
Replication Scripts for “Fitting Prediction Rule
Ensembles to Psychological Research Data: An

Introduction and Tutorial”

This document provides a manual on how to fit prediction rule ensembles (PREs) as in the examples from

the main paper. In what follows, the code and results of fitting PREs using R package pre is provided,

intermingled with comments and explanations. Some experience in R is recommended (e.g., loading data,

fitting a regression model using function lm()). Readers who have not used R before are advised to first

follow the (very) short introduction of Torfs & Brauer (2014).

This manual is structured as follows: In the first three sections, we replicate the analyses of each of the three

examples from the main paper: predicting chronic depression (Example 1), academic achievement (Example

2) and substance use (Example 3). In the fourth and last section, we explain the main parameters that

control the model-fitting process, and how these affect computation time, and complexity and predictive

accuracy of the final ensemble. Because the parameter settings that yield optimal predictive accuracy will

often depend on the data problem at hand, the last section also shows how optimal parameter values can be

selected using cross validation.

Because we do not own the datasets analyzed in the main paper, in this tutorial we replicate the analyses

on artificially generated datasets, which are also provided in the Supplementary Material. These datasets

were generated so that the univariate distributions are the same as those in the original datasets, but the

inter-correlations between variables are different. Therefore, results will differ from those presented in the

main paper and do not represent accurate empirical results.

The results in this document have been obtained using R (R Core Team, 2019, version 3.6.1) using packages

pre (Fokkema, n.d., version 0.7.2), partykit (Hothorn & Zeileis, 2015, version 1.2–5), glmnet (Friedman,

Hastie, & Tibshirani, 2010, version 3.0–1) and caret (Kuhn, 2008, version 6.0–84).

Installing and loading the package

Before we start the analyses, we first install package pre by typing in R:

install.packages("pre")

The package needs to be installed only once. Once it has been installed, we can load the package into R by
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typing:

library("pre")

Example 1: Predicting Chronic Depression

We replicate the analyses on predicting chronic depression using the depression.txt file, which is available

in the online Supplementary Material. After downloading the file, it should be made available in R’s current

working directory, which can be accomplished in one of two ways: We can request the location of the current

working directory by typing:

getwd()

and then place the depression.txt file in that location. Alternatively, we can set the working directory to

the location of the depression.txt file using function setwd().

setwd("path_to_folder_containing_file")

We can then load the data into R by typing:

depression <- read.table("depression.txt")

We can check the number of columns (variables) and rows (observations) of the dataset by typing:

dim(depression)

[1] 682 21

To get an overview of the types of variables in the dataset, we use function head to print the first six rows:

head(depression)

dep disType Sexe Age edu_yrs IDS BAI FQ LCImax pedigree alcohol
1 No comorbid disorder female 43 15 18 14 6 0.093 Yes Positive
2 Yes depressive disorder female 38 15 14 15 0 0.367 Yes Positive
3 No depressive disorder female 26 9 22 6 20 1.000 Yes Positive
4 Yes depressive disorder female 30 11 8 8 11 1.000 No Positive
5 Yes comorbid disorder female 36 12 13 15 0 0.583 Yes Positive
6 No comorbid disorder female 40 15 17 27 7 0.912 Yes Positive

TypeDep SocPhob GAD Panic Ago AO RemDis
1 First onset MDD Negative Negative Negative Negative 16 No
2 Recurrent MDD Negative Negative Negative Negative 36 Yes
3 First onset MDD Negative Negative Positive Negative 12 No
4 Recurrent MDD Negative Negative Negative Negative 10 No
5 Recurrent MDD Positive Negative Negative Negative 12 No
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6 Recurrent MDD Negative Negative Positive Negative 51 No
sample ADuse PsychTreat

1 Primary care Yes Yes
2 Spec. mental health care Yes Yes
3 Primary care Yes No
4 General population No No
5 Spec. mental health care No No
6 Spec. mental health care No Yes

The first variable in the dataset (dep) is the response variable; it is an indicator for whether subjects still

meet the criteria of depression two years after baseline (i.e., a chronic depression trajectory). The other

variables are potential predictors measured at baseline and are described in more detail in the main paper.

Fitting a PRE requires random sampling of the training observations for generating rules. We therefore first

have to set the state of R’s random number generator, which will allow for exact replication of the results at

a later time:

set.seed(1)

We will now fit the ensemble using function pre(). The first argument of this function specifies the model to

be fitted: the response and potential predictor variables, separated by a tilde (~). Here we use the dot (.)

as short-hand notation for regressing the specified response (dep) on all remaining variables in the dataset.

Because the response is a binary factor, we also specify family = "binomial":

depression.ens <- pre(dep ~ ., data = depression, family = "binomial")

Alternatively, if we want to specify only a subset of the variables as possible predictors, we would specify the

model by enumerating the subset of predictors using the + sign, for example:

dep ~ LCImax + IDS + PsychTreat

We can obtain a summary of the fitted ensemble as follows:

summary(depression.ens)

Final ensemble with cv error within 1se of minimum:
lambda = 0.02027569
number of terms = 11
mean cv error (se) = 1.306071 (0.0105627)

The results indicate the criterion used for selecting the optimal value of the penalty parameter λ: the value
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yielding a cross-validated prediction error within one standard error of the minimum. Furthermore, the

results indicate that 11 terms were selected in the final PRE. Also, the cross-validated error of the selected λ

value is reported, but it should be noted that this estimate likely provides an overly optimistic value of the

expected prediction error, as it was calculated using the same data as was used to generate the rules. Later,

we will use function cvpre() to obtain a more realistic estimate of future prediction error.

