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Abstract

Prediction rule ensembles (PREs) are sparse collections of rules, offering highly inter-
pretable regression and classification models. This paper shows how they can be fitted
using function pre from R package pre, which derives PREs largely through the method-
ology of Friedman and Popescu (2008). The implementation and functionality of pre is
described and illustrated through application on a dataset on the prediction of depres-
sion. Furthermore, accuracy and sparsity of pre is compared with that of single trees,
random forests, lasso regression and the original RuleFit implementation of Friedman and
Popescu (2008) in four benchmark datasets. Results indicate that pre derives ensembles
with predictive accuracy similar to that of random forests, while using a smaller number
of variables for prediction. Furthermore, pre provided better accuracy and sparsity than
the original RuleFit implementation.
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1. Introduction

Prediction rule ensembles provide accurate and interpretable methods for regression and clas-
sification. Prediction rules are logical statements of the form if [conditions] then [prediction],
which are easy to use in decision making. The prediction rules can be depicted as very sim-
ple decision trees, further improving interpretability (e.g., Fokkema, Smits, Kelderman, and
Penninx 2015).
Several algorithms for deriving decision trees are available, an early example being the classi-
fication and regression tree algorithm (CART; Breiman, Friedman, Olshen, and Stone 1984).
Although CART trees are easy to interpret, they suffer from two disadvantages: biased vari-
able selection and instability. Although the variable selection bias has been addressed by
several later tree induction algorithms, like for example the conditional inference trees algo-
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rithm of Hothorn, Hornik, and Zeileis (2006), the problem of instability is shared by all tree
induction algorithms. Instability here means that small changes in the training data may
yield major changes in the resulting tree.

A powerful solution to the instability problem is combining the predictions of single trees
through ensembling, which has been found to substantially improve predictive accuracy (e.g.,
Breiman 1996; Dietterich 2000; Strobl, Malley, and Tutz 2009). However, the resulting en-
sembles generally consist of a large number of trees and are therefore difficult to interpret and
apply. A trade-off between accuracy and interpretability seems to apply: single trees provide
better interpretability, whereas tree ensembles provide better accuracy.

Prediction rule ensembles (PREs) aim to optimize accuracy as well as interpretability, by cre-
ating ensembles with a small number of simple trees or rules. Several algorithms for deriving
PREs have been developed, most exclusively aimed at classification, like SLIPPER (Cohen
and Singer 1999) and lightweight rule induction (Weiss and Indurkhya 2000). Alternatively,
the RuleFit (Friedman and Popescu 2008), ENDER (Dembczyński, Kotłowski, and Słowiński
2010) and node harvest (Meinshausen 2010) algorithms can be applied to classification as
well as regression problems. The RuleFit algorithm generates a large initial ensemble of rules
from a boosted tree ensemble and selects a sparse final rule ensemble using lasso regression.
This approach yields ensembles that are competitive in accuracy with, for example, boosted
tree ensembles and random forests (Friedman and Popescu 2008; Joly, Schnitzler, Geurts, and
Wehenkel 2012; Shimokawa, Li, Yan, Kitamura, and Goto 2014; Yang, Zhang, Chen, Chen,
Li, and Lu 2008).

The aim of the current paper is to introduce function pre from R (R Core Team 2019) package
pre (Fokkema and Christoffersen 2020), which provides a completely R-based implementation
of the algorithm of Friedman and Popescu (2008). Package pre is available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=pre. Al-
though the RuleFit program (Friedman and Popescu 2012) already provides a fast implemen-
tation of the algorithm, pre provides a number of potential advantages: First, in addition to
the CART algorithm, it allows for employing the unbiased recursive partitioning algorithms
of Hothorn et al. (2006) and Zeileis, Hothorn, and Hornik (2008) to generate rules. Second,
in addition to continuous and binary outcomes, pre allows for the analysis of count, multi-
nomial, multivariate continuous and survival outcomes. Third, in addition to bagging and
boosting, pre allows for generating prediction rules through a random-forest style approach.
Fourth, pre is completely R-based, providing R users with a more familiar interface and more
easily accessible results and documentation. The first and last advantages, however, come at
a computational cost, yielding longer computation times for pre than for the original RuleFit
program.

In what follows, the implementation (Section 2) and functionality (Section 3) of pre will
be described. In Section 4, application of pre will be illustrated using an existing dataset
on the prediction of depressive symptomatology. Also, several examples will illustrate how
well-known tree ensemble approaches can be mimicked in rule generation. In Section 5, the
performance of pre will be compared with that of single trees, random forests, lasso penal-
ized linear regression and the original RuleFit implementation in four benchmark datasets.
In Section 6, the properties of pre and other software packages for deriving PREs will be
discussed and compared.

https://CRAN.R-project.org/package=pre
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2. Implementation

2.1. Rule generation

Following the methodology of Friedman and Popescu (2008), pre first generates a large en-
semble of decision trees, from which an initial ensemble of prediction rules is derived. To
induce trees, pre by default employs function ctree from the partykit package (Hothorn
and Zeileis 2015). Alternatively, function glmtree (also from package partykit; Zeileis et al.
2008) or function rpart from package rpart (Therneau, Atkinson, and Ripley 2019) can be
employed. Function rpart implements the original CART algorithm of Breiman et al. (1984),
whereas functions ctree and glmtree implement unbiased recursive partitioning procedures,
which address the variable selection bias mentioned earlier, through separating variable and
cut-point selection. Function glmtree fits GLMs with different parameter estimates in every
node. To obtain a tree with constant fits in the nodes with glmtree, an intercept-only GLM
is specified.
Functions ctree, glmtree and rpart employ different criteria for variable and/or cut-point
selection and will yield somewhat different tree structures, given the same data. Although
glmtree will yield the longest computation times, it may yield slightly higher accuracy. For
further details on variable and cut-point selection criteria employed by the different algo-
rithms, the reader is referred to Hothorn et al. (2006), Zeileis et al. (2008) and Therneau
et al. (2019).
To illustrate rule generation, Figure 1 depicts an example tree. From this tree, the following
set of rules can be derived:

r1(x) = I(x4 ≤ 82.7),
r2(x) = I((x4 ≤ 82.7) · (x3 ∈ {a, c})),
r3(x) = I((x4 ≤ 82.7 · (x3 ∈ {b, d, e})),
r4(x) = I(x4 > 82.7),
r5(x) = I((x4 > 82.7) · (x5 ≤ seldom)),
r6(x) = I((x4 > 82.7) · (x5 > seldom)),

where rk(x) denotes prediction rule k (k = 1, . . . ,K), taking a value of 1 if its conditions
apply, and a value of 0 if not; x denotes a random vector of p input variables; xj denotes
input variable j (j = 1, . . . , p); and I is a function denoting the truth of its argument. Note
that, with exception of the root node, a rule is generated for every node in the tree, not just
for the terminal nodes. This also yields redundant rules: for example, the first and fourth
rule above are perfectly collinear, that is r4(x) = 1 − r1(x). Therefore r4 will be omitted
from the initial ensemble. Similarly, rules that are identical to earlier generated rules are also
removed from the initial ensemble. Furthermore, as shown in Figure 1, input variables may
be continuous (like x4), unordered categorical (like x3) or ordered categorical (like x5).
The ensemble of decision trees can be generated in an approach similar to bagged, boosted
or random forest tree ensembles, or a combination thereof. By default, pre draws B = 500
random sub-samples from the training data and grows a tree on each sample. As in bagging,
pre allows for employing bootstrap sampling (i.e., sampling with replacement), but sub-
sampling has been found to yield lower inclusion frequencies for noise variables (De Bin,
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Figure 1: Example tree. Information on the distribution of the outcome variable in the
terminal nodes is omitted, as only the tree structure is used for generating rules.

