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Chapter 5. Holography as a Probe for Near-Wall Colloid Dynamics

Abstract
Geometric confinement does not only influence swimmer behaviors, as
we have seen in previous chapters, but in fact, it strongly influences the
behavior of all colloidal particles in liquid environments. To date, non-
spherical colloid behaviors close to confining boundaries, even as simple
as planar walls, remain largely unexplored. Here, we develop a method
based on digital in-line holographic microscopy that allows us to mea-
sure the separation between colloids with uniform surface properties and
walls. In the first part of the chapter, we employ this method on colloidal
spheres, and find good agreement with our diffusion-based height anal-
ysis method described in chapter 3. In the second part, we employ our
method to colloidal dumbbells of different sizes. We find that while larger
dumbbells are oriented almost parallel to the wall, smaller dumbbells of
the same material are surprisingly oriented at preferred angles. We de-
termine the total height-dependent force acting on the dumbbells by con-
sidering gravitational effects and electrostatic dumbbell-wall interactions.
Our modeling reveals that at specific heights both net forces and torques
on the dumbbells are simultaneously below the thermal force and energy,
respectively, which makes the observed orientations possible. Our results
highlight the rich near-wall dynamics of nonspherical particles and may
further contribute to the development of quantitative frameworks for ar-
bitrarily shaped particle dynamics in confinement.

The text in this chapter is based on:

R. W. Verweij*, S. Ketzetzi*, J. de Graaf, and D. J. Kraft, Phys. Rev. E 102,
062608 (2020), ”Height distribution and orientation of colloidal dumbbells near
a wall”; doi: 10.1103/PhysRevE.102.062608
* These authors contributed equally
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Introduction
The behavior of micron-sized colloidal particles under confinement has been a
subject of intensive research in engineering, materials science, and soft matter
physics [211]. Such particles often serve as model systems for understanding the
effects of confinement on microscale processes, e.g. structure formation and rhe-
ology, offering quantitative insights into the behavior of biological systems [212–
214]. This understanding is further desirable for various applications where con-
finement dictates the dynamics, ranging from improving microfluid transport
in lab-on-a-chip devices [215], growing low-defect photonic crystals [216], and
tuning pattern formation for materials design [217–219].

Confinement can strongly affect hydrodynamic and electrostatic (self-) interac-
tions. These effects depend on particle-wall separation as well as particle size
and shape [220]. Yet, the majority of research has focused on the behavior of
spherical particles, both from a theoretical and experimental standpoint. This
includes the behavior of single spheres close to a plane wall [128, 129, 221–227],
between two walls [228–231] and microchannels [232, 233]. Going beyond single
particle dynamics, the collective behavior of sphere clusters and dense suspen-
sions has also been examined close to [234, 235] as well as in between walls [236],
microchannels [237, 238] and confining droplets [239]. However, microparticles
involved in biological processes and industrial applications typically depart from
the ideal spherical shape. Since the motion of nonspherical particles is different
from that of spherical ones [240–244], there is a need to study the effect of confine-
ment on nonspherical particles [245] to gain proper understanding of both natu-
rally occurring and technologically relevant systems. For nonspherical colloids,
dynamics have typically been measured far from walls [243]. Despite predictions
for axisymmetric particles [246] and simulated studies for arbitrary shapes [247,
248], the effect of particle-wall separation remains experimentally unexplored.
Yet, the interplay between shape anisotropy and wall separation ought to be ex-
amined as well, to develop accurate model systems for molecular matter.

To date, a plethora of techniques has been employed for colloidal studies, in-
cluding optical microscopy [249], optical tweezers [229, 250–252], light scatter-
ing [253–256], evanescent wave dynamic light scattering (EWDLS) [228, 235,
257–260], total internal reflection microscopy (TIRM) [225, 261, 262], TIRM com-
bined with optical tweezers [263], holographic microscopy [160, 264], and holo-
graphic optical tweezers [234]. Each of these techniques has its own strengths
and weaknesses, especially when it comes to measuring anisotropic particle dy-
namics near walls with high spatiotemporal resolution in three dimensions. For
example, optical microscopy is a straightforward technique, yet lacks sensitivity
to out-of-plane motion. Confocal microscopy on the other hand provides ac-
curate three-dimensional measurements, but is relatively slow when recording
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Chapter 5. Holography as a Probe for Near-Wall Colloid Dynamics

image stacks and additionally requires refractive index matching and fluores-
cent labelling. Optical tweezers confine particle motion and hence hinder long-
term three-dimensional measurements, while light scattering determines ensem-
ble properties and is thus difficult to interpret in the case of anisotropic parti-
cles [265]. TIRM is an elaborate technique that provides high resolution, though
its range is limited to the near-wall regime, typically less than 400 nm from the
wall [225, 261–263]. To overcome the above limitations, holographic microscopy
may be employed instead, as it records both position and shape [266] with high
resolution [264] also in the out-of-plane direction. In addition, it is even capable
of resolving weakly-scattering objects as used in biology [160, 267–269] without
the need for fluorescent labeling [270]. Moreover, while measurements are typi-
cally performed using lasers, a cost-effective holographic microscopy setup can
also be constructed using an LED mounted on an existing microscope [269]. As
a downside, analyzing holographic measurements may be computationally ex-
pensive which, if desired, can be compensated by implementation of a neural
network [271] at the expense of some accuracy loss.

In this chapter, we establish a new method for measuring particle-wall sepa-
rations based on holographic microscopy. Employing our method to spherical
particles not only allows us to establish our setup and analysis, but also to ad-
ditionally crosscheck our diffusion-based height analysis method of chapter 3.
Subsequently, we measure colloidal dumbbell dynamics above a planar wall, a
simple model system that enables the study of the effects of shape anisotropy on
confined dynamics. We accurately probe how particle orientation is affected by
the presence of the wall, and specifically the particle-wall separation, by means
of digital in-line holographic microscopy. We find that smaller dumbbells are ori-
ented at nonzero angles with respect to the wall, while in contrast, larger dumb-
bells of the same material are oriented mostly parallel to the wall. In all cases, we
were able to identify the relation between particle orientation and particle-wall
separation. We further compare our experimental findings to a minimal model
for the dumbbell that combines gravitational and electrostatic dumbbell-wall in-
teractions. We find that, despite its simplicity, the model provides qualitative
insight into our observations. Our results highlight the importance of wall ef-
fects on anisotropic particle motion, and may ultimately contribute to the devel-
opment of a quantitative framework for the dynamics of particles with arbitrary
shapes in confinement, not fully established at present in the literature.
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Results and Discussion

