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Abstract In Catharanthus roseus cell cultures, the ter-

penoid moiety is considered as the limiting factor in ter-

penoid indole alkaloid (TIA) production. The pathway of

terpenoidal precursors in TIA is strongly linked with other

terpenoid pathways, suggesting that TIA production might

be limited by competition for the five-carbon (C5) pre-

cursors. This raises the question whether the stimulation of

TIA production by certain signal molecules is due to a

redistribution of C5 precursors between the associated

terpenoid pathways and/or to a total increase of the pre-

cursor availability. To investigate the effect of a TIA-in-

creasing signal molecule on C5 distribution, the cell

suspension cultures of C. roseus were elicited with jas-

monic acid (JA) and the metabolic changes of different

terpenoid pathways were evaluated targeting on TIA

(monoterpenoid; C10), carotenoids (tetraterpenoid; C40),

and phytosterols (triterpenoid; C30). The chromatographic

analyses showed that TIA and carotenoid levels almost

doubled upon JA elicitation, while phytosterol levels re-

mained constant if compared to the controls. Apparently,

both TIA and carotenoid routes benefit from an increased

C5 flow in the methyl-erythritol phosphate pathway, and

potential export of C5 precursors to the cytosolic terpenoid

routes, e.g., towards the phytosterols is minimal. However,

the relative composition of individual compounds within

each group remains similar when comparing elicited and

control cells. This suggests that the increased production of

TIA and carotenoid upon JA elicitation is predominantly

caused by an increase of the precursor availability rather

than due to a redistribution of C5 precursors between the

associated terpenoid pathways. Furthermore, NMR-based

metabolomics analysis showed a discrimination of JA-

elicited and control cells between 24 and 72 h after treat-

ments with significant changes in levels of strictosidine,

malic acid, and sucrose. This study portrays metabolic al-

terations upon JA elicitation and channeling of C5 pre-

cursors in different terpenoid biosynthetic pathways, which

provides a knowledge platform for developing strategies to

engineer fluxes in a complex biosynthetic network in order

to obtain high TIA-producing C. roseus cell lines.
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elicitation � Metabolic engineering � Terpenoid indole

alkaloids � Carotenoids � Sterols � Biosynthetic pathway �
NMR-based metabolomics

Introduction

Catharanthus roseus plants produce a diverse array of

secondary metabolites including terpenoid indole alkaloids

(TIAs), which are a valuable and unique source of the

pharmaceutically important anticancer compounds vin-

cristine and vinblastine. The other important TIAs pro-

duced by C. roseus are ajmalicine and serpentine having

antihypertensive activity (van der Heijden et al. 2004).
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Plants require a long cultivation period and produce only

low amounts of secondary metabolites. Therefore, cell

culture systems are explored as an alternative source of

valuable plant metabolites. Despite some successful ex-

amples (review in Verpoorte et al. 2002), the production of

secondary metabolites in most plant cell cultures is

relatively low or sometimes zero. In the case of C. roseus,

bisindole alkaloids such as vincristine and vinblastine are

not produced in cell cultures due to the lack of one of the

biosynthetic precursor, i.e., vindoline. Nevertheless, semi-

synthesis of bisindole alkaloids is possible by coupling

catharanthine and vindoline, thus optimizing cell or organ

cultures to produce the individual precursors is an inter-

esting target. Although ajmalicine and serpentine accu-

mulate in C. roseus cell cultures, the productivity is too low

compared to the intact plants for a cost-competitive mass

production (Zhao and Verpoorte 2007).

Several strategies can be applied to improve product

yields in plant cell cultures. One of the techniques is to

induce the biosynthesis of secondary metabolites by

elicitation. Elicitation strategies using exogenous jasmonic

acid (JA) or its volatile methyl ester, i.e., methyl jasmonic

(MeJA), often result in elevated levels of certain secondary

metabolites. In the elicitation process, jasmonates play an

important role as regulatory signals to induce de novo

transcription and translation leading to the induction of

secondary metabolite biosynthesis in plant cell cultures

(Memelink et al. 2001; Zhao and Verpoorte 2007). Ex-

ogenous application of jasmonates to C. roseus cell cul-

tures (El-Sayed and Verpoorte 2002; Lee-Parsons and

Royce 2006; Vázquez-Flota et al. 2009), hairy roots (Ri-

jhwani and Shanks 1998; Vázquez-Flota et al. 2009), shoot

cultures (Vázquez-Flota et al. 2009) and seedlings (El-

Sayed and Verpoorte 2004) increased the production of

TIA caused by an elevated expression of a set of biosyn-

thesis related genes (Memelink et al. 2001). Combination

of transcript and metabolic profiling of jasmonate elicited

C. roseus cell cultures yielded a collection of known and

previously undescribed transcript tags and metabolites as-

sociated with TIA (Rischer et al. 2006). Therefore, JA

treatment is a useful biochemical tool to stimulate the

production and to study the regulation of TIA biosynthesis.

