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Propagation of shear stress 
in strongly interacting metallic 
Fermi liquids enhances 
transmission of terahertz radiation
D. Valentinis1,2, J. Zaanen3 & D. van der Marel1* 

A highlight of Fermi-liquid phenomenology, as explored in neutral 3He, is the observation that in the 
collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. 
The existence of this “transverse zero sound” requires that the quasiparticle mass enhancement 
exceeds a critical value. Could such a propagating shear stress also exist in strongly correlated electron 
systems? Despite some noticeable differences with the neutral case in the Galilean continuum, we 
arrive at the verdict that transverse zero sound should be generic for mass enhancement higher 
than 3. We present an experimental setup that should be exquisitely sensitive in this regard: the 
transmission of terahertz radiation through a thin slab of heavy-fermion material will be strongly 
enhanced at low temperature and accompanied by giant oscillations, which reflect the interference 
between light itself and the “material photon” being the actual manifestation of transverse zero 
sound in the charged Fermi liquid.

The elucidation of the Fermi liquid as a unique state of matter is a highlight of twentieth century physics1. It has a 
precise identity only at strictly zero temperature. At times large compared to �/(kBT) it can be adiabatically con-
tinued to the high-temperature limit and it is therefore indistinguishable from a classical fluid—the “collision-full 
regime”. However, at energies �ω > kBT (the “collisionless regime”) the unique nature of the zero-temperature 
state can be discerned, being different from either the non-interacting Fermi gas or a thermal fluid. Instead, 
the closest analogy is with ordered matter characterized by spontaneous symmetry breaking: the Fermi surface 
takes the role of order parameter, acting however very differently from its “bosonic” analogues. A case in point 
is zero sound. The FS0 Landau parameter encapsulates the effects of interactions on the compressibility. When 
this is finite, a propagating collective mode splits off from the Lindhard continuum of particle-hole excitations. 
The Fermi surface “hardens” and zero sound is the coherent s-wave breathing motion of this “membrane” cor-
responding to an oscillation of fermion density in space and time. Historically the neutral Fermi liquid realized in 
3 He has formed the experimental theater to test these general notions. The observation of the sound attenuation 
maximum at �ω ≈ kBT separating the hydrodynamic protection of first (thermal) sound and the “Fermi-surface” 
protected zero sound has been seminal in this regard2.

The strongly interacting Fermi liquid has yet another, less well known zero-temperature property. This 
revolves around the response to external shear stress. Shear rigidity is supposed to be uniquely associated with 
the breaking of translations, with the ramification that a solid exhibits a propagating shear mode (the trans-
verse acoustic phonon, TA) and a liquid a relaxational response instead. The spatial angular momentum “spin-
1” Landau parameter regulates the mass enhancement of quasiparticles, m∗/m = 1+ FS1/3 . Abrikosov and 
Khalatnikov3, 4 predicted that for FS1 > 6 a new propagating mode forms—see Fig. 1a. This mode propagates in 
fact shear stress (“transverse zero sound”), entailing a coherent shear deformation of the Fermi sphere 4. This 
may be confusing at first sight: the Fermi liquid is a liquid also at zero temperature. The resolution is that the 
static shear rigidity of a solid is associated with the spin-2 channel involving two space directions (e.g. Refs.5, 6). 
Propagating shear requires only one space direction: it is spin-1 and can therefore be reconciled with a system 
that is hydrostatically a liquid. Hence, shear–stress propagation in a Fermi liquid is unique in the regard that it is 
an inherently dynamical phenomenon. As for longitudinal zero sound, temperature dictates the parameter space 
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in which transverse zero sound propagates. The Fermi liquid exhibits a “viscoelastic-like” behavior7, in the sense 
that at short times (collisional regime) shear is relaxing while it propagates in the long-time collisionless regime. 
This prediction was confirmed in the 1970’s by transverse ultrasound measurements in 3He8. In later analysis 
Bedell and Pethick concluded that “...for transverse excitations in 3 He the viscoelastic model provides only a 
crude first approximation...” as a result of the fact that the sound velocity is rather close to the Fermi velocity. 
Our present study considers electrons, assuming interaction parameters corresponding for the uncharged case 
to a sound velocity well in excess of vF.

Electrons in solids also form Fermi liquids. We address here the following question: could it be that propa-
gating shear is ubiquitous in the large variety of heavy Fermi liquid metals 9? We will present here the case that 
it appears to be natural for such collective modes to exist in these systems—see Fig. 1b. Propagating shear in 
solids has been overlooked up to now for the simple reason that it is quite difficult to measure. The difficulty is 
that one can only exert shear forces on electrons via electromagnetic (EM) fields. To this end, gradients have to 
be applied and special experimental conditions are required to overcome the kinematic mismatch between the 
electron and light velocities.

Results
We will explain an experimental setup where propagating shear should give rise to spectacular, counter-intuitive 
signals. The configuration is conceptually straightforward: it involves the transmittance of light through a thin 
metallic layer (see Fig. 2a) as a function of radiation frequency and for a fixed layer thickness. Dealing with a 
weakly interacting Fermi-liquid metal, the incident light is heavily attenuated inside the layer, which becomes 
essentially nontransparent: the EM field strength is damped exponentially on a length scale set by the skin depth. 
This behavior continues up to the plasma frequency ωp . However, upon increasing the quasiparticle mass, a 
critical point is reached for m∗ ≥ 3m : above this threshold a collective mode of coherent shear deformation of 
the Fermi sphere propagates inside the material (see Fig. 2b), and the transmittance starts to severely oscillate 
as function of frequency (see Fig. 2c–f). In the ideal case of extremely clean samples and very low temperatures, 
the transmittance can become so large that at the maximum of the oscillation the metallic layer may become 
quasi-transparent, at a thickness where the weakly interacting metal would block all the incident light (see 
Fig. 2c–d)! Recently Khoo et al. studied shear sound of interacting electrons in a different setting, namely in 
two-dimensional systems 10 and in narrow strips 11.