Janitza, Sauerbrei, and Boulesteix 2016). In addition to random sampling of observations,
pre allows for random-forest style sampling of predictor variables for split selection through
specification of an mtry argument. By default, however, all predictor variables are considered
for split selection.
To apply boosting, a learning rate (or shrinkage parameter) ν can be specified, which controls
the influence of earlier trees on the induction of new trees. If ν > 0, a gradient boosting
approach is employed, where the tree in iteration b (b = 1, . . . , B) is grown on the pseudo
response ỹb, instead of the original response y.
For a continuous response variable y, the pseudo response in iteration b is given by:

ỹb = y −
b−1∑
m=1

ν · fm(x), (1)

where fm(x) are the predictions from the regression tree fitted in iterationm (m = 1, . . . , b−1).
For a multivariate continuous response variable y, Equation 1 would also be employed, but
with a multivariate pseudo response ỹb and multivariate predictions fm(x). For a binary
(0−1 coded) response variable, regression trees are fitted to a continuous pseudo response,
which is given by:

ỹb = y − pb−1√
pb−1(1− pb−1)

, (2)

where
pb−1 = 1

1 + e−ηb−1
. (3)

In the first iteration, the value of η is given by:

η0 = log
(

p̄

1− p̄

)
, (4)

where p̄ is the (possibly weighted) mean of y. In subsequent iterations (b > 1), η is given by:

ηb−1 = η0 +
b−1∑
m=1

ν · fm(x). (5)
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For multinomial response variables, gradient boosting is applied by coding the response as a
set of 0−1 coded indicator variables, one for each response category, and applying Equations 2
through 5 to obtain a multivariate pseudo response.
For count response variables, regression trees are also employed and the pseudo response is
given by:

ỹb = y − λb−1, (6)
where

λb−1 = eηb−1 . (7)
In the first iteration, the value of η is given by:

η0 = log
(
λ̄
)
, (8)

where λ̄ is the (possibly weighted) mean of y. In subsequent iterations (b > 1), η is given by
Equation 5.
For the gradient boosting approach described above, functions ctree or rpart are employed.
Alternatively, function glmtree can be employed, allowing for application of the learning rate
through including an offset in the GLM (i.e., a predictor with a fixed coefficient of 1). That
is, in every iteration, a GLM-based recursive partition is fit on the response y with the offset
in each iteration b given by:

ηb−1 =
b−1∑
m=1

ν · fm(x), (9)

where fm(x) are the predictions on the scale of the linear predictor from the tree fitted in
iteration m. Whereas gradient boosting with ctree or rpart yields shorter computation
times, the use of glmtree may yield a somewhat more accurate final ensemble.
Based on the findings of Friedman (2001) and Friedman and Popescu (2003), who found small
non-zero values of the learning rate to perform best for ensembles of small decision trees, the
learning rate ν of pre is set to 0.01, by default.
Although the original bagging and random forest algorithms made use of unpruned trees,
limiting tree size has been found to yield better predictive accuracy (e.g., Lin and Jeon 2006).
Smaller trees also yield shorter prediction rules, which are easier to interpret. Function pre
therefore generates trees with a maximum depth of three by default, yielding a maximum
of three conditions per rule and restricting interactions that can be captured to first- and
second-order ones. Other values for maximum tree depth can be specified by the user.

2.2. Selection of the final ensemble
After the ensemble of decision trees is generated, every node from every tree is included as
a rule in the initial rule ensemble. Rules that are perfectly collinear with earlier rules are
omitted from the initial ensemble, by default. Furthermore, all predictor variables are included
as linear terms in the initial ensemble, by default. This may improve sparsity and/or accuracy
of the final ensemble, as rules may have difficulty approximating purely linear functions of
input variables. Alternatively, the ensemble may be specified to include either rules or linear
terms only. To reduce the effect of possible outliers, continuous and ordered categorical
predictor variables are winsorized before inclusion as linear terms in the initial ensemble:

lj(xj) = min(δ+
j ,max(δ−j , xj)), (10)



6 pre: Prediction Rule Ensembles in R

where δ−j and δ+
j represent the β and (1−β) quantiles of the distribution of predictor variable

xj in the training data. By default, β is set to 0.025, but other values may be specified by
the user.
Unordered factors are included in the initial ensemble as (qj − 1) 0−1 coded variables, where
qj corresponds to the number of levels of predictor variable j. The resulting initial ensemble
consists of a large number of base learners (rules and/or linear terms), of which only a small
subset may actually contribute to predictive accuracy. Therefore, coefficients for the base
learners are estimated using penalized regression. By default, pre employs the lasso penalty,
but ridge or elastic net penalties can also be selected by the user.
As the lasso penalty more heavily penalizes predictors with smaller variance, linear terms are
normalized before estimation, by default:

lj(xj)← 0.4 · lj(xj)
sd(lj(xj))

, (11)

where sd(lj(xj)) is the sample standard deviation of the linear term (Equation 10) and 0.4
represents the standard deviation of a typical rule.1

If both rules and linear terms are included in the ensemble, the final predictive model is given
by:

F (x) = â0 +
K∑
k=1

âkrk(x) +
p∑
j=1

b̂jlj(xj). (12)

If the lasso penalized regression is employed, coefficients â and b̂ are estimated by minimizing:

N∑
i=1

L

yi, a0 +
K∑
k=1

akrk(xi) +
p∑
j=1

bjlj(xi,j)

+ λ ·

 K∑
k=1
|ak|+

p∑
j=1
|bj |

 , (13)

where i (i = 1, . . . , N) denotes an observation in the training dataset. For estimation of
coefficients, pre employs the cv.glmnet function from package glmnet (Friedman, Hastie,
and Tibshirani 2010). By default, the loss function L is equal to 0.5 times the squared residual
for continuous responses and minus the log-likelihood for other response types. Other loss
functions (e.g., mean absolute error, misclassification error) may be specified by the user. By
default, the penalty parameter λ is set to the value yielding a cross-validated prediction error
of one standard error within the minimum, but other values for λ may also be specified by
the user.