TIAs are formed by the coupling of the indole trypta-

mine and the iridoid secologanin. The iridoid precursor

originating from geranyl diphosphate (GPP; C10) is con-

sidered as the limiting factor of TIA biosynthesis in C.

roseus cell cultures (Moreno et al. 1993; Whitmer et al.

2002). GPP is synthesized from the five-carbon (C5) pre-

cursors isopentenyl diphosphate (IPP) and dimethylallyl

diphosphate (DMAPP), in which further condensation of

these precursors generate farnesyl diphosphate (FPP; C15)

and geranylgeranyl diphosphate (GGPP; C20), leading to-

wards the biosynthesis of phytosterols (C30) and car-

otenoids (C40), respectively (Fig. 1). Apparently, the

iridoid-terpenoid moiety of TIA is linked with other ter-

penoid pathways and several studies showed an interaction

between the precursor pools in the cytosolic mevalonate

and plastidial methyl-erythritol phosphate (MEP) pathways

(Schuhr et al. 2003; Hemmerlin et al. 2003; Laule et al.

2003). This suggests that TIA production might be limited

Fig. 1 Terpenoid biosynthetic

pathway leading to different

terpenoid groups and interaction

between the precursor pools in

cytosolic mevalonate pathway

(MVA) and plastidial MEP

pathway. IPP isopentenyl

diphosphate, DMAPP

dimethylallyl diphosphate, GPP

geranyl diphosphate, FPP

farnesyl diphosphate, GGPP

geranylgeranyl diphosphate
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by competition for the C5 precursors and raises the ques-

tion whether the stimulation of TIA production by certain

signal molecules is due to a redistribution of precursors

between the associated terpenoid pathways and/or to a total

increase of precursor availability.

In this study, the effect of JA elicitation on different

terpenoid pathways, i.e., monoterpenoids (TIA; C10),

triterpenoids (phytosterols; C30), and tetraterpenoids (car-

otenoids; C40), and the distribution of C5 precursors into

representative terpenoid groups were evaluated. The tran-

sient accumulation of TIAs, carotenoids, and phytosterols

were analyzed by high performance liquid chromatography-

diode array detector (HPLC–DAD) or gas chromatography–

flame ionization detector (GC–FID). Furthermore, the

metabolomic changes between control and treated samples

were analyzed by NMR to portray metabolic alteration in

JA-elicited C. roseus cell cultures.

Materials and methods

Cell culture materials

The experiments were made with the Leiden University

CRPP-glucose cell line of C. roseus (Natural Products

Laboratory, Institute of Biology, Leiden University, The

Netherlands). The cell suspension culture was subcultured

every 3 weeks by diluting the cultures with fresh medium

(1:1) consisting of B5 medium (Gamborg et al. 1968)

supplemented with 1.86 mg/l NAA and 20 g/l glucose. The

medium was adjusted to pH 5.8 before autoclaving at

121 �C for 20 min. The cultures were maintained in

250 ml shake flasks closed with T-32 silicon foam stoppers

(Shin Etsu, Tokyo, Japan) and placed on a gyratory shaker

(110 rpm) at 25 �C in continuous light (10.8–27 lE/m2/s).

For the experiments, 20 ml (approx. 4 g fresh weight) of a

2-week-old cell suspension culture was inoculated into

50 ml culture medium and cultivated as indicated until

further treatment and/or harvesting.

Elicitation

The stock solution of JA (10 mg/ml) was prepared by

dissolving JA (Sigma-Aldrich Chemie, Steinheim, Ger-

many) in 2 ml ethanol and diluted with sterile water to

acquire the total volume of 10 ml. The solution was mixed

and filter sterilized through 0.22 lm MillexTM filter (Mil-

lipore, Bedford, MA, USA). At the fifth day of culture,

50 ll of JA solution was added into the cell culture (70 ml)

to achieve the final concentration of 34 lM (0.5 mg JA/

flask). The same amount of the solvent (20 % v/v ethanol)

was applied to the cell cultures as control treatment. The

JA-treated and control cultures were grown in triplicate for

every harvesting time points (0, 2, 6, 24, 48, and 72 h after

elicitation). The cells were filtered under reduced pressure,

washed three times with deionized water, and lyophilized

for 72 h.

