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ABSTRACT: Environmentally extended input−output analysis
(EE-IO) is widely used for evaluating environmental performance
(i.e., footprint) at a national level. Many studies have extended
their analyses to the subnational level to guide regional policies.
One promising method is to embed nationally disaggregated
input−output tables, e.g., nesting a provincial level table, into a
global multiregional input−output table. However, a widely used
approach to environmental assessment generally disaggregates the
trade structure at the national level to the provincial level using the
same proportions (proportionality assumption). This means that
the subnational spatial heterogeneities on international trade are
not fully captured. By calculating the Chinese provincial material
footprint (MF) based on two approachesthe proportionality
assumption and the actual customs statisticsin the same
framework, we evaluate the quantitative differences when the proportionality assumption is addressed. By computing MF for 23
aggregated resources across 30 Chinese provinces, our results show for countries with large material flows like China, estimating
subnational-level international trade by proportionality assumption may lead to significant differences in material flows at both the
disaggregated and aggregated levels. An important follow-up question is whether these differences are also relevant for other
footprints.

1. INTRODUCTION

Globalization has increased the geographical separation and
supply chain complexity between production and consump-
tion.1 Developed countries tend to outsource their material
demand as well as environmental pressures to developing
economies.2−4 The increasing complexity involved in produc-
ing goods also drives the separation of production and
consumption within large countries such as China.1,4−6

These separations are reflective of large inequalities between
nations and between subnational regions.2,3 Environmentally
extended input−output analysis (EE-IO) is an effective tool for
assessing the patterns of production and consumption among
regions, and for investigating the environmental pressures
driven through global/regional supply chains.7−9 For example,
EE-IO analyses are often used to perform footprinting
assessments (also called consumption-based accounting,
CBA), which provide a life cycle (consumption-based)
perspective that supplements territorial, production-based
accounting (PBA).8,10 This approach can be used to assess
many environmental pressures, such as carbon emissions, water
use, land use, material use, pollutions, and many others.1,4,11−16

EE-IO has been increasingly used to explore the subnational
transfer of environmental impacts.17 Large regional disparities

within nations that become even more important when we
consider that a single subnational region in large countries can
have a global significance.3 For example, studies have
investigated subnational regions in China,5,7,16,18−24 Brazil,25,26

Australia,27 and EU countries.28−30 These studies highlight
three main issues: (1) treating a very large nation (e.g., China,
which drives ∼30% of global material flow) as a homogeneous
entity within a global multiregional input−output table
(GMRIO) may mean researchers are unable to analyze
important dynamics in the trade;5,20,31 (2) it may bring bias
to national results in total,26,32−34 and (3) policymakers may
struggle to convert messages from global and national analyses
to regional strategies and targets.18,22,24,25,31,32

Early EE-IO studies often used a single-region input−output
(SRIO) table. However, to be able to account for trade,
researchers had to make certain assumptions, e.g., that imports
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were produced with the same technology as the importing
country (i.e., that an electronic product imported from Japan
into the U.S.A. is assumed to have been produced with U.S.
technologies rather than Japanese). This approach is called the
domestic technology assumption (DTA) and can lead to large
accounting errors because, as described, it does not differ-
entiate between imported goods and that produced
locally.8,35,36 Taking China’s subnational study as an example,
early works used Chinese interprovincial input−output tables
(IOTs) alone to explore provincial footprints and virtual
transfer of environmental pressures within the country.7,19,23,37

As the focus is interprovincial, the environmental pressures
embodied in international imports were often either not
included or estimated using the DTA.7,22

Advancements in multiregional input−output (MRIO)
models and later in global multiregional input−output
(GMRIO) models allowed researchers to trace footprints in
a global context and with improved accuracy.11,17 It is
considered as a more comparable and consistent framework
to estimate footprints38 and is adopted by the International
Resource Panel of UN Environment for material footprint
(MF) assessments.2,3

Further, there have been several studies combining a local
IOT with a GMRIO. They typically nest a subnational
IOT39−42 (which are generally for Chinese interprovincial
IOT5,15,16,20,21,31,32,43) or a city-level IOT44−46 within a
GMRIO. Compared to the DTA, this represented a significant
step forward, allowing researchers to distinguish the impacts of
different technologies within nations while allowing for
exploring linkages between the local and the global economy
(especially in large countries like China). These approaches are
especially important for investigating the degree of integration
of Chinese provinces in global value chains.43,47