The plan for the remainder of this paper is as follows. On the basis of the semiclassical Boltzmann kinetic 
theory applied to the Fermi Liquid (the Landau kinetic equation3) we will present here a quantitative phenom-
enology for the transverse optical response of heavy Fermi-liquid metals in the Galilean continuum. We will 
firsts re-derive the Abrikosov-Khalatnikov results for the neutral Fermi liquid, which form a useful template for 
the comparison with the charged Fermi liquid. We will then turn to the charged Fermi liquid, focusing on the 
implications of shear–stress propagation for the optical properties associated with the transverse response of 

Figure 1.   Transverse collective mode spectrum of neutral and charged Fermi liquids. (a) Sketch of the real 
part of the dispersion relation of transverse sound in a neutral Fermi liquid, corresponding to a pole in the 
transverse susceptibility. For FS1 > 6 (solid line) transverse sound propagates at frequencies above the Lindhard 
continuum (purple-shaded area); for FS1 < 6 transverse sound is Landau-damped (dashed line), and the pole 
disappears deep inside the continuum at an FS1-dependent frequency marked by the red dot. (b) Sketch of 
the real part of the dispersion relation of shear collective modes (polaritons) in a charged Fermi liquid, in the 
long-wavelength propagating-shear regime with FS1 > 6 , obtained from the Fermi-liquid transverse dielectric 
functin in linear response. The interaction of the photon root (dashed golden line) with the transverse sound of 
the neutral case (panel a) generates the usual plasmon–polariton (solid orange line), which propagates above the 
plasma frequency ωp , and the shear-polariton (red solid line), which bears the signatures of Fermi-surface shear 
rigidity in the charged case. The shear-polariton is repelled by the interaction with the nearby photon root at low 
frequency (red-shaded area), so that it bends with quadratic dispersion and submerges into the continuum at 
q ∝ ωp/c.
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heavy-mass quasiparticles. We will subsequently compute quantitative predictions for the transmission experi-
ment. We will finish with a discussion of how such computations generalize to heavy-mass Fermi liquids realized 
in solids. We will suggest an experimental protocol to observe propagating shear modes, concluding with the 
potential to use this as a spectroscopic tool for measuring the frequency spectrum of the collective Fermi-surface 
oscillations. The latter may be used to shed a new light on the mysteries of strongly correlated electron systems.

Let us start out reproducing the Abrikosov and Khalatnikov results 3, 4 for the neutral Fermi liquid. The 
Landau kinetic equation contains all the information required to analyze the linear response to shear pertur-
bations of given momentum �q and frequency ω . This information is contained in the transverse susceptibility 
χT (�q,ω) , while the quasiparticle interactions are parametrized in terms of the momentum-conserving collision 
time τc ≈ �EF/[(�ω)2 + (πkBT)

2] in the Galilean continuum. For all calculations in this work we employed the 
momentum-conserving collision time τc (a single-particle quantity) in accordance with Eq. (24) in Methods. This 
is different from the sound-attenuation or optical scattering rates (two-particle quantities), which for a Fermi 
liquid are ∝ �EF/[(�ω)2 + (2πkBT)

2]12. (cf. Methods).

Figure 2.   Simulations of optical transmission experiments at normal incidence on a charged Fermi liquid slab. 
(a) Schematics of the transmission experiments on a charged Fermi-liquid slab of thickness d. The incident 
electric field E(z,ω) produces the plasmon–polariton and the shear-polariton in the slab, which correspond 
to wave vectors q+(ω) and q−(ω) for each frequency. Each mode is the sum of two counterpropagating rays 
from Fabry-Perot internal reflections, which lead to the transmitted field ET (z,ω) . (b) Schematic depiction 
of the Fermi-surface shear deformation induced by transverse sound. (c) Slab transmission modulus 
|t(ω)| = |ET (z,ω)/E(z,ω)| , as a function of frequency ω/ωp for a Fermi liquid in the Galilean continuum at 
temperatures T = 300 K (red line) and T = 1 K (blue line). We assume a slab thickness d = 10c/ωp ( ∼ 0.1µm 
for a density n = 1023 cm−3 ), Landau parameters FS0 = 1 and FS1 = 20 , and the slip length corresponding to 
specular interface scattering with hh′k2F = 3.8 (cf. Methods). The shear mode submerges into the continuum 
below the dashed green line. (d) Same data as in panel c on logarithmic scale. The gray dashed line shows 
the result for a standard Ohmic conductor. (e) Slab transmission modulus |t(ω)| for a charged Fermi liquid 
including momentum relaxation due to Umklapp scattering with αU = 0.5 , and acoustic phonons with Debye 
temperature �ωD/kB =500 K and electron-phonon coupling constant � = 0.1 . All other parameters are as in 
panels (c, d). (f) Same data as in panel (e) on logarithmic scale. The gray dashed line is the result for an Ohmic 
conductor. Panels (a) and (b) were generated with Asymptote version 2.45, url: https://​asymp​tote.​sourc​eforge.​
io/.

https://asymptote.sourceforge.io/
https://asymptote.sourceforge.io/
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Discussion
Transverse zero sound appears as a pole of χT (�q,ω) above the critical FS1 , representing the oscillating shear 
deformation of the Fermi surface (see Fig. 2b). This reproduces the main Abrikosov-Khalatnikov result as indi-
cated in Fig. 1a: the shear mode appears as an anti-bound state formed from the Lindhard continuum. In the 
collisionless limit τc → +∞ and at large FS1  , this mode has a velocity vs = vF

√

(1+ FS1/3)/5  13, which is 
enhanced with respect to the velocity v∗F of Fermi-surface quasiparticles. The quasiparticle Fermi velocity is 
renormalized by interactions according to v∗F = �kF/m

∗ = vF/(1+ FS1/3) where vF = �kF/m is the bare Fermi 
velocity and kF = (3π2n)1/3 is the Fermi wave vector in a three-dimensional Fermi liquid, with n electron density. 
Therefore, for small q and FS1 > 6 transverse sound is protected against the Landau damping associated with 
entering the Lindhard electron-hole continuum 3. We notice that for FS1 < 6 a remnant of the shear mode still 
exists at small momenta, but it is critically damped due to the decay in the Lindhard continuum (dashed line in 
Fig. 1a), and it ceases to exist altogether deep inside the continuum (dot in Fig. 1a) 4.