We employ a digital in-line holographic microscopy setup based on existing ex-
amples [269] that generates scatter patterns by a light-emitting diode (LED), see
Figure 5.1A, to obtain particle holograms. A measured hologram is shown in
Figure 5.1B (top). Using this setup and subsequent hologram analysis, see fit-
ted model in Figure 5.1B, we accurately determine 3-dimensional positions (Fig-
ure 5.1C) and at the same time characterize colloidal particles, i.e. obtain particle

Figure 5.1: Measuring particle-wall separations with holographic microscopy
(HM). A) Schematic of our experimental setup. Holograms are formed by the in-
terference of the reference field Eref with the scattered field Escat, see also panel
(F). B) Comparison of a sphere hologram measured in the experiment, the fitted
model, and their residual, indicating good agreement between measurement and
fitted model. C-E) Parameters extracted from our hologram analysis, see Meth-
ods for a detailed description of the fitting process. C) 3-dimensional r(x,y,z)
position of a single sphere in time. D) Average refractive index n obtained from
fitting sphere and dumbbell holograms, with the inset showing a distribution
from a single sphere measurement. E) Average radius R obtained from fitting
sphere and dumbbell holograms, with the inset again showing a single sphere
measurement. For comparison, we show sphere radii measured using TEM. F)
We are interested in the gap height hg , or else the center of mass (c.m.) height
hc.m., with respect to a planar glass wall. G) The position of the wall is found by
fitting a plane to the positions of at least three particles fixated on it (blue). The
gap height hg between a diffusing particle (yellow) and the wall is the distance
between its measured position and its position projected on the plane along n̂.
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Chapter 5. Holography as a Probe for Near-Wall Colloid Dynamics

size (Figure 5.1D) and refractive index (Figure 5.1E). To further determine the
separation between diffusing particles and walls, we analyzed simultaneously-
measured holograms of particles that were diffusing above the wall and others
that were fixated to the wall, as described in Figures 5.1F-G. Briefly, we use the
fixated to the wall spheres as reference points for measuring the position of the
wall. Specifically, at least three fixated spheres are recorded and analyzed, see
blue-colored spheres in Figure 5.1G. This allows us to fit a plane to their posi-
tions, as illustrated in Figure 5.1G, and subsequently to project the position of the
diffusing particle (yellow-colored particle in the same figure) to that plane. For
all details on hologram analysis, particle tracking, characterization, and extrac-
tion of particle-wall separation, we point the interested reader to the Methods.

Part I: Characterization, height distribution, and near-wall
diffusion of spherical particles
First, we measured the sphere dynamics above a planar wall both to assess the
sensitivity of our LED-based holographic microscopy setup as well as to verify
our new method of using fixed particles to accurately locate the position of the
wall. Indeed, despite the simplicity of our setup, we find an excellent agreement
between the measured holograms and the Mie scattering-based model, see Fig-
ure 5.1B for a direct comparison that additionally shows the residual between
data and model. Moreover, in Figures 5.1D and 5.1E we show the refractive
indices and particle radii obtained during characterization, respectively. Both
parameters agree with expectations: the refractive index, nsilica = (1.42 ± 0.02)
agrees with the value provided by the particle supplier (1.42) and at the same
time the radius (0.51±0.03 µm) follows our TEM results (0.48±0.03 µm).

For high precision measurements, careful consideration should be given to the
determination of both the position and local orientation of the wall, from which
the gap height can be derived, as walls in experiments may be tilted. Here, we
achieved such precision, see Figure 5.2A, by using at least three fixed particles
that define a plane and by subsequently obtaining the position of the diffusing
particle relative to said plane. Note that the position and orientation of the plane
is fitted accurately to the positions of the bottom of the fixed particles, since our
method also measures the radii of the fixed particles at the same time.

In Figure 5.2B, we report the distribution of gap heights between the
diffusing spheres of two different sizes and the wall. We find that the height
distributions can faithfully be described using established methods that
combine a barometric height distribution with electrostatic interactions, see also
Methods and Ref. [220]. In comparison, the height distributions of the 1.1 µm
and 2.1 µm spheres feature qualitatively different behaviors. As expected,
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Figure 5.2: Sphere-wall gap height. A)
The z positions of a spherical particle
diffusing above a wall, as well as that
of the plane (directly below the parti-
cle) obtained from the positions of three
spheres fixed on the wall, are plotted in
time. Using the plane z position, the
gap height hg between the diffusive par-
ticle and wall is determined. B) Experi-
mental sphere-wall gap height distribu-
tions together with a fit with the model
from Ref. [220] which combines gravita-
tional and electrostatic effects for 1.1 µm
(orange, fit parameters ρp= 2.1 gcm−3,
1/κ= 107 nm, ζp= -41 mV) and 2.1 µm
(blue, fit parameters ρp= 2.2 gcm−3,
1/κ= 207 nm, ζp= -52 mV) spheres.

the smaller spheres probe a wider
range of gap heights, while the axial
motion of the larger spheres is more
confined. However, we note that
the median gap height of the larger
spheres is slightly greater than that
of the smaller ones, which is in line
with the higher surface charge that
we measured for these particles using
laser doppler micro-electrophoresis.
The zeta potentials are (-54 ± 7) mV
and (-35 ± 6) mV for the 1.1 and
2.1 µm batches, respectively. The ex-
cellent agreement that we obtained
between the prediction and our ex-
periment for different particle param-
eters further verifies the sensitivity
of our setup. We conclude that our
method of localizing the plane, and
thereby the wall, using fixed con-
trol particles allows for high preci-
sion measurements of colloidal sys-
tems near walls.

Finally, to further evaluate our
method, we determined the height-
dependent translational diffusivity
of the spheres (Figure 5.3). In the
same figure, we compared our
data to the theoretical prediction
for translational diffusion with
wall gap height [157] presented in
chapter 3, which covers the entire
separation range from the far-field
regime captured by Faxén [163] and
the near-wall regime captured by
lubrication theory [128]. We find
that both particle sizes follow the
prediction within error, with small random variations between individual
measurements, demonstrating that we can accurately determine the diffusion
constant across the whole range of here accessible sphere-wall gap heights.
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Chapter 5. Holography as a Probe for Near-Wall Colloid Dynamics

Figure 5.3: Translational diffusion with wall separation. Normalized transla-
tional near-wall in plane diffusion coefficient of 1.1 µm (light) and 2.1 µm (dark)
spheres as function of normalized gap height. Error bars denote standard de-
viations. Experimental data are plotted against the theoretical prediction that
follows from chapter 3, see also Ref. [157]. The inset shows the non-normalized
diffusion coefficient values for both sphere sizes with gap height.