Analysis of terpenoid indole alkaloids, carotenoids,

and sterols

Analysis of TIAs, carotenoids, and sterols were carried out

according to the methods described by Saiman et al.

(2014). Briefly, 100 mg of the freeze-dried cells were

weighed and extracted for analyzing TIA and sterols, while

70 mg freeze-dried cells were extracted for carotenoids.

Analyses of carotenoids, TIA and TIA precursors were

performed using different HPLC–DAD methods, whereas

the GC–FID system was used to analyze sterols. Calibra-

tion curves of the standard compounds were made for

quantitative analyses. Results were presented as an average

of the analyses of two separate flasks for several time-

points (0, 6, 24, and 72 h after treatment).

NMR measurement

NMR analysis was conducted according to the protocol of

Kim et al. (2010). The freeze-dried cells (25 mg) from

triplicate flasks of each treatments (JA and control) and

time-points (0, 2, 6, 24, 48, 72 h) were extracted with

1.2 ml of CD3OD and 0.3 ml of KH2PO4 buffer in D2O

(pH 6.0, containing 0.01 % w/w trimethylsilyl propanoic

acid (TMSP) as internal standard). The mixture was vor-

texed for 10 s, sonicated for 10 min, and centrifuged for

15 min (14,000 rpm). The supernatant was transferred into

an NMR tube for measurement of 1H-NMR using a Bruker

AV 600 MHz spectrometer (Bruker, Karlsruhe, Germany)

with cryoprobe. The 1H-NMR spectra were recorded at

25 �C, consisted of 128 scans requiring 10 min and 26 s

acquisition time with following parameters: 0.16 Hz/point,

pulse width of 30 (11.3 ls), and relaxation delay of 1.5 s.

CD3OD was used as the internal lock. A presaturation se-

quence was used to suppress the residual water signal with

low power selective irradiation at the water frequency

during the recycle delay. Free induction decay was Fourier

transformed with a line-broadening (LB) factor of 0.3 Hz.

The resulting spectra were manually phased, baseline

corrected, and calibrated to TMSP at 0.0 ppm by using

XWIN NMR version 3.5 (Bruker). The AMIX software

(Bruker) was used to reduce the 1H-NMR spectra to an

ASCII file, with total intensity scaling. Bucketing or bin-

ning was performed and the spectral data were reduced to

include regions of equal width (d 0.04) corresponding to

the region of d 0.40–10.00. The regions of d 4.85–4.95 and

d 3.25–3.35 were not included in the analysis because of

the remaining signal of D2O and CD3OD, respectively.
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Multivariate data analysis was performed with the SIMCA-

P? software version 12.0 (Umetrics, Umeå, Sweden). The

t test was performed using IBM SPSS Statistics 20 (SPSS

Inc., Chicago, IL, USA) to determine statistical sig-

nificance (P\ 0.05) of the relative levels of metabolites.

Results and discussion

Cell culture material

Nine lines of C. roseus cell suspension cultures were

analyzed for the accumulation of different terpenoid

groups, i.e., TIA, carotenoids, and sterols. Of the C. roseus

cell lines, the CRPP cell lines were found to have high

productivity in terms of quantity and diversity of TIA and

terpenoid compounds (Saiman et al. 2014). Therefore, the

CRPP cell line was chosen as a model; in particular the

glucose supplemented CRPP cell line was used for this

study for its suitability to feed with labeled glucose to study

the carbon fluxes in the future.

Prior to the elicitation study, the growth curve of the

CRPP (glucose) cell line was determined to estimate the

best time-point for elicitation. Based on the cell growth

curve (Supplementary 1), the elicitation experiment was

performed at day 5, when the maximum biomass is reached

and high metabolic rates can be achieved.