To further inspect the ensemble, we can print it as follows:

depression.ens

(Intercept) -0.142840437 1
rule83 0.465783036 LCImax > 0.273 & IDS > 12
rule74 -0.364372821 IDS <= 16 & AO > 16
rule58 0.172394168 IDS > 16 & AO > 19
rule4 -0.129596029 IDS <= 16 & Age > 45

rule87 0.120583987 Age <= 51 & LCImax > 0.327
rule53 0.108963183 IDS > 11 & LCImax > 0.265
rule71 0.075324759 LCImax > 0.298 & IDS > 10
rule50 0.020192727 LCImax > 0.339 & IDS > 11
rule56 -0.014485365 IDS <= 16 & Age > 36
rule41 0.010042401 IDS > 13 & LCImax > 0.273
rule14 -0.005711446 IDS <= 16 & LCImax <= 0.847

Alternatively, we could have typed print(depression.ens), which would have yielded the exact same result.

The printed results provide a description of the rules and/or linear terms included in the final ensemble,

with their respective coefficients. Note that in this case, no linear terms were selected, as the column rule

only contains (numbered) rules. If linear terms were selected, this column would also show the names of the

selected predictor variables.

The rules are ordered by the absolute value of their coefficients. The coefficient of rule rule83 (LCImax

> 0.273 & IDS > 12) indicates that meeting the criteria of this rule increases the log odds of a chronic

depression by about 0.47. Note that all rules involve only four variables: LCImax (proportion of time in which

symptoms of anxiety or depression were present in the four years prior to baseline), IDS (psychological test

score reflecting severity of depressive symptoms), AO (age of disorder onset) and Age (in years); the remaining

variables in the dataset thus appear unimportant for predicting chronic depression.

To generate predictions for new observations, the contributions of each rule and linear term in the final

ensemble need to be computed and summed. Predictions can be computed using the predict method, which
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requires the user to supply the fitted ensemble and the newdata argument, which should supply a dataframe

of observations for which predictions will be computed. If the newdata argument is not specified, predictions

for the original training observations are returned. Here, we request predictions for four of the training

observations. By default, the predict method returns predictions on the scale of the linear predictors.

Through specifying type = "response", we obtain the predicted probabilities:

predict(depression.ens, newdata = depression[c(1, 3, 5, 7),], type = "response")

1 3 5 7
0.4643505 0.6588221 0.6552722 0.3663186

Observations 1 and 7 obtained somewhat lower predicted probabilities, while observations 3 and 5 obtained

somewhat higher predicted probabilities. We can use function explain() to obtain an explanation of these

predictions:

expl <- explain(depression.ens, newdata = depression[c(1, 3, 5, 7),])

rule4
rule14
rule41
rule50
rule53
rule56
rule58
rule71
rule74
rule83
rule87

1

predicted value: 0.464

Contribution to linear predictor

−0.2 0.0 0.2 0.4

IDS <= 16 & Age > 45
IDS <= 16 & LCImax <= 0.847
IDS > 13 & LCImax > 0.273
LCImax > 0.339 & IDS > 11
IDS > 11 & LCImax > 0.265
IDS <= 16 & Age > 36
IDS > 16 & AO > 19
LCImax > 0.298 & IDS > 10
IDS <= 16 & AO > 16
LCImax > 0.273 & IDS > 12
Age <= 51 & LCImax > 0.327

rule4
rule14
rule41
rule50
rule53
rule56
rule58
rule71
rule74
rule83
rule87

3

predicted value: 0.659

Contribution to linear predictor

−0.2 0.0 0.2 0.4

IDS <= 16 & Age > 45
IDS <= 16 & LCImax <= 0.847
IDS > 13 & LCImax > 0.273
LCImax > 0.339 & IDS > 11
IDS > 11 & LCImax > 0.265
IDS <= 16 & Age > 36
IDS > 16 & AO > 19
LCImax > 0.298 & IDS > 10
IDS <= 16 & AO > 16
LCImax > 0.273 & IDS > 12
Age <= 51 & LCImax > 0.327

rule4
rule14
rule41
rule50
rule53
rule56
rule58
rule71
rule74
rule83
rule87

5

predicted value: 0.655

Contribution to linear predictor

−0.2 0.0 0.2 0.4

IDS <= 16 & Age > 45
IDS <= 16 & LCImax <= 0.847
IDS > 13 & LCImax > 0.273
LCImax > 0.339 & IDS > 11
IDS > 11 & LCImax > 0.265
IDS <= 16 & Age > 36
IDS > 16 & AO > 19
LCImax > 0.298 & IDS > 10
IDS <= 16 & AO > 16
LCImax > 0.273 & IDS > 12
Age <= 51 & LCImax > 0.327

rule4
rule14
rule41
rule50
rule53
rule56
rule58
rule71
rule74
rule83
rule87

7

predicted value: 0.366

Contribution to linear predictor

−0.2 0.0 0.2 0.4

IDS <= 16 & Age > 45
IDS <= 16 & LCImax <= 0.847
IDS > 13 & LCImax > 0.273
LCImax > 0.339 & IDS > 11
IDS > 11 & LCImax > 0.265
IDS <= 16 & Age > 36
IDS > 16 & AO > 19
LCImax > 0.298 & IDS > 10
IDS <= 16 & AO > 16
LCImax > 0.273 & IDS > 12
Age <= 51 & LCImax > 0.327