Part II: Height distribution and orientation of dumbbell
particles with respect to a plane wall

Having established the validity of our setup and method, we proceeded to study
the near-wall behavior of our colloidal dumbbells. These dumbbells were formed
by random aggregation of two individual spheres caused by Van der Waals at-
traction; we expect that the spheres do not roll with respect to each other. Analo-
gously to the spheres, we measured the three-dimensional position of dumbbells
of two sizes (long axis 2.2 and 4.2 µm respectively), formed either by two 1.1 µm
or two 2.1 µm spheres. We first checked the quality of our hologram analysis
in Figure 5.4A and D, where the good agreement between the model and our
experimental images is shown. In this model, the free parameters are the center-
of-mass (c.m.) position, the dumbbell orientation, the radii, and the refractive
indices of the two touching spheres comprising the dumbbell. We note that the
obtained values agreed with the single spheres results (Figure 5.1D and 5.1E).

Figure 5.4B shows the positions of the 1.1 µm spheres comprising the dumbbell
(dumbbell long axis 2.2 µm) as function of time, revealing that one of the
spheres is positioned higher than the other in relation to the wall. Moreover,
it clearly shows that twice during the duration of our 8 min measurement,
the spheres drastically changed positions, i.e., a flipping between upper and
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Figure 5.4: Height distributions of colloidal dumbbells above a planar wall.
A) Comparison of an experimental image, the fitted model and the residual for
a 2.2 µm dumbbell, the low values of which indicate the good agreement be-
tween experimental data and model. B) Gap heights for the two 1.1 µm spheres
that form the dumbbell as a function of time. C) Center of mass (c.m.) dumb-
bell height distributions (same particle as in panel B), with the corresponding
gap heights of the lower (L) and upper (U) spheres as inset. Solid lines indi-
cate the theoretical prediction of Equation 5.12 (fit parameters ρp= 2.0 gcm−3,
1/κ= 103 nm, ζp= -30 mV). D) Comparison of an experimental image, the fitted
model and the residual for a 4.2 µm dumbbell, the low values of which indicate
the excellent agreement between data and model. E) Gap heights for the two
touching 2.1 µm spheres that form the dumbbell as a function of time. The in-
set zooms in on a short sequence of the measurement to indicate the frequent
flipping. F) Center of mass (c.m.) dumbbell height distributions (same particle
as in panel E), with the corresponding dumbbell gap heights of the lower (L)
and upper (U) spheres as inset. Solid lines indicate the theoretical prediction of
Equation 5.12 (fit parameters ρp= 2.1 gcm−3, 1/κ= 228 nm, ζp= -61 mV).

lower spheres occurred. Based on the estimated rotational diffusion time
τr = 8πηR3

eff/(kBT ) ≈ 2 s (with viscosity η = 8.910−4 Pa s and the radius of
a sphere of volume equal to the dumbbell Reff = (2R3)1/3 ≈ 0.69µm), this
flipping should have been observed more frequently if it were a purely diffusive
process faraway from the wall. For the larger dumbbells (long axis 4.2 µm),
which move further from the wall, we observe despite their larger size (τr ≈
13 s), frequent flipping between the upper and lower spheres (Figure 5.4E).
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Chapter 5. Holography as a Probe for Near-Wall Colloid Dynamics

By fitting the c.m. height distribution of the dumbbell, see solid black line in
Figures 5.4C and F using Equation 5.12, we conclude that our simple model for
a dumbbell particle near a wall describes the experimental height distribution
very well. Furthermore, the fit parameters we have obtained from this fit agree
with the single sphere fit parameters from the height distribution in Figure 5.2B.
Additionally, we calculate the height distribution of the dumbbell gap heights of
the lower (L) and upper (U) spheres, as shown in the inset of Figure 5.4C and F.
Compared to the theoretical prediction from Equation 5.12, we observe a slight
shift towards smaller heights for the lower and, conversely, greater heights for
the upper sphere in the experiments. This may indicate that to fully describe
the experimental data, higher order effects need to be taken into account, such
as the distortion of the electric double layer of one sphere by the presence of
the other sphere and the wall. These effects become more pronounced when the
dumbbells are closer to the wall, as seen when comparing Figures 5.4C and F.

The stable and significant differences in sphere positions of Figure 5.4B, already
indicated that these dumbbells are oriented at an angle relative to the wall. On
the other hand, for larger dumbbells of the same material, the spheres being ap-
proximately at the same height at all times in Figure 5.4E suggested a roughly
parallel orientation with the wall. We verify our observations in Figure 5.5A
and 5.5D, where we visualize orientations that the dumbbells assumed during
the measurements at 15 s intervals. Indeed, from the snapshots we clearly see
that while flipping between lower and upper sphere did occur, the height above
as well as orientation with respect to the wall remained relatively constant for
the larger dumbbell, see Figure 5.5D. Conversely, the smaller dumbbell featured
a richer behavior that includes notable changes in height and orientation, in addi-
tion to flipping between which of the two spheres is the lowest in Figure 5.5A.