Analysis of terpenoid indole alkaloids

and precursors

The analysis of iridoids showed only the presence of lo-

ganic acid, whereas loganin and secologanin, if present,

were below detection limit. Neither tryptophan nor tryp-

tamine was detected in the CRPP cell line. TIA analysis

only showed strictosidine as major alkaloid and smaller

amounts of serpentine, and tabersonine. Figure 2a shows

the levels of loganic acid and TIAs at different time-points

a

b

c
d

Loganic acid Strictosidine Serpentine Tabersonine

trans-β-carotene cis-β-carotene Violaxanthin Neoxanthin Lutein

Campesterol β-sitosterol Stigmasterol

Total Accumulation C5 unit distribution
Phytosterols

Carotenoids

TIAs and precursor

Fig. 2 Time-course of loganic acid and TIAs (a) carotenoids (b), and
phytosterols (c) production measured by HPLC–DAD and GC–FID,

respectively, in CRPP cell line elicited with 34 lM JA or control

solution. Total accumulation and distribution of C5 precursors after

elicitation (d). Results are the mean of two replicates; error bars

indicate the two values
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after JA elicitation. Loganic acid was twofold higher in the

JA-elicited cells 6 h after elicitation. Although loganic acid

concentration was still higher compared to the control at

24 h, the level was lower than at 6 h after JA elicitation. At

the later time-points, loganic acid levels in both elicited

and control cells were not different. The central interme-

diate of TIA, strictosidine, was about twofold increased at

24 and 72 h after elicitation, while the serpentine level was

only increased at the latter time-point. The tabersonine

level was also increased (threefold) at 72 h after elicitation.

Overall, loganic acid concentration was increased between

6 and 24 h after elicitation and subsequently the levels of

strictosidine and the other down-stream TIAs gradually

increased in time.

The increased levels of TIA upon jasmonate elicitation

result from elevated expression of all known genes encoding

enzymes involved in TIA biosynthesis (van der Fits and

Memelink 2000; Memelink et al. 2001). The jasmonate-re-

sponsive expression of a number of these biosynthesis genes

is controlled by transcriptional regulators such as octade-

canoid-derivative responsive Catharanthus AP2-domain

(ORCA) proteins. ORCA3 gene expression was rapidly in-

duced by jasmonates as early as 30 min after elicitation. Yet

its expression level decreased after an hour and returned to

the control level at 24 h after elicitation. The induced

ORCA3 expression preceded induction of both tryptophan

decarboxylase (TDC) and strictosidine synthase (STR) gene

expression by at least 2 h. In contrast to ORCA3, the ex-

pression levels of the latter continued to rise up to 8 h after

elicitation. At 24 h after jasmonate elicitation, the expres-

sion levels of TDC and STRwere decreased (van der Fits and

Memelink 2001). In accordance to the TIA accumulation in

this study, the kinetic pattern of TDC and STR transcript

levels and metabolites show that the latter are delayed by at

least 24 h after induction of gene transcription.

Besides the TDC and STR genes, C. roseus cell cultures

constitutively overexpressing ORCA3 also showed induc-

tion of the expression of genes encoding the enzymes

1-deoxy-D-xylulose 5-phosphate synthase (DXS), an-

thranilate synthase (ASa), cytochrome P450 reductase

(CPR), and desacetoxyvindoline 4-hydroxylase (D4H), but

not of geraniol 10-hydroxylase (G10H) (or also known as

geraniol 8-oxidase; G8O), strictosidine b-D-glucosidase
(SGD), and deacetylvindoline 4-O-acetyltransferase (DAT)

(van der Fits and Memelink 2000). Apparently, not all

jasmonate-induced genes are regulated by ORCA3.

Another AP2/ERF-domain transcription factor called

ORCA2 was found to induce the expression of STR (Menke

et al. 1999). A study by Hasnain (2010) showed that in-

ducible overexpression of the transcription factors ORCA2

or ORCA3 in C. roseus cell cultures induced the expression

of the genes encoding ASa, TDC, STR, D4H, loganic acid
methyltransferase (LAMT) and secologanin synthase

(SLS) but not the genes encoding G10H and CPR, which

might be controlled by different transcription factors.

Memelink et al. (2001) suggested that ORCA2 and ORCA3

regulate different but overlapping sets of genes. Recently,

all structural genes in the iridoid pathway of C. roseus have

been discovered and all of the genes from geraniol synthase

(GES) to SLS are induced by jasmonate (Miettinen et al.

2014). However, it remains to be determined which tran-

scription factor regulates these genes. In addition, infor-

mation on the transient patterns of gene expressions in the

iridoid pathway upon JA-elicitation are not yet available; a

low expression of genes down-stream of loganic acid in the

early time-points and induction of TIA at later time-points

would explain the obtained loganic acid accumulation

pattern and conversion to strictosidine. Additional expres-

sion data should be acquired to resolve the elements con-

trolling the accumulation patterns of these and further

down-stream metabolites.