2.3. Interpretation

Friedman and Popescu (2008) proposed several measures for interpretation of the final pre-
diction rule ensemble. Most are implemented in pre and discussed below.

1The standard deviation of a typical rule is derived as follows: A rule is a binary 0−1 coded variable. If we
take s to be the proportion of observations to which a rule applies, the variance is given by f(s) = s(1 − s),
with antiderivative F (s) =

∫
s(1 − s)ds = 1/2 · s2 − 1/3 · s3. The average of a function f(s) over its domain

[a, b] is given by 1/(b − a)
∫ b

a
f(s)ds. Thus, the average variance of a rule is equal to 1/(1 − 0)

∫ 1
0 f(s)ds =∫ 1

0 f(s)ds = F (1) − F (0) = (1/2 − 1/3) − (0 − 0) = 1/6, yielding a standard deviation of
√

1/6 ≈ 0.4.
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Importance

To quantify the relative contribution of every base learner to the predictions of the final en-
semble, importances can be calculated. Friedman and Popescu (2008) defined the importance
of a linear term as:

Ij = |b̂j | · sd(lj(xj)), (14)

where sd denotes the sample standard deviation. Similarly, the global importance of a rule
is given by:

Ik = |âk| ·
√
sk(1− sk), (15)

where
√
sk(1− sk) is the sample standard deviation of rule k, which is in turn defined by sk,

the support of rule k in the training data, or the proportion of training observations to which
rule k applies:

sk = 1
N

N∑
i=1

rk(xi). (16)

The importances in Equations 14 and 15 can be interpreted as the absolute value of regres-
sion coefficients, standardized with respect to the base learner. Additional standardization
with respect to the outcome variable would yield importances that can be interpreted as
standardized regression coefficients. Therefore, pre also allows for calculating standardized
importances for continuous outcomes. Thus, for linear terms, the standardized importance is
given by:

I ′j = |b̂j | ·
sd(lj(xj))

sd(y) . (17)

For rules, the standardized importance is given by:

I ′k = |âk| ·
√
sk(1− sk)

sd(y) . (18)

The total importance of input variable xj is given by the sum of the importances of the linear
term and the rules in which xj appears (Friedman and Popescu 2008):

Jj = Ij +
∑
xj∈rk

Ik
ck
, (19)

where ck is the number of conditions that define rule k. The second term ∑
xj∈rk

Ik/ck shows
that the importance of a rule is distributed equally over the input variables appearing in the
rule. When a variable appears more than once in the conditions of a rule, Ik/ck is multiplied
accordingly. The variable importance in Equation 19 can be calculated using standardized
or unstandardized importances. In either case, variable importances take values ≥ 0, with
higher values indicating a stronger effect on the ensemble’s predictions.
Friedman and Popescu (2008) also proposed local importance measures for a selected sub-
region of the input variable space. These can be obtained by replacing the global standard
deviations in Equations 14 and 15 (or 17 and 18 for their standardized counterparts) by the
local standard deviations in the subregion. Local variable importances can in turn be calcu-
lated by summing the weighted local importances of the base learners in which the variable
appears, as in Equation 19.
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Partial dependence

The shape of the association between predictor and response variables can be assessed through
plotting partial dependence functions. The partial dependence of F (x) on a subset of input
variables S ⊂ {1, . . . , p} is defined as the expected value of F (x) over the marginal joint
distribution of input variables not in S (i.e., x\S ; Friedman 2001; Friedman and Popescu
2008). The partial dependence of F (x) on the subset of predictor variables S can be estimated
from the data by:

F̂S(xS) = 1
N

N∑
i=1

F (xS ,xi,\S), (20)

where {xi,\S}Ni=1 are the training data observations. Taking a subset S of one or two predictor
variables allows for plotting the partial dependence of F (x) on xS .

Interactions

Prediction rules are well suited for capturing interaction effects of input variables. However,
non-zero coefficients for rules involving multiple predictor variables in the final ensemble are a
necessary but not sufficient condition for the presence of interaction effects. For example, the
interaction may be cancelled out by other rules in the ensemble. Or, a rule involving multiple
predictor variables may merely reflect main effects of (correlated) predictor variables, instead
of interaction(s).
Friedman and Popescu (2008) developed a statistic for assessing whether a predictor variable is
involved in interactions with other predictor variables in the model. The underlying rationale
is that in the presence of interaction effects, the effects of individual predictor variables are
not additive. If an input variable xj is not involved in interactions with other input variables
x\j , then its effect on F (x) is additive, which can then be expressed as:

F (x) = Fj(xj) + F\j(x\j), (21)

where Fj(xj) is the partial dependence of F (x) on xj and F\j(x\j) is the partial dependence
of F (x) on x\j , both of which can be estimated from the data using Equation 20. If we
assume all partial dependence functions as well as the predictive model F (x) to be centered
to have a mean value of zero, the extent to which F (x) deviates from additivity with respect
to xj can be quantified though the following statistic:

H2
j =

∑N
i=1 [F (xi)− F̂j(xi,j)− F̂\j(xi,\j)]2∑N

i=1 [F (xi)]2
, (22)

where F (xi) represent the (centered) model predictions at xi; F̂j(xi,j) represents the (cen-
tered) partial dependence of the predictive model on xj , evaluated at xi,j ; F̂\j(xi,\j) represents
the (centered) partial dependence of the predictive model on x\j , evaluated at xi,\j and the
denominator ∑N

i=1 [F (xi)]2 represents the sample variance of the model’s predictions. The
statistic H2

j measures the fraction of variance of F (x) not captured by the additive effects. It
will differ from zero to the extent that xj is involved in interactions with other input variables.
To assess whether the estimated H2

j value significantly differs from zero, a null distribution
has to be derived. Friedman and Popescu (2008) suggest the use of a variant of the parametric
bootstrap (Efron and Tibshirani 1994) to derive a null distribution for H2

j . In effect, H2
j is
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repeatedly computed for ensembles fitted on artificial datasets from which interactions are
known to be absent. The procedure for generating artificial datasets without interactions and
calculating the reference distribution for H2

j is described in detail in Friedman and Popescu
(2008, Section 8.3).

3. Usage
The basic usage and default settings of function pre are as follows:

pre(formula, data, weights, family = gaussian, use.grad = TRUE,
tree.unbiased = TRUE, type = "both", sampfrac = 0.5, maxdepth = 3L,
learnrate = .01, confirmatory = NULL, mtry = Inf, ntrees = 500,
tree.control, removeduplicates = TRUE, removecomplements = TRUE,
winsfrac = 0.025, normalize = TRUE, standardize = FALSE,
ordinal = TRUE, nfolds = 10L, verbose = FALSE, par.init = FALSE,
par.final = FALSE, ...)

The following arguments are required:

• formula provides a symbolic description of the model to be fit.
• data specifies a data frame containing the variables in the model.