For future purposes it is convenient to sketch a “phase diagram” of the shear response in the neutral Fermi 
liquid as a function of ω and FS1 , both for zero- (a) and finite temperature (b): Fig. 3. This will later serve as a basis 
to understand the transverse response of quasiparticles endowed with electric charge, where the latter allows for 
the interaction of Fermi-surface shear modes with photons.

Figure 3.   Diagram of the shear response in neutral and charged Fermi liquids. (a) Shear-response diagram 
of the zero-temperature neutral Fermi liquid as a function of excitation energy �ω/EF and FS1 , calculated from 
the transverse-sound velocity vs(ω) = ω(q)/q , and using the Fermi-liquid collision time τc . Notice that the 
zero-temperature phase diagram is valid at any electron density n, since at T = 0 the collision time τc becomes 
a universal function of �ω/EF . The threshold FS1 = 6 separates the Lindhard regime, where the Lindhard 
continuum dominates the response and the transverse susceptibility has no pole, and the propagating shear 
regime, where transverse sound propagates. (b) Neutral shear-response diagram at T = 3 K and EF = 7.6 
eV (electron density n = 1023 cm−3 ). For FS1 < 6 , the red solid line marks the crossover between the viscous 
regime of hydrodynamic damped transverse sound and the Lindhard regime. For FS1 > 6 , the condition ω = v∗F
Req (dashed golden line) identifies the crossover between viscous and propagating shear regimes. (c) Long-
wavelength shear-response diagram of the charged Fermi liquid at T = 0 and EF = 7.6 eV, calculated from the 
dispersion relation of the shear-polariton and the Fermi-liquid optical conductivity in Kubo formalism. The 
shear-polariton emerges from the continuum at the solid blue line. Deep inside the continuum, the response is 
dominated by the Lindhard continuum and yields the phenomenology of anomalous skin effect. (d) Charged 
shear-response diagram at T = 3 K and EF = 7.6 eV. The red line shows the condition δ0 = lc , with δ0 the EM 
skin depth in anomalous regime and lc the collisional mean free path, which indicates the crossover between the 
anomalous skin effect and viscous regimes, with the latter implying hydrodynamic response.
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In essence, the response diagram of Fig. 3a–b outlines the conditions on ω and FS1 for transverse sound to 
develop in the neutral system, as testified by the emergence of a pole in the susceptibility χT (�q,ω) (cf. Methods) 
in the presence of the Fermi-liquid collision time τc 4, 8, 14. An analysis of the mode dispersion relation ω(q) 
for FS1 > 6 confirms that the real (i.e. reactive) part of ω(q) prevails over its imaginary (i.e. dissipative) part 
for Reω(q) ≥ v∗Fq : indeed transverse sound propagates nearly undamped outside of the Lindhard continuum, 
consistently with the sketch in Fig. 1a. Such propagation occurs in the regime ωτc ≫ 1 , and in the large-FS1 col-
lisionless limit the mode velocity reaches v∞s .

It is instructive to translate the qualitative criterion Reω(q) = v∗Fq , which characterizes the crossover from 
overdamped to propagating shear at the edge of the continuum, into a condition Reω(q) ≥ v∗Fq on the mode 
velocity vs(ω, FS1 ) = ω(q)/q as commonly defined in the 3 He literature 4, 8. We determine such condition numeri-
cally, as marked by the dashed orange line in Fig. 3a–b. Conversely, for FS1 < 6 the pole in χT (�q,ω) is heavily 
Landau-damped at low frequency, in the hydrodynamical/collisional regime ωτc ≪ 1 , and it disappears at an FS1
-dependent frequency evaluated numerically and marked by the red solid line in Fig. 3a–b.

At zero temperature (Fig. 3a) the physical meaning of the above analysis is very simple: above the critical FS1 
the response is governed by the propagating shear mode, and otherwise one recovers the incoherent response 
of the Fermi gas, devoid of collective modes. In the finite-temperature case (Fig. 3b) the crossover from the 
high-frequency zero sound to the low-frequency thermal regime occurs at a frequency �ω ≪ kBT , as known 
in the 3 He community: such frequency is so low because we need many collisions during an excitation cycle, 
i.e. ωτc ≪ 1 , to establish local equilibrium among quasiparticles and enable hydrodynamic behaviour. In ther-
mal regime there is no longer a critical change associated with FS1 : we are dealing with the Galilean-invariant 
continuum, which is always governed by Navier–Stokes hydrodynamics characterized by the viscosity of the 
finite-temperature Fermi liquid ν(0) = v2Fτc , as follows from the kinetic theory 3, 15 (cf. Methods). With regard to 
hydrodynamics, it will become clear that it is largely irrelevant for the electron systems: extremely clean systems 
such as graphene are required to observe hydrodynamic flow 16–21, while the latter is actually very difficult to 
detect by radiative means.