In what follows, we further quantify our observations by calculating the angle,
θp, between the long dumbbell axis and wall, see schematic of Figure 5.5B. Strik-
ingly, we observe in Figure 5.5B a double-peaked structure not predicted by our
model: we find no parallel orientations with respect to the wall for the the 2.2 µm
dumbbell. Instead, the dumbbell is more likely to be oriented at an angle be-
tween 25 and 56 deg (median 32 deg) with the wall. In separate bright-field mi-
croscopy measurements, we verified that dumbbells of this size and material
indeed show frequent out-of-plane rotations. The preferred range of orienta-
tions is robust and persists even when the dumbbell flips, i.e., when the lower
sphere becomes the upper sphere. The difference in peak heights in Figure 5.5B
is due to the respective length of the parts of the measurement where the dumb-
bell assumed a negative or positive orientation. Such preferred orientations are
surprising, since an angle distribution centered around zero degrees is naively
expected in view of the effects of buoyancy and electrostatics, see the expected
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Figure 5.5: Dumbbell orientation with the wall as function of height. A)
Schematics based on the experimental positions of a 2.2 µm dumbbell, show-
ing out of plane rotations and height variations. B) Distribution of plane angles
for a 2.2 µm dumbbell. The solid line indicates the expected distribution based
on Equation 5.13 (same parameters as in Figure 5.4C). The inset shows the plane
angle in time. C) Plane angle with c.m. height for the 2.2 µm dumbbell. The
red area indicates geometrically forbidden configurations. D) Schematics based
on the experimental positions of a 4.2 µm dumbbell at the same times as in (A),
showing significantly fewer out of plane rotations. E) Distribution of plane an-
gles for a 4.2 µm dumbbell. The solid line indicates the expected distribution
based on Equation 5.13 (same parameters as in Figure 5.4F). The inset shows the
plane angle in time. F) Plane angle with c.m. height for the 4.2 µm dumbbell. In
panels C and F, the dashed lines are contour plots of the kernel density estima-
tion, corresponding to 12.5%, 25%, 37.5%, 50%, 62.5% and 75% of the data.
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distribution depicted by the solid line in Figures 5.5B and 5.5E.

Examining the larger and, hence, heavier 4.2 µm dumbbells in Figure 5.5E, we
notice that these indeed have assumed mostly flat orientations with the wall,
with the most probable angles ranging between 2.2 and 9.6 deg (median 6 deg).
However, the double-peak structure in the angle probability density function
that we observed for the smaller dumbbells persists to some degree even for
these larger particles, indicating that the increased gravitational force leads to a
suppression of the interaction which causes the dumbbells to adopt a nonpar-
allel orientation. We hypothesize that the observed angle distributions for both
dumbbell sizes stem from a higher-order electrostatic effect not accounted for in
our theory. However, we cannot exclude a more subtle interplay of other effects,
such as buoyancy and hydrodynamics.

Naturally, the question arises whether changes in height relate to changes in
dumbbell orientation. To test for this, we plot the measured angles as func-
tion of center-of-mass height. We find that for the smaller dumbbells, there is
a clear preference for lower angles at low heights in Figure 5.5C, the preference
for which disappears with height. That is, further from the wall the dumbbells
may adopt a wider range of orientations. For the larger dumbbell, we also find a
narrower distribution of angles at lower heights in Figure 5.5F. However, we note
that both angle and height distributions are considerably narrower compared to
those that correspond to the smaller dumbbell. At the same time, the particle-
wall separation is typically greater than that of the smaller dumbbell: while the
smaller dumbbell moves closely to the wall, see the red area in Figure 5.5C which
indicates geometrically forbidden configurations caused by particle-wall over-
lap, the larger dumbbell does not come into close contact with the wall.

Theoretical considerations for preferred dumbbell
orientations
To gain insight into the preferred orientations and minimal angle measured in
the previous section, we extended the gravity and electrostatics model for a
sphere above the wall to the dumbbell as described in the Methods. Briefly,
Equations 5.8-5.9 model the dumbbell as two connected, but otherwise non-
interacting, spheres by balancing electrostatic and gravitational forces. This ap-
proximation ignores the distortion of the electrostatic double layer caused by the
presence of the other sphere, but allows us to probe the origin of the previously
described dumbbell orientation, by examining whether the combined effects of
electrostatics and gravity would result in zero force and torque solutions as func-
tion of plane angle and height above the wall.
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Figure 5.6: Force and torque acting on a dumbbell by balancing electrostatics
and gravity. A) The force as a function of θp and hc.m. for the 2.2 µm dumbbell.
For all orientations, there is a height range for which the net force is zero. B) The
torque as function of θp and hc.m. for the 2.2 µm dumbbell. C) The probability of
observing a combination of θp and hc.m. for the 2.2 µm dumbbell, as predicted
by Equation 5.11 and measured in the experiments (dashed line). D) The force as
a function of θp and hc.m. for the 4.2 µm dumbbell. The area where the net force
is zero is smaller compared to the smaller dumbbell in (A). E) The torque as a
function of θp and hc.m. for the 4.2 µm dumbbell. For the same range of angles as
in (B), the torque on the larger dumbbell is considerably higher than the thermal
energy for the majority of angles, causing the dumbbell to adopt a flat orientation
with respect to the wall. F) The probability of observing a combination of θp and
hc.m. for the 4.2 µm dumbbell. In panels A, B, D and E, the red lines indicate
regions where both the force and torque are simultaneously small compared to
the thermal energy, indicating a possibility of observing the dumbbell at those
heights and orientations. Values outside the indicated range of the color-bars are
clipped to visualize the low force and torque region relevant to the experiments,
while white regions represent sterically-forbidden combinations of height and
angle. Dashed lines are a contour plot of the kernel density estimation of the
experimental data, see also Figure 5.5.
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By applying the reduced model for the dumbbell to the experimental data, we
reach a number of interesting conclusions in Figure 5.6, where we plot the results
from the model. Figure 5.6A shows that the net force on the 2.2 µm dumbbell
vanishes for a range of heights and orientations. That is, for each given orien-
tation there exists a narrow distribution of heights where the force balance is
zero. As expected for a particle with a larger mass, for the 4.2 µm dumbbell
in Figure 5.6D the range of heights where the net force vanishes is considerably
narrower compared to the 2.2 µm dumbbell of Figure 5.6A. To answer whether
such configurations are expected to be stable, one must additionally consider the
possibility of a reorienting torque stemming from the combined effect of gravity
and electrostatics acting on the dumbbell. We expect that the interplay between
the magnitude of this reorienting torque and a random torque, stemming from
thermal fluctuations, causes changes in the dumbbell orientations with respect to
the wall. In the case of a reorienting torque that is large in comparison to the ran-
dom torque (≈ 1 kT), we expect a mostly parallel orientation with respect to the
wall. In contrast, for a reorienting torque that is small compared to the random
torque, we expect largely fluctuating orientations. In what follows, we examine
the presence and magnitude of the reorienting torque.

