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A B S T R A C T

Global hydropower growth continues to accelerate with 25% of total capacity installed in just the last 10 years.
This accelerating expansion and the important storage facility hydropower means it is increasingly important to
understand the reasons for operational failures. This is a challenge because the major reason for failures involves
the complex interaction of hydraulic, mechanical and electric subsystems. Historically, reliability modelling has
been split in two directions, focusing on different sub-systems, and has not yet been unified. Here these ap-
proaches are unified with a novel expression of unbalanced forces. This model with operational data are vali-
dated and the important modes of oscillation in the shaft are identified. Finally, the mechanism of the first-order
oscillation mode exciting a second-order mode is presented. This integrated and accurate mathematical model is
a major advance in the diagnosis and prediction of failures in hydropower operation.

1. Introduction

Hydropower plants have been built in more than 160 countries,
with a total of 27,000 hydro-turbine generator units [1]. China is
leading the hydropower boom, followed by India, Europe, the United
States and Japan [2]. These increases in hydropower capacity have
been driven by concerns over climate change and energy security.
Presently, it is one of the few technologies offering affordable storage
over longer periods, making it a particularly important technology for
security of supply [3]. Given these benefits, construction of further
hydropower systems is expected to continue, and the growth rate to
rise. The economic benefits [3] and carbon dioxide [4] mitigation of
these generating systems are well known to the general public, but
stability and safety requires attention, with several recent, high-profile
failures, such as the accident at the Sayano-Shushenskaya Hydroelectric
Power Plant [5]. Failures in hydropower units, at their best, result in
capacity reductions and financial loss, and at their worst, injury and
death. While operational information is being gathered to better govern
hydropower systems (such as load-frequency regulation control
methods [6] and refurbishment and uprating of hydro power units [7]),
operational managers currently are unable to use this information
practically because the underlying system failures are not well

understood [8].
Hydropower generation offers a significant challenge to modelers

and engineers because it involves sub-systems that interact in complex
ways [9]. Historically, studies of these systems have been divided into
two research directions: hydro-turbine governing systems [10]; and,
shaft systems modeling of hydro-turbine generator units [11]. There are
two main issues with these approaches. First, hydro-turbine governing
system models attempt to provide stable services to the grid by con-
trolling the speed of the turbine, but ignore shaft axis vibration; con-
versely, shaft oscillation modeling attempts to control vibrations rather
than speed. Clearly these two models interact with each other, hence a
general model coupling both viewpoints is increasingly urgent. Second,
notwithstanding some early work [12], there have been no significant
model developments which included complex water flow and the
consequent impact on unbalanced hydraulic forces. This is despite the
fact that plant failures caused by this force are very common, for ex-
ample at the Three Gorges plant [13]. Additionally, with the rapid
development of hydropower plants, the size of machined parts is be-
coming larger and, accordingly, manufacturing precision difficult to
maintain. As the precision lowers, the influence of unbalanced forces
becomes more important. A more accurate expression of the un-
balanced hydraulic force is both important and timely.
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The hydro-turbine governing system consists of diversion penstock
subsystems, hydraulic turbine subsystems, generator subsystems, and
control subsystems. These systems can be described by linear and
nonlinear mathematical modelling, and are usually expressed by
transfer functions or differential equations. Differences in these model
types are driven by differences in the penstock, hydraulic, and gen-
erator subsystems. For example, in the penstock system, the transfer
function model contains a hyperbolic function from which, using a
Taylor expansion, different order polynomials are obtained. The widely
used expressions are the zero-order and first-order polynomials, which
are named the rigid water hammer model and elastic water hammer
model, respectively. In the generator model first- or second-order dif-
ferential equations are used. Finally, the hydro-turbine governing
system can be expressed by differential equations from which numerical
results can be obtained using the canonical Runge-Kutta method. Linear
models have been widely used in analyzing stability analysis and op-
timal controller design of the hydro-turbine governing systems.
However, there are still many instability problems in operating turbine
generator units, especially during transient processes. For example, the
Sayano-Shushenskaya hydroelectric generator unit, or the largest
power plant in Russian history, suddenly destroyed itself during load
rejection and was thrown from its position by water pressure [5]. Se-
venty-five people died as a result of the catastrophe. All hydroelectric
generators in the plant were badly damaged, the turbine hall building
was destroyed, and electrical and additional equipment was sig-
nificantly broken. Commonly, previous studies use simplified linear
models, which poorly simulate the dynamical behavior of actual ma-
chines. This is especially true for the hydro-turbine governing system
due to the complex nonlinear system coupling hydraulic, mechanical,
and electrical subsystems. These issues are exacerbated by the scale and
complexity of generators and turbines. Given this complexity, it is un-
derstandable that linear models present many problems when used in
real world conditions.