The core process of such an analysis is to connect data for
each sector in each subnational area using the subnational IOT
to the data for each sector in each country (or region) in a
GMRIO. Neither the Chinese interprovincial IOT nor any
GMRIO provides these links between provinces and foreign
countries. As such, without additional data input, researchers
have typically had no choice but to connect the two IOTs by
assuming that the international imports/exports of an
economic sector in a province are distributed among all
foreign countries/regions in the same proportion as China’s
exports/imports for that sector (we will call this the trade
structural assumption, or TSA).20,21,24,31 Although this is a
reasonable, practical approach, it could also introduce errors.
This simplification of trade structure means that the differences
in how different provinces connect to international trade and
interact with foreign countries are neglected. Previous studies
have highlighted that the use of the TSA approach requires
further analysis and investigation.16,24,41

Overcoming this TSA simplification presents a key data and
knowledge gap. Previous economic studies showed that the
trade structure among domestic regions and foreign countries
are essential to subnational modeling.16,41,43,48 Other studies in
economies have embedded the domestic inter-regional IOT
(of China and Japan) into OECD intercountry IOT using
regional trade data to measure the global value chain of
Chinese domestic linkages43,49 and their associated carbon
emissions.15 As yet, a comparison between these methods has
not been published.
Previously, we investigated China’s material footprint (MF)

at the sectoral and provincial level.5 While the assessment of

environmental pressures using EE-IO is always dependent on
the quality of data and methodological approaches, the
material footprint modeling is particularly sensitive compared
to other footprints.50 This is because while emissions can occur
across sectors and regions, material extraction activities are
highly specialized in primary sectors in which resources are
extracted and then propagate through the supply chains and
finally to the consumer.3,50 This necessitates the exploration of
further methods for constructing databases for such analyses,
including incorporating subnational customs data in the EE-IO
framework.
Here we assess material footprint (MF) using two

approaches, the traditional trade structural assumption
(TSA) and a customs-linked database. The same analytical,
EE-IO framework is used in both cases to isolate the
differences to the database construction. We explore these
differences using a case study of 23 MF types in China. We
present the MF at the national level and then examine
differences across three different data dimensions: by materials,
by provinces, and by the international outsourcing patterns.

2. EE-IO BASICS, TSA, AND DIRECT-LINKING

2.1. EE-IO for Material Footprint. In calculating
footprints under EE-IO, we apply the standard Leontief
model:4,51−53

= − −K I A yMF ( ) 1
(1)

where MF is the material footprint driven by the final demand
y. K is the intensity matrix indicating the domestic extraction
(DE) per unit of each economic sector’s total output in each
sector in each region. (I − A)−1 is the Leontief inverse matrix,
where I is the identity matrix, and A is the technical coefficients
matrix. In our case study, we used the Chinese provincial
MRIO tables54 (to which we added additional details in
resource-extraction sectors) with EXIOBASE v3.455 as the
GMRIO, both for 2010. Using the highest common spatial and
sectoral resolution across these tables, we obtained a table
representing 30 provinces and 48 countries/regions. Each
region includes data on 48 sectors. We refer to the Supporting
Information (SI) and earlier work5 for the detailed procedures
for harmonizing and processing the two IOTs.
In this model, we cover four main material categories

(biomass, fossil fuels, metal, and nonmetallic minerals)
including 29 material subtypes spread across these four
categories. For ease of reporting and analysis, we group all
types into 23 categories (indicated in SI Tables S6 and S7).
Using standard accounting frameworks outlined by Eurostat56

and UN Environment IRP,57,58 we established a consistent
material extraction database at both international and Chinese
provincial levels. Classification details and data sources are
presented in SI Section S2.