The following arguments are optional:

• weights provides a vector of case weights.
• family specifies a GLM-family object or a character string. By default, family =

gaussian and a single continuous response variable is assumed. Alternatively, for a
single binary factor binomial, for a count response poisson, for a factor with > 2
levels "multinomial", for a multivariate continuous response "mgaussian" and for a
survival response "cox" should be specified. Note that gaussian, binomial and poisson
families may be specified as either a GLM-family object or a character string.

• use.grad specifies whether a gradient boosting approach should be employed to apply
the learning rate. If set to FALSE, glmtree instead of ctree or rpart is employed for
tree induction.

• tree.unbiased specifies whether an unbiased tree generation algorithm should be em-
ployed for rule generation. TRUE by default, if set to FALSE, function rpart will be
employed for tree induction.

• type specifies the type of base learners to be included in the ensemble: "rules",
"linear" or "both".

• sampfrac specifies the fraction of training observations sampled to produce each tree.
Values < 1 yield sampling with replacement (sub-sampling), a value of 1 yields sampling
with replacement (bootstrap sampling). Alternatively, a sampling function may be
supplied, which should take arguments n and weights.
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• maxdepth specifies the maximum tree depth and thereby the maximum number of con-
ditions in rules. Should be an integer of length 1 or ntrees. Alternatively, a random
number generating function may be supplied, which should take argument ntrees.

• learnrate specifies the value of the learning rate ν to be applied in tree induction.
• confirmatory specifies a character vector of confirmatory terms to be included in the

final ensemble. No penalty will be applied to the coefficients of these terms, which will
yield a non-zero coefficient for the term in the final ensemble.

• mtry specifies the number of randomly selected predictor variables for selecting splits
in trees. The default Inf yields no prior selection of predictor variables.

• ntrees specifies the number of trees to be grown for deriving the initial ensemble of
trees.

• tree.control specifies a list of additional control parameters to be passed to the tree
induction algorithm.

• removeduplicates specifies whether rules which are identical to earlier generated rules
(that is, apply to the same set of observations) should be removed from the initial
ensemble.

• removecomplements specifies whether rules which are the exact complement of earlier
rules (that is, are equal to 1 minus an earlier rule) should be removed from the initial
ensemble.

• winsfrac specifies the quantiles of the data distribution to be used for winsorizing linear
terms. If set to 0, no winsorizing is performed.

• normalize specifies whether linear terms should be normalized before estimation of the
final ensemble. The default results in every linear term being scaled to have a standard
deviation of 0.4, equal to that of a typical rule.

• standardize specifies whether all rules and linear terms should be standardized to have
unit variance before estimation of the final ensemble.

• nfolds specifies the number of folds to be used in calculating the cross-validated error
estimates for the possible penalty parameter value for selection of the final ensemble.

• ordinal specifies whether ordered factors should be treated as continuous variables for
generating rules. The default generally yields simpler rules and computation time.

• verbose specifies whether information on model fitting progress should be printed to
the command line.

• par.init specifies whether parallel computation should be employed for fitting the
initial tree ensemble. Note that parallel computation of the initial ensemble will reduce
computation time only for (very) large datasets.

• par.final specifies whether parallel computation should be employed for selecting the
final ensemble.

• ... specifies additional arguments to be passed to function cv.glmnet.

The generated ensemble is returned as an object of class ‘pre’, which offers several standard
methods and functions for extracting information.
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Note that the default settings of pre represent the author’s settings of choice, which tend
to favor relatively sparse ensembles. The many arguments of function pre allow users to
carefully tune accuracy and sparsity of the final ensemble, or to mimic existing tree ensemble
approaches for generating rules (e.g., bagging, random forests). Several examples illustrating
the tuning options will be provided in Section 4.2. First, the next section will illustrate the
functionality of pre in a real-data example with default settings.

4. Examples

4.1. Prediction of depression

To illustrate application of pre, we use a dataset from a study by Carrillo, Rojo, Sánchez-
Bernardos, and Avia (2001) which is included in the package. This study examined the extent
to which subscales of the NEO personality inventory (NEO-PI; Costa and McCrae 1985) are
predictive of depressive symptomatology as measured by the Beck depression inventory (BDI;
Beck, Steer, and Carbin 1988). The NEO-PI assesses five major personality dimensions:
neuroticism, extraversion, openness to experience, agreeableness and conscientiousness. Each
of these dimensions is quantified through six subscale scores and one total score. In the study
of Carrillo et al. (2001), the NEO-PI and BDI were administered to 112 Spanish respondents.
Total scores were calculated for each of the six major dimensions, as well as for each of the
neuroticism, extraversion and openness subscales. Respondents’ age in years and sex were
also included in the dataset. Further information about the study and sample is provided in
Carrillo et al. (2001).
First, we load the package and data:

R> library("pre")
R> data("carrillo", package = "pre")

We derive a prediction rule ensemble using function pre. As rule derivation and selection of
the final ensemble depends on random sampling of the training data, we first set the random
seed:

R> set.seed(42)
R> carrillo.ens <- pre(bdi ~ ., data = carrillo)
R> carrillo.ens

Final ensemble with cv error within 1se of minimum:
lambda = 0.7779287
number of terms = 14
mean cv error (se) = 37.05145 (6.212951)

cv error type : Mean-Squared Error

rule coefficient description
(Intercept) 8.93985818 1

rule80 2.40103417 n4 > 15 & open4 <= 13
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rule88 -1.35678309 ntot <= 109 & e6 > 15
rule97 -1.20824458 n2 <= 16 & open4 > 10
rule18 -1.02385159 ntot <= 109 & etot > 101
rule1 -0.99590845 n3 <= 17

rule12 -0.58728116 n3 <= 22
rule42 -0.51972664 n6 <= 19 & open4 > 12
rule86 -0.26280878 n2 <= 16 & e6 > 14
rule66 0.25137293 open4 <= 13 & ntot > 82

n3 0.17522150 2 <= n3 <= 30.225
rule105 -0.14432622 n2 <= 16 & open5 > 11
rule30 -0.06473571 ntot <= 109 & n4 <= 14
rule46 -0.05753864 n1 <= 20
rule40 -0.04878180 n6 <= 19