Nonlinear models of the governing system were mooted some time
ago [14], but were rarely used in solving actual problems owing to the
lack of efficient theoretical analysis and computational tools. Studies on
nonlinear models were revived in 1992 with the development of non-
linear system control theory and improvements in computation [10].
Since then, nonlinear system models have become a key interest in
research [15]. Recent studies of the governing system are divided into
two main themes. The first theme focusses on the coupling subsystem
relationship and effect [16]. For instance, Riasi et al. investigated the
effect of surge tank on the safe operation of power plant. The results
showed that the surge tank decreases the pressure rise within the spiral
case and turbine overspeed by 22% and 6%, [17]. The second theme is
focused on model refinements (for example, the fractional-order model
[18], the stochastic model [19], and the Hamiltonian model for single
pipe [20] or multiple pipes [21]) and governor control methods (such
as the testing measurements [22], the stalling-free control strategies
[23], and the fuzzy-PID controller [24]). For example, Xu et al. in-
troduced fractional calculus and utilized fractional stability theory to
analyze dynamic operational stability [18]. Mesnage et al. proposed a
real-life MPC scheme that considers realistic limitations on the actuator,
leading to feasible, almost time-optimal control design [25]. Liang et al
proposed a model of hydro-turbine governing system with a surge tank
and designed a specified fuzzy mode robust controller [26]. Then, Guo
et al established a nonlinear model of the hydro-turbine governing
system considering the head loss [27], and surge tank [28], and pro-
posed a corresponding primary frequency relation strategy. Zhang et al
proposed an object-oriented approach to establish Matlab/Simulink
platform for hydro-turbine governing system [29].

The shaft system of hydro-turbine generator units consists of the
upper guide bearing, the generator rotor, the lower guide bearing, the
water guide bearing, and the turbine runner. It is a typical, bearing-
rotor rotational machine system upon which several forces act, in-
cluding: the unbalanced magnetic force (of the generating inductor),

the oil film force (the oil film used on the bearings), and the unbalanced
hydraulic force (the mechanical forces of the water flow). By under-
standing the effects and interaction of each of these forces it is possible
to predict the dynamic responses of turbines and diagnose possible unit
failures [30]. Each of these forces has been previously investigated
independently, and the major advancements in the first two forces are
outlined in turn. The first formulation of the unbalanced magnetic force
was used to analyze the effects of coupling misalignment on the vi-
brations of rotating machinery, such as the bladed disks [31] and hy-
draulic turbines [32]. A more generalized, force equation model was
developed incorporating the actual air gap distribution inside the
stator, regardless of the orbit type [33]. Recently, studies have focused
on calculating the forces in different types of generator, such as the
generator rotor [34], tidal turbine [35], and Francis turbine [36].

Three main contributions are concluded in this study. First, by using
a novel expression of the unbalanced hydraulic force relative to the
runner axis a general, unified model of the hydroelectric generating
system is proposed. Second, the interaction of these subsystems and
oscillation modes are obtained on the basis of this model. Finally, this
model is validated against the existing theory (linear and nonlinear
series methods) and operational data.

2. A unified model of a hydroelectric generation system

A hydroelectric generation system is composed of diversion pen-
stocks (the hydraulic subsystem), hydraulic turbine generator units (the
mechanic-electric coupling subsystem), and auxiliary equipment (the
mechanical subsystem). The operating state of a hydraulic turbine is
easily disturbed owing to the complex motion of water flowing in di-
version penstocks, multi-operating mode conversion, etc. While it
might be possible to control the shaft oscillations due to these dis-
turbances, the turbine still needs to meet the requirements of electricity
on the grid, such that the change in frequency of the turbine is limited
(typically to within 0.5 Hz). With this in mind, the model unification
with the canonical models are established from the literature for a
hydro-turbine governing system [19] and a shaft system [37].