Interestingly, for the smaller 2.2 µm dumbbells, a regime arises where both net
forces and reorienting torques are simultaneously below the thermal force and
energy, respectively, for certain combinations of dumbbell-wall separations and
non-zero plane angles, as indicated by the red lines in Figures 5.6A and B. The
presence of such a regime that spans throughout state space suggests that the
large variations of the angle as found in Figure 5.5, evidenced also in the dashed
lines of Figures 5.6A and B, are expected. This is further corroborated by the
angle probability plot that follows from our model in Figure 5.6C for heights
relevant to our experiment. For the largest dumbbells, our minimal modeling
in Figures 5.6D-5.6F agrees well with the almost parallel orientations observed
in the experiments in Figure 5.5F, which mostly fall within the high reorienting
torque regime, see dashed line in Figure 5.6D.

Our minimal dumbbell model also sheds light on the relation between height
and orientation observed in Figures 5.5C and 5.5F, indicated also by the dashed
lines in Figure 5.6. Although the agreement is not fully quantitative, the model
shown in Figures 5.6C and 5.6F predicts an increase in the most probable an-
gle with greater heights, similar to our experiments. Moreover, the height and
orientation combinations that the dumbbells experimentally adopt most often
coincide with the zero net force regime and, equivalently, non-zero probabilities
in Figures 5.6C and 5.6F, for both dumbbell sizes, as evidenced by the overlap
between the experimental data and the areas of higher probability.

Finally, we notice that the range of experimentally observed angles for the 2.2 µm
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dumbbells does not fully coincide with the range of angles that fall within the
low force and torque regime from the model. For torques below the thermal en-
ergy, the model also allows for angles below 17 deg, which we did not observe
here for these dumbbells. We note that the discrepancy between our model and
experiment does not stem from a difference in size between the two spheres in
the dumbbell. As can be seen in Figures 5.8 and 5.9, where we additionally ac-
count for — the here relevant — 5% dispersity in the sphere sizes, the most proba-
ble heights are only slightly shifted towards greater values. The overall dumbbell
behavior that the model yields remains the same with or without polydispersity
in the sphere size. We hypothesize that this discrepancy may be resolved by
considering higher-order electrostatic effects. However, higher-order effects, to-
gether with the possibility of dynamic charge redistribution in the double layers
which may be relevant here, cannot be described by a simple analytical model.

Conclusions
We have measured the height of colloidal particles relative to planar walls with
high precision by means of holographic microscopy. The position of the wall
was tracked in time by following the position of spheres fixed on its surface,
thereby allowing for an accurate measurement of the location and orientation
of the plane and wall. For spheres, the obtained height distributions and diffu-
sivities as function of height are in line with well-known theoretical predictions.
Going a step further, we studied the height distributions and orientations of col-
loidal dumbbells relative to walls. We found that smaller dumbbells assume
non-parallel orientations with the wall and further examined the connection be-
tween orientation and particle-wall separation. Conversely, we found that larger
dumbbells of the same material were always oriented almost parallel to the wall.
Finally, we showed that, despite its simplicity, a minimal model accounting for
gravity and electrostatics not only faithfully describes the dumbbell height dis-
tribution, but also predicts stable configurations for a large range of orientations
and dumbbell-wall separations. However, our model predicts a larger range of
stable orientations than was found in our experiment, indicating that refinements
that account for higher-order electrostatic effects may need to be considered. We
thus hope that our findings will encourage further investigations of near-wall
particle dynamics. Our results highlight the rich dynamics that nonspherical
particles exhibit in the proximity of walls and can aid in developing quantitative
frameworks for arbitrarily-shaped particle dynamics in confinement.
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Methods
Materials. We used spherical silica particles of diameter (1.1±0.04) µm (size
polydispersity (PD) 3.7%) prepared following the method of Ref. [272]. Briefly,
0.5 mL tetraethyl orthosilicate (TEOS) diluted with 2 mL ethanol was added to
a mixture of 50 mL ethanol and 10 mL ammonia (25%). The mixture was stirred
magnetically for 2 h. The seed particles were grown to the desired size by adding
5 mL TEOS diluted with 20 mL ethanol during 2 h using a peristaltic pump. The
dispersion was stirred overnight and washed by centrifuging and redispersing
in ethanol three times. We obtained their diameter and PD from transmission
electron micrographs using ImageJ [273], by fitting particle diameters with the
software’s built-in functions. In addition, we used (2.1±0.06) µ diameter (PD
2.8%) spherical silica particles purchased from Microparticles GmbH. In all ex-
periments, dumbbell particles are naturally occurring aggregates of two spher-
ical particles. All solutions were prepared with fresh ultra-pure Milli-Q water
(Milli-Q Gradient A10, 18.2 MΩcm resistivity). Glass cover slips were purchased
from VWR and were used as received.

Holographic setup. We employed a digital inline holographic microscopy
(DIHM) setup based on existing examples [269]. Our setup made use of an
inverted microscope (Nikon Ti-E) equipped with a 60X oil immersion objective
(NA = 1.4). To generate a scatter pattern, we used a 660 nm light-emitting
diode (LED) source (Thorlabs M660L4) at its maximum power (3120 mW,
using a Thorlabs LEDD1B LED driver), mounted on the lamphouse port of
the microscope instead of the standard bright-field lamp. A schematic of the
setup is shown in Figure 5.1A. Prior to each measurement, we performed a
Köhler illumination procedure in bright-field mode to align the diaphragm
and condenser. Additionally, we employed a linear polarizer on top of the
condenser to improve the quality of the holograms by enforcing a specific
polarization direction.
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Sample preparation and measurement details. Spherical silica particles of either
1.1 or 2.1 µm diameter were spin coated from ethanol at dilute concentration
onto the glass cover slips, which fixated their position. The cover slips were
then placed at the base of the sample holder, serving as the walls relative to
which particle motion was measured. The fixated-to-the-wall spheres served as
reference points for determining the position of said wall, see also Figure 5.1F
and 5.1G as well as the discussion under Analysis of holograms. Afterwards, an
aqueous dispersion of particles of the same size was added in the sample holder,
which was subsequently entirely filled with water and covered at the top with a
glass cover slip to prevent drift. The dispersion contained single spheres as well
as small fractions of dumbbell particles that consisted of two touching spheres,
see also Figure 5.1F for an illustration. The motion of all particles above the wall
was recorded at a frame rate of 19 fps for at least 6 minutes.

