets
according to the lipid ratio, at random positions, under the
constraint that heads face the lipid–water interface and all
terminating E particles are part of a thin region (a shape eld a)
along the midplane between the two leaets. This membrane is
relaxed in several consecutive steps: (a) lipids are rst equili-
brated without solvent for cEa ¼ �75 (cCa ¼ cDa ¼ 0) and 103
This journal is ª The Royal Society of Chemistry 2013
steps, assuring the membrane integrity by the strong attraction
of the tail E particles to the a region, (b) a homogeneous solvent
eld is introduced with csa ¼ 10 and the system is equilibrated
for 103 steps to let the solvent eld diffuse away from the a
region around the midplane, (c) the solvent eld is equilibrated
for another 104 steps, using a Picard method, for stationary
particles, (d) the constraint on particles is released and the
system is equilibrated 102 steps, and (e) the interaction cEa is
slowly increased to cEa ¼ �20 (Dc ¼ 2 every 200 steps). Finally,
the a eld is removed and the simulation is started with this
structure.

Solubility calculations

Using the analytical relation eqn (21) derived for the limiting
case

cij ¼ 0.095Daij + 4.6 (35)

we obtain cHW ¼ 5.55 and cCW ¼ 9.37. To test relation eqn (21),
we consider the partitioning in a system consisting of mono-
meric (A) eld and (B) particles, for kH ¼ 4.6 and varying cAB. At
the start of the simulation, the simulation volume of Lx � Ly �
Lz ¼ 160 � 10 � 10 is occupied by pure phases of particles and
eld, in equal amounts, which are into contact and can freely
diffuse. Simulations were continued for an additional 2000 time
steps aer equilibrium was reached, which is monitored via the
hybrid free energy. Equilibrium proles along the x-direction
for the elds and particles (aer particle-to-eld mapping) were
obtained by averaging over orthogonal directions and the last
2000 time steps. Single values for the eld concentration r in
the particle phase as well as the total concentration �r were
determined by spatial averaging over the region of 2k + 1
(k # 15) grid points, in the middle of the particle-rich phase
centered around x ¼ 80. We found that f ¼ r/�r is insensitive to
the width k of the domain used for spatial averaging. Inserting f
into the expression for the equilibrium volume fraction in a
binary system in Flory–Huggins theory17

cp ¼ ln
	ð1� fÞ=f

1� 2f

: (36)

relates the Flory–Huggins c and cAB (N ¼ 1). Relation eqn (36) is
intrinsically symmetric in particles and elds, but we selected
the eld in the particle phase, as the combination of slow
diffusion and low particle concentrations in the eld phase,
especially for higher coupling cAB, gives rise to rather poor
statistics. For similar reasons, we restricted the coupling range
to c# 10. Fig. 2 shows both the analytic estimate of c (solid line)
and cp (+) for varying 5 # cAB # 10. The values of cp are slightly
below the analytical estimates, except for cAB ¼ 5, but agree
quite well for the whole range. Close to the critical point c ¼ 2
i.e. for cAB z 5, we cannot expect the mean-eld expression to
hold.17 In the remainder, we therefore rely on the analytical
dependence, and consider kH ¼ 4.6, cHW ¼ 5.55 and cCW ¼ 9.37.
We note that, owing to the strong particle–water repulsion for
the lipid tail particles, there is a substantial energetic barrier for
membrane lipids to ‘evaporate’ into the water phase and for the
water eld to enter the membrane core. Once lipid domains are
Soft Matter, 2013, 9, 2816–2831 | 2823
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Fig. 3 Average particle number densities for the H (head) and C (tails) particles
perpendicular to the membrane (along the y-axis), averaged along the x and z
axes and over 103 simulation snapshots. The solid line is the result for the hybrid
method and the dashed line the result for DPD.
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formed, the simulation volume will thus remain separated in
particle- and eld-rich domains.