2.1. Hydro-turbine governing system model

Here a nonlinear mathematical model of the hydro-turbine gov-
erning system is adopted as [19]:
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where T01 is the elastic time constant of the penstock system, T01= L/υ;
L is the length of the penstock; υ is the speed of the surge pressure wave
in the penstock; Z01 is the resistance value of the hydraulic surge in the
penstock system, Z01= υQr/AgHr; Qr is the rated flow of the hydro-
turbine; Hr is the rated head of the hydro-turbine. g is the acceleration
of gravity; A is the cross-sectional area of the penstock; h0 is a difference
of water head between the upstream and downstream; f1 is the friction
factor of the penstock; yr is the rated value of the guide vane; mt is the
turbine torque; me is the electromagnetic torque of the generator; en is
the is the accommodation coefficient; kp is the proportional gain; ki is
the integral gain; kd is the differential gain; y0 is the initial condition of
the guide vane; r is the load disturbance; x1, x2, x3, and x4 are the
middle variables; q is the turbine flow; ω is the generator speed; y is the
guide vane opening.
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2.2. Shaft system model

The shaft system of the generator unit is described as [38]:
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where x and y are the rotor axis of the generator in X-direction and Y-
direction, respectively; υx and υy are the velocity of axis in X-direction
and Y-direction, respectively; m1 and m2 are the generator rotor mass
and the turbine runner mass, respectively; c is the damping coefficient;
k1 is the bearing stiffness of the generator rotor; k2 is the bearing
stiffness of the hydro-turbine runner; e1 is the eccentric mass of the
generator rotor; e2 is the eccentric mass of the hydro-turbine runner; ω
is the generator speed; φ is the phase of the generator rotor; θ is the
phase of the turbine runner; r is the distance between the axis of the
turbine runner and the generator rotor; Fx-ump and Fy-ump are the
asymmetric magnetic pull forces in X-direction and Y-direction, re-
spectively; Fx and Fy are the oil-film forces in X-direction and Y-direc-
tion, respectively.

2.3. A unified model

The unbalanced hydraulic force is generally caused by asymmetric
flow through the unit, for example along the runner blades, the guide
vane, and the socket ring. Tong et al. proposed an expression for the
force on the runner blade of [12]:

=R ρW Γma a (3)

where Wma is the average value of the relative velocity around the
blade; Γa is the average circulation. Utilizing Kutta-Zhoukowski con-
dition, the force can be detailed as:
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where F is the maximum area of the blade; Wm is average value of the
relative flow velocity of the blade front (W1) and back flow (W2),
Wm= (W1W2)0.5 βm is the angle between the average flow velocity and
the blade in the circumferential direction; γ is the weight of water,
γ= ρg; Cy is the lift coefficient of the blade; Cx is the damping coeffi-
cient of the blade, λ= arctan(Cx/Cy). Applying the approximate ex-
pressions of the lift coefficient and the damping coefficient to the blade
gives:
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There are three motion types in the turbine runner, which are de-
fined as the relative velocity (W), the convected velocity (U) and the
absolute velocity (V). An example of this, for a Francis turbine runner
along with the velocity triangle of the blade are shown in Fig. 1. Sub-
script 1 represents the flow velocities of the blade at the inlet, and
subscript 2 describes the flow velocities of the blade at the outlet. β is
the direction angle of relative velocity (W). α is the direction angle of
absolute velocity (V).

The relative flow velocity at the inlet is then:
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where Q is the turbine flow; D1 is the diameter of the turbine runner at
the inlet; b0 is the height of the blade; ψ1 is the coefficient of flow re-
duction over the cross section of the blade due to blade thickness at the
inlet.

From the velocity triangle, the relative flow velocity at the outlet is
written as:
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Here, the direction of the convected velocity is defined as x-axis.
The coordinates of the velocity W1, W2 and the velocity Wm are
(W1cosβ1, W1sinβ1), (W2cosβ2, W2sinβ2), and (W1cosβ1+ W2cosβ2,
W1sinβ1+ W2sinβ2), respectively. Then the absolute value of Wm is
written as:
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The angle between the velocity Wm and the convected velocity is
then:
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In light of Eqs. (8) and (9), Eq. (4) is rewritten as:
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Assuming that the initial angle of the blade is α0, the position angle
of the blade at time t can be described as:

= +α α ωt0 (11)