Numerical results are saved in expl$predictors (which provides the values of the predictor variables) and

expl$contribution (which provides the contribution of each term to the individual predictions, as plotted

above).
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The plotted results show the predicted probabilities, and the contributions of the terms in the final ensemble

to the observation-level predictions. Green bars reflect contributions to the predicted value of rules with

positive coefficients, while red bars represent contributions of rules with negative coefficients. The absence of

a vertical green or red bar indicates that the observation did not meet the conditions of that rule. The rules

are ordered from top to bottom in ascending order of global importance. Note that the contributions are on

the scale of the linear predictor, thus reflecting the increase in log odds of belonging to the target class (i.e.,

having a chronic depression trajectory).

The first plot reveals that observation 1 did not meet the conditions of any rule. The predicted probability

for this observation is therefore based on the value of the intercept only: e−0.143

1+e−0.143 = 0.464. Observations 3

and 5 obtained a higher predicted probability, because they meet the conditions of several rules with positive

coefficients. Observation 7 meets the conditions of several rules with negative coefficients, resulting in a lower

predicted probability.

To obtain an overview of the importances of baselearners (rules and/or linear terms) and predictor variables,

we use the importance() function, which by default creates a plot of the variable importances:

depression.imp <- importance(depression.ens)

Variable importances
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The plot indicates that the ensemble included only four of the potential predictor variables, which we also

observed through inspecting the rules. The remaining variables were not part of any rule or linear term

in the final ensemble and thus obtained importances of 0. In addition to plotting the predictor variable

importances, function importance() invisibly returns a list of variable and baselearner importances, which

we have assigned to the depression.imp object with the code above. We can access the numeric values of
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these importances as follows:

depression.imp$varimps

varname imp
1 IDS 0.32046825
2 LCImax 0.19981898
3 AO 0.11758793
4 Age 0.06330385

depression.imp$baseimps

rule description imp coefficient sd
1 rule83 LCImax > 0.273 & IDS > 12 0.229547451 0.465783036 0.4928205
2 rule74 IDS <= 16 & AO > 16 0.180269504 -0.364372821 0.4947392
3 rule87 Age <= 51 & LCImax > 0.327 0.060242513 0.120583987 0.4995897
4 rule4 IDS <= 16 & Age > 45 0.059128453 -0.129596029 0.4562520
5 rule58 IDS > 16 & AO > 19 0.054906353 0.172394168 0.3184931
6 rule53 IDS > 11 & LCImax > 0.265 0.054515717 0.108963183 0.5003132
7 rule71 LCImax > 0.298 & IDS > 10 0.037689859 0.075324759 0.5003648
8 rule50 LCImax > 0.339 & IDS > 11 0.009976282 0.020192727 0.4940532
9 rule56 IDS <= 16 & Age > 36 0.007236739 -0.014485365 0.4995897
10 rule41 IDS > 13 & LCImax > 0.273 0.004817301 0.010042401 0.4796961
11 rule14 IDS <= 16 & LCImax <= 0.847 0.002848846 -0.005711446 0.4987960

We can obtain univariate partial dependence plots using the singleplot() function. We use the varname

argument to specify the name of the predictor variable for which we want to plot the partial dependence:

singleplot(depression.ens, varname = "IDS")
singleplot(depression.ens, varname = "LCImax")
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The univariate partial dependence plots reveal a monotonously increasing effect of both IDS and LCImax on
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the predicted probability of a chronic trajectory.

We can obtain a bivariate partial dependence plot using the pairplot() function. This function requires

package akima to be installed; if the package is not installed yet, we first need to install it as follows:

install.package("akima")

Then, we call function pairplot() and specify the names of two predictor variables with the varnames

argument:

pairplot(depression.ens, varnames = c("IDS", "LCImax"))
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In the bivariate partial dependence plot, the yellow (lighter) areas correspond to lower predicted probabilities,

while the red (darker) areas correspond to higher predicted probabilities. The contour lines depict areas with

similar predicted values. Like the univariate plots, the bivariate partial dependence plot also reveals that the

predicted probability of a chronic trajectory increases with increasing values of IDS and/or LCImax.

To obtain a realistic estimate of the fitted ensemble’s prediction error on future observations, we use function

cvpre(). This function estimates the expected predictive accuracy using k-fold cross validation. It first

separates the original training data into k (approximately) equally sized test samples. Each of the k test
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samples is then used to assess predictive accuracy of a model fitted on the remaining training observations

(i.e., observations that are not in the current test sample). This model is fitted using the same settings as

those used for fitting the original model (i.e., depression.ens, which was fitted using the default settings).