Membranes properties

Next, we consider the structural properties of a membrane that
is pre-assembled along the x–z direction in a simulation volume
of 8 � 16 � 8. We focus on a membrane that is close to the
tensionless state. Using the results of Shillcock and Lipowsky,
such a membrane is obtained for an (projected) area per lipid
A/N ¼ 1.26,11 or, using the number of lipids per unit area lpa
instead, for lpa ¼ 0.79. As a result, each leaet contains lpa �
8 � 8 ¼ 50 lipids and the total number of lipids Nl ¼ 100, which
is rather small compared to the 1685 lipids considered previ-
ously.11 Our simulation volume was particularly chosen to
reduce the role of membrane shape uctuations, see Fig. 1, and
the averaged proles in Fig. 3. Detailed analysis of simulation
results for slightly larger volumes (10 � 20 � 10) showed that
the averaged prole is much more sensitive to these shape
uctuations than to a (small) variation of the coupling
parameters.

Aer equilibration, hybrid simulations were performed for
2 � 105 time steps, using default values for the time increment,
diffusion coefficients and fup ¼ 10. Collecting snapshots every
500 time steps, we calculated the average density proles
perpendicular to the membrane, by averaging particle densities
over thin slices (of width 1/4) along the x–z direction and over
the available snapshots. In addition, we averaged over simu-
lated pathways for 40 different noise seeds. As a reference, we
also performed DPD simulations using an equivalent
membrane preparation procedure and the same averaging for
the simulation part. Simulation snapshots for both models at
the end of the simulations are shown in Fig. 1 and averaged
particle number density proles in Fig. 3.

The proles for the head (H) and tail (C) particles in the
structures obtained using the hybrid method (solid lines) and
Fig. 2 The relation between Flory–Huggins c (vertical axis) and coupling
parameter c (horizontal axis). Solid line: analytic estimate c¼ 3(c� k)¼ 3(c� 4.6).
Symbols (+): values for c determined from simulations. Dotted line: best linear fit
c ¼ 2.99(c � 4.83) for the numerical data in the range 6# c# 10, away from the
critical point.

2824 | Soft Matter, 2013, 9, 2816–2831
DPD (dashed lines) in Fig. 3 are in good agreement. In partic-
ular, the membrane thickness is identical in both models. This
shows that the origin of membrane formation and stability, the
hydrophobic interactions between the lipid head and
surrounding water, are equally well captured by the hybrid and
DPD descriptions. Inside the membrane, lipids are disordered
within each leaet for both simulation methods, as can be seen
from the simulation snapshots in Fig. 1, and leaets are not very
interdigitated, in agreement with uid-like behavior of the
membrane. Although density proles for H3(C4)2 membranes
were not explicitly considered in the earlier study,11 the dip in
the C-particle density prole at the midplane of the bilayer was
previously observed for HC6 lipids and reects the enhanced
conformational sampling of the terminal particles. This dip is
somewhat enhanced in the hybrid model.

We shortly identify factors that are important for the
membrane properties. We start with the kinetic description.
Although the choice of the dynamic model is irrelevant for the
equilibrium structure, the averaging procedure is sensitive to
bilayer shape uctuations and to the lipid exchange rates
between leaets,11 which were earlier shown to be anomalously
high for DPD with our parameter set.33 These effects are still
rather insignicant, but the degree to which they change the
details of the average density proles depends on the kinetic
description. The enhanced mass transport in DPD has the effect
of smearing, which could be the cause for the different dip
depth. Also the representation of the solvent is different. In
DPD, the probability of solvent particles entering themembrane
is very low, owing to a large energetic penalty. In the hybrid
model, a residual solvent eld is always present inside the
membrane, independent of the coupling parameter, although
the tiny amount for our parameters is unlikely to have much
effect on the membrane structure. Parametrization and imple-
mentation are the two remaining factors. We used the pressure
for estimating the Helfand parameter kH ¼ 4.6 in the eld
This journal is ª The Royal Society of Chemistry 2013
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Fig. 4 Top view of the starting structure for the force calculations (solvent not
shown). The membrane was prepared in a smaller volumewith periodic boundary
conditions. Subsequently, one dimension was increased, and lipids close to the
two membrane edges were frozen into colloids. Frozen and unconstrained lipids
are represented differently for clarity. In the unconfined direction, the membrane
is stabilized by periodic boundary conditions. Blue: tail (C) particles and red: head
(H) particles.
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model, but the excess chemical potential provides kH ¼ 4.9. Our
simulations showed that such small variations have no signi-
cant effect. Finally, the combination of grid-based eld and off-
grid particle representations should be handled with care. The
design of optimal discrete integral operators for this case is a
considerable theoretical challenge and warrants a separate
publication. For the selected discrete 27 point representation, H
particles close to the water–lipid interface experience a weak
tendency to align with the computational eld grid (see
Appendix A for a detailed analysis). From Fig. 3 we may
conclude that grid artifacts do not seriously affect the particle
density prole. However, we should note that the equilibrium
membrane thickness roughly coincides with an integer number
of grid spacings.