Analysis of holograms. For all measurements, the recorded holographic mi-
croscopy images were corrected with background as well as dark-field images
to minimize errors stemming from interfering impurities along the optical train.
Then, for each measurement, the particle of interest was selected manually and
a circular crop around its hologram was taken, see also Figure 5.1B, to reduce
the amount of pixels considered during model fitting, thereby increasing com-
putational efficiency. From the holograms, we determine the three-dimensional
position, (x, y, z), the radius, R, and refractive index, n, of the spheres and dumb-
bells as described below.

Hologram analysis of spheres. To fit the experimental data, we performed least-
squares fits of a model based on Mie scattering theory [160] using the Python
package HoloPy [274], see Figure 5.1B as an example. The 3D position of the

Figure 5.7: Schematic summary of the fitting steps performed to obtain the 3D
position of a particle from the measured hologram analysis. The position in
time is fitted in four steps: the first three are characterization steps, in which we
find the approximate 3D position (fitting step 1) as well as appropriate guesses
for the refractive index n (fitting step 2) and radiusR (fitting step 3). In the fourth
step, we use these positions and the average n and R values to determine the 3D
position accurately (fitting step 4).
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particles in time was fitted in four steps, see also summary in Figure 5.7: the first
three are characterization steps to find the approximate 3D position (fitting step
1) as well as appropriate guesses for the refractive index n (fitting step 2) and
the radius R (fitting step 3). In the fourth step, we used these positions and the
average values of the radius and refractive index to determine the 3D position ac-
curately (fitting step 4). We will now discuss these steps in detail. The subscripts
correspond to the fitting step in which each parameter was determined.

Fitting step 1) For each frame, we determined the rough particle position
(x1, y1, z1), using reasonable estimates for radius Re and refractive index ne.

Fitting step 2) For the current frame, we determined z2 and characterized the par-
ticle refractive index n2, while keeping the (x1, y1) position and the estimated
radius Re fixed. Example distributions and average values of the refractive in-
dices obtained in this fitting step are shown in Figure 5.1D.

Fitting step 3) While keeping the (x1, y1) position and estimated refractive index
n2 fixed, we fitted z3 and the radius R3. Example distributions and average
values of the radii obtained in this fitting step are shown in Figure 5.1E.

Fitting step 4) Once initial positions (x1, y1, z3) and particle properties (n2, R3)
were determined for all frames, we calculated the time-averaged over all frames
properties (〈n2〉t, 〈R3〉t). Lastly, we performed a least-squares fit for each frame
allowing (x, y, z) to vary, keeping (n = 〈n2〉,R = 〈R3〉) fixed, see Figure 5.1C for
an individual sphere result.

Following this procedure, we minimized unwanted correlations between (z, R,
n) that can arise when allowing all parameters to vary at once during the fit. For
every frame, save the initial one, we used the values of the previous frame as
starting guesses to speed up the (convergence of the) analysis.

Hologram analysis of dumbbells. The steps followed to obtain particle proper-
ties and positions of the dumbbells were analogous to those of the single spheres,
only modified to additionally account for determining the dumbbell orienta-
tions. The scattering pattern of the dumbbell, calculated using the T matrix (or
null-field) method [275], was modelled using the Python package HoloPy [274].
We used three characterization fitting steps to find the approximate 3D posi-
tion and orientation (fitting step 1) as well as appropriate guesses for refrac-
tive indices n(A), n(B) (fitting step 2) and the radii R(A), R(B) (fitting step 3).
R(A), R(B) are the radii of the respective ‘A’ and ‘B’ spheres of the dumbbell
with refractive indices n(A), n(B). In the fourth and final step, we used these
positions, orientations and the average values of the radii and refractive indices
to determine the 3D position and orientation accurately (fitting step 4). We will
now discuss these steps in detail. The subscripts correspond to the fitting step in
which each parameter was determined.
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Fitting step 1) In this first step, we determined (x1, y1, z1, α1, β1, γ1) of the center-
of-mass (c.m.), with (R

(A)
e , n

(A)
e , R

(B)
e , n

(B)
e ) set to reasonable estimates. Here,

(α, β, γ) correspond to the three Euler angles using the ZYZ convention, while
(x, y, z) denote the c.m. positions and, again, numbered subscripts the fitting
step in which the parameter was obtained.

Fitting step 2) We determined the refractive indices and z-position (n
(A)
2 , n

(B)
2 , z2)

while keeping (x1, y1, α1, β1, γ1, R
(A)
e , R

(B)
e ) fixed.

Fitting step 3) Radii and z-position (R
(A)
3 , R

(B)
3 , z3) were fitted while

(x1, y1, α1, β1, γ1, n
(A)
2 , n

(B)
2 ) were kept constant.

Fitting step 4) After determining the initial positions (x1, y1, z3),
orientations (α1, β1, γ1) and particle properties (n

(A)
2 , n

(B)
2 , R

(A)
3 , R

(B)
3 )

for all frames, we calculated the time averaged properties
(n(A) = 〈n(A)

2 〉t, n(B) = 〈n(B)
2 〉t, R(A) = 〈R(A)

3 〉t, R(B) = 〈R(B)
3 〉t) over all

frames. Then, we performed a least-squares fit for each frame again, where we
allowed (x, y, z, α, β, γ) to vary, keeping (R(A), R(B), n(A), n(B)) fixed.

With this procedure, we minimize unwanted correlations that can arise between
(α, β, γ, z, R(A), R(B), n(A), n(B)) when allowing all parameters to vary at the
same time. For every frame, save the initial one, we used the values of the previ-
ous frame as starting guesses to speed up the analysis. On that note, we addition-
ally restricted the differences in rotation angles between subsequent frames to be
smaller than 90 deg. Finally, we used the open-source TrackPy implementation
[276] of the Crocker-Grier algorithm [277] to link the individual sphere positions
between frames into continuous trajectories, ensuring a correct and consistent
orientation of the dumbbell. Because we assign specific labels to both particles in
the first frame of the video, we can distinguish the particles and, in turn, between
positive and negative orientations, throughout the video.