2.2. Linking the National MRIO (Interprovincial IOT)
to a GMRIO. We now outline the two approaches for linking
the Chinese interprovincial IOT (a subnational MRIO) with a
GMRIO: the TSA often used in the literature and direct-
linking is presented here.

i. Assuming Proportionality: Trade Structural Assumption
(TSA). An overview of linking using the TSA is shown in Figure
1. The MRIO (the Chinese interprovincial IOT in this case)
provides the trade vectors (dark blue blocks) among provinces
and the aggregated outside-of-China trade (i.e., provinces-to-
world) while the GMRIO provides the import/export vectors
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(light gray blocks) among China as a whole and other
countries (i.e., China-countries/regions).
First, we take GMRIO (i.e., EXIOBASE) as a control total to

scale up Chinese interprovincial IOT. Then we obtain the
exports and imports (i.e., linking matrices) among provinces
and countries (i.e., provinces-to-countries and vice versa) by
assuming that international exports/imports in each sector for
each province to other countries are in the same proportion as
China’s overall exports/imports. The exports/imports matrices
can be disaggregated as follows:

= ×
∑

z z
z

zi j
r s

i j
r j

s

s j
s,

,
,

(2)

where zi j
r s
,
, refers to the value (for either intermediate use or

finial demand) in the linkage (exporting/exporting) matrices
reflecting the exports (or imports; we take exports for an
example here) between sector j of province s and sector i of the
country/region r. zi j

r
, refers to the value in the export matrix in

the GMRIO that the (relative) exporting amount of sector i in

country/region r to the sector j in China. The term
∑

z

z
j
s

s j
s

indicates the proportion used to disaggregate sector j of
province s from the “China-countries/region” level to the
“provinces-to-countries” level. The TSA hence does not
consider that the same sector in different provinces may
export to a different mix of countries. In other words, the

proportion of production through different sectors (
∑

z

z
j
s

s j
s ) for

the export structure of goods from Beijing, Shanghai, or any
other provinces to the United States are assumed to the same
(as China’s aggregated structure). The same applies, mutatis
mutandis, for imports.
ii. Trade Data Linkage (Direct-linking). For direct-linking,

the actual province-specific trade structure is used to link
Chinese interprovincial IOT and the GMRIO, EXIOBASE. We
used the Chinese Customs Trade Statistics database (CCTS)
and extracted the trade records between provinces and foreign
countries/regions. We then harmonized these data to the
spatial and sectoral resolution of our model (see SI Section
2.2). The CCTS database provides information for each
import/export record, including the location information, HS
code (Harmonized Commodity Description and Coding

Systems) of products, transaction values, physical amounts,
and more. Note that there are three types of location
information: (a) the registered location of importers/exporters
(the company), (b) the place of actual destination/origin of
goods, and (c) the customs port. The data classified by the
location of importers/exporters (the company) are not suitable
since many companies own branches and factories in different
provinces and their trade activities may be recorded under the
headquarters or a subsidiary company. It is not possible to use
the customs port data either since the goods could be
continuously transported domestically. However, because we
have the actual place of use, we can use these data.59 This is
consistent with the assumptions used for compiling the
Chinese interprovincial IOT.54

In general, the procedure to link provinces to the GMRIO is
similar to compiling a GMRIO by treating every province as a
“virtual country”.55,60−62 Inconsistent statistics are common
when compiling IOT with multiple data sets under different
statistical systems. Mathematical techniques are used to
reconcile and harmonize the different data input.60,63 In our
model, one important principle is to use existing IOTs (i.e.,
EXIOBASE and Chinese interprovincial IOT) as a control
total since they have been previously harmonized.43 We restrict
our alternations to relative differences derived from trade
statistics, rather than the absolute amounts. This is because
absolute amounts can vary due to differences in cost,
insurance, and freight of trade goods (CIF), as well as
potential discrepancies among the system of national accounts
(SNA), input−output model, and CCTS data sets. We assume
that any differences this may introduce would be moderated by
the fact that the provincial IOT and the customs data are from
the same Chinese statistical system.
Then we extract the relative structure (as a ratio, rather than

the absolute value) from the CCTS data set and use it to
disaggregate each value in the original matrices of China’s
import/export in EXIOBASE resulting in 30 data points for 30
provinces. One important assumption is how to distribute the
relative structure. As trade statistics only provide HS code,
location information, assumptions have to be made to obtain
the input−output relations of a given product. (For example,
we know the amount of cars exporting from Japan to Beijing
based on customs statistics but we need to further allocate the
input of Japanese cars to Beijing’s every sector). We assume
that each given sector of every province uses the imported
goods from the sector of a country (imported cars from Japan
to Beijing) proportionally to the use structure of domestic
inputs (how Japanese cars are used in Beijing’s different sectors
is in the same way as domestically made cars are used in
Beijing’s various sectors). It considers a more comprehensive
situation avoiding errors in extreme casesa province is
dominated in an industry nationally or does not have the
industry at all (see SI Section 1.1 for comparisons on other
options). Equation 3 describes the option (d):