Analysis of membrane surface tension for the hybrid model
is complicated by the lack of a straightforward procedure for
calculating this tension in the mixed representation. Applica-
tion of another standard method, the well-known Helfrich
analysis of membrane shape uctuations, is prohibited by our
dynamic model that does not capture the long-range correla-
tions that are responsible for these motions. Instead, we
attempted to rigorously calculate the surface tension via an
alternative approach of assembling a membrane between two
frozen colloids and determining the average force per unit area
on the colloids by simulation (we will use the term ‘colloid’ here
and below to denote a collection of particles with frozen
internal degrees of freedom, see Fig. 4), adopting the averaging
steps for the membrane prole. We concentrated on the
conclusions that can be drawn from this study and chose to only
discuss (and not show) simulation data. The results of the DPD
simulations for this setup match reasonably well with previ-
ously published surface tension results for membranes that are
constrained by periodic boundary conditions at both sides,11

although the match is not perfect. We nd that the slope of the
surface tension versus lpa for the hybrid model is comparable to
the one obtained by DPD, but that the location of the tension-
less state differs. Optimization, using equal increments for both
couplings, provided a good match for only slightly higher
coupling parameters. Nevertheless, we concluded that this
approach is not robust enough for a quantitative comparison
and/or tting procedure. In particular, the area per lipid for a
tensionless state varies considerably with the rather arbitrary
choices of several other parameters, such as the total simulation
volume, the colloid–lipid interactions and the size of the
membrane patch, as well as the choice to include or exclude
force contributions due to the solvent. The sensitivity of surface
tension to membrane preparation, in particular to the number
of lipids per unit area, was earlier observed and reects the large
area stretch modulus for these bilayers.11
Large scale simulations

We conclude with proof-of-principle simulations that focus on
collective structuring or restructuring phenomena on large
scales, i.e. on the scale of experimental liposomes. We stress
again that in-depth analysis of the simulation results is not the
primary goal of this study. Instead, we focus on the performance
This journal is ª The Royal Society of Chemistry 2013
of two standard cases, lipid self-assembly from a homogeneous
mixture and healing of a preassembled but punctured vesicle,
and use these results to illustrate the limitations and advan-
tages of the new method for future application.

Before discussing the results, we shortly review the basic
limitations of simulating liposome formation from a homoge-
neous mixture with molecular detail.

The rst issue is the hierarchy of time scales that plays a role
in this phenomenon. Current understanding of the micelle–
vesicle transition pathway34 – formation of disc-like micelles
from spherical and worm-like micelles, growth of discs to a
critical size and closure into vesicles – shows that liposome
formation is many orders of magnitude slower than (local)
molecular reorganization, which is the essential time scale for
any molecular computational model. The slowest and rate
limiting step along this pathway is the growth of disc-like
micelles, which has been identied to take seconds up to
minutes in experimental systems. We can estimate a physical
time increment based on the experimental diffusion constant of
bulk water, D ¼ 2.3 � 10�9 m2 s�1 (ref. 35) and the requirement
of stable time integration, i.e.Ds¼ DDt/rc

2# 0.5, as Dt� 10�9 to
10�10 s (using rc ¼ 1 nm). Although a nanosecond is O (106)
larger than the standard femtosecond time increment in
molecular dynamics, it is clear that simulating the complete
pathway of vesicle formation still represents a serious compu-
tational burden.

In addition, the last step, i.e. closing up into vesicles, gives
rise to lower bounds for the size of the simulation volume. In an
earlier DDFT study,30 we have shown that the formation of
closedmembranes or vesicles from a homogeneous mixture can
be prevented by (articial) stress contributions that originate
from the periodic boundary conditions. In particular, closing up
is dictated by the competition between the (growing) size of the
rim and the bending rigidity, meaning that discs rst have to
Soft Matter, 2013, 9, 2816–2831 | 2825
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Fig. 5 Lipid self-organization into aggregates after 7.765 � 106 time steps in a
1003 simulation volume with the hybrid method, for the lowest considered lipid
fraction (�5 v%). The initial system is a homogeneous mixture of lipids and water.
The size of the aggregates varies, but is clearly upper bounded. Blue: tail (C)
particles and red: head (H) particles.
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reach a certain size before closing up. When the simulation
volume is smaller or comparable to this characteristic size,
discs may be stabilized and closing up is prevented. Since this
characteristic size will vary with the chosen molecular model or,
equivalent, the intrinsic membrane properties, we turn to
experiments for guidance.