Let us now turn to the less well-charted charged Fermi liquid - to the best of our knowledge the transverse 
response for large FS1 was only addressed in the book by Nozieres and Pines 1 in the form of an exercise. A first 
ramification of the Coulomb interactions is a renormalization of the Landau parameters 22, 23. More importantly, 
one has now to address the linear response to EM sources, which can be handled by time-dependent mean-field 
(RPA) using the Kubo formalism (cf. Methods). The way this works in the longitudinal channel is well known. 
The zero (longitudinal) sound mode gets “dressed” by the Coulomb interaction, with the effect that it is promoted 
to a plasmon with dispersion large ∼

√

ω2
p + v2Fq

2 where ωp =
√

ne2/ǫ0m is the electron plasma frequency.
However, light is transversally polarized. This means that, in the presence of a propagating transverse mode 

in the material, the latter blends with light through radiation-matter interaction, which can be rationalized in 
terms of simple linear mode coupling 24. As for the plasmon, this is a universal affair and one may as well first 
consider a Wigner crystal formed by electrical charges 5. The shear modes of such ensemble are the electronic 
analogues of transverse acoustic phonons in ionic lattices, and such “phonons” couple to photons possessing a 
much larger velocity (of light). A first product of this coupling is the usual “light-like” transversally polarized plas-
mon–polariton, which is universal: indeed, at q = 0 both transverse and longitudinal “plasmons” precisely match. 
However, its partner is the phonon-like “shear-polariton”: this mode continues to be massless, but it acquires a 
quadratic dispersion ω ∼ q2 at small momenta 5, 6 (a similar mechanism occurs in a particular viscoelastic-like 
holographic strange metal, see reference25). The shear mode of the heavy-mass Fermi liquid shares an analogous 
fate, see Fig. 1b. The only qualitative difference with the neutral case of Fig. 1a is that, for very small momenta 
being less than q ≈ ωp/c (cf. Methods), the shear mode dips below the upper bound of the Lindhard continuum 
at ω ≈ vFq , thus falling prey to Landau damping. Actually, according to the kinetic theory, Landau damping 
further modifies the mode dispersion, which becomes ω ∝ q4 at vanishing frequencies 13.

Once again, the only way to exert forces at finite frequency on the charged Fermi liquid is by electromagnetic 
radiation. This in turn implies restrictions on which intrinsic properties of this system can actually be measured: 
a primary consequence is that the response to the EM field is inherently a boundary phenomenon. The reason 
is that an oscillating EM field is screened by the metal, with the ramification that the transverse response cor-
responding to the screening currents decreases exponentially away from the boundary, the classical skin effect. 
In an Ohmic conductor the skin depth is δs =

√
2ρ/µω where ρ and µ are the DC resistivity and permeability of 

the conductor, respectively. This in turn assumes the Drude model, departing from a free Fermi gas, character-
ized by an overall scattering time τK due to momentum relaxation. In the Galilean continuum this is absent, and 
one has to reconsider the skin effect mechanism. The answer is well known at low temperature and small FS1 in 
the form of the anomalous skin effect, elucidated a long time ago by Reuter and Sondheimer 26. Upon lowering 
temperature, the mean free path of the electrons lmf = vFτ (either τc , τK or both) exceeds the length over which 
the transverse electric field penetrates the metal. The screening is now entirely due to the Lindhard continuum, 
with the outcome that the skin depth saturates as a function of temperature at a value δ0 = {(4c2vF)/(3πωω2

p)}1/3.
This implies in turn that in the Galilean continuum the finite-temperature hydrodynamical fluid (e.g. Fig. 3b) 

is actually hidden from observation in a large frequency regime! Hydrodynamics sets in at a scale larger than the 
collision length lc = v∗Fτc , but we just learned that the screening is complete at the length scale δ0 < lc . In this 
regime the hydrodynamical fluid responds therefore like a free Fermi gas. Upon raising temperature lc decreases, 
and when δ0 ≈ lc a crossover occurs to a regime where hydrodynamical currents take over the screening (cf. 
Methods). In an earlier paper we analyzed the ramifications of such screening 15. These observations may be of 
relevance in the context of graphene-like systems, but we leave a detailed analysis to a future publication.

As for the neutral case, we can sketch an electromagnetic response diagram: Fig. 3c–d. In the presence of 
electric charge, the role of χT (�q,ω) is taken by the transverse dielectric function ǫT (�q,ω) , with the two quantities 
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linked by the Kubo formula (cf. Methods). The fact that the Fermi liquid is interrogated by photons, with dis-
persion relation ω = c q (see Fig. 1b), fixes momentum so that the only independent parameters are ω and FS1 . 
Polaritons are self-consistent solutions of Maxwell’s equations in the Fermi liquid, i.e. q2c2/ω2 = ǫT (�q,ω) : in 
other words, we look at the photon self-energy to deduce the response of the matter.

In the following, we describe the EM phenomenology through the analytical solutions for polaritons obtained 
deep in the low- and high-frequency regimes (cf. Methods), which are sufficient to understand the essential 
physics. We leave the full numerical computation of polaritons near crossovers between different regimes for a 
subsequent work, but here we provide robust qualitative estimates on where such crossovers occur. In the high-
frequency, long-wavelength regime ω ≫ v∗FReq, at leading order we find two polariton branches (cf. Methods): 
one is the usual plasmon–polariton root, which propagates above the plasma frequency. The other, lower-fre-
quency root is the “shear-polariton”, a genuine product of Fermi-surface shear interacting with light. As such, 
the shear-polariton is a collective mode rooted in time-dependent mean field, being in this regard in the same 
category as the plasmon or even a TA phonon. Via continuity, the shear-polariton is associated with a coherent 
shear current, which takes over the screening from the Lindhard excitations as soon as it springs into existence.

Figure 3c–d shows that, compared to the neutral case, charged propagating shear takes over above a critical, 
finite frequency. This expresses the fact that at large wavelengths the shear mode becomes overdamped because 
of its dispersion bending from linear to quadratic due to EM forces at q ≤ ωp/c (see Fig. 1b), which causes the 
mode to dive into the Lindhard continuum1. The qualitative criterion for the shear-polariton to emerge from the 
continuum is that its dispersion obeys ω ≫ v∗FReq. We estimate the latter condition analytically (cf. Methods), as 
shown by the blue line in Fig. 3c–d. Notice that the shear-polariton never propagates for FS1 < 6 : this is because 
light needs to couple to propagating transverse sound in the material to generate the propagating shear-polariton, 
and transverse sound propagation necessitates FS1 > 6 as previously explained.