= ×
∑

×
∑

∑ ∑
−

−
z z

ts
ts

io t

io ti j
r s

i j
r i

r s

s i
r s

s i j
r s

j s i j
r s,

,
,

,

,
,
,

,
,

(3)

where the term (zi j
r s
,
, ) gives the imports between sector j of

province s and sector i of the country/region r (for
intermediate use and finial demand) and can be obtained as
splitting the national value zi j

r
, by multiplying the trade

structure ratio (
∑

ts
ts
i
r s

s i
r s

,

, ), where tsi
r s, indicates the actual trade

Figure 1. Schematic linkage process with the Chinese interprovincial
IOT and GMRIO.
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volume between of province s and country/region r. The term

−io ti j
r s
,
, refers to the value in the intermediate use/final demand

matrices of IOTs and (
∑

∑ ∑
−

−

io t

io t
s i j

r s

j s i j
r s

,
,

,
, ) described the use structure

of domestic inputs.
A further problem is that CCTS data cover products and not

trade in services. We make another assumption that regions
that import more goods would also purchase more services of
the same trading partners.43 Therefore, we use the structure of
goods trade as a proxy of services trade. We investigate the
sensitivity of the results to this assumption by setting the trade
in services to 0. We find that services have a very small impact
on MFthe average change of provincial MF is −0.16% (see
SI Section 1.3 for details). After this, an afterward balancing
technique43,64 shall be applied.

3. RESULTS

In this section, first, we will present the aggregated impacts of
different approaches at the national level. National-level
indicators are calculated based on three approaches: the
direct-linking (to nest the interprovincial IOT in EXIOBASE
by regional trade data), the TSA (to nest the interprovincial
IOT in EXIOBASE by proportionality assumption), and using
EXIOBASE (the national-specific GMRIO) directly. Then we
focus on the differences in the results using the TSA and
direct-linking approaches across three different data dimen-
sions: materials, provinces, and patterns of international
outsourcing.
3.1. Aggregated Impacts at the National Level.

Material footprint and material embodied in the trade of
China (or the national sum for subnational model) are
calculated by EXIOBASE alone and the two above-described
nested models (based on the direct-linking and TSA),
respectively. Results show nesting a regional-specific IOT
into a GMRIO will not introduce large discrepancies on the
national material footprint of China and other countries/
regions. Even though the direct-linking and TSA introduce
subnational heterogeneities, Chinese national MF by the
direct-linking and TSA is only changed ∼4% comparing to the
country-specific model (Figure 2). For MF of other countries/
regions, the discrepancies in most cases are within ±1% (see
Tables S2−S4 in the SI). This confirms that the influence of
spatial resolution on calculating the overall footprint is
limited.50

However, we see large discrepancies in internal flows (e.g.,
materials embodied in exports and imports). It is because
structures and resolution of Chinese parts in IOT have been
improved. Both TSA and direct-linking approaches decrease
Chinese national MF embodied in exports by 13.7% and 22.8%
compared to using EXIOBASE directly (see aggregated MF
results in Figure 2 and results of disaggregated materials in
Figure S3 in the SI). It is similar to previous studies in carbon
and water since the subnational-spatial and trade heterogeneity
are introduced.26,32−34,65 However, it is different for imports.
TSA only brings minor (0.2%) differences compared to using
EXIOBASE alone, while the direct-linking approach decreases
national material embodied in imports by 18%. TSA does not
lead to large changes because the extractive intensities
(matrices) of foreign countries/regions remain unchanged in
the model. And their exporting structures to China (compared
with the direct EXIOBASE approach) are proportionally
disaggregated to provinces by TSA, which are equivalent to the

aggregated counterparts in the EXIOBASE. While for the
direct-linking, the trade customs reshape the importing-
structure of each trading pair between provinces and
countries/regions so it presents differences.