Particle-plane separation. The position and orientation of the wall was accu-
rately determined from the 3-dimensional positions of at least three spin coated
spheres that were irreversibly fixed to the wall. This served two purposes: first,
to speed up the fit of the mobile particles under study by providing a reliable
lower bound on their axial position and, second, to accurately determine their
height from the wall. A reference point on the plane rp = (0, 0, zp) and a nor-
mal vector n̂p, see inset of Figure 5.1G, were determined for all the fixed par-
ticles for each frame. Using rp and n̂p, the particle-plane separation along the
normal vector n̂p was determined for the mobile spheres, see also Figure 5.2A,
from n̂p · (r − rp) − R, with r and R the position and radius of the sphere, re-
spectively. For the dumbbells, particle-plane separation was determined using
the same procedure as the individual spheres; both the c.m. height, hc.m. =
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n̂p · (rc.m. − rp), above the wall is reported as well as gap heights of both lower
and upper sphere. Note that, since the orientation of the dumbbell can flip, the
lower (or upper) sphere is not necessarily always the same physical particle.

Sphere height distribution. To model the height distributions of the spherical
particles above the wall in Figure 5.2B, we used a model that combines electro-
static and gravitational effects [166, 220] to calculate the total height-dependent
force F (hc.m.) in the z direction (see also schematic in Figure 5.1F):

F (hc.m.) = Fe(hc.m.) + Fg (5.1)

Fe(hc.m.) = 64πεκR

(
kBT

e

)2

tanh

(
eΨw

4kBT

)
tanh

(
eΨp

4kBT

)
e−κhc.m. (5.2)

Fg = −4

3
πR3 (ρp − ρf ) g (5.3)

with hc.m. the height of the center of the sphere, Fe(hc.m.) the force due to
overlapping electric double layers of the particle and the wall, Fg the gravita-
tional force, ε the dielectric permittivity of water, kB the Boltzmann constant,
T = 300 K the temperature, e the elemental charge, Ψp and Ψw the Stern poten-
tials of the particle and wall respectively, ρp ≈ 2.0 g cm−3 the particle density, ρf
the density of water, g the gravitational acceleration and κ−1 the Debye length.
Based on the pH of our solution (pH≈5.5), we find that the solution ionic strength
is approximately I = 10−5.5 = 3× 10−6 M. Therefore, the Debye length is ex-
pected to be κ−1(nm) = 0.304/

√
I(M) = 175 nm [278], in good agreement with

the fit values of 100 to 230 nm that we obtained by fitting Equation 5.7 and 5.11 to
the experimental data for both sphere and dumbbell particles, respectively. We
neglected van der Waals interactions; we used the Derjaguin approximations for
Fe. For the electrostatic potential, we used the Debye-Hückel approximation,

Ψ(r) = Ψs
R

r
exp(−κ(r −R)), (5.4)

with Ψ(r) the electrostatic potential at a distance r from the center of the particle
and Ψs the Stern potential. By setting Ψ(r = 1/κ) equal to the here measured
zeta potential of the spherical particles, see values in Part I of Results and Dis-
cussion, we calculated an approximate value for the Stern potential. This we
subsequently used as a starting value for the least-square fit of the model to our
experimental height distributions. For the wall, we converted the zeta poten-
tial value of −55 mV [143] to an approximate Stern potential using Equation 5.4.
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For ρp and Ψp we used ±2σ bounds; we fixed Ψw to the calculated value as
discussed above, and put no restrictions on κ. To calculate the expected height
distribution, we first obtained the electrostatic and gravitational potential energy,
φe(hc.m.) and φg(hc.m.), respectively, from the force,

φe(hc.m.) = Fe(hc.m.)/κ (5.5)
φg(hc.m.) = −Fghc.m., (5.6)

which we then used to derive the appropriate Boltzmann distribution,

p(hc.m.) = A exp

(
−φe(hc.m.) + φg(hc.m.)

kBT

)
, (5.7)

up to a normalization constant A [220].

Sphere near-wall diffusion. To test the validity of our measuring approach and
the accuracy of our measured gap heights above the wall, we sought to com-
pare our measurements to theoretical predictions. To this end, and since well-
established predictions exist for spheres alone, we determined the translational
diffusion coefficient for our sphere measurements as function of gap height. To
calculate the translational diffusion coefficient with gap height in Figure 5.3, we
proceeded as follows: instead of binning particle trajectories in time leading to
bins with large height variations, we split all trajectories into shorter trajecto-
ries for which the gap height stayed within a certain height range, typically bin-
ning the total height range in bins of 0.30 µm and 0.12 µm for the 1.1 and 2.1 µm
spheres, respectively. For each height bin, the in-plane mean squared displace-
ment (〈∆r2〉) was calculated. The in-plane translational diffusion coefficient D
and its error (standard deviation), was obtained from the first data point, typ-
ically an average of at least 300 measurements, of the MSD corresponding to a
lag-time ∆t of 0.053 s using 〈∆r2〉 = 4D∆t.

Modeling forces and torques on the dumbbell. To elucidate dumbbell behav-
iors above the wall already presented in Part II of the Results and Discussion sec-
tion, we extended the sphere height distribution model described above to our
dumbbells. We approximated the gravitational and electrostatic forces acting on
a dumbbell, by assuming that the spheres comprising the dumbbell interact with
the wall individually, as though the other is not present. That is, we used the
expressions from Equations 5.1-5.3 on each sphere. This approximation ignores
the distortion of the electrostatic double layer caused by the presence of the other
sphere, but allows us to derive predictions efficiently. The consequences of this
approximation have also been discussed in Part II of the Results and Discussion.

125



Chapter 5. Holography as a Probe for Near-Wall Colloid Dynamics

The total force and torque acting on the dumbbell c.m. are thus given by:

FDB = F (h1) + F (h2) (5.8)

TDB = [(r1 − rc.m.)× F (h1)êz + (r2 − rc.m.)× F (h2)êz] · êx (5.9)

with hi, ri the height and position of sphere i, θp the angle between the long axis
of the dumbbell and the wall and êj the unit vector along the j ∈ [x, y, z] axis,
see schematic of Figure 5.1F. From the force expressions acting on the individual
spheres of the dumbbell, we calculated the corresponding potential energy:

φDB(hc.m., θp) = −2Fghc.m. +
2Fe(hc.m.)