Spontaneously formed liposomes, produced by this experi-
mental pathway,34 have a typical diameter R of a few tens of nm.
Considering a vesicle with radius R/rc ¼ R* ¼ 40, we conclude
that a L � L � L simulation volume is required, with L > 2R*, to
sufficiently reduce stresses due to boundary conditions. For L ¼
100, this volume contains Nl z 8p402 � 0.79 ¼ 3.2 � 104 lipids.
In comparison with full particle (DPD) simulation, we note that
the hybrid description requires only roughly 10% of the total
number of particles N ¼ 3 � 106 for DPD.

Structure formation from the mixed state. We start with
systems that are initially mixed and consider two lipid concen-
trations. For the lowest one, Nl ¼ 13 825 lipids were placed in a
1003 simulation volume (N ¼ 3 � 106). For the highest one, a
reduced volume of 503, containing Nl ¼ 7900 lipids, was
considered (N ¼ 3.75 � 105). In both cases, the solvent eld was
initialized as r(r) ¼ �r ¼ NW/N, with NW ¼ N � 11Nl. For the
considered cases, �r ¼ 0.95 or 0.77, respectively.

Prior to starting the simulations, a short BD simulation of
the lipids, for a non-interacting stationary solvent eld, was
performed to disperse the lipids from their original random
positions, followed by a short DDFT simulation of the solvent,
for stationary lipids, to generate eld exclusion proles around
lipids. The details of this equilibration are not important for the
results. Consequently, hybrid simulations with Ds ¼ 0.04 were
performed, using default values for the diffusion coefficients
and fup ¼ 5.

The result for the lowest concentration aer 7.765 � 106

steps (s ¼ 310 600) is shown in Fig. 5. We nd only small
aggregates, reminiscent of the early stage (# second experi-
mentally) of lipid self-assembly into disc-like micelles. As
mentioned earlier, the growth of these micelles by lipid
uptake and/or micelle coalescence is a very slow process in
reality, and we expect that our simulation does not reach this
stage. Moreover, our kinetic model is diffusive, and aggregates
thus have to diffuse over a distance to eventually meet and
merge with other aggregates. In reality, hydrodynamic inter-
actions will accelerate this process signicantly. However, even
with hydrodynamics at work, the average distance between the
initial aggregates increases with decreasing concentration,
explaining why liposome formation is generally a slow
process. It should be noted that DPD does not necessarily
provide a better or more realistic account of the experimental
pathway. Measured diffusion coefficients for both water and
lipids were found to be substantially larger in DPD compared
to experiments, and as a consequence, the structure formation
dynamics is substantially accelerated.35 It was also noted
that ‘the diffusion between lipids in the gel phase and the
liquid phase [of the membrane] differ by far less than the
orders of magnitude observed experimentally’,35 making
attempts to set time scales in DPD by dynamics matching
rather fruitless.
2826 | Soft Matter, 2013, 9, 2816–2831
As a technical comment, we note the articially high lipid
transport rate across the membrane for our parameter set.33

Local molecular rearrangements like these may affect the subtle
balance responsible for the closing up of disc-like micelles,
leading to destabilization before they reach the threshold size.
We are not bothered, however, as this phenomenon can be
resolved by selecting a better DPD representation. Overall, we
conclude that the scale problem dictates additional measures,
for instance the introduction of implicit solvent, for simulating
spontaneous vesicle formation with molecular resolution.