The component forces of Pm in the X-direction and Y-direction are
then:
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Theoretically, water flowing in the turbine runner is axisymmetric,
but in practice manufacturing deviations of the blade can induce radial
asymmetry and forces relative to the center of the turbine runner. For

W1

U1 1
1

W2 V2

2
2

2

W2

V1

U2

Fig. 1. Francis turbine runner and the velocity triangle of the blade.
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example, assume a pair of ‘real’ runner blades (numbered 1 and 13)
with manufacturing deviations. The relative velocity at the outlet edge
is defined as W21. The angle between the relative velocity and the
circumferential direction of blade 1 is β21. The relative velocities for the
other blades are W22. The angle between the relative velocity and the
circumferential direction of convected velocity is β22. The angle be-
tween the velocity W21 and the convected velocity is βm1. The re-
lationship is then:
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The angle between the velocity W22 and the convected velocity for
other blades is βm2, giving the relationship:
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The hydraulic unbalanced forces can then be expressed as:
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The dynamic torque of the hydraulic turbine considering the hy-
draulic unbalanced forces is rewritten as:
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Similarly, the generator speed is derived as:
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Finally, incorporating these forces gives us a unified model of:

These equations of the hydro-turbine governing system, con-
sisting of the hydraulic subsystem, the electric subsystem and the
guide vane opening equation, are linked by a simple nonlinear tur-
bine torque (mt= Atht(qt− qnl)− Dtω) proposed by [10]. The re-
presentation of the shaft subsystem only includes the mechanical
subsystem except for the guide vane opening equation and the un-
balanced hydraulic forces acting on the turbine blade.

3. Nonlinear modal series method

The model of the generating system, Eq. (18), can be written as the
following type [39]:

=X F Ẋ ( ) (19)

where Xsep is a vector describing the equilibrium point of the system.
Using a Taylor expansion, this equilibrium point can be given as:
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where X is the domain of convergence; A is the Jacobian matrix,
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Using the relationship X=UY, Eq. (20) is rewritten as:

(18)

B. Xu et al. Energy Conversion and Management 174 (2018) 208–217

211



= +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+Y Y V

Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y
Y U H U Y

̇ Λ 1
2

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

...

T T

T T

T T

T T

T T

T T

T T

T T

T T

T T

T T

1

2

3

4

5

6

7

8

9

10

11 (21)

where X describes the equilibrium point, Y describes the transformed
system and U are eigentriplets of the system [40]; V is a different set of
eigentriplets, Λ is the diagonal matrix of eigenvalue λi, with an ex-
pression:
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These eigenvalues λ can be thought of as the characteristic value of
the generating system. In light of the above analysis, Eq. (21) can be
rewritten as:
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, Vjp represents the matrix element of

−U jp
1 in row i line p. Set the initial value of the system as X0, and the

initial value of transformed system Y is obtained as Y0=U−1X0,
Y0= [y10, y20, …, y110]. Assuming that the solution of Eq. (22) is
y Y t( , )j 0 , the expressions is reduced to the relationship:

= + + +y t y t y t y t( ) ( ) ( ) ( ) ...j j j j1 2 3 (23)

where ymj(t) contains the combination of initial states. From prior stu-
dies, when m=2, the simulation results could meet the accuracy re-
quirement (since each increasing order yields smaller perturbations).
Therefore, if just the first two orders are focused, from Eq. (21), Eq. (20)
is write:
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To solve Eq. (24) an inverse Laplace transformation is applied, to
give:
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When + − ⩽λ λ λ λ| | 0.001 | |k l j j , the combination causing the second
order quasi-resonant frequency is (k, l, j). Expression of symbol h2kl

j is

= + +h2kl
j C

λ λ λ
kl
j

k l j
. Utilizing the relationship =X UY , Eq. (25) is rewritten

as:
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From Eq. (26), the linear expression of the dynamic variable xi in
the system is

∑=
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11
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where yj0 is the j-th component of = −Y U X0
1

0, X0 is the initial condition
of variable X.