It should be noted that the composition of strictosidine,

serpentine, and tabersonine in the control CRPP cell line at

the 72 h time-point was 93.3, 6.1, and 0.5 % respectively,

whereas after elicitation, those compounds were all in-

creased but the relative composition was not really changed

with strictosidine (93 %), serpentine (6 %), and taberson-

ine (1 %). This shows that the flux through the pathway is

increased, but within the TIA biosynthetic network the

enzyme levels and kinetic characteristics remain the same

for the enzymes involved in the biosynthesis of serpentine

and tabersonine, and apparently the activities are not fully

used. This fits with the observations of Whitmer et al.

(2002) who showed that by feeding TIA precursors the TIA

network has a large overcapacity that under normal con-

dition is not used.

Analysis of carotenoids

An increased level of carotenoids can be observed at 72 h

after JA elicitation in the C. roseus cell suspension culture

(Fig. 2b). At that time-point, the concentrations of all

measured carotenoids in this study were about twofold

higher in the JA-treated cells compared to the controls.

However, the composition of the mixture of carotenoids in

the C. roseus cell culture did not alter after JA treatment,

i.e., b-carotene stands for the largest part of the total car-

otenoids followed by lutein, neoxanthin, and violaxanthin.

Previous studies showed that jasmonate regulates the

biosynthesis of carotenoids (Pérez et al. 1993; Rudell et al.

2002; Liu et al. 2012). Jasmonate elicitation increased the

expression level of a number of biosynthesis genes in-

cluding DXS (van der Fits and Memelink 2000), encoding

an enzyme of upstream part of the MEP pathway. Over-

expressing the DXS gene in transgenic Escherichia coli

resulted in an increased accumulation of the carotenoids
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lycopene (Matthews and Wurtzel 2000), b-carotene (Al-

brecht et al. 1999) or zeaxanthin (Albrecht et al. 1999;

Matthews and Wurtzel 2000). Furthermore, the GGPPS

transcript levels in Taxus canadensis cell suspension cul-

tures (Hefner et al. 1998) and Corylus avellana leaves

(Wang et al. 2010) were up-regulated after MeJA treat-

ment, even though no significant change in GGPPS ex-

pression was observed in C. roseus cell suspension cultures

(Thabet et al. 2012). Thabet et al. (2012) speculated that

there are several homologues of GGPPS in C. roseus and

only some of them may be induced by MeJA as exempli-

fied in tomato (Lycopersicon esculentum), in which

LeGGPPS1 was induced by jasmonate acid but not the

LeGGPPS2 (Ament et al. 2006).

Carotenoids are essential in photosynthesis to absorb

light energy and protect chlorophylls from photo damage

(review in Namitha and Negi 2010). Pérez et al. (1993)

showed that MeJA stimulates chlorophyll degradation in

‘Golden Delicious’ apple peel and chlorophyll a/b ratio

decreases with increasing MJ exposure. In contrast, Rudell

et al. (2002) found a significant increase of chlorophyll b,

while the level of chlorophyll a was relatively stable after

MeJA treatment in ‘Fuji’ apples. Rudell et al. (2002)

suggested that the different results are probably due to the

light treatment which was not applied by Pérez et al.

(1993). In agreement with Rudell et al. (2002), a notable

increase of both chlorophylls a and b was observed at 72 h

after JA elicitation in our C. roseus cell suspension cultures

under light treatment (Supplementary 2). This maybe the

result of elevated activity of light harvesting connected

with the increased level of carotenoids at that time-point.

Analysis of phytosterols

The levels of campesterol, b-sitosterol, and stigmasterol

were not relatively different between JA-elicited and con-

trol cells (Fig. 2c). This indicates that JA elicitation at the

concentration applied did not alter the biosynthesis of

phytosterols. Studies in Glycyrrhiza glabra cell cultures

(Hayashi et al. 2003) and the adventitious root cultures of

Panax ginseng (Lee et al. 2004) showed that MeJA treat-

ment did not induce the transcription of the gene encoding

cycloartenol synthase, the enzyme responsible for the first

step in sterol biosynthesis. However, several studies

showed contradictory results on phytosterols accumulation

after MeJA elicitation in different plants or plant cell cul-

tures. For example, phytosterols production was enhanced

in Lemna paucicostata cultured plants (Suh et al. 2013) and

Capsicum annuum cell culture (Sabater-Jara et al. 2010),

decreased in Centella asiatica and Ruscus aculeatus cul-

tured plants (Mangas et al. 2006), and remained constant in

Galphimia glauca cultured plants (Mangas et al. 2006) and

G. glabra cell cultures (Hayashi et al. 2003). The different

results may indicate the existence of different control

mechanisms among the plant species.