On the other hand, in the low-frequency, short-wavelength regime ω ≪ v∗FReq and at finite τc , the leading-
order expansion of the Fermi-liquid dielectric function yields anomalous skin effect (cf. Methods) due to the 
incoherent response of the continuum to EM fields. A final difference with the neutral case is that the apparent 
onset of the hydrodynamical “viscous” regime is at a much lower frequency than in the neutral case. But as we 
explained, this is in a way a deception: although in principle the bulk may well already be in the thermal regime, 
the boundary layer where screening currents are running is still too thin for the fluid to reach local thermal equi-
librium, given that the collision length is large compared to the skin depth, and the ensuing Fermi-gas response 
(anomalous skin effect) is insensitive to the difference between the thermal- and zero-temperature liquid. We 
qualitatively estimate the crossover between Lindhard and hydrodynamical regimes by solving δ0 = lc numeri-
cally with the Fermi-liquid collision time τc : this gives the red curve in Fig. 3d.

Having established where to look for the propagating shear in the Fermi-liquid metal, the next question is 
how to find it. In this regard we wish to propose an experiment yielding a unique, qualitative signal that will 
unambiguously confirm or falsify the existence of the shear mode. This revolves around shining light through a 
thin, micrometer-sized slab of metal. In a normal metal, the field strength of the radiation decays on the length 
scale set by the (anomalous) skin depth, which is small compared to the width of the slab. In these conditions, 
the slab is opaque. However, the propagating shear mode is in essence a photon “made from matter” , being only 
different in the regard that its velocity is much smaller than the light velocity. The coupled light-matter system 
is therefore characterized by two propagating modes: the light-like plasmon- and matter-like shear-polariton, 
characterized by wave vectors q+(ω) and q−(ω) -see Fig. 2a. These modes propagate with different velocities, 
while both are in part reflected back at each interface. Given the difference in the real part of their momenta, 
their phases evolve differently along the path through the material. Accordingly—pending the frequency of the 
incoming light—the two polaritons interfere constructively or destructively at the slab boundaries, giving rise to 
a transmitted field that exhibits oscillations as function of frequency (see Fig. 2b). Given the propagating nature 
of both polaritons, one already anticipates that these oscillations in the transmittance of the slab may be very 
large, as confirmed by our computations: Fig. 2c–d.

We addressed a similar set up some time ago, dealing instead with a Navier–Stokes liquid characterized by 
its relaxational shear mode 15. This computation is trivially adapted to the present propagating shear—it is just 
an exercise involving the transmission and reflection of two linearly coupled evanescent waves in the slab (cf. 
Methods). In the hydrodynamical case the shear mode is overdamped, with a complex momentum dominated 
by its imaginary part while it has still a finite real (“propagating”) part. We found out that this sufficed to form 
similar oscillations as function of frequency, being however very small while the transmission as a whole is 
strongly attenuated 15. Dealing with the propagating shear mode, its imaginary momentum is small compared 
to its real one, which entails that the slab becomes quite transparent and characterized by large oscillations in 
the transmittance as a function of frequency.

Using the results of the kinetic theory as an input, we can realistically simulate the transmission of slabs 
containing Galilean-invariant Fermi liquids (cf. Methods). For the results in Fig. 2 we assumed a slab thickness 
d = 10c/ωp ( ∼= 0.1µm for a density n = 1023 cm−3 ), Landau parameters FS0 = 1 , and FS1 = 20 , and the slip length 
corresponding to specular interface scattering with hh′k2F = 3.8 allowing for a maximal transmission of |t(ω)| ≈
0.06 in the frequency range between 10−3ωp and 0.1ωp . As we just discussed, at small frequencies up to the green 
dashed line the shear mode is overdamped, while spectacular transmittance oscillations set in upon entering the 
propagation regime (see blue line in Fig. 2d). One infers that the overall transmission is much larger than the 
standard result for an ohmic conductor (dashed gray line in Fig. 2d). Up to this point we ignored the lifetime 
of the shear mode. This is accounted for by the kinetic theory, parametrized by the frequency dependence of 
the collision time, τc ∝ ω−2 . This attenuates the shear mode at high frequencies, with the consequence that the 
enhanced transmission decreases rapidly as illustrated in the log-log plot (Fig. 2d). Raising temperature has a 
very similar effect since τc(ω = 0,T) ∝ T−2 . (red line in Fig. 2d).
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The conclusion is that, in order to detect the propagating shear oscillations in a heavy-mass Fermi liquid, 
temperature should be small compared to EF , while small frequencies (of order of 10−3 of the plasma frequency) 
are required, just above the point where the propagating shear escapes the long-wavelength Landau damping 
sketched in Fig. 1b. Fitting in detail the experimental fringe pattern illustrated in Fig. 2 provides the frequency 
spectrum of the collective Fermi-surface oscillations and the frequency dependent shear modulus.

As illustrated in the above, the Landau kinetic theory has remarkable powers in its capacity to deliver a quan-
titative phenomenology. However, it requires Galilean invariance, which is badly broken in the experimentally 
available charged Fermi-liquids: the metallic state of electrons formed in solids. Such breaking of Galilean invari-
ance has the fundamental ramification that total momentum is no longer conserved. Considering the longitudinal 
response of the Fermi-liquid, total momentum conservation entails that the sound mode (or the plasmon) is 
infinitely long-lived both in the zero- and finite-temperature cases in the long-wavelength limit. The same prin-
ciple applies to transverse zero sound, although it needs in addition the sharp zero-temperature Fermi surface.

The role of momentum (non-)conservation is thereby identical regardless of whether one is dealing with the 
longitudinal or transverse electromagnetic response, and we know precisely how this works for the former. In the 
Fermi liquid, the large Umklapp momentum scattering associated with a perfectly periodic lattice is irrelevant at 
long wavelength, and what remains is elastic scattering against impurities. Furthermore, at finite temperature (and 
energy) momentum relaxation also acts through electron-electron interactions and electron-phonon coupling. 
Good metals are “nearly hydrodynamical” , in the sense that the width of the Drude peak, which represents the 
momentum relaxation rate, is small. Such scale governs the decay of transverse sound as well. In a Fermi liquid, 
the main consequence of a finite-momentum lifetime is that the hydrodynamical flow of the continuum is in any 
but the most perfect solids (like graphene) immediately destroyed and replaced by the Drude (Ohmic) regime, 
where momentum is damped in the lattice by the individual quasiparticles 27. Consequently, the hydrodynamic 
regime in Fig. 3d is replaced by the Ohmic skin effect.