Assuming that only variable xi is disturbed with amplitude of value
1, and other variables are defined as 0. According to the relationship of

= −V U 1, the initial condition of variable yj0 is rewritten as:

=y vj ji0 (28)

From Eq. (28), the response of variable xi is
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11
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The linear participation factor Pij describes the linear effect of os-
cillation type j on state variable xi, namely the excited degree of os-
cillation type j in variable i when the system is disturbed. Its equation is
defined as:

=P u vij ij ji (30)

Similarly, the above method solving the linear participation factor is
applied to the generating system, and the second-order participation
factor of the system can be obtained by evaluating Eq. (28) with Eq.
(26):
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From the definition of linear participation factor, Eq. (29) can be
transformed for a non-linear analysis as:
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4. Results and discussions

Now, the model is validated against linear and nonlinear modal
series analysis, and operational data. Using nonlinear modal series
analysis, it is possible to capture the high-frequency oscillation modes
of nonlinear dynamical systems, giving a good physical insight into
oscillation interactions (such as the upstream disturbance on the draft-
tube on the basis of system model [41], experiment investigated of load
variations on pressure fluctuations [42], and common mode noise
analysis [43]). Importantly it gives a closed-form approximate solution

B. Xu et al. Energy Conversion and Management 174 (2018) 208–217

212



to the nonlinear state equations even in the face of a resonance con-
dition, which has been a weakness of previous approaches (full details
are in Supplementary Note 1).

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.enconman.2018.08.034.

4.1. Model validation

Modal analysis yields two important parameters for further discus-
sion. The first is the eigenvalues of the system λ – which can be thought
of as the characteristic values of the generating system. The second is
the participation factors P which describes the interaction effects of
variables within the system. Participation factors may be either first-
order or second-order. The second-order participation factor, which is
of specific interest because it describes the non-linear components of
the system, can be divided into three types. First, the single modal
participation factor P2ij where 2 indicates the second order, i the system
state variable xi and j the oscillation types (namely the eigenvalue of the
system). Second the composite pattern participation factor P2ikl given by
the interaction effect between state variables and the compound oscil-
lation types (k, l). Finally, the resonance mode participation factor
P2i(k,l,j) represents the interaction effect between the system state
variable xi and compound oscillation types (k, l, j). For a full description
of the mathematical background for linear and nonlinear modal ana-
lysis see Section 3.

As described above, the shaft subsystem is dependent on the axis

offset, and the governing system is dependent on the generator speed.
Regarding the numerical method, at least one of widely applied
methods should be selected and used to validate the robustness of the
nonlinear modal series method of Eq. (18). Fortunately, the Runga-
Kutta method is a widely accepted method and is robust in solving
differential equations like Eq. (18). Hence, it is selected to validate the
feasibility of the nonlinear modal series by obtaining the approximate
solution of Eq. (18). To enhance the robustness of the nonlinear modal
series method, the Admas-Bashforth-Moulton algorithm [18,45] is se-
lected to further simulate the response of Eq. (18). The hydro-turbine
flow, the generator speed, and the axis offsets in X and Y directions are
investigated using by linear modal analysis, nonlinear modal analysis,
and the Runge-Kutta method in Fig. 2.

The linear method results are clearly different to those of the non-
linear modal series, the Runge-Kutta method, and the Admas-Bashforth-
Moulton algorithm. The nonlinear modal series, the Admas-Bashforth-
Moulton algorithm, and the Runge-Kutta results show good agreement,
at least to two seconds, indicating that the modal series method can
capture the dynamic characteristics of the hydroelectric generating
system accurately and quickly.

4.2. First-order oscillation mode analysis

The first-order oscillation mode reflects the natural frequency of
subsystem state variables. Now, the generating system is divided into
the electric subsystem, mechanical subsystem, and hydraulic

(a) The hydro-turbine flow 

(b) The generator speed 

Fig. 2. Comparisons between the numerical results of hydro-turbine flow, the generator speed, and the axis offsets in X-direction and Y-direction by linear method
(blue line), Runge-Kutta method (black line), Admas-Bashforth-Moulton algorithm (gray line), and nonlinear modal series method (red line). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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subsystem. The electric subsystem includes the generator speed (ω), the
power angle (δ), and the conversion efficiency (ef). The mechanical
system consists of the offset of rotor axis in X-direction (x11), the offset
of rotor axis in Y-direction (y11), the variation rate of rotor axis in X-
direction (υx), and the variation rate of rotor axis in Y-direction (υy).
The hydraulic subsystem is composed of three state variables (x1, x2,
and x3) and turbine flow (q). The first-order oscillation modes (P1ij)
corresponding to the above three subsystems are shown in Fig. 3.