For the higher concentration, the result aer 9 � 105 steps
(s ¼ 36 000) is shown in Fig. 6. Lipids initially assemble into
small membrane patches that connect into a percolating
bicontinuous network spanning the simulation volume. With
time, the structure coarsens and the size of the membrane
patches with a well-dened curvature increases. Defected
membrane structures like this are also obtained as intermediate
structures in CGMD calculations, where vesicles are assembled
by starting with more concentrated systems, in a smaller
volume, and subsequently diluting the lipids by increasing the
volume and adding water molecules.36 Compared to the less
concentrated system considered before, diffusion limitations
play a lesser role, as the proximity of the lipids in the initial
distribution enables the formation of membrane patches from
the start, and direct closing up, into small vesicles, is prevented
by connections. Stabilization by the bicontinuous network is
also the reason why the structure coarsening does not proceed.
Although a network was already observed at early stages, we did
not consider the kinetics in detail. The formation of a bicon-
tinuous structure typically takes 20 ns in CGMD, and the
transformation into a vesicle �200 ns. It is known, however,
that these values depend on size and initial structure.36

Structure healing. As a last example, we consider healing for
a pre-assembled vesicle with a hole (see Fig. 7). The
This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 A bicontinuous network of lipid bilayer patches formed after 9� 105 time
steps in a 503 simulation volume with the hybrid method, for the highest
considered lipid fraction (�23 v%). The initial system is a homogeneous mixture
of lipids and water. The transformation into one or more closed membranes or
vesicles is prevented by the periodic boundary conditions that stabilize the
connection between membrane patches. Blue: tail (C) particles and red: head (H)
particles.

Fig. 7 Starting structure for the punctured vesicle simulation, generated
following the procedure: homogeneous filling of two spherical leaflets around
the midplane at R ¼ 45, removal of lipids that are part of the intersection with a
short cylinder centered around one of the poles and equilibration following the
standard procedure. Lipids in the front part of the structure are removed for
clarity. The simulation volume is 1003 and the lipids in each of the leaflets are
initially positioned in opposing directions, according to the curvature corrected
thickness and fixed lipid per area fraction lpa ¼ 0.79, the value for a tensionless
flat membrane. Averaged values of the external and internal radii are estimated
from the position of the head particles as Rmax ¼ 47.3 and Rmin ¼ 42.7. Blue: tail
(C) particles, grey: tail terminus (E) particles and red: head (H) particles.

Fig. 8 Structure obtained after 1.5 � 106 time steps with the hybrid model,
showing that lipid rearrangement towards vesicle closure is indeed the mecha-
nism for minimizing the undesired curvature of the rim. Lipids in the front part of
the structure are removed for clarity. The averaged values for the external and
internal radii Rmax ¼ 44.2 and Rmin ¼ 39.3, estimated from the position of the
head particles, show that the vesicle has contracted as a whole, a process that is
accompanied by redistribution of lipids from the outer leaflet to the inner leaflet
(523 lipids in total). Blue: tail (C) particles, grey: tail terminus (E) particles and red:
head (H) particles.
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thermodynamic driving force for structural changes stems from
the unfavorable contact between water and the hydrophobic
lipid tails at the rim. Lipids can respond by either reorienting or
reorganizing locally, to bury the tails inside the membrane, or
by reorganizing on a larger scale to minimize the size of the rim.
Pore stabilization was earlier considered,37 and showed that rim
stabilization is possible for giant unilamellar vesicles composed
of a lipid mixture that includes lipids associated with a high
spontaneous curvature. Here, only one type of lipids is present
and the very large curvatures along the rim associated with the
rst mechanism will be avoided. The lipids will tend to reor-
ganize collectively, to decrease the size of the rim and eventually
close up.

We considered a 1003 simulation volume (N ¼ 3 � 106) and
pre-assembled a vesicle of radius R ¼ 45 for the midplane (�45
nm) using the procedure described earlier. The number of
lipids in the inner and outer leaet for lpa ¼ 0.79 is 17 931 and
22 398, respectively, giving rise to a total number of lipids Nl ¼
40 329. Aer preparation, all lipids within a cylindrical region
centered around one of the poles of themembrane are removed,
creating the hole (see Fig. 7). This reduces the total number of
lipids to Nl ¼ 39 157, or 17 380 in the inner and 21 777 in the
outer leaets, respectively. Further equilibration is performed
following the guidelines presented earlier. We realize that the
simulation volume is rather small for a vesicle of this size, but
conclude that it is sufficient for our purpose. In particular, the
solvent eld swily levels off to a constant value for these high
coupling parameters.