However, the propagating shear is only affected “perturbatively”: it will decay faster compared to the con-
tinuum case due to momentum relaxation. To offer some intuition regarding these numbers, we show in Fig. 2e–f 
a realistic example (cf. Methods). Compared to Fig. 2c–d we introduce two additional scattering channels: the 
temperature- and frequency-dependent momentum relaxation time τK (T ,ω) which parametrizes the T2 contri-
bution rooted in a realistic “Umklapp efficiency” αU = 0.5 13, 15, and the coupling to phonons, which is particu-
larly efficient in relaxing momentum. Transverse zero sound will couple to transverse lattice vibrations, and we 
consider such acoustic phonons with a Debye temperature ��D/kB = 500 K and an electron-phonon coupling 
constant � = 0.1 . The outcome is that phonons and Umklapp effectively conceal any signal of shear propaga-
tion at high temperatures, but at low temperatures the oscillations are still clearly discernible. However, even 
for a relatively weak electron-phonon coupling, the phonons represent an efficient decay channel for transverse 
zero sound: as the figure suggests, one better looks for transverse shear at frequencies below the typical phonon 
frequency scale in a given material.

In addition to slab transmission, surface impedance measurements provide in principle simpler access to the 
EM skin depth which discerns the different regimes in Fig. 3d13, 15. However, explicit computation28 shows that 
the differences between the signals in propagating-shear, Ohmic and anomalous skin effect regimes are minimal, 
once momentum relaxation is taken into account. Hence surface impedance experiments on bulk heavy-mass 
Fermi-liquids are only subsidiary with respect to thin-film optical spectroscopy in identifying Fermi-surface 
propagating shear.

A real complication is that invariably strong periodic background potentials are required to endow the Fermi 
surface of electron systems with a large quasiparticle mass. In turn, these strongly renormalized Fermi liquids 
are rooted in a strongly interacting microscopic physics, which is typically described by Kondo lattice models, 
by the proximity to quantum phase transitions, and so forth 29. As a matter of fact, it is not at all understood 
why a heavy Fermi liquid emerges in the deep infrared, but this is the domain where the experimental study of 
transverse zero sound may have considerable potential as a spectroscopic technique, due to its exquisite sensitivity 
to the characteristics of the Fermi surface.

There is leeway for theoretical guidance in the form of the tradition on determining the renormalized band 
structure governing the low-temperature Fermi-surface topology. This is typically a rather complex affair for 
real solids, with a variety of sheets characterized by different effective masses 30. In such case, the shape of the 
Fermi surface, as well as the quasiparticle mass and transverse sound, are associated with projections based 
on the point-group symmetries of the crystal. This implies that, for instance, the velocity and the damping of 
transverse sound become anisotropic, but this can be dealt with in principle, as demonstrated in the theory of 
elasticity and quite recently also in hydrodynamics 31, 32.

Can transverse zero sound be measured in the laboratory, to be exploited as a spectroscopic tool to study the 
mysteries of electron systems with heavy quasiparticle mass? From the above we have established the required 
conditions. First, one needs good metals characterized by a small resistivity at low temperatures, to assure that 
transverse sound does not decay too rapidly through momentum relaxation. To avoid complications associated 
with extreme anisotropy, the ideal candidate materials for transverse-shear optical spectroscopy should be pref-
erably rather isotropic and three-dimensional, with a band structure as simple as possible. Most importantly, 
they should be characterized as Fermi liquids with large quasiparticle mass enhancement: since a large FS1 pro-
tects transverse sound from Landau damping, the higher the mass the better. Examples of candidate materials 
fulfilling these criteria are α-cerium33, 34, MnSi35, and UPd2Al3

36. These should be tailored into submicron-width 
thin layers and then cooled to low temperature, while subsequently the transmission should be measured as 
function of frequency in the terahertz range: the sweet-spot frequency window to look for lies in between the 
low-frequency regime, where the traditional skin effect takes over, and the regime where phonons damp trans-
verse sound. It is a beneficial circumstance that the technology to realize these conditions in the laboratory has 
just become available37.
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Methods
In this section we summarize the main features of the model used to obtain all results discussed in the main text. 
Additional details of the formalism are described in Ref.13.

Landau kinetic equation
We start from the Landau kinetic equation, which determines the first-order deviation (or “displacement”) 
ǫ�k(�q,ω) of the quasiparticle distribution function, with momentum �k on the Fermi surface, with respect to global 
thermodynamic equilibrium, driven by external perturbations of momentum �q and frequency ω . Perturbation 
sources include quasiparticle interactions, collisions, momentum-relaxing scattering and external driving forces 
like electromagnetic fields. In general, the kinetic equation reads1, 3, 13

where �v�k,σ is the quasiparticle velocity for momentum �k and spin σ = {|↑�, |↓�} , f�k,σ ,�k′ ,σ ′ encode short-ranged 
interactions between quasiparticles, Icoll(�q,ω) is the momentum-conserving collision integral, Ir(�q,ω) is the 
integral for momentum-relaxing scattering, �A(�q,ω) is the applied vector potential, and the delta functions 
δ

[

En(�k, σ)− µ

]

 select quasiparticle states at the chemical potential µ . Considering a three-dimensional system, 
we standardly expand the interaction term in angular harmonics using Legendre polynomials ℘l(cos θ

′
)3, 7, 13, 38, 

and we focus on the spin-symmetric channel for density excitations, characterized by the Landau parameters 
Fsl  . The result is

where θ is the angle between the wave vector �q and the quasiparticle velocity v�k,σ , and d� is the solid angle 
element in three dimensions. We further expand the Fermi-surface displacement function ǫ�k(�q,ω) in the spin-
symmetric channel in terms of spherical harmonics Y m

l (θ ,φ)13:

The model for the relaxation time (right hand member of Eq. 2) was used by Lea et al. (Ref.4) in the analysis of 
transverse sound in 3He. Bedell and Pethick41 performed a different analysis at T = 0 based on the Fermi-liquid 
stress-tensor, and concluded that a better agreement could be obtained for the shear moduli of 3He.