As shown in Fig. 3(a), there are three state variables driving oscilla-
tion modes in the electric subsystem: generator speed, power angle, and
conversion efficiency. Specifically, for the generator speed ω, the ampli-
tudes of λ3, λ7, and λ9 are higher than the others, meaning that the os-
cillation mode is mainly dependent on the coupling effect of oscillation
modes of state variable x3 from the hydraulic subsystem, offset y11 and
variation rate υy of axis in Y-direction from the mechanical system. The
degree of effect is given by x3 > y11 > υy. For the power angle δ, there
are three parameters with large amplitudes, λ4, λ6, and λ11. The mode of
vibration is directly related to modes of turbine flow q and offset of axis in
X-direction x11. Their ranges are q > x11. For the conversion efficiency
ef, the amplitudes of λ2, λ3, λ4, λ5, and λ6, which corresponds to state
variables x2 and x3, turbine flow q, generator speed ω, and offset of axis in
X-direction x11 have large amplitudes. Their contribution to the oscilla-
tion mode of efficiency is given by q > x2 > x3 > ω > x11. In sum-
mary, the total contribution of state variables from the generating system
is x3 > q > x6 > x11 > x2 > y11 > υy. For convenience, these results
are presented in Table 1.

4.3. Second-order oscillation mode analysis

The strength of each mode and their contribution to overall system
dynamics can be obtained. The second-order oscillation mode is excited
by the combinations of two different fundamental modes, for example
the combination of the first order oscillation modes λk and λl. The index
P2ikl can be used to analyze the second-order oscillation mode with
results shown in Fig. 4.

From Fig. 4, turbine flow q and amplitudes of index P2ikl corre-
sponding to combinations of λl=2,3;k=3,4,5,6,7,8,9,10,11, λl=4,5,6;k=4,11,
and λl=8,9,10;k=2,3 are larger other interactions. In other words, the
interaction of combinations of fundamental oscillation modes of xk and
xl (corresponding to λk and λl) produces the second-order oscillation
mode. Similarly, the interaction of combinations of
λl=2,3;k=2,3,4,5,6,7,8,9,10,11, λl=4,5,6;k=2,3,4,5,11, and λl=8,9,10;k=2,3 for
conversion efficiency, λl=1,2,3;k=5,6, λl=4,5,6;k=2,3,4,5,11, and
λl=9,10;k=2,3 for offset in X-direction, λl=5,6,11;k=2,3,4,5,6,11 and
λl=2,3,4;k=5,11 for the turbine flow q highlight novel second-order os-
cillation modes. According the definition of index P2ikl, these second-
order oscillation modes play important roles in the transient processes
of the generating system. Larger amplitudes of index P2ikl result in
longer durations of these oscillation modes during transient processes.
The interaction of these modes enhances the coupling effect of these
subsystems, which presents challenges in controlling transient pro-
cesses.

(c) Axis offset in X-direction 

(d) Axis offset in Y-direction 

Fig. 2. (continued)
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4.4. Discussions

With the rapid development of renewable energies linked to the
power grid, to improvements to the modeling accuracy of hydroelectric
generating systems are crucial to increase the stability of unit perfor-
mance [44]. With this in mind, this study provides a novel model of the
hydroelectric generating system which couples and analyzes the
shafting of the hydro-turbine generator unit, and oscillation modal in-
teractions of hydraulic, mechanical, and electric subsystems. First,
Fig. 2 and Tab. 5 show the feasibility of the nonlinear modal series

method and the robustness of the model. Note that the dynamic be-
haviors of the model show reduced modeling accuracy when compared
to Zeng’s model [37] and Xu’s model [38]. This is likely due to the
change in the flow caused by guide vane opening. Turbine blades are
generally designed to ensure that water crosses the blades smoothly at
rated capacities, termed the optimum operation state. At lower capa-
cities, the water flow state is changed due to the change of guide vane
opening, leading to turbulence between the water flow and turbine
blades. This turbulence changes the dynamic characteristics of turbine
torque (Eq. (12)), and further lowers the modelling accuracy. Random
variables could be added to the unbalanced hydraulic forces and tur-
bine torque in order to apply this model to non-optimum turbine states
(full details are in Supplementary Note 2). Second, the traditional
models of the hydroelectric generating system are generally composed
of the electric subsystem and the hydraulic subsystem, such as the
classical model proposed by the IEEE Group [10] (without the me-
chanical subsystem). From the results obtained by this novel model (see
Tab. 3 and Fig. 4), the first-order oscillation modes of δ and ω are di-
rectly affected by variables x11 and y11 (belonging to mechanical sub-
system). Hence, this modeling modelling approach succeeds in coupling
traditional models with the mechanical subsystem. On the basis of the
model established in this study, control methods with respect to hy-
droelectric generating systems become a new challenge. The applica-
tion of this model to real-time operational data would provide operators
important information on shaft oscillation and timely mitigation op-
tions. Even if the model is too complex to operationalize in real-time by
operators, the control in the oscillation mode of x3 may already be
sufficient to mitigate adverse coupling effects and second-order oscil-
lations. This would improve the overall reliability and therefore the
capacity factors of hydropower plants.