By default, cvpre() performs ten-fold cross validation, but a different number of folds can be specified

through argument k. Random sampling is used to assign observations to folds, so the results depend on the

random seed we have set above.

cv.depression <- cvpre(depression.ens)

$SEL
SEL se

0.240917416 0.003293254

$AEL
AEL se

0.483243007 0.003294995

$MCR
[1] 0.3944282

$table
observed

predicted No Yes
No 0.3240469 0.2243402
Yes 0.1700880 0.2815249

The printed results show the squared error loss (SEL) and absolute error loss (AEL) with their respective

standard errors, the misclassification rate (MCR) and a confusion matrix (table). These are also stored in

cv.depression$accuracy for possible later use. The MCR indicates that (100-39.44=)60.56 % of observations

were correctly classified.

The cross-validated predictions for every observation can be extracted from cv.depression$cvpreds. This

allows for calculation of alternative accuracy estimates. For example, we may want to calculate the correlation

between the predicted probability of belonging to the target class and the observed class membership (a.k.a.

the point-biserial correlation):

cor(cv.depression$cvpreds, as.numeric(depression$dep))

[,1]
[1,] 0.1909607
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Example 2: Predicting Academic Achievement

Using the data contained in the achievement.txt file, we will replicate the analyses on predicting academic

achievement. This example featured a multivariate response variable, as well as non-negativity constraints in

order to obtain only positive coefficients for rules and linear terms. We first read in the data as follows:

achievement <- read.table("achievement.txt")
dim(achievement)

[1] 638 11

head(achievement)

Gender Nationality Age Online_test Test_Language RawScore_English
1 female Dutch 20 present at testday English 15
2 female German 20 present at testday Dutch 17
3 male Dutch 21 present at testday Dutch 18
4 male EU 19 present at testday English 20
5 male German 18 present at testday English 17
6 female German 21 online Dutch 15

RawScore_Math RawScore_Psychology Program MeanFYG Credits
1 18 28 Dutch 6.5 55.0
2 26 21 Dutch 5.3 17.5
3 8 29 English 6.9 8.0
4 22 30 English 4.2 60.0
5 12 37 English 6.1 50.0
6 18 37 English 7.2 55.0

The dataset comprises 638 observations on 11 variables, of which the last two (MeanFYG and Credits) are

the response variables, reflecting the average grade for the first-year psychology courses and the total number

of study credits obtained in the first year. The other variables mare potential predictor variables and are

described in the main paper.

To specify the model formula for a multivariate response, we will specify Credits and MeanFYG before the

tilde, separated by the plus sign. Furthermore, we specify a multivariate Gaussian response distribution

through the family argument.

To apply the non-negativity constraint, we specify a lower limit of 0 for the estimated penalized coefficients

through the lower.limits argument. In addition, we set the removecomplements argument to FALSE. By

default, when the initial ensemble contains rules that are perfectly (negatively or positively) correlated, pre()

retains only one of these rules. This likely reduces computation time and complexity of the final ensemble,

but does not affect predictive accuracy of the final ensemble. When a (non-)negativity constraint is applied,
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however, removal of negatively correlated rules can negatively affect predictive accuracy, and should therefore

be suppressed by specifying the removecomplements argument:

set.seed(2)
achievement.ens <- pre(Credits + MeanFYG ~ ., data = achievement,

family = "mgaussian", lower.limits = 0,
removecomplements = FALSE)

achievement.ens

Final ensemble with cv error within 1se of minimum:
lambda = 1.395596
number of terms = 9
mean cv error (se) = 207.116 (17.40264)

cv error type : Mean-Squared Error

rule coefficient.Credits coefficient.MeanFYG
(Intercept) 29.1671545097 5.45409977827

rule3 7.3987510599 0.50084345213
rule32 6.5846584758 0.45584196175
rule17 3.8300890713 0.23468305860
rule14 3.5459869453 0.23182026310

rule145 1.5636003680 0.09283659879
rule96 1.1527442881 0.08932119664
rule9 1.2693025569 0.08173663400

rule126 1.0417745521 0.05570609097
rule127 0.0006591047 0.00003359027

rule description
(Intercept) 1

rule3 RawScore_Psychology > 24 & Nationality %in% c("Dutch", "German")
rule32 RawScore_Psychology > 24 & RawScore_Math > 12
rule17 RawScore_Psychology > 25 & Nationality %in% c("Dutch", "German")
rule14 RawScore_Psychology > 24 & Nationality %in% c("Dutch", "German")

& RawScore_Math > 8
rule145 RawScore_Psychology > 24 & Nationality %in% c("Dutch", "German",

"Non-EU") & Gender %in% c("female")
rule96 RawScore_Psychology > 24 & Nationality %in% c("Dutch", "EU", "Ger-

man") & RawScore_Math > 13
rule9 RawScore_Psychology > 24 & Nationality %in% c("Dutch", "German")

& Gender %in% c("female")
rule126 RawScore_Math > 8 & RawScore_Psychology > 25
rule127 RawScore_Math > 8 & RawScore_Psychology > 25 & Nationality %in%

c("Dutch", "German", "Non-EU")

Table 1: Rule descriptions of the ensemble for predicting academic achievement.
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The final ensemble for predicting academic achievement comprises 9 rules. Note that each rule (or linear

term) obtained two estimated coefficients, one for each response variable. Because the rule descriptions are

rather long, they are omitted from the verbatim output here and presented in Table 1. Table 1 shows that

many rules involve the scores on the psychology and math admission tests, and nationality. Gender occurs in

some of the rules.