κ
cosh (κR sin θp). (5.10)

Equation 5.10 assumes that both spheres have the same radius. This potential
can be derived with respect to the hc.m. to obtain the force and to θp to obtain the
torque. We subsequently used the potential to derive the appropriate height dis-
tribution for the dumbbell c.m. pDB(hc.m., θp) up to a normalization constant,

pDB(hc.m., θp) ∝ K exp

[
−φDB(hc.m., θp)

kBT

]
(5.11)

pDB(hc.m.) ∝
∫ π

2

−π2
dθp cos (θp)K exp

[
−φDB(hc.m., θp)

kBT

]
, (5.12)

pDB(θp) ∝
∫ hmax

R
dhc.m.K exp

[
−φDB(hc.m., θp)

kBT

]
, (5.13)

where we evaluated Equation 5.12 by numeric integration over all possible plane
angles θp and Equation 5.13 by numeric integration over all possible heights
hc.m.; hmax was set to 5 µm. K represents the particle-wall hard-core interaction
potential contribution to the Boltzmann weight: K = 1 if both spheres of the
dumbbell are above the wall; otherwise K = 0. We calculated the probability as
a function of the lowest dumbbell gap height (i.e., separation between the wall
and the bottom of the lower sphere) by substituting hc.m. = hg,l + R + R sin θp
in Equation 5.12. Equivalently, for the upper gap height, we substituted hc.m. =
hg,u +R−R sin θp in Equation 5.12 to derive its distribution.
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Appendix: Model for dumbbells consisting of
spheres with unequal radii - plane height and
orientation probability density
Here, we derive the electrostatic and gravitational forces on a dumbbell of two
unequally sized spheres of radii R = R1, R2 and use it to calculate the potential
energy and probability density function in terms of center-of-mass (c.m.) height
hc.m. and plane angle θp. The force F (R, h) on one of the spheres is given by
Eq. 5.1. The net force FDB(R1, R2, hc.m., θp) is then given by

FDB = F (R1, h1) + F (R2, h2), (5.14)

h1 = hc.m. +
R3

2(R1 +R2) sin θp
R3

1 +R3
2

(5.15)

h2 = h1 − (R1 +R2) sin θp (5.16)

Eq. 5.14 can be integrated to give the potential energy φDB(R1, R2, hc.m., θp)

φDB = φDB,g + φDB,e (5.17)
φDB,g = − (Fg(R1)h1 + Fg(R2)h2) (5.18)

φDB,e =
B(R1)

κ
exp [−κh1] +

B(R2)

κ
exp [−κh2] . (5.19)

This potential can be derived with respect to the hc.m. to obtain the force and
to θp to obtain the torque. We subsequently used the potential to derive the
appropriate height distribution for the dumbbell c.m. pDB(R1, R2, hc.m., θp) up
to a normalization constant,

pDB(R1, R2, hc.m., θp) ∝ K exp

[
−φDB
kBT

]
. (5.20)

K represents the particle-wall hard-core interaction potential contribution to the
Boltzmann weight: K = 1 if both spheres of the dumbbell are above the wall;
otherwise K = 0.

We show the results of Equations 5.18-5.20 in Figures 5.8 and 5.9 for the 2.2 µm
and 4.2 µm dumbbells, respectively. The individual contributions of the gravita-
tional and electrostatic potential to the net potential energy are shown in the first
and second columns, respectively, in both figures. It is clear that the electrostatic
potential is not negligible compared to the gravitational potential, therefore, the
height from the surface is greatly influenced by electrostatic repulsion despite the
relatively short — order of 150 nm — Debye length. Using the aforementioned
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equations, we have here calculated the experimentally relevant size dispersity of
5%. We have chosen theR1, R2 in such a way that the total mass of the dumbbell
is the same as theR1 = R2 = R case. As a convention, positive angles denote the
orientation where the sphere of the smaller radius R1 is higher than the sphere
of the larger radius R2, as given in Equations 5.15-5.16.

Compared to the case where both spheres are equal, increasing the size dispersity
between the spheres by 5% has no noticeable effect on the dumbbell behavior,
since the most probable heights are only slightly shifted towards greater values,
as evident from the slight differences in the calculated probabilities if the right-
most panel of Figures 5.8B and 5.9B. This verifies that the differences observed
between our experiment and model in Figure 5.6 do not stem from differences
in the size between the spheres comprising the dumbbells, as the size dispersity
in our experiment is well below the 5% size dispersity considered here. This
strengthens our conclusion that the discrepancy between experiment and model
may stem from higher-order electrostatic effects. However, note that the equa-
tions predict that a large size dispersity, as for example in the case of a highly
anisotropic dumbbell (snowman particle) for which R2 ≈ 2R1, would have two
effects in comparison to the R2 = R1 symmetric dumbbell: firstly, the distribu-
tion around θp = 0 is no longer expected to be symmetric, and secondly, a larger
range of both angles and c.m. heights will become accessible. Such extreme size
variations are not relevant to the experiments studied in this chapter. Yet, the
equations that we provide for unequal sphere sizes may serve as a useful tool for
broader research studies on near-wall dynamics of anisotropic dumbbells.
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Figure 5.8: Effect of sphere size dispersity on dumbbell PDFs: 2.2 µm dumb-
bells (R= 0.54 µm). All gravitational and electrostatic potentials were calcu-
lated according to Equation 5.18 and Equation 5.19, respectively. All probabil-
ities were calculated according to Equation 5.20. A) Dumbbell of equal size
spheres R1 = R2 = R = with R= 0.54µm. Left to right: gravitational po-
tential, electrostatic potential, and PDF. B) Dumbbell of spheres of unequal
size R1 = 0.975R,R2 = 1.024R, with R=0.54µm as in (A). Left to right:
gravitational potential, electrostatic potential, PDF, and probability difference
p(0.975R, 1.024R)− p(R,R) illustrating that a 5% dispersity in sphere size does
not influence the behavior of the dumbbell of this size.

129



Chapter 5. Holography as a Probe for Near-Wall Colloid Dynamics

Figure 5.9: Effect of sphere size dispersity on dumbbell PDFs: 4.2 µm dumb-
bells (R= 1.04 µm). All gravitational and electrostatic potentials were calcu-
lated according to Equation 5.18 and Equation 5.19, respectively. All probabil-
ities were calculated according to Equation 5.20. A) Dumbbell of equal size
spheres R1 = R2 = R = with R=1.04 µm. Left to right: gravitational po-
tential, electrostatic potential, and PDF. B) Dumbbell of spheres of unequal
size R1 = 0.975R,R2 = 1.024R, with R=1.04 µm as in (A). Left to right:
gravitational potential, electrostatic potential, PDF, and probability difference
p(0.975R, 1.024R)−p(R,R) again illustrating that a 5% dispersity in sphere size
does not influence the behavior of the dumbbell of this size as in Figure 5.8.
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