Total accumulation and C5 distribution

The effect of JA elicitation in terms of total accumulation of

the various terpenoid groups and the distribution of C5 pre-

cursors (Fig. 2d) were evaluated according to Saiman et al.

(2014). In terms of total accumulation of the terpenoid

groups, monoterpenoids consisting of loganic acid and sev-

eral TIAs were highly accumulated during the time-course

and after elicitation compared to carotenoids and sterols. The

major contribution to the total composition of monoter-

penoid accumulation comes from strictosidine (82 %),

which indicates that the flux towards strictosidine is highly

active in this specific C. roseus cell line. Total phytosterol

content was relatively constant, whereas total carotenoids

level was increased at 24 and 72 h after JA elicitation. These

results suggest a relationship between TIA and carotenoid

pathways induction as can be explained by up-regulation of

several genes encoding enzymes in the MEP, TIA, and car-

otenoid pathways upon jasmonate elicitation (Thabet et al.

2012; van der Fits and Memelink 2000).

As regards to the distribution of C5 precursors, the level

of C5 units increased in both carotenoids and TIA after 24

and 72 h of elicitation, whereas phytosterols did not change

compared to the control. This shows that upon jasmonate

elicitation, the carbon flow is activated towards the MEP

pathway rather than the MVA pathway leading to phytos-

terols, and that export of IPP::DMAPP intermediates to the

cytosolic terpenoid routes like the phytosterol is minimal.

At 24 h after elicitation, the level of the C5 unit in TIAs

was 1.8-fold higher in elicited cells (15.86 lmol/g DW)

compared to the control (8.80 lmol/g DW), whereas in

carotenoids a 1.6-fold increase of C5 units was observed in

the elicited cells (25.97 lmol/g DW) compared to the

control (16.45 lmol/g DW). Subsequently, after 72 h of

elicitation, the distribution of the C5 units to these path-

ways was almost doubled. Interestingly, between and

within these pathways the ratios of the compounds more or

less remain the same as in the control. This points towards

regulation at the very beginning of the MEP pathway

producing more C5 units, which are then, by the existing

biochemical machinery, converted to the various products

resulting in similar ratios of these as in control cells. The

results suggest that both carotenoid and TIA pathways

benefit from an increased carbon flow in the MEP pathway,

but that elicitation does not really change the carbon flux

distribution between the two pathways. TIA production

might thus be further increased by changing the C5 dis-

tribution into these pathways, e.g., by chemical inhibition

of the carotenoid pathway and/or through metabolic engi-

neering to reduce production of carotenoids.
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Metabolic profiling by NMR

The extracts of C. roseus cell suspension cultures harvested

at different time-points after JA treatment and controls

were subjected to 1H-NMR analysis. Figure 3 shows the

comparison of 1H-NMR spectra of JA-elicited and control

samples after 72 h treatment. The amino acids isoleucine,

leucine, valine, and alanine were identified. Organic acids

like acetic acid, succinic acid, malic acid, fumaric acid, and

formic acid were also found. In the carbohydrate region,

signals of anomeric protons of b-glucose, a-glucose, and
sucrose were detected. The aromatic part of the 1H-NMR

spectra showed signals of indole moiety (twin triplets and

doublets around d 7.00–d 7.50) and the presence of signals

at d 7.07 (t, J = 7.8 Hz, H-10), d 7.16 (t, J = 7.8 Hz,

H-11), d 7.37 (d, J = 8.0 Hz, H-12), d 7.49 (d, J = 8.0 Hz,

H-9), d 7.80 (s, H-17), and d 5.80 (d, J = 8.0 Hz, H-10)
represent characteristic signals of strictosidine. The other

compound detected is loganic acid by the presence of

signals at d 1.08 (d, J = 6.0 Hz, H-10), d 4.68 (d,

J = 8.0 Hz, H-7), d 5.27 (d, J = 4.0 Hz, H-1), d 7.08 (s,

H-3). The assignments of 1H-NMR signals were performed

by comparing the reference spectra of our in-house data-

base and the 1H-NMR signals reported by Kim et al. 2006

and Mustafa et al. 2009.

Multivariate data analysis of NMR data

Chemometric methods were applied to analyze the changes

in the metabolic profiles between JA-elicited and control

cells of C. roseus. Principal component analysis (PCA) is

the most common method used to analyze data that arises

from more than one variable. In this study, PCA was ap-

plied to the bucketed data of 1H-NMR spectra. The che-

mical shifts (ppm) were used as variables and the samples

served as observations in the data matrix. The data was

mean-centered and variables were scaled to the Pareto

method.