To further interpret the ensemble, we request standardized variable importances, which allow for comparing

the importance of rules, linear terms and predictor variables between response variables with different scales:

achievement.imp <- importance(achievement.ens, standardize = TRUE)

Variable importances
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The importances for the two response variables appear quite similar. As we already observed in the rule

descriptions (Table 1), only four of the potential predictor variables contribute to the predictions of the

response variables.

Using function cvpre(), we can obtain an estimate of future prediction error:

cv.achievement <- cvpre(achievement.ens)

$MSE
MSE se

Credits 202.8624086 10.11439502
MeanFYG 0.9447364 0.05403603

12



$MAE
MAE se

Credits 10.5387861 0.26842818
MeanFYG 0.7270352 0.01807355

Mean squared error (MSE) and mean absolute error (MAE) are printed and also saved in cv.achievement$accuracy.

The cross-validated predictions are saved in cv.achievement$cvpreds and can be used to calculate alternative

indices of accuracy, like the correlation between observed and predicted values:

cor(cv.achievement$cvpreds[ , "Credits"], achievement$Credits)

[1] 0.6918321

cor(cv.achievement$cvpreds[ , "MeanFYG"], achievement$MeanFYG)

[1] 0.6853558

Example 3: Predicting Substance Use

We replicate the analyses of the third example, prediction of substance use in the last week of a randomized

clinical trial, using the drug_usage data:

drug_usage <- read.table("drug_usage.txt")
dim(drug_usage)

[1] 478 57

names(drug_usage)

[1] "DSPRIMAR" "trt" "AGEYRS" "DEGENDER" "SCLVLEDU"
[6] "SCMARITA" "SCEMPLOY" "SCLIVING" "QOHLTHST.T0" "QOMOBIL.T0"

[11] "QOSLFCAR.T0" "QOACTIVE.T0" "QOPAIN.T0" "QOANXDEP.T0" "BSFNTDIZ.T0"
[16] "BSNOINT.T0" "BSNERVOS.T0" "BSPAINHR.T0" "BSLONELY.T0" "BSTENSE.T0"
[21] "BSNAUSE.T0" "BSBLUE.T0" "BSSCARED.T0" "BSBREATH.T0" "BSWORTH.T0"
[26] "BSTERRO.T0" "BSNUMB.T0" "BSHOPELS.T0" "BSRESTLS.T0" "BSWEAK.T0"
[31] "BSENDLIF.T0" "BSFEARFL.T0" "CSPHYACT.T0" "CSAVOID.T0" "CSFEELGD.T0"
[36] "CSREMOVE.T0" "CSNOOFFR.T0" "CSOTHTHG.T0" "CSOVRCOM.T0" "CSSOMELS.T0"
[41] "CSTRYHRD.T0" "CSLEAVE.T0" "CSSOCIAL.T0" "CSDOGOOD.T0" "CSPHYREA.T0"
[46] "CSCALM.T0" "CSSAYNO.T0" "CSPOSOUT.T0" "CSACCOMP.T0" "CSDIFFIC.T0"
[51] "CSDEAL.T0" "CSWAIT.T0" "CSSTAYAW.T0" "CSSTONEG.T0" "CSEMOTIO.T0"
[56] "week1" "week12"

The dataset consists of 478 observations on 57 variables. The last variable, week12, is the response, reflecting

the number of days drugs or alcohol were used in the last (12th) week of substance use treatment. The remaining
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variables are possible predictors, assessed at the start of treatment: socio-demographic characteristics, items

of a quality of life measure (starting with QO), a brief mental-health symptom inventory (starting with BS)

and a coping scale (starting with CS). The variables are described in more detail in the main paper.

As the response variable reflects a count of events, we use the family argument to specify a Poisson

distribution. Also, we include the treatment indicator as a confirmatory rule, as earlier studies indicated

that TES (treatment with the therapeutic education system) resulted in lower average substance abuse rates,

compared to TAU (treatment as usual). We specify the confirmatory rule with the confirmatory argument,

so its estimated coefficient will not be penalized (i.e., not shrunken towards zero):

set.seed(3)
drug_usage.ens <- pre(week12 ~ ., data = drug_usage, family = "poisson",

confirmatory = "trt %in% 'TES'")

drug_usage.ens

Final ensemble with cv error within 1se of minimum:
lambda = 0.1346009
number of terms = 7
mean cv error (se) = 2.21122 (0.11118)

cv error type : Poisson Deviance

rule coefficient description
(Intercept) 0.95406494 1

trt %in% 'TES' -0.68455326 trt %in% 'TES'
rule3 -0.40324259 week1 <= 0 & BSSCARED.T0 <= 1

rule15 -0.31325359 week1 <= 0 & BSTENSE.T0 <= 3
rule37 -0.14864346 week1 <= 1 & CSWAIT.T0 > 1
rule17 0.14278100 week1 > 0 & CSDEAL.T0 <= 3
rule11 -0.09730889 week1 <= 0 & BSTENSE.T0 <= 2
week1 0.03145116 0 <= week1 <= 7