Aer equilibration, hybrid simulations were performed for
1.5 � 106 steps, with Ds ¼ 0.04, using default values for the
diffusion coefficients and fup ¼ 5. The nal structure, a closed
vesicle, is displayed in Fig. 8. We conclude that the anticipated
This journal is ª The Royal Society of Chemistry 2013
mechanism, i.e. vesicle healing by lipid reordering on a large
scale, is indeed conrmed by simulations. The number of lipids
in the inner and outer leaets at the nal stage was determined
as 17 903 and 21 254, indicating that the liposome has con-
tracted as a whole via the redistribution of excess lipids from the
outer to the inner leaet (523 lipids). Contraction is also
observed in the averaged external (internal) vesicle radius,
determined from the locations of the head particles, which
Soft Matter, 2013, 9, 2816–2831 | 2827
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Fig. 9 Coupling force calculated using the analytic equilibrium profile and the 27-points stencil (three grid nodes) in 1D, for one particle in a monomeric field. Left: for
varying s and coupling parameter c ¼ 1; right: for s ¼ 0.8 and varying coupling parameter c ¼ 1, ., 9. The particle position is varied with respect to the central node
located at the origin. Other parameters used were k ¼ 4.6 and rbf ¼ 3.
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reduces from Rmax ¼ 47.3 (Rmin ¼ 42.7) to Rmax ¼ 44.2
(Rmin ¼ 39.3) over time.

Visual inspection, see Fig. 8, suggests that the distribution of
lipids in the leaets is rather homogeneous. However, the
vesicle also seems less spherical and a small bulge (lower
le corner) is formed, suggesting composition uctuations.
Analysis of the local lipid content in the leaets indeed shows
variations and conrms that the cooperative redistribution of
lipids within each of the leaets aer closure is slow. The bulge
eventually develops into a small double-bilayer patch at later
times.

A similar effect was observed in large closed pre-assembled
vesicles that were constructed to be deformed or under stress,
i.e. starting from an ellipsoid or with an excess amount of lipids
in both bilayers (results not shown). In both cases, the results
showed that local lipid rearrangements resulted in the
Fig. 10 Coupling force calculated for s ¼ 1.0 and varying coupling parameter
c ¼ 1 and 9, using the analytic equilibrium profile and the 125-points stencil (five
grid nodes) in 1D, for one particle in a monomeric field. The particle position is
varied with respect to the central node located at the origin. Other parameters
used were k ¼ 4.6 and rbf ¼ 3.

2828 | Soft Matter, 2013, 9, 2816–2831
formation of multiple-layer patches in the original bilayer, on
the pathway towards multi-lamellar vesicles. This nding raises
the more general issue that, although one may assemble the
membrane according to the lipid per area fraction lpa¼ 0.79 for
a tensionless state taken from DPD for small, at membranes,11

there is no guarantee that the vesicle will be tensionless. We
identify several possible causes for this layering. First, the
restructuring pathway is limited by diffusion and the low
permeability of the membrane to solvent. The latter is impor-
tant to realize, as the vesicle cannot change its enclosed volume
without creating a pressure difference between the inner and
outer solvent in our canonical ensemble. Due to these frustra-
tions, the system may be pushed into a different pathway.
Although these factors play a role, we believe that the main
cause can be found in the original parameter set of Shillcock
and Lipowsky11 that we use. Besides the discussed articially
high probability of lipid heads crossing through the membrane
core, it is easy to see that aHH < aHW and aHC < aWC introduces a
considerable tendency for membranes to adhere, since replac-
ing the water adjacent to the membrane by another membrane
has the effect of lowering the interaction energy.33 The multi-
layer membrane patches can be seen as locally adhering
membranes, and their actual formation as a consequence of an
interplay of the discussed factors. We conclude that this
requires a much more careful analysis, in particular of the DPD
parameterization, and we leave this for future work.

Conclusions

We have developed a versatile model that binds together two
popular mesoscopic descriptions. So-core particles from DPD
can be used to represent the sparse constituents or constituents
for which explicit chain conformations are important. Fields
from molecular eld theory can represent the abundant
constituents, or the constituents for which a mean eld
description suffices. This freedom of representation not only
allows for adding molecular detail to eld-based simulations,
but also for an increased efficiency of particle-based simula-
tions. Particles and elds are made to interact with each other
This journal is ª The Royal Society of Chemistry 2013
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via a new coupling term that accounts for both the excluded
volume and the cohesive interactions. Thermodynamic consis-
tency was used to derive expressions or mappings that directly
relate new coupling parameters to mean-eld c and/or DPD a
parameters. The validity of this map was numerically tested via
solubility calculations.