The printed result reports that the final ensemble with cross-validated error within one stan-
dard error above the minimum was selected. This is the default employed by print and
other functions in pre. Alternatively, the penalty.parameter.val argument can be set to
"lambda.min" (λ value yielding the minimum cross-validated error), or a numeric value > 0.
Note that the reported cross-validated error is calculated using the same data as used for
deriving the prediction rules and likely provides an overly optimistic estimate of future pre-
diction error. Performing full cross-validation will yield a more honest estimate of prediction
error, for which we will use function cvpre later on in the example.
The printed result shows each of the selected base learners in the final ensemble with the
corresponding coefficients. Base learners with an estimated coefficient of 0 are omitted from
this output, by default. The first column (rule) indicates the type of base learner: a rule
(e.g., rule80) or linear term (e.g., n3). The description column lists the conditions for
rules and the winsorizing points for linear terms, if winsorizing was performed (note that n3
was winsorized with the default value of β = 0.025). The first rule shows that observations
with a higher value of n4 (i.e., n4 > 15) and a lower value of open4 (i.e., open4 ≤ 13) have
an expected BDI score 2.4 higher than observations that do not match these conditions.
The results indicate that depressive symptomatology is mostly predicted by the neuroticism
(sub)scales. This is not surprising, given that these scales were specifically constructed to
assess emotional adjustment and (in)stability, with higher scores indicating higher proneness
to psychological distress. The ntot variable reflects the total score on this scale, while the
n1, n2, n3, n4 and n6 variables reflect the scores on the anxiety, anger & hostility, depression,
self-consciousness and vulnerability subscales, respectively. Furthermore, variable e6 repre-
sents a subscale of the extraversion scale, reflecting proneness to the experience of positive
emotions. The open4 and open5 variables represent subscales of the openness to experience
scale, capturing openness to actions and ideas, respectively.
We can obtain the estimated (zero and non-zero) coefficients for the base learners in the final
ensemble using the coef method (results not shown for space considerations):

R> coef(carrillo.ens)

We can obtain predictions for (new) observations using the predict method (results not
shown for space considerations):
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Figure 2: Input variable importances for the prediction rule ensemble for predicting depres-
sion.

R> predict(carrillo.ens, newdata = carrillo)

We can obtain variable and base learner importances using the importance function. By
default, importances are calculated over all training observations, but the importance func-
tion also allows for obtaining local importances calculated over a subset of the training data,
through specification of the global and quantprobs arguments. To aid in interpretation,
we request standardized importances in this example, so we can interpret the base learner
importances as the absolute value of standardized multiple regression coefficients. Also, we
restrict the number of decimal places in the results by specifying the round argument:

R> imps <- importance(carrillo.ens, standardize = TRUE, round = 4L)

Figure 2 displays the input variable importances. The two most important input variables
for predicting depressive symptoms are a neuroticism (n3) and an openness subscale (open4).
In addition to a plot of input variable importances, importance returns a list of base learner
and variable importances, respectively (i.e., baseimps and varimps; only the first three rows
of the former are shown here):

R> imps$baseimps[1:3, ]

rule description imp coefficient sd
1 n3 2 <= n3 <= 30.225 0.1476 0.1752 6.6030
2 rule80 n4 > 15 & open4 <= 13 0.1281 2.4010 0.4183
3 rule88 ntot <= 109 & e6 > 15 0.0806 -1.3568 0.4656

We can plot (a subset of) the final ensemble using the plot function. Below, standardize =
TRUE is specified so that the importances in the plots are standardized, nterms = 6 so that
only the six most important base learners will be plotted, plot.dim = c(2, 3) so that the
rules will be plotted in two rows and three columns and cex = 0.7 to scale the size of node
and edge labels to fit the plot size:

R> plot(carrillo.ens, nterms = 6, plot.dim = c(2, 3), standardize = TRUE,
+ cex = 0.7)
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Figure 3: The six most important base learners in the prediction rule ensemble for predicting
depression.

Figure 3 displays the six most important base learners in the ensemble. The most impor-
tant base learner is a linear term, n3. The second most important base learner is a rule
involving n4 and open4. Together, these base learners indicate a positive association of de-
pressive symptomtomatology with neuroticism, and a negative association with extraversion
and openness.
To further inspect the shape of the effect of individual input variables, we can obtain a partial
dependence plot using the singleplot function:

R> singleplot(carrillo.ens, varname = "ntot")

Figure 4 displays the partial dependence plot, which indicates a monotonically increasing,
rather stepwise association between the neuroticism scale and depressive symptomatology.
To inspect the combined association between a pair of predictor variables and the response,
we can employ the pairplot function:

R> pairplot(carrillo.ens, varnames = c("n4", "open4"),
+ col = grey(seq(1, 0.4, by = -0.01)))
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Figure 5: Partial dependence plot of the response variable on input variables n4 and open4.

By default, pairplot employs a plotting color sequence going from yellow (lower values) to
red (higher values). Here, a sequence from light to dark grey has been specified through the
col argument. Figure 5 displays the partial dependence of the depression variable on n4 and
open4. The plot indicates that depressive symptomatology increases with increasing values
of the neuroticism subscale, and decreases with increasing values of the openness subscale.
The pattern revealed by the partial dependence may reflect an interaction, or two main
effects. If we want to assess and test the presence of interaction effects, we can employ
the interact and bsnullinteract functions. The latter fits PREs on bootstrapped null-
interaction datasets, that is, bootstrap sampled datasets from which interactions are known
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Figure 6: Interaction test statistics for input variables n4, open4 and e6. The darker grey
bars represent interaction strengths of the fitted ensemble; the lighter grey bars represent the
median interaction strength in the null interaction models, with the error bars indicating the
0.05 and 0.95 quantiles of the distribution.

to be absent. Generating these null-interaction models is computationally intensive, there-
fore bsnullinteract generates ten null-interaction models, by default. To obtain a more
precise estimate of the null distribution of interaction test statistics, we increase the number
of generated null-interaction ensembles by specifying the nsamp argument (which will take
substantially longer to compute). Because generating the null-interaction ensembles requires
random sampling and permutation of the training data, we first set the random seed:

R> set.seed(43)
R> nullmods <- bsnullinteract(carrillo.ens, nsamp = 100)

Next, we obtain interaction test statistics for both the fitted and null-interaction models:

R> int.carrillo <- interact(carrillo.ens, nullmods = nullmods,
+ varnames = c("n4", "open4", "e6"))

Figure 6 displays the interaction test statistics for n4, open4 and e6. The darker bars represent
the observed interaction strengths in the fitted ensemble. The lighter bars represent the
median interaction strength in the null-interaction models, with the error bars indicating the
0.05 and 0.95 quantiles of the distribution. The plot indicates that none of the three specified
predictor variables are involved in interactions.
Finally, using the cvpre function, we estimate the out-of-sample prediction error of the fitted
ensemble through full k-fold cross-validation. By default, the number of folds is set to ten.
As cross-validation involves random sampling of observations, we first set the random seed:

R> set.seed(44)
R> cv.carrillo <- cvpre(carrillo.ens)



Journal of Statistical Software 17

$MSE
MSE se

47.025425 8.065651

$MAE
MAE se

5.1876512 0.4256812

The printed results show the mean squared error (MSE) and mean absolute error (MAE)
and their respective standard errors. For classification, mean squared and mean absolute
error loss would be returned. With the code above, these accuracy estimates are also saved
in cv.carrillo$accuracy. In addition, cv.carrillo$cvpreds contains the cross-validated
predictions, which can be used to calculate alternative indices of predictive accuracy.