The final ensemble consists of 7 terms. As expected, receiving TES is associated with lower substance use than

TAU, as indicated by the negative coefficient of the confirmatory rule (trt %in% 'TES'). The week1 variable

obtained a positive coefficient, indicating that higher substance use in the first week of treatment is associated

with higher substance use in the last week of treatment. The selected rules indicate that lower self-reported

feelings of being scared (BSSCARED.T0) or tense (BSTENSE.T0) are associated with lower substance use in the

last week of treatment. Higher self-reported coping skills (i.e., CSWAIT.T0: telling oneself that the urge to use

substances will go away if one waits a while, and CSDEAL.T0: trying to remind oneself of the good things one
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has accomplished) are associated with lower substance use during the last week of treatment.

Next, we request variable importances:

importance(drug_usage.ens)
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The plot indicates that the most important predictor of last-week substance use is the treatment indicator.

First-week substance use is the next most important predictor. Self-reported symptoms of psychological

distress (BSI) and coping skills (CSS) also contribute to the prediction of last-week substance use, but less

strongly.

Again, to obtain an estimate of future prediction error, we apply function cvpre():

cv.drug_usage <- cvpre(drug_usage.ens)

$MSE
MSE se

3.4963137 0.2918074

$MAE
MAE se

1.39536774 0.05699061
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Adjusting and Optimizing Parameters

In the examples above, we have mostly employed default settings of function pre(). However, pre() has

several arguments for controlling the model-fitting procedure. By adjusting these settings, users can fine-tune

accuracy and complexity of the final ensemble. The default settings of pre() represent the author’s choice of

‘sensible defaults’: settings that are expected to work well out-of-the-box, yielding relatively accurate and

sparse ensembles.

However, sometimes users may prefer to use different settings, based on their subject-matter knowledge or

specific requirements for application of the results. For example, maximum rule length may be specified based

on a researcher’s prior knowledge about the order of interactions present in the data, or because rules defined

by multiple conditions may be too complex or costly to evaluate in practical applications. Or, a researcher

may be more interested in maximizing predictive accuracy than in minimizing complexity, vice versa.

Below, we discuss the parameters that can be adjusted to optimize accuracy, complexity and/or computation

time. An extensive explanation of all arguments is provided in the help files, which can be accessed by

typing ?, followed by the function’s name. For example, we can access the help files for functions pre() and

importance(), and the predict method, as follows:

?pre

?importance

?predict.pre

Below, we list the most important arguments of function pre(), their default values and how they most

likely affect complexity, accuracy and/or computation time. We distinguish between ‘Model-Fitting’ and

‘Model-Selection’ parameters, where the former control how the initial ensemble of rules and/or linear functions

is generated, and the latter control how the final ensemble is selected.

The set of parameter values that will provide optimal predictive accuracy may depend on the data problem

at hand. Therefore, in the subsection “Tuning parameters for optimal predictive accuracy”, we will provide

an example of fine-tuning the parameter values using cross validation, in order to maximize the expected

predictive accuracy of the final ensemble.
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Model-Fitting Parameters

The following arguments can be passed to function pre() and determine how the initial ensemble of rules

and/or linear terms is generated:

• type: This argument specifies the type of ensemble generated: "both" (the default) yields an initial

ensemble of rules and linear terms. Alternatively, "rules" yields an initial ensemble of rules only and

"linear" yields an ensemble of linear terms only.

• ntrees: Specifies the total number of trees to generate for rule induction. The default (500) corresponds

to the default value of most random-forest algorithms. Lower values yield lower computation time and

likely yield less complex, but also less accurate final ensembles. Higher values likely yield more complex

ensembles and may increase the likelihood of overfitting.

• sampfrac: Specifies the fraction of randomly selected training observations used for fitting each tree.

The default (.5) yields subsamples consisting of 50% of the training observations. Values between 0 and

1 yield sampling without replacement (i.e., subsampling). A value of 1 yields sampling with replacement

(i.e., bootstrap sampling). Larger values may yield more complex final ensembles and somewhat higher

computation times.

• maxdepth: Specifies the maximum number of conditions per rule. The default is 3, which yields rules

consisting of at most three conditions. A value of 1 yields an additive model, with main effects only.

Higher values allow for accommodating (higher-order) interactions, but also increase complexity of the

final ensemble and may increase the likelihood of overfitting.

• tree.unbiased: Specifies whether unbiased recursive partitioning should be employed for rule gen-

eration. The default (TRUE) is to employ unbiased recursive partitioning as implemented in package

partykit (Hothorn & Zeileis, 2015). If set to FALSE, the (biased) classification and regression trees

algorithm (Breiman, Friedman, Olshen, & Stone, 1984) as implemented in package rpart (Therneau,

Atkinson, & Ripley, 2017) will be employed. The latter reduces computation time, but will also yield

more complex ensembles and possibly lower predictive accuracy.