Our starting point for validation is a coarse-grainedmodel for
DMPC lipids in water. We use parameters that are mapped from
an existing DPD model by Shillcock and Lipowsky. We nd a
stable pre-formed membrane with a prole that agrees very well
with the result of DPD simulations. Analysis of the surface
tension in the new approach was found to be more complicated,
and we decided to postpone such a study. In addition, we
considered proof-of-principle simulations for a few large-scale
target systems. For low lipid concentrations, simulations are
incapable of reaching the later stages of vesicle formation from a
homogeneous mixture. The standard solution, i.e. starting with
an increased lipid concentration anddiluting aerwards, indeed
resolves this issue and gives rise to the formation of a bicontin-
uous network. It shows that the increased efficiency, at the
expense of diffusion limitation, does not resolve the general
issues of molecular modeling. Nevertheless, the introduction of
implicit solvent would further reduce the computational
requirements and bring these slow, collective processes within
reach, and the current method can serve as a rst step for the
analytical introduction of implicit solvent in DPD. Simulating
from a pre-assembled structure, a punctured vesicle, shows
the anticipatedmechanism: the size of the rim that surround the
hole decreases and the hole nally closes up, diminishing the
energy costs associated with high rim curvature. We nd that
lipid reorganization in regions of excess lipid concentration in a
closed vesicle results in the formation of patches bearing
multiple layers. Several factorsmay cause this unexpected result,
including the chosen DPD parameter set, which was previously
shown to give rise to anomalous lipid ip-op rates. The effi-
ciency of the new method, and the additional efficiency gained
aer the introduction of implicit solvent, (will) enable(s) elabo-
rate parameter/property scans on the scale of complete vesicles.

Next, this model will serve as a starting point for the intro-
duction of implicit solvent into DPD. Since all processes are
diffusion-limited in the current model, a possible extension is
to couple particle DPD to a Lattice-Boltzmann model for the
eld.38 Such extensions will be considered in the near future.
Appendix A: numerical considerations

In the numerical implementation of the hybrid system, parti-
cles and eld are treated on a different footing. Although the
chain conformations underlying the molecular eld are not
spatially restricted, concentration elds are calculated and
evolved using a (cubic) lattice. Field values are stored in the
center of each computational cell. The particle representation is
essentially mesh-free, but the eld mesh is used for efficient
calculation of particle–particle interactions in practice, in a
staggered fashion. The Gaussian smoothing kernel facilitates a
map from a particle coordinate to a eld. The spread s in the
Gaussian kernel determines the range of the interactions, and
This journal is ª The Royal Society of Chemistry 2013
can be used to tune local properties, in particular at the inter-
face between particles and elds. One should, however, be
careful not to introduce interpolation or long range interactions
in the hybrid model as they will hamper the computational
efficiency. Special care is given to the discrete procedures
(stencils) for integration and differentiation.

We rely on the discrete representations for the Laplacian and
Gaussian convolutions (quadrature rules) for eld-based
DDFT.16,39 In both cases, these operators were derived based on
efficiency and accuracy, i.e. proper stencil weights for the most
compact 27-points stencil – the grid node itself and all nearest-
neighbors in 3-D – were determined based on conserving the
isotropy and scaling properties of the continuum operators. The
regularity of the grid as well as the symmetry of the Gaussian
kernel around grid positions was explicitly exploited in the deri-
vation of stencil weights and vital for the accuracy. Applying the
samestencils for thecouplingkernel,which is centeredaroundan
arbitraryoff-gridposition rp,may thushave theundesiredeffect of
introducing anisotropy or grid artifacts into the simulation.