3.2. By Material. Then we move to the province-specific
analysis on the differences for TSA and direct-linking
approaches. A positive difference means that direct-linking
increases the size of the result compared to TSA and a negative
result represents the opposite. The results of aggregated MF
vary from −9.2% to +14.2% across the 30 provinces (see
Figure S4 and Table S5 in the SI for a detailed statistical
description). As the material footprint is an aggregated
indicator (i.e., for all material extraction combined), we further
investigated such variations for 23 (grouped) categories of
materials one-by-one. Figure 3A shows the proportion of MF
sourced internationally by China using EXIOBASE alone
(without linking China’s interprovincial IOT). The top five
important materials embodied in trade in terms of percentage
were oil-bearing crops (82%), chemical/fertilizer materials
(80%), forestry products (77%), natural gas (75%), and oil
(71%). While the bottom five were sand/clay (1%), nuts/
vegetables/fruits (4%), stone (5%), cereal (11%), and coal
(14%). Figure 3B shows the percentage change in the
estimated footprint for 23 resource categories between
direct-linking and TSA across 30 provinces. Unsurprisingly,
the TSA approach results in large differences with direct-
linking for resource categories with a large proportion of
imports. Across provinces, the largest deviation was found in
oil-bearing crops (ranging from −67% to 179%), chemical/
fertilizer materials (ranging from −60% to 143%), forestry
products (ranging from −56% to 127%), natural gas (ranging
from −69% to 109%), and oil (ranging from −53% to 104%).
The difference among provinces of a given resource is much
smaller for materials that are traded less in international
markets (e.g., sand/clay), with a general range of −5% to 10%.
Further, we explored the correlation between the two data sets
(percentage of China’s MF sourced from imports vs
percentage change in MF). The coefficient of determination,
R2 reached 0.92 (see Figure 3C), which supports our inference

Figure 2. Comparison results, material footprint (MF), MF embodied
in exports, and MF embodied in imports of China. The results are
calculated by the direct-linking approach in red, the TSA approach in
blue, and EXIOBASE directly in gray.
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that as the percentage of imported MF increases as a
proportion of total domestic demand, the differences between
the TSA and direct approaches also increase. Generally, metal,
fossil fuels, and biomass, whose cross-border transportation is
more frequent, see a larger difference than nonmetallic
minerals (which generally rely on local extraction).
3.3. By Province. We present the difference in the

province-level material footprint by material category between
the TSA approach and direct linking in Figure 4. As expected,
coastal provinces show relatively larger errors because they are
more integrated into the global supply chain. For instance, the
direct-linking results show that Guangdong has a 14% higher
aggregated MF, 32% higher biomass footprint, and 34% metal
footprint than when using the TSA approach. The size of MF
underestimation for Guangdong is 188Mt, which is almost
equivalent to the total MF of Hainan (an island province in
southern China) with an MF of 186 Mt and a population of 8.7
million in 2010. Similar results were seen in Fujian (21%
higher in metals), Shanghai (16% higher in biomass), and
Jiangsu (15% higher in fossil fuels), among others. Besides we
find an outlierHainan, an island province in southern China,
who sees −48% of deviations in fossil fuels. It is because its
energy demands in 2010 were met by crude oil and natural gas
(the largest proportion across provinces)the vast majority of
which were imported.66

In contrast, the MF of most inland provinces appears, in
general, overestimated using the TSA approach but the
magnitude of underestimation is lower than for coastal
provinces. In most cases, differences among inland areas are
within ±10% with slightly larger differences in metals.

Generally, this is consistent with the argument we made
above that the aggregated metals have a larger proportion
(36%) of imported MF than fossil fuels (24%), biomass (19%),
and nonmetallic minerals (4%).