(a) Effect of P1ij on the electric subsystem  (b) Effect of P1ij on the mechanical subsystem 

(c) Effect of P1ij on the hydraulic subsystem 
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Fig. 3. The first-order oscillation mode (P1ij) of the hydroelectric generating system.

Table 1
Related oscillation modes and sorting the contributions.

System State
variable

Related
oscillation
modes

Sorting of contribution

Electric subsystem δ q, x11 q > x11
ω x3, y11, υy x3 > y11 > υy

Sum x3, q, x6, x11,
x2, y11, υy

x3 > q > x6 > x11 > x2 -
> y11 > υy

Mechanical subsystem x11 x3, y11, υx υx > x3 > y11
y11 δ, υy δ= υy
υx q, y11, υx q > y11 > υx
υy υy, δ υy= δ

Sum q, y11, υy, δ, υx q > y11 > υy= δ > υx
Hydraulic subsystem x1 x1, x11 x1 > x11

x2 x2, x3, x11 x11 > x3 > x2
x3 x2, x3, x11 x3 > x11 > x2
q x2, x3, x11 x11 > x3 > x2

Sum x11, x3, x2, x1 x11 > x3 > x2 > x1
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5. Conclusions

In this study, a classical nonlinear mathematical model of the hydro-
turbine governing system with the shafting of a hydro-turbine generator
unit is established. A unified model with a novel expression of the
hydraulic unbalanced force acting on the runner blade is proposed and
verified against two conventional models, and against measured data
from the monitoring system of Nazixia hydropower station. Note that
the unified model works very well when the turbine is operating close
or at full capacity, and is an improvement on other models. However, at
lower capacities, it performs less well than other models. Furthermore,
the feasibility of the nonlinear modal series method is verified and
compared with the numerical results from the linear method, Runge-
Kutta method, and Admas-Bashforth-Moulton algorithm. On the basis
of this, a first- and second-order oscillation mode analysis are per-
formed to investigate the modal interactions of the three components in
the hydroelectric generating system, namely the electric subsystem,
mechanical subsystem, and hydraulic subsystem. In the electric sub-
system, the results show that the first-order oscillation mode of the
generator speed ω is mainly dependent on the coupling effect of oscil-
lation modes of state variable x3 from the hydraulic subsystem, offset
y11 in the runner blade, and variation rate υy of the Y axis in the me-
chanical subsystem; with the order of dependence as x3 > y11 > υy.
For the mechanical subsystem, the first-order mode of the offsets in X-
and Y-direction is affected by the coupling oscillation modes of vari-
ables x3 from the hydraulic subsystem, vx and y11 from the mechanical

subsystem. Their sorting of contributions are x3 > vx > y11. In the
hydraulic subsystem, the first-order oscillation mode of the turbine flow
is dependent on variables x2, x3, and x11, and in the order of depen-
dence of x11 > x3 > x2.

In light of the above analysis, the unified model performs poorly at
low capacities, probably due to the stochastic excitation of unbalanced
hydraulic forces acting on the blades. Future work should attempt to
validate this hypothesis. A second avenue for future work might include
an improved design control method which uses the unified model
presented here to stabilize the generator speed and the axis shift of
hydro-turbine generator unit when operating at close to power capa-
city.
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(a) Second-order mode of turbine flow (b) Second-order mode of conversion efficiency 

(c) Second-order mode of offset in X-direction d) Second-order mode of offset in Y-direction (

Fig. 4. The second-order oscillation mode of the hydroelectric generating system.
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