Instead of using these quadrature rules for a particle-
centered stencil, which would require interpolation of eld
values for off-grid locations, we approximated the integral by
the normalized truncated Riemann sum. It is clear that both the
spread s and the size of the computational stencil are important
for the error made in this approximation. We again considered
a compact stencil, the 27 grid-points closest to the particle
coordinate, and numerically analyzed this error, by considering
the coupling force for a single particle that is pulled (by a
constant force) through a eld, where the pulling is slow
enough to allow for eld equilibration. We found that the
amplitude of the uctuations of the coupling force are smallest
for s ¼ 0.8. Analytical calculations (see next section) of the
coupling force on a single particle, as a function of the off-grid
particle coordinate in 1-D, corroborate the numerical nding of
an optimal s¼ 0.8, see Fig. 9 (le). In Fig. 9 (right), the coupling
force for increasing coupling strengths is plotted against the
particle position and a vanishing force for three distinct particle
positions can be identied, two of which depend on the
coupling parameter. One may observe the discontinuity in the
force that is encountered when the particle crosses over to a
position associated with a stencil centered around another
central node. However, we conclude that this bias is rather
insignicant, since the conservative forces due to particle–
particle interactions will dominate the behavior in domains
with high particle concentrations. This conclusion is further
justied by the fact that we did not observe distinct eld–grid
related phenomena in our simulations. For cases where this
articial force is important, however, extending the stencil to
125 grid points is a viable option. Fig. 10 shows a signicantly
decreased articial force for s ¼ 1, at the expense of slightly
reduced computational efficiency.
Appendix B: the volume for a single particle
in a field

Most analytic results in this paper were derived assuming a
signicantly high particle density, rp > 2. In many realistic
Soft Matter, 2013, 9, 2816–2831 | 2829
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cases, particles describe a minority component and rp < 2.
Nevertheless, since the particles and the eld are oen
immiscible, particle clusters with relatively high internal
density will form and the assumption is again valid inside the
clusters. We note that a very similar reasoning was used to
rationalize mean-eld treatments of semi-dilute cases.
Although a mean-eld treatment of specic interactions is
strictly justied only for melts, in practice both methods have
been successfully applied to describe structure formation in
semi-dilute cases, using c determined for melts. An attractive
example is the existing mean-eld treatment of amphiphilic
(AiBj) membranes in an aqueous (S) environment, where the
concentration of the amphiphile rA+B # 0.1–0.2.30

Here, we turn to the other side of the spectrum and consider
a mixed system that is almost totally monomeric eld, except
for a single particle, and estimate the excluded volume of this
particle. The particle is xed at the origin of the coordinate
system and the eld subsystem is assumed to have reached
equilibrium state, i.e. the free energy functional eqn (4) is
minimal and the total chemical potential eqn (34) is homoge-
neous in V. In particular, the bulk chemical potential

mbf ¼ ln rbf +kHr
b
f (37)

far from the particle, where the coupling contribution vanishes,
balances the chemical potential at a distance r from the particle

mf(r) ¼ ln rf(r) + kHrf(r) + cK(r) (38)

due to the assumption of equilibrium, and we obtain

ln
rfðrÞ
rbf

þ kHrfðrÞ þ cKðrÞ � kHr
b
f ¼ 0 (39)

Using the Lambert function W, the eld density rf(r) follows
as

rfðrÞ ¼
1

kH
W
�
kHr

b
f e

kHr
b
f
�cKðrÞ

�
(40)

where r is the distance from the particle. Since the Lambert
function W can not be further simplied in terms of more
common elementary functions, this solution can be evaluated
numerically, but it is not very convenient for further analysis.
Using only the rst term of a Taylor expansion

lnðxÞ ¼
XN
n¼1

ð�1Þnþ1

n
ðx� 1Þn (41)

instead, it can be shown that the density prole eqn (40) can be
approximated, for low c values or rf(r)z rbf , considerably well by

rfðrÞzrbf

 
1� cKðrÞ

1þ kHr
b
f

!
: (42)

This limited validity of this expression is reected by the fact
that rf(r) cannot become negative. The relation eqn (42) shows
that the density prole of the monomeric eld for small c has an
inverted Gaussian shape, with the minimum eld value in the
center of the particle. We dene the effective volume of the
particle as
2830 | Soft Matter, 2013, 9, 2816–2831
vp ¼ 1

rbf

ð
V

dr
�
rbf � rðrÞ

�
z

ð
V

dr
cKðrÞ

1þ kHr
b
f

¼ c

1þ kHr
b
f

(43)

and nd that it scales linearly with c. The corresponding
coupling energy is

F 1
coup ¼ c

ð
drKðrÞrfðrÞzcrbf �

c2rbf
1þ kHr

b
f

ð
drK2ðrÞ

zcrbf

 
1� 0:124c

1þ kHr
b
f

!
: (44)
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