The PCA score plot of the samples shows that the

samples were separated due to the growth cycle; the older

samples moved to the negative part of PC1 (Supplementary

3a). This indicates that the metabolite profiles change with

the developmental status of the cells. It did not exhibit a

clear distinction at 0–6 h after elicitation but a separation

of the elicited and control samples was observed beyond

24 h. As PCA is an unbiased method that shows maximum

variation within the samples, a clear separation is not ob-

served if the biological variation among the replicates is

larger than between the groups. This was in fact found here

for the early time-point samples and as experienced by Ali

et al. (2012) in infected and control samples of grapevine at
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Fig. 3 1H-NMR spectra of

jasmonate-elicited (red) and

control (blue) cell suspension

cultures of C. roseus at 72 h. 1

isoleucine, 2 leucine, 3 valine, 4

alanine, 5 acetic acid, 6 succinic

acid, 7 malic acid, 8 sucrose

(fructose moiety: d 4.14,

glucose moiety: d 5.41), 9

glucose (b-glucose: d 4.53, a-
glucose: d 5.15), 10

strictosidine, 11 loganic acid, 12

fumaric acid, 13 formic acid.

(Color figure online)
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different time intervals. An effect of the developmental

stage on the metabolome was also found in our C. roseus

cell-line A12A2 when studying the time-effect associated

to salicylic acid elicitation (Mustafa et al. 2009).

To extract information about specific variables, a su-

pervised multivariate analysis is needed. Thus, partial least

squares-discriminant analysis (PLS-DA) was applied to the

same bucketed 1H-NMR spectra. In addition to the

X-matrix of NMR data, two classes (JA-treated and control

cells) were assigned for the Y-matrix in PLS-DA. The

variables were mean-centered and scaled to unit variance.

However, PLS-DA was unable to give any significant

model that fitted to the data. It was decided to separate the

samples into two groups; 0–6 and 24–72 h since the earlier

result in PCA shows such separation between JA elicitation

and control samples beyond 24 h of elicitation. As ex-

pected, the PLS-DA of the samples at 0–6 h time-points

did not deliver any fit component model, which indicates

no significant separation among the samples. Instead, the

samples at 24–72 h time-points show a separation between

JA-treated and control samples (Supplementary 3b). This

model was validated by the permutation method through

100 applications, in which the Q2 values of permuted Y

vectors were lower than the original ones and the regres-

sion of Q2 lines intersect at below zero. There is one outlier

observed for the JA-treated samples at 48 h after elicita-

tion, which could be due to either technical or biological

variation of the sample; the latter is the most influential in

many cases.

To get a better separation of the validated PLS-DA

model, orthogonal projection to latent structures-dis-

criminant analysis (OPLS-DA) was applied to the same

data. OPLS-DA is used as improvement of the PLS-DA

method to separate two or more classes of multivariate data

(Bylesjö et al. 2006). As shown in Fig. 4a, OPLS-DA

clearly distinguished between JA-treated and control sam-

ples after 24–72 h of elicitation. The loadings plot of

OPLS-DA (Fig. 4b) reveals that the JA-elicited cells were

higher in aromatic and amino/organic acid regions, while

the control cells were distinguished by high levels of

JA-elicited cells
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Fig. 4 Multivariate data analysis (1H-NMR) of JA-elicited (filled

circle) and control (open circle) samples of the CRPP cell line.

Orthogonal projection to latent structures-discriminant analysis

(OPLS-DA) score plot (a), OPLS-DA loadings plot (b), partial least

squares (PLS) score plot (c), bidirectional orthogonal projection to

latent structures (O2PLS) score plot (d), and O2PLS loading plot (e).
The numbers in the score plot are harvesting time (h) after treatments
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sugars. Some of the compounds identified for the separa-

tion of JA-elicited cells were strictosidine, succinic acid,

fumaric acid, malic acid, and leucine. Sucrose, glucose,

and alanine were found higher in the control samples. The

increased level of strictosidine and decreased level of

sugars in JA-elicited cells suggest that sugars are used for

the production of de-novo biosynthesis of defense related

compounds and the ATP needed in these biosynthetic

pathways.

Another supervised algorithm, partial least square (PLS)

can be used to reduce the dimensionality of multivariate

data and to find relations between X matrices (metabolites)

and Y matrices (time and treatment). As for the PLS-DA,

only the 24–72 h samples deliver a good PLS model

(Fig. 4c). Bidirectional orthogonal PLS (O2PLS) was fur-

ther used to separate the treated and control samples.