4.2. Customizing rule induction and model selection

The default settings of pre employ a sub-sampling (i.e., sampfrac = 0.5) and boosting (i.e.,
learnrate = 0.01) approach. As in most tree boosting algorithms, maximum tree depth is
also limited by default (i.e., maxdepth = 3L). Note that, in addition to the maximum tree
depth, the ctree function simultaneously employs an additional stopping criterion: by default
an α level of 0.05 for split selection is used. That is, no split is performed when all of the
partitioning variables show p values > 0.05. The latter can be adjusted through specification
of the tree.control argument.
The following examples aim to illustrate how several well-known tree ensemble approaches
can be mimicked. The resulting ensembles are not shown here, but will likely be more complex
than ensembles generated with the default settings.

Bagging

A bagging approach can be mimicked by setting sampfrac = 1 (to employ bootstrap sam-
pling), specifying a learning rate of 0 and applying no a-priori restrictions on tree size (i.e.,
employing unpruned trees):

R> set.seed(42)
R> car.ens.bag <- pre(bdi ~ ., data = carrillo, sampfrac = 1,
+ maxdepth = Inf, learnrate = 0,
+ tree.control = partykit::ctree_control(alpha = 1))

Note that increasing the value of maxdepth will increase both computation time and com-
plexity of the final ensemble.

Random forest

A random forest approach can be mimicked by additionally restricting the number of predictor
variables considered for selecting each split through the mtry argument:

R> set.seed(42)
R> car.ens.ranfor <- pre(bdi ~ ., data = carrillo, sampfrac = 1,
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+ maxdepth = Inf, learnrate = 0,
+ tree.control = partykit::ctree_control(alpha = 1),
+ mtry = ceiling(sqrt(ncol(carrillo))))

Additionally setting tree.unbiased = FALSE would employ the rpart implementation of the
CART algorithm, which would most closely resemble the original bagging and random forest
approaches. Note that this will generally yield more complex ensembles.

Original RuleFit approach
The default settings of the original RuleFit implementation can be mimicked by employing
the CART algorithm, and letting the sampling fraction and number of cross-validation folds
depend on the number of effective observations, which is equal to the sample size for re-
gression. Furthermore, the maximum tree depth should be determined by a random number
generating function, allowing for varying tree depths (Friedman and Popescu 2008, 2012).
Such a function can be generated using the maxdepth_sampler function, which by default
samples from a distribution with an average maximum tree depth of two (as in the original
RuleFit implementation):

R> neff <- nrow(carrillo)
R> set.seed(42)
R> car.ens.rulef <- pre(bdi ~ ., data = carrillo, tree.unbiased = FALSE,
+ maxdepth = maxdepth_sampler(),
+ sampfrac = min(1, (11 * sqrt(neff) + 1) / neff),
+ nfolds = round(min(20, max(0, 5200 / neff - 2))))

Furthermore, to fully mimic the original RuleFit approach, the minimum cross-validated error
criterion should be employed to obtain the final ensemble:

R> print(car.ens.rulef, penalty.par.val = "lambda.min")

Regularized single tree
An extremely sparse PRE would take the nodes of only a single tree as the initial ensemble.
The predictions of the resulting ensemble would represent regularized node means of the single
(pruned) tree. When only a single tree is grown, bootstrap or sub-sampling may not improve
predictive accuracy, so we first define a custom sampling function, which returns all indices
of the training observations:

R> samp_func <- function(...) 1:nrow(carrillo)

Then we specify only a single tree to be grown and no linear terms to be included:

R> car.ens.tree <- pre(bdi ~ ., data = carrillo, ntrees = 1,
+ type = "rules", sampfrac = samp_func)

Regularization of the final ensemble
Through the ellipsis (...) pre allows for passing additional arguments to the cv.glmnet
function. For example, this allows for specifying the elastic net mixing parameter α. By
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default, the lasso penalty is employed (i.e., alpha = 1), but specifying alpha = 0 would yield
the ridge penalty, and values 0 < α < 1 would yield the elastic net penalty. An unpenalized
solution can be obtained by supplying a pre-specified range for the penalty parameter λ,
including 0. Such an approach will likely yield sub-optimal sparsity and accuracy, but may
in rare cases be preferred over a penalized solution. Note that the cv.glmnet function only
permits specification of multiple λ values, so we have to specify at least two λ values:

R> set.seed(42)
R> car.ens.unp <- pre(bdi ~ ., data = carrillo, lambda = c(0, 1))

To obtain the unpenalized solution, all methods and functions applied to the resulting object
need to specify penalty.par.val = 0:

R> print(car.ens.unp, penalty.par.val = 0)

Finally, to employ a different loss function than the default squared-error or log-likelihood
criterion, type.measure can be set to, for example, "class" (for misclassification error) or
"mae" (for mean absolute error):

R> set.seed(42)
R> car.ens.mae <- pre(bdi ~ ., data = carrillo, type.measure = "mae")

5. Empirical evaluation

5.1. Method

Datasets

Four benchmark datasets were employed to compare the methods: two regression datasets
(BostonHousing and Ozone) and two classification datasets (BreastCancer and Ionosphere),
each obtained from the UCI Machine Learning Repository (Dua and Karra Taniskidou 2017)
through the mlbench package (version 2.1-1; Leisch and Dimitriadou 2012). Only complete
observations were included in the analyses. Specifically, no observations were removed from
the BostonHousing dataset. From the BreastCancer dataset, 16 cases were removed due to
missing values. From the Ionosphere dataset, one variable was removed due to zero variance.
From the Ozone dataset, a categorical variable with a large number of categories was removed
to reduce computation time (i.e., day of month), one variable was removed due to a large
number of missing values (temperature at El Monte, California) and a total of 36 cases were
removed due to missing values. Table 1 provides the resulting total sample sizes and numbers
of predictor variables for each dataset.

Model fitting procedures

The performance of pre was compared with that of random forests, single regression trees,
lasso penalized linear regression and the original RuleFit implementation. All analyses were
performed in R (version 3.6.1; R Core Team 2019). To fit PREs, function pre from package
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Dataset Response p N

BostonHousing numeric 13 506
BreastCancer binary factor 9 683
Ionosphere binary factor 33 351
Ozone numeric 10 330

Table 1: Benchmark datasets used for comparing performance; p refers to the total number
of predictor variables in the dataset, N refers to the total sample size.