3.4. By Outsourcing Structure. We further investigated
the differences in the imported MF embodied in trade across
provinces. As shown in Figure 5, the largest differences were
generally found in the material transfer embodied in imports
rather than exports. This may be because imported MF largely
rely on foreign production technologies of materials, which are
then distributed through the importing matrix. The uncertainty
of the TSA method has a great impact here. Figure 5 further
shows that the percentage changes of imported MF across
provinces range from −80% to 141%, − 73% to 63%, − 76% to
87%, and −73% to 153% for biomass, fossil fuels, metals, and
nonmetallic minerals, respectively.
These variations also reflect the extent to which the

economies of different provinces rely on resource extractive
activities and production with important international
imports/exports. Resource-poor coastal provinces with large
volumes of imported materials (larger bubble size in Figure 5)
see the largest deviations between the TSA and direct-linking
approaches. Most are clustered in the upper-right quadrant in
Figure 5 where both imported and exported MF are
underestimated (while imported MF are underestimated at a
larger magnitude). In contrast, material extraction in China is
highly concentrated inland (central and western areas), but the
inland provinces trade much less with foreign countries.5,23 As
they have a smaller size of MF exports and imports, the
uncertainties are also smaller than those of coastal provinces.

Figure 3. (A) Percentage of China’s MF sourced from imports of 23 types of resources. (B) Box-and-whisker plots of the differences between the
provincial MF of 23 types of resources calculated by the TSA and direct-linking approaches. The horizontal line is the median, the cross is the
mean, the interquartile range (IQR) is equal to the difference between the 75th and 25th percentiles, the maximum length of whiskers is 1.5 times
the interquartile range, and single points are outliers. (C) Percentage of China’s MF sourced from imports vs the range of variation calculated based
on the TSA and direct-linking. Note the percentage of imports of “other petroleum/gaseous materials” in panel A is 100% since this category is not
individually accounted in 2010 in Chinese statistical systems.
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Most inland provinces are clustered in the bottom-left
quadrant of Figure 5, where both imported and exported MF
are overestimated. The differences between the two
approaches can partially offset one another for the final MF
under some conditions. For example, the MF imports and
exports of Hunan were overestimated by 45.3 Mt and 49.0 Mt,
respectively. Thus, difference for Hunan’s international PTB
deviates by just 3.7 Mt, accounting for 0.5% of total MF. This
also suggests why the TSA approach deviates less for inland
provinces, provided that the MF estimation is done at the
aggregated (net of imports) level.
In addition, we investigated the influence of the TSA

approach on the interprovincial (embodied) material flows
(see Figure S5 in the SI). The overall domestic flows are
similar (with only a 3% difference). However, because direct-
linking decreases the size of imported MF for some provinces
(for example, for the inland provinces discussed above), it will
generally increase the domestic flows toward those provinces.
As a result, direct-linking shows a higher reliance on domestic
extraction than the TSA. For coastal provinces, the trend is the
opposite. EE-IO reallocates the production-based flows (DE)
to the consumption-based flows (MF) of a region/sector. Even
though the two interprovincial input−output matrices in the
two approaches are the same, direct-linking, with its different
importing/exporting matrices, causes ripple effects through the
model and alters interprovincial flows, resulting in a better
reflection of real material flows.

Moreover, perhaps the biggest issue in using the TSA
approach is that it cannot distinguish the differences between
trading partners, i.e., it assumes that each province follows the
same trading structure as at the national level. Figure 6 shows
the origin of international imported MF embodied in
outsourced production for different regions for each province,
explicitly showing the difference between the TSA and direct-
linking approaches. The direct-linking approach shows regional
disparities (Figure 6A) compared to the more homogeneous
composition across provinces shown by the TSA approach
(Figure 6B). For example, consider a dominant country pair of
China and the U.S. (where the U.S. is the largest of China’s
trade partners and comprises ∼11% of imported Chinese MF).
Approximately, 10%−12% of provincial MF are comprised of
raw material extracted in the US and imported to China.
However, if we consider the actual trade structure, then the
direct results show that the proportion varies much more, from
7% to 28% across different provinces. Similar phenomena also
exist in exported MF as presented in the SI Figure S6. The
reduction in homogeneity shown in Figure 6 is crucial for a
better understanding of trade impacts in studies that aim to
link global consumption with local impacts. More detailed
differences at the bilateral level (between provinces and
countries/regions pairs) are presented in Figures S7 and S8 in
the SI. Coastal provinces (Shanghai, Jiangsu, Guangdong, and
Hainan) are under large influences.