However, the sample separation in O2PLS showed a

similar result as in the PLS model. By removing the fore

mentioned outlier of the 48 h JA-elicited samples, the

O2PLS model was improved (Fig. 4d). The O2PLS loading

plot (Fig. 4e) shows that most of the metabolites were

relatively increased through time except sugars. Stricto-

sidine, malic acid, and succinic acid were most influenced

by JA elicitation over the time period.

Relative levels of metabolites detected by NMR

The time-course levels of somemetabolites identified by 1H-

NMR signals are shown in Fig. 5. As indicated byOPLS-DA

and O2PLS results, sugar levels decreased by time; sucrose

levels were significantly lower at 24 and 72 h in the JA-

elicited cells compared to the control (P\ 0.05). In contrast,

Flores-Sanchez et al. (2009) found no significant difference

of sucrose and glucose levels in methyl jasmonate-elicited

Cannabis sativa cell suspension cultures if compared to their

respective controls; on the other hand, the elicitation treat-

ment resulted in increased levels of fumaric acid in the C.

sativa cells. In the C. roseus cells, some components of the

tricarboxylic acid (TCA) cycle; succinic acid, fumaric acid,

andmalic acidwere increased at 24 and 72 h after elicitation,

though only malic acid levels were statistically significant

compared to the control (P\ 0.05). The current results

suggest that upon jasmonate elicitation, sugars were ca-

tabolized and TCA cycle was activated to make building

blocks and generate chemical energy for various biosyn-

thetic routes that are part of the defense response.

The levels of valine remained statistically unaltered be-

tween JA-elicited and control cells at all time-points

(P\0.05). Leucine was found higher at 24 and 72 h after

Glucose Sucrose Succinic acid Fumaric acid

Malic acid Valine Leucine Alanine

Loganic acid Strictosidine

Fig. 5 Relative level of metabolites based on the mean area (1H-NMR bucket data) of the resonance peak related to the metabolites. Results are

the mean of three replicates; error bars indicate standard deviation
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elicitation, in which the level at the former time-point was

significantly increased (P\ 0.05). Alanine was significantly

decreased after 72 h of elicitation (P\ 0.05), and this might

be linked to the decreased levels of sugars. Similarly, Liang

et al. (2006) found that glucose, sucrose, and alanine were

decreased in MeJA treated Brassica rapa leaves compared to

the control. Strictosidine levels were significantly increased

at 24 and 72 h after elicitation (P\0.05). The level of lo-

ganic acid in JA-elicited cells increased at 24 h (P\ 0.05),

but the level was about the same as in the control cells at

72 h. The results of strictosidine and loganic acid analyzed

by NMR are in agreement to the results analyzed by HPLC.

Conclusion

This study is the first that describes the channeling of C5

units in the different terpenoid pathways in C. roseus cell

suspension cultures upon JA elicitation. In the elicited

cells, the levels of TIA and carotenoids were increased,

while sterol accumulation was not affected, indicating that

the flux of C5 units was only increased in the MEP path-

way. It is suggested that the increased production of TIA

and carotenoid is preferably due to the increase of the

precursor availability rather than redistribution of C5 units

between the associated terpenoid pathways. For both car-

otenoid and TIA pathways, the available enzymatic ma-

chinery seems to have an overcapacity, able to deal with

increased carbon flux from the MEP pathway. To improve

TIA production, channeling the increased availability of

the C5 units away from carotenoids to TIA would be an

interesting strategy.

NMR-based metabolomics is a powerful tool to simul-

taneously analyze both primary and secondary metabolites.

In combination with multivariate data analysis, this ap-

proach is able to portray metabolic alteration in JA C.

roseus cell cultures as summarized in Fig. 6. It reveals that

the sugar levels were decreased, while the TCA cycle was

Fig. 6 Schematic summary of

the results obtained in this

study. The levels of the

identified metabolites which

were increased (blue), decreased

(red), or relatively unchanged

(grey) after JA elicitation in C.

roseus cell suspension cultures.

*Loganic acid level increased at

24 h after elicitation, whereas at

72 h the level is about similar to

the level of the control. (Color

figure online)

360 Plant Cell Tiss Organ Cult (2015) 122:351–362

123



activated to generate chemical energy and building blocks

for a defense response, resulting in a higher accumulation of

e.g., strictosidine, the precursor of many TIAs that may play

a role in the plant defense system. Overall, this work shows

that a systemic study of the metabolic changes in cells can

lead to novel approaches of metabolic engineering.
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