• learnrate: Specifies the learning rate or boosting parameter applied in sequential tree induction. This

parameter specifies the extent to which the response variable is ‘corrected’ for the predictions of earlier

trees, prior to growing a new tree. A value of 0 yields no influence of earlier trees on later trees, while

higher values yield increasing influence of earlier trees. Small, non-zero learning rates have been found

to perform well in most problems (Friedman & Popescu, 2003), which is reflected in the default value
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of .01. Higher values of the learning rate may yield less complex final ensembles.

• mtry: Specifies the number of predictor variables randomly selected as candidates for each split in each

tree. The default (Inf) takes all potential predictors as candidates for each split. Specifying values > 0

and < p (where p is the number of possible predictor variables) yields a random-forest style approach

to rule induction and may decrease correlation between rules in the initial ensemble, which will reduce

computation time and may improve predictive accuracy.

• winsfrac: Specifies the quantiles of the data distribution to be used for winsorizing (or censoring)

linear terms, to reduce the effect of possible outliers. The default is .05, resulting in values lower than

the .05 and higher than the .95 quantiles of a predictor variable’s distribution to be set to the value of

the .05 and .95 quantile, respectively. Lower values of winsfrac increase the effect of possible outliers.

If set to 0, no winsorizing is performed.

Model-Selection Parameter

The final ensemble is selected through penalized regression of the response variable on the rules and linear

terms in the initial ensemble. Internally, package pre employs package glmnet (Friedman et al., 2010) to

perform this penalized regression. To obtain the optimal value for the penalty parameter λ, k-fold cross

validation is used, with k = 10, by default. Parameter λ can take values between 0 and 1, with a value of 0

yielding an unpenalized solution and a value of 1 yielding an intercept-only solution.

The optimal value of λ is determined, based on one of two possible criteria that can be passed to the

penalty.par.val argument: "lambda.min", which returns a final ensemble selected with the λ value that

yields the minimum cross-validated prediction error. By default, however, pre() employs penalty.par.val

= "lambda.1se", which returns a final ensemble selected with the λ value that yielded the least complex

model, with a cross-validated prediction error within 1 standard error of the minimum. The "lambda.1se"

criterion generally yields a λ value larger than that of the "lambda.min" criterion, in turn yielding less

complex final ensembles, that may be less likely to overfit. Although the "lambda.min' criterion may yield

slightly more accurate final ensembles than the default lambda.1se in some cases, it will almost always yield

more complex final ensembles. The default criterion "lambda.1se' thus favors less complex ensembles, which

are less likely to overfit.

The penalty.par.val argument can be passed to methods summary, print, plot and coef, and functions

importance(), singleplot(), pairplot() and cvpre().
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Tuning Parameters for Optimal Predictive Accuracy

Function train() from package caret (Kuhn, 2008) can be used to tune the parameters of a predictive

method using cross validation, in order to optimize predictive accuracy of the final model. Here, we will

use train() to assess which values for the maxdepth, learnrate and penalty.par.val parameters can be

expected to yield highest predictive accuracy, for a PRE fitted to the data from Example 1 (predicting

chronic depression). Then, if we want to fit a PRE which can be expected to provide optimal predictive

accuracy, we should use those parameter values that provided the highest predictive accuracy, according to

the cross-validation results.

Note that if the aim is to optimize predictive accuracy, the parameters of the fitting procedure should be

tuned, prior to fitting and interpreting the PRE. In the current document, for instructional purposes, we

have first fitted and interpreted a PRE using default settings in Example 1.

Package pre provides a model setup for train() by means of the caret_pre_model object, which contains

all instructions necessary for train() to evaluate the effects of the parameters of function pre(). Below,

we will construct a design matrix with parameter values, after which we will use train() to assess the

cross-validated predictive accuracy for each combination of the parameter values specified.

If package caret was not installed yet, we first need to install it as follows:

install.packages("caret")

We load the package as follows:

library("caret")

The caret_pre_model object, which is part of package pre, is a list containing several elements:

names(caret_pre_model)

[1] "library" "type" "parameters" "grid" "fit" "predict"
[7] "prob" "sort" "loop" "levels" "tag" "label"

[13] "predictors" "varImp" "oob" "notes" "check"

The grid element is a function, which allows for creating a tuning grid: a factorial design matrix for all

candidate tuning parameter values. As arguments to this function, we specify the parameters and values

that we want to evaluate. Here, we will specify three values for maxdepth, three values for learnrate, and

two values for penalty.par.val. The grid() function will automatically include the default values for the

remaining parameter values that can be tuned:
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tuneGrid <- caret_pre_model$grid(
maxdepth = c(2, 3, 4), learnrate = c(0, .01, .1),
penalty.par.val = c("lambda.min", "lambda.1se"))

head(tuneGrid)

sampfrac maxdepth learnrate mtry use.grad penalty.par.val
1 0.5 2 0.00 Inf TRUE lambda.min
2 0.5 3 0.00 Inf TRUE lambda.min
3 0.5 4 0.00 Inf TRUE lambda.min
4 0.5 2 0.01 Inf TRUE lambda.min
5 0.5 3 0.01 Inf TRUE lambda.min
6 0.5 4 0.01 Inf TRUE lambda.min