pre (version 1.0.0; Fokkema and Christoffersen 2020) was employed. In addition, to fit PREs
with the original RuleFit implementation, RuleFit version 3 (Friedman and Popescu 2012) for
Windows was obtained from https://statweb.stanford.edu/~jhf/R_RuleFit.html and
function rulefit was employed. To fit single trees, function ctree from package partykit
(version 1.2-6; Hothorn and Zeileis 2015) was used to fit conditional inference trees, and
function rpart from package rpart (version 4.1-15; Therneau et al. 2019) was used to fit
CART trees. To fit random forests, function cforest from package partykit was used to fit
random forests based on conditional inference trees, and function randomForest from package
randomForest (version 4.6-14; Liaw and Wiener 2002) was used to fit random forests based
on CART trees. To fit lasso penalized linear regression models, function cv.glmnet from
package glmnet (version 3.0-2; Friedman et al. 2010) was used.
All analyses employed default settings, with two exceptions: For fitting PREs, maximum
rule length was set to 4, instead of the default value of 3. Furthermore, trees fitted with
rpart were pruned using the 1 standard error criterion. Note that careful tuning of parameter
settings using cross-validation approaches would likely yield higher predictive accuracy for all
methods.
For functions rulefit and pre, selection of the final ensembles was performed using two
different criteria. For each, a final ensemble was obtained through lasso regression, with the
value of λ set to minimize squared error loss based on cross-validation. In addition, for pre,
a sparser ensemble was obtained through employing a λ value yielding squared error loss
within one standard error above the minimum (which is the default in package pre). For
rulefit, a sparser ensemble was obtained through forward stepwise regression for numeric
outcomes, and through forward stagewise regression with variable entry order determined by
lasso regression for binary outcomes. For pre, the number of cross-validation replications was
set to the default value of 10; for rulefit, the default was also employed, which is a function
of sample size, yielding 6 to 14 replications in the current analyses.

Assessment of performance

To assess performance, the bootstrap cross-validation design for benchmark experiments with
real-world data of Hothorn, Leisch, Zeileis, and Hornik (2005) was employed. From each
dataset, 250 bootstrap samples were drawn. Each bootstrap sample was used for training
and predictive accuracy was subsequently assessed using the test observations that were not
included in the bootstrap sampled training data. Predictive accuracy was quantified through
calculating mean squared error (MSE) in regression problems and the area under the receiver
operating curve (AUC) value in classification problems. Interpretability was assessed through
counting the number of predictor variables, for the BostonHousing and Ionosphere data. As

https://statweb.stanford.edu/~jhf/R_RuleFit.html
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BostonHousing BreastCancer Ionosphere Ozone Mean rank
randomForest 11.75 (3.41) 0.993 (0.003) 0.979 (0.011) 17.12 (2.22) 1.25
cforest 16.47 (4.46) 0.993 (0.004) 0.971 (0.014) 17.78 (2.37) 3.50
pre_1se 14.06 (3.69) 0.991 (0.005) 0.961 (0.018) 17.72 (2.67) 3.50
rulefit_min 12.90 (3.29) 0.990 (0.006) 0.961 (0.017) 20.19 (3.02) 4.00
pre_min 13.35 (3.48) 0.991 (0.005) 0.960 (0.019) 18.85 (2.87) 4.25
lasso 27.58 (5.12) 0.995 (0.002) 0.902 (0.032) 20.31 (2.27) 5.75
ctree 21.68 (4.94) 0.975 (0.011) 0.908 (0.032) 24.88 (4.16) 7.00
rulefit_FS 15.35 (4.46) 0.945 (0.016) 0.883 (0.032) 24.32 (4.22) 7.50
rpart 25.34 (5.74) 0.948 (0.018) 0.892 (0.037) 26.01 (4.07) 8.25

Table 2: Predictive accuracy for all methods and datasets. Values represent averages over
250 bootstrap samples, with standard deviations in parentheses. For the BostonHousing and
Ozone data, mean squared error (MSE) was calculated; for the BreastCancer and Ionosphere
data, the area under the receiver operating characteristic curve (AUC) values were calculated.
Mean rank represents the ranking of the algorithms from highest to lowest predictive accuracy,
averaged over the four datasets.

it was assumed the two random forest methods and the two single tree methods would yield
similar complexities, respectively, only the number of variables for cforest and ctree were
counted. For the BreastCancer and Ozone datasets, the total number of base learners with
non-zero coefficients (i.e., the number of terms) were counted. The number of terms were
only evaluated for pre and rulefit. Finally, computation time in seconds was recorded for
every fitted model.

5.2. Results

Table 2 presents average predictive accuracies in each of the benchmark datasets. Overall,
function randomForest ranked highest in terms of predictive accuracy, followed by cforest
and pre (employing the 1 standard-error criterion), followed by rulefit, followed by pre
(each of the latter two employing the minimum cross-validation error criterion). Overall, pre
showed higher accuracy than rulefit. Of note, rulefit employing the minimum cross vali-
dation error criterion showed substantially better accuracy than rulefit employing forward
selection. The latter model showed predictive accuracy comparable to single trees.
Figure 7 depicts the distributions of predictive accuracy across the four benchmark datasets.
The boxplots indicate that the most accurate methods also show the least variation in pre-
dictive accuracy. Figure 8 depicts the fitted models’ complexities. The random forests always
included all predictor variables, providing the least sparse solutions. After random forests,
lasso regression provided the least sparse solutions, followed by PREs selected using lasso re-
gression. The sparsest solutions were provided by singles trees (ctrees) and rulefit ensembles
with forward stepwise selection. Comparing the complexity of PRE methods yields a similar
pattern in all datasets: rulefit with forward selection provided the sparsest PREs, followed
by pre with the 1−SE rule, followed by pre with minimum cross validated error, followed by
rulefit with minimum cross validated error. Taken together with the findings on predictive
accuracy, these results indicate that pre may provide a better trade-off between accuracy and
interpretability than rulefit.
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Figure 7: Predictive accuracy for the different algorithms in 250 bootstrap samples of the
benchmark datasets. Three AUC values for rpart were winsorized to 0.90 in the BreastCancer
dataset to improve the graphical presentation. MSE = mean squared error; AUC = area under
the receiver operating characteristic curve; FS = forward selection.

Figure 9 depicts the computation time distributions for all methods. Note that for pre, only a
single boxplot is depicted, because the 1−SE and minimum cross validated error solutions are
obtained from the same fitted model. Figure 9 shows a clear computational disadvantage for
pre, with an average computation time of 18 seconds. Most computation time for pre is spent
on the fitting of ctrees, which is computationally more demanding than fitting CART trees.
This can also be observed in the computation time differences between ctree (0.066 seconds,
on average) and rpart (0.013 seconds, on average), and between cforest (12.1 seconds, on
average) and randomForest (0.3 seconds, on average). The rulefit function also employs
CART trees and yielded average computation times of 1.5 seconds (with forward selection)
and 2.6 seconds (with lasso selection).
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Figure 8: Distribution of the number of predictor variables or number of terms selected in
250 bootstrap samples of the benchmark datasets.