In the following we consider the first transverse mode with m = 1 , generating shear currents in the first 
spin-symmetric interaction channel. Therefore we truncate the sums over l in Eqs. (2) and (3) to l = 1 , so that 
∑+∞

l=0 Fsl℘l(cosα) ≡ FS0 + FS1 cosα , and ǫ�k(�q,ω) =
∑+∞

l=0 ǫsl,1Y
1
l (θ ,φ) ≡ ǫs(θ)eiφ , where ǫs(θ) collects the θ

-dependent part of the displacement. Integration over the angles θ ′ and φ′ in Eq. (2) with the displacement 
ǫs(θ)eiφ gives null result for terms involving FS013, and we are left with

where

and v∗F = vF/(1+ FS1/3) is the velocity of quasiparticles on the Fermi surface—i.e. at the Fermi wave vector 
�k ≡ �kF—renormalized with respect to vF = �kF/m and kF by quasiparticle interactions.

Eq. (4) is the starting point of our analysis: it describes coherent shear vibrations of the Fermi surface with 
the dispersion relation (5) in response to collisions, interactions, momentum-relaxing scattering and applied 
vector potentials. Notice that Eq. (4) does not depend on FS0 , since shear deformations generate transverse cur-
rents with no net density flow.

In the following sections we solve Eq. (4) for the transverse susceptibility in the Galilean continuum by 
explicitating the form of the collision integral as prescribed by Fermi-liquid theory4. Then, we analyze the effect 
of momentum-relaxing scattering in relaxation-time approximation7 considering impurities, Umklapp processes 
and acoustic phonons as independent scattering sources.
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Fermi‑liquid transverse susceptibility
Starting from the kinetic equation (4), we can obtain the transverse (current) susceptibility of the Fermi liquid 
in closed form thanks to the assumption of only two harmonic components of short-range interactions. We 
first neglect both the collision and the momentum-relaxing integrals, i.e. Icoll(�q,ω) = Ir(�q,ω) = 0 , and we 
assume no interactions. In this case, from the expression of the paramagnetic current density one derives the 
noninteracting transverse paramagnetic susceptibility13:

where m∗ = m
(

1+ FS1/3
)

 is the effective mass of Landau quasiparticles, and

We now allow for momentum-conserving collisions in the Galilean continuum, i.e. with no momentum relaxa-
tion. The conservation of particle number, energy and momentum in collisions imposes constraints on the form 
of the collision integral Icoll(�q,ω) 3. The latter is written in terms of a single collision time τc = τc(ω,T) , which 
may depend on frequency ω and temperature T, as4, 13

where the notation [·]av =
∫ π

0
(sin θ)2dθ

4 · denotes the angular average with respect to θ . Notice that for purely 
shear stresses [ǫs(θ)]av = 04. Again the definition of the paramagnetic current density allows one to derive the 
interacting transverse paramagnetic susceptibility13. We have

where 

 To include damping of transverse currents due to momentum relaxation, we have to utilize the full kinetic equa-
tion (4) with the integral Ir(�q,ω) . A convenient way to relate the momentum-relaxing transverse susceptibility 
to the result (9) without relaxation is provided by reference7: we define the momentum-relaxing integral in single 
relaxation time approximation as

According to Eq. (11), momentum relaxation tends to restore a “locally relaxed” equilibrium distribution func-
tion, characterized by the displacement ǫr(θ)7, which would be in equilibrium without  relaxation and in the 
presence of an effective vector potential �Ar(�q,ω) modified by relaxation. The scattering processes described by 
the time τK conserve particle number but not current7, and may be ω - and T-dependent. This way, we obtain the 
momentum-relaxing transverse susceptibility13:

where

We recognize a pole at the denominator of Eqs. (12) and (9), in the presence or absence of relaxation respectively: 
this collective mode is transverse sound, studied and observed in the electrically neutral Fermi liquid realized in 
3He4, 8. The dispersion relation of transverse sound stems from the condition that the susceptibility of diverges 
for a given real frequency ω and complex momentum �q:

Eq. (14) determines the velocity of the transverse collective mode with first Landau parameter FS1 and collisions 
encoded by τc = τ(ω,T , FS1 ) . This mode has been labeled “transverse sound” in the liquid-helium literature, 
although physically it amounts to a shear oscillation of the Fermi surface. The numerical solutions of Eqs. (9) 
and (14) are shown schematically in Fig. 1a.
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For FS1 < 6 , there is an FS1-dependent value of ωth above which Eq. (14) does not have solutions. Physically, 
this means that no Fermi-surface collective modes are allowed for ω > ωth , and the only possible excitations 
are incoherent electron-hole pairs. Knowing the dependence τc(ω,T , FS1 ) , in the Fermi-liquid model—i.e. Eq. 
(24)—one finds the numerical solution ω(T , FS1 ) which is displayed with the red solid curves in Fig. 3a, b. For 
FS1 > 6 Eq. (14) has solutions for all frequencies, but above a certain threshold frequency ωth the solutions are 
outside the particle-hole continuum and thus free from Landau damping. This threshold is set by solving Eq. 
(14) together with the condition

The orange dashed curves in Fig. 3a, b represent the numerical solution of ωth as a function of FS1.