Next, we separate the data into the response (y) and potential predictor variables (x):

y <- depression$dep

x <- depression[ , -1]

We can now apply function train(), by specifying the predictor and response variables, caret_pre_model

as the method and tuneGrid as the tuning grid. We specify the trControl argument, in order to employ

cross validation to estimate predictive accuracy of the fitted models (by default, ten folds will be used). We

specify the family argument, which will be passed to function pre() to clarify that the response is a binary

factor. As cross validation depends on random sampling of the training observations, we first set the random

seed, to allow for later replication of the results:

set.seed(4)
fit <- train(x = x, y = y, method = caret_pre_model, tuneGrid = tuneGrid,

trControl = trainControl("cv"), family = "binomial")

Note that the call to train() will take quite some time to run, as it fits a PRE for every combination of the

tuning parameters, in each of the ten folds.

When the computations are finished, we can print the results using the print method. Here, we also specify

the showSD argument, in order to have the standard deviations over the ten folds included in the results,

and we specify the digits argument, to have the accuracy estimates rounded to three digits. We specify the

selectCol argument, so the set of parameters that yielded highest predictive accuracy will be indicated with

an asterisk:

print(fit, showSD = TRUE, digits = 3, selectCol = TRUE)

Prediction Rule Ensembles
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682 samples
20 predictor
2 classes: 'No', 'Yes'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 613, 614, 613, 613, 614, 614, ...
Resampling results across tuning parameters (values below are 'mean (sd)'):

maxdepth learnrate penalty.par.val Accuracy Kappa Selected
2 0.00 lambda.min 0.585 (0.0606) 0.170 (0.1214)
2 0.00 lambda.1se 0.596 (0.0643) 0.193 (0.1282)
2 0.01 lambda.min 0.588 (0.0821) 0.175 (0.1643)
2 0.01 lambda.1se 0.589 (0.0646) 0.179 (0.1291)
2 0.10 lambda.min 0.582 (0.0770) 0.164 (0.1537)
2 0.10 lambda.1se 0.600 (0.0808) 0.201 (0.1617)
3 0.00 lambda.min 0.589 (0.0523) 0.178 (0.1044)
3 0.00 lambda.1se 0.595 (0.0739) 0.190 (0.1479)
3 0.01 lambda.min 0.585 (0.0617) 0.169 (0.1234)
3 0.01 lambda.1se 0.589 (0.0764) 0.178 (0.1530)
3 0.10 lambda.min 0.591 (0.0585) 0.181 (0.1167)
3 0.10 lambda.1se 0.598 (0.0761) 0.196 (0.1528)
4 0.00 lambda.min 0.580 (0.0537) 0.161 (0.1074)
4 0.00 lambda.1se 0.599 (0.0718) 0.199 (0.1432)
4 0.01 lambda.min 0.579 (0.0425) 0.158 (0.0849)
4 0.01 lambda.1se 0.602 (0.0733) 0.205 (0.1468)
4 0.10 lambda.min 0.601 (0.0639) 0.202 (0.1280)
4 0.10 lambda.1se 0.614 (0.0688) 0.229 (0.1373) *

Tuning parameter 'sampfrac' was held constant at a value of 0.5
Tuning
parameter 'mtry' was held constant at a value of Inf

Tuning parameter
'use.grad' was held constant at a value of TRUE

Accuracy was used to select the optimal model using the largest value.
The final values used for the model were sampfrac = 0.5, maxdepth = 4, learnrate
= 0.1, mtry = Inf, use.grad = TRUE and penalty.par.val = lambda.1se.

The resulting table lists the means of the accuracy estimates over the 10 cross-validation folds, with standard

deviations in parentheses. Two measures of predictive accuracy are provided: Accuracy represents the

proportion classified correctly, Kappa represents the same proportion, but corrected for the base rate. A

Kappa value of 1 indicates perfect predictive accuracy, a value of 0 indicates predictive accuracy no better
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than chance.

Highest accuracy was obtained with a maximum rule length of 4, a learning rate of 0.1, and a penalty

parameter value of lambda.1se, yielding an accuracy of 0.61 (SD = 0.069). The default settings (maxdepth

= 3, learnrate = .01, penalty.par.val = "lambda.1se") yielded an accuracy of 0.589 (SD = 0.076).

These standard deviations can be interpreted as standard errors of the accuracy estimates. Thus, for this

dataset, the improvement that may be obtained by using the optimal parameter settings determined through

cross validation, appears small: the difference in performance between the optimal and default settings is less

than one standard error.

Still, we could prefer to employ these tuned or optimized values, instead of the default settings. For example,

because our sole aim is to optimize predictive accuracy, or because the lower values of maxdepth and

learnrate may provide a less complex ensemble. In that case, we would fit our PRE as follows (further

results omitted):

depression.ens <- pre(dep ~ ., data = depression, maxdepth = 2,

learnrate = .1, family = "binomial")
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