

The role of glomerular filtration and active tubular secretion in predicting renal clearance of drugs in children using population pharmacokinetic and physiology-based pharmacokinetic modeling approaches: unspinning the yarn

Cristea, S.

Citation

Cristea, S. (2021, June 16). The role of glomerular filtration and active tubular secretion in predicting renal clearance of drugs in children using population pharmacokinetic and physiology-based pharmacokinetic modeling approaches: unspinning the yarn. Retrieved from https://hdl.handle.net/1887/3188573

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3188573

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>https://hdl.handle.net/1887/3188573</u> holds various files of this Leiden University dissertation.

Author: Cristea, S.

Title: The role of glomerular filtration and active tubular secretion in predicting renal clearance of drugs in children using population pharmacokinetic and physiology-based pharmacokinetic modeling approaches: unspinning the yarn **Issue Date**: 2021-06-16

Stellingen behorende bij het proefschrift

The role of glomerular filtration and active tubular secretion in predicting renal clearance of drugs in children using population pharmacokinetic and physiology-based pharmacokinetic modeling approaches Unspinning the yarn

- 1. Model-driven dose optimization supports an effective and safe treatment from the start of therapy in special populations. *This thesis*
- 2. PBPK principles are a prerequisite to establish guidelines for dosing renally excreted drugs in children for drugs with various properties. *This thesis*
- 3. Knowing the unbound drug fraction in adults is essential to accurately scale pediatric drug doses by the maturation function of glomerular filtration rate for drugs mainly eliminated by glomerular filtration. *This thesis*
- 4. Ignoring the ontogeny of renal transporters for children younger than 2 years leads to inaccurate renal clearance predictions for drugs that are mainly eliminated by active tubular secretion. *This thesis*
- 5. Transporter ontogeny functions that cannot be measured *in vivo* can be derived from pediatric PK profiles by combining mechanistic insight of PBPK models with population PK estimation methods. *This thesis*
- 6. Trough concentrations are overemphasized as surrogates for safe and effective antibiotic exposure and treatment. *Modified from Neely, 2013*
- 7. For drugs that are being subject to active tubular secretion the proportionality between unbound drug fraction and renal clearance changes with extraction ratio as a consequence of the blood flow limitation. *Modified from Levy, 1980*
- 8. The audience for nifty modeling methods and techniques is not as large as the audience that would benefit from understanding and applying model-informed precision dosing in the clinic. *Modified from Henning, 2020*
- 9. Following up on the work of others can be more of a challenge than a headstart.
- 10. Great colleagues who cook well are an asset to any office.
- 11. Never look into your modelling results as in the mirror of Erised. *Modified from Harry Potter*
- 12. The right data are indispensable for a good model. The right analysis methods and the right graphics are indispensable for a good modeler. *Modified from Vandemeulebroecke 2019*