6. Comparison with other packages

A number of algorithms and software packages for fitting PREs have been developed over
the last years. An extensive empirical comparison is outside the scope of the current paper,
but several packages are discussed and compared below. Following Frank and Witten (1998),
we distinguish between two strategies for generating rules: Indirectly, through transforming
the nodes of one or more decision trees to a set of rules, and directly, through for example a
sequential covering approach (Fürnkranz 1999).
The indirect approach to rule generation is employed in the method of Friedman and Popescu
(2008). The RuleFit program (Friedman and Popescu 2012), which is written in Fortran and
can be executed through an R interface, provides a fast implementation of the method, which
was also observed in Section 5. In addition, several R packages implement a two-step approach
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Figure 9: Distribtuions of the log of computation time (in seconds) across all bootstrap
sampled datasets.

similar to that of Friedman and Popescu (2008): inTrees (Deng 2018), horserule (Nalenz and
Villani 2018) and nodeHarvest (Meinshausen 2010) also generate rules from the nodes of tree
ensembles, after which weights or coefficients are estimated to construct a final ensemble.
For this second step, each package employs a different approach: Package inTrees uses a
sequential covering approach (Fürnkranz 1999) to select a sparse final ensemble of rules.
Package horserule estimates rule coefficients using a Bayesian linear model with horseshoe
prior (Carvalho, Polson, and Scott 2010). Although the horseshoe estimator has been found
to yield better predictive accuracy than lasso regression, it does not enforce a sparse solution
as it does not shrink coefficients to a value of zero. Finally, package nodeHarvest obtains node
weights through solving a quadratic programming problem with linear inequality constraints,
yielding non-zero weights for only a (small) subset of nodes (Meinshausen 2010).
The main advantage of the node harvest approach is that it does not require selection of a
tuning parameter, as estimation with the lasso does. Also, node harvest predictions are given
by weighted node means, which may aid interpretation: If an observation falls only into a
single node, the prediction is the average response among the training observations in that
node. In contrast, the coefficients in Equation 12 are shrunken towards zero and cannot be
interpreted as node means. On the other hand, the lasso regression model in Equation 13 can
more easily be extended to include linear (and other) functions of predictor variables.
C5.0 (Quinlan 1993; RuleQuest 2017) also employs an indirect approach to rule learning.
C5.0 performs classification only, is written in C and is available as a standalone executable
file. Alternatively, package C50 (Kuhn and Quinlan 2020) provides an R interface. The
predecessor C4.5 is described in detail in (Quinlan 1993), while the documentation on the
implementation of C5.0 is limited (RuleQuest 2017), but Kuhn and Johnson (2013) provide a
rather complete description. C5.0 allows for generating PREs from the nodes of a single tree
or a boosted tree ensemble. In the former case, a set of rules is derived from the nodes of a
single tree and simplified through pruning and deletion of rules, so as to minimize prediction
error. Predictions for new observations are generated by a weighted majority vote of the rule
ensemble. When boosting is applied, observation weights are adjusted based on the current
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classification error in every iteration. Predictions for new observations are then given by
the average of the predicted class probability of each of the rule sets. Although C5.0 tree
ensembles rank among the most accurate classifiers, C5.0 rule ensembles have been found to
perform less well (e.g., Fernández-Delgado, Cernadas, Barro, and Amorim 2014).

Weka’s (Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten 2009) sub-package classi-
fiers.rules implements several algorithms for deriving PREs: JRip (implementing the RIPPER
algorithm of Cohen 1995), M5Rules (Quinlan 1992; Holmes, Hall, and Frank 1999) and PART
(Frank and Witten 1998). M5Rules builds a PRE for regression through a sequential covering
approach; it builds a tree in every iteration and takes the best node as a rule. PART employs
the same approach for building a PRE for classification. JRip generates rules directly through
a sequential covering approach. As the sequential covering approach is likely to be outper-
formed by boosting (e.g., Cohen and Singer 1999; Dembczyński et al. 2010), these algorithms
will not be further discussed here.

Another algorithm that generates rules directly is ENDER (Dembczyński et al. 2010), which
provides a very general framework for generating boosted PREs. It is implemented in Re-
gENDER (Dembczyński, Kotłowski, and Słowiński 2008), which is written in Java and can
be executed from Weka. ENDER allows users to select from a range of loss functions and
regularization methods, thereby also encompassing classification rule ensemble learners like
SLIPPER (Cohen and Singer 1999) and lightweight rule induction (Weiss and Indurkhya
2000). Notably, Dembczyński et al. (2010) report that predictive accuracy is hardly af-
fected by the choice of loss function, but substantially affected by the regularization methods
employed. They found regularization through application of a learning rate, resampling of
observations and calculating coefficients on the complete training data instead of sub-samples
to yield improved accuracy of the final ensemble.

The main difference between pre and other packages employing an indirect approach to
rule generation is in the tree induction algorithm. The results in Section 5 indicate that
conditional inference trees provide equal or better predictive accuracy than CARTs. Also,
Schauerhuber, Zeileis, Meyer, and Hornik (2007) found conditional inference trees to yield
lower complexity than C4.5 trees, but higher complexity than CARTs. The current findings
on the lower complexity of pre compared to rulefit may be due to ctree’s default stopping
criterion, where splitting is halted when the null hypothesis of independence between any of
the input variables and the response cannot be rejected in a node. The rulefit function does
not employ such a data-driven stopping criterion. The current results suggest that ctree’s
stopping criterion may improve both sparsity and predictive accuracy of the final ensemble.

Finally, pre and RegENDER are similar in that they apply regularization through boosting,
sampling and global estimation of rule coefficients. The main difference between the two
packages lies in the rule-generation approach employed. Dembczyński et al. (2010) note that
the main advantage of their approach is that the rules are constructed directly based on im-
purity measures. Specifying a minimum value for improvement of the impurity measure then
yields a natural stopping criterion for building rules. However, the unbiased tree induction
algorithms employed by pre also provide a natural stopping criterion, because the splitting
is based on statistical testing. In addition, the maximum number of conditions that may ap-
pear in rules, as specified by the maxdepth argument of pre, provides an additional stopping
criterion for building rules.
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7. Conclusion
The current paper presented function pre from R package pre, which allows for deriving pre-
diction rule ensembles for (multivariate) continuous, binary, multinomial, count and survival
outcomes. The fitting procedures and measures for interpretation as implemented in package
pre were discussed. Using an example dataset on the prediction of depressive symptomatology,
a rule ensemble was derived and inspected. In four benchmark datasets, the performance of
function pre was compared with the original RuleFit implementation, random forests, single
trees and lasso penalized regression models. Results indicated that pre provided slightly bet-
ter accuracy than the original RuleFit implementation. Furthermore, pre provided accuracy
similar to random forests, while providing substantially lower complexity than both random
forests and RuleFit. The lower complexity of pre is likely due to the use of unbiased recur-
sive partitioning methods, which do not have a preference for variables with many possible
splitting values and employ a statistical criterion for split selection. Although pre provided
a better trade-off between complexity and accuracy, it also yielded the longest computation
times. Future developments will focus on reducing computation time, improving modularity
and extending the range of methods that can be employed for selecting the final ensemble.
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