Figure 4. Difference in province-level material footprints by material category between the direct linking and the TSA approach. Percentage
changes indicate the reduction/increase of the direct-linking compared to the TSA approach. The capitalized abbreviations give the region to which
a province belongs: NE, northeast; NC, north coast; YL, Yellow River midstream; YT, Yangtze River midstream; EC, east coast; SC, south coast;
SW, southwest; and NW, northwest.
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4. DISCUSSION

Subnational footprinting models are able to explore the
internal supply chains of nations and connect local dynamics
to the global economy. However, the approach for
disaggregating national-level and sector-level data to a higher
resolution both spatially and by sector, is very data-sensitive.
We show that for countries that drive large material flows, such
as China, estimating subnational material flows embodied in
trade using proportionality in disaggregating data may lead to
large differences when compared with using proxy data such as
customs records.
At the aggregated national level, even though considering

subnational spatial heterogonies for China by TSA, which have
adjusted the amount of overestimation in material embodied in
exports to some extent, the material embodied in both exports
and imports are still overestimated. The direct-linking
approach further decreases the material embodied in exports
and imports by 9.1% and 18.2% compared to TSA. These
confirm that it is necessary to introduce subnational
heterogeneities to assess embodied flows of environmental
impacts (materials, carbon, water, etc.) for big countries with
vast territory and regional disparities.15,32,34 At the same time,
the overall material footprints of the nations are not influenced
significantly by different methods. We argue that, for footprint
assessment, a country-specific GMRIO model may be sufficient
enough.50 While exploring subnational supply chains should be
conducted by embedding a subnational IOT within a GMRIO
using trade data, especially for large countries.
At the subnational-level, the gaps in MF between the two

approaches across provinces range from −9% to 14% but are
huge for disaggregated materials like metal and fossil fuels.

Differences are smaller in a relative sense across inland areas,
but the MF of coastal provinces can be underestimated
because these provinces have a much higher level of
integration into the global economy. The largest differences
are found in the material transfer embodied in imports rather
than exports. With the better reflection of imports and exports
at provincial and international levels, ripple effects throughout
interprovincial material trade were also observed. TSA linking
may partially neglect regional disparities concerning interna-
tional trade between different subnational areas because it
assumes that the sector distribution (structure) among trade
partners of a given area is the same as at the national level, as
shown in Figure 6. Therefore, the TSA approach may not be
fully capable of analyzing international trade patterns and in
some cases may be inappropriate for analyzing the connection
between global supply chains and for example, Chinese
provinces.
Our work can be seen as a step in the evolution of the use of

EE-IO to calculate environmental footprints at the subnational
level. Initially, only national EE-IO tables were available, and
the footprints of imports were calculated using the domestic
technology assumption (DTA), along with other approaches.35

For calculating subnational footprints province-level IOTs
were used, also in combination with the DTA, with the
rationale that such work would focus mainly on intracountry
flows.7,19,23,37 For both applications, the DTA worked as a first
approximation but also led to errors because it does not
distinguish between environmental pressures and foreign and
domestic production recipes. The development of GMRIOs
overcame this limitation and also allowed for the embedding of
province-level IOTs in GMRIOs.1,17,38,53 However, TSA
linking was necessary to distribute imports to, and exports

Figure 5. Bubble plot of percentage changes of material transfer embodied in international imports vs percentage changes of material transfer
embodied in the international exports. The size of a bubble represents the per capita material transfer embodied in the international imports of the
given province.
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from, a country across its regions (due to a lack of more
specific information). We showed for the case of Chinese
provincial MF that the use of real province-level trade data
using direct-linking gives more precise results. The relevance of
using direct-linking for MF is understandable, given the
important role of China in driving the global MF, the quite
different production structures and interactions with global
markets of Chinese provinces, and the general finding that MF
are sensitive to, for example, sector detail.32

The direct-linking approach is however extremely data-
intensive because the trade data required at the provincial level
can be as large as 15 million data points per year in our case.
However, further applied and theoretical work could
investigate to what extent the size of data sets would impact
results. It may be the case that fewer data points are needed.
Additionally, similar analyses could be applied to other
countries that have the requisite subnational statistics and
subnational IOTs. A further important follow-up question is
also whether these differences are also relevant for other
footprints such as carbon emissions and water, or whether
other footprints still give a good approximation using the TSA
approach. Furthermore, recent works also showed distinguish-
ing ordinary and processing exports would also lead to
differences in carbon exports.32,67 How this effect would
influence material flows could be further explored.
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