Dielectric function and polaritons
The effect of the long range Coulomb interaction is described by the transverse dielectric function, which can be 
obtained from the paramagnetic transverse susceptibility (12) through the Kubo formula. We have

where ωp =
√

ne2/(mε0) is the electron plasma frequency. Notice that the poles of the dielectric function (16) 
correspond to the transverse sound dispersion relation (14), i.e. the shear resonance of the Fermi surface. Due to 
the charge of the electrons, these resonances couple to radiation through the shear stresses exerted by photons. 
The radiation-matter interaction gives rise to new collective modes, consisting of the combined shear response 
of photons and Fermi-surface quasiparticles: the polaritons. Mathematically, polaritons satisfy the self-consistent 
solutions of Maxwell equations inside the Fermi liquid 1:

Analytical solutions of Eqs. (16) and (17) are available in the regimes q → 0 and q → ∞ : the leading-term solu-
tion in the q → 0 limit reproduces the phenomenology of viscous charged fluids 15, while in the q → ∞ regime 
we retrieve the phenomenology of anomalous skin effect13, 26, 39. In the regime ω ≫ v∗F Req, the leading-order 
expansion of Eq. (17) for ω/(v∗Fq) → ∞ gives13

where

In the limit τc ≪ τK , that is when momentum-conserving collisions are much more frequent than momentum-
relaxing scattering, Eq. (18) becomes 13

where we have defined the generalized shear modulus of the isotropic Fermi liquid7, 40, 41

Eqs. (20) and (21) can be derived from the combination of the linearized Navier–Stokes equation for transverse 
currents and of Maxwell’s equations under the assumption that τc ≪ τK . In the propagating shear regime Eqs. 
(17) and (18) give rise to two degenerate polariton branches for each frequency, characterized by the complex 
wave vectors

One solution of Eq. (22) is the usual plasmon–polariton which propagates above ωp , as also found in the standard 
Drude model, and the other slower-dispersing root is the shear-polariton. The two roots are schematically shown 
in Fig. 1b. The shear-polariton root of Eq. (22) emerges from the electron-hole continuum, thus ceasing to be 
Landau-damped, for ω > ωth . We can obtain a quantitative estimation of the latter condition by reverting to 
Eq. (15) and noticing that, for FS1 > 6 , the shear-polariton emerges from the continuum in the regime ωτc ≫ 1 , 
Req ≫Imq. This allows us to find the analytical solution
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Eq. (23) is shown by the blue solid curves in Fig. 3c, d. It confirms the early order-of-magnitude estimate by 
Nozières and Pines 1, that is Req = ω/v∗F ≈ ωp/c at the boundary with the electron–hole continuum. In the 
region between the blue solid lines and the red dashed lines in Fig. 3c, d, the shear-polariton propagates but it 
cannot be described by the viscous-liquid phenomenology of Eq. (20). The dispersion of the shear-polariton is 
robust against momentum relaxation, as it is negligibly affected by the value of τK in the propagating regime.

Collision and momentum relaxation rates
For the electron-electron momentum-conserving collision time τc = τc(ω,T) we employ the Fermi-liquid 
result14, 29, 42 while restricting the Fermi-liquid parameters to the spin-symmetric l = 0 and l = 1 channels. This 
choice respects the characteristics of the real and imaginary part of the Landau Fermi-liquid self energy while 
limiting the number of adjustable parameters to the minimum.

where Aj
l = F

j
l /

[

1+ F
j
l /(2l + 1)

]

 . Eq. (24) holds for an interaction comprising the Landau parameters FS0 and 
FS1 , consistently with the assumptions made in obtaining the kinetic equation (4). The momentum transfer rate, 
1/τK , results from impurity scattering, 1/τi , electron-phonon scattering, 1/τe−ph , and Umklapp scattering. The 
Umklapp term is given by a fraction αU ∈ (0, 1) of the electron-electron collisions. Typical values in transition-
metal compounds are αU ≈ 0.542. Consequently

We calculate the electron-phonon relaxation rate from the many-body self-energy associated with scattering 
between electrons and an Einstein phonon branch13. Explicitly, 

 where � is the electron-phonon coupling constant, �ωD is the Debye energy, and ψ ′(z) is the first derivative of 
the Digamma function. For the impurity scattering rate, we assume a positive constant τi consistently with first 
Born approximation.

Thin‑film optical transmission in propagating‑shear regime
We now turn to the computational method for the optical transmission of a Fermi-liquid thin film of thickness d 
in the propagating shear regime. The transmission coefficients at the vacuum/material interfaces follow from the 
condition that the electromagnetic wave in the vacuum has to match the frequency-degenerate polariton modes, 
Eq. (22), inside the film. To calculate these coefficients, we exploit the analogy between Fermi-liquid electro-
dynamics for ω ≫ v∗FReq and the electromagnetic response of viscous charged fluids15: appropriate additional 
constitutive relations at the slab boundaries can be formulated in terms of the slip length � , in accordance with 
Ref.15, which closes the system of equations for the reflection and transmission coefficients of each polariton 
mode at the slab boundaries. A total of six linear equations stem from the continuity of the electric field and of its 
derivative, and the constitutive relation from the linearized Navier–Stokes equation. The solution of such linear 
equations gives the transmission coefficient of the film tfilm = tfilm(ω) relative to the transmission in vacuum tv:

the amplitudes t± , θ± are determined by an analytical expression (Eq. (9) of Ref.15) to q± and the sliplength � . 
We microscopically determine the slip length following Ref.43: 
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 where h and h′ are amplitude and correlation length of the interface roughness, kF is the Fermi wave vector, and �s 
( �d ) refer to specular (diffuse) scattering. In Fig. 2c–f we compare the results for t(ω) = tfilm(ω)/tv from the prop-
agating-shear model, Eq. (27), with the standard Drude model (Ohmic conductor) for thin-film transmission.

The parameters q+ , q− and � relate via Eqs. (21) and (22) to the Fermi liquid parameter Fs1 the Fermi velocity 
v∗F and the scattering time τK , and through Eq. (28) to the product hh′ characterizing the interface roughness.
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