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Abstract. The leaf economic spectrum is a widely studied axis of plant trait variability that
defines a trade-off between leaf longevity and productivity. While this has been investigated at
the global scale, where it is robust, and at local scales, where deviations from it are common, it
has received less attention at the intermediate scale of plant functional types (PFTs). We inves-
tigated whether global leaf economic relationships are also present within the scale of plant
functional types (PFTs) commonly used by Earth System models, and the extent to which this
global-PFT hierarchy can be used to constrain trait estimates. We developed a hierarchical
multivariate Bayesian model that assumes separate means and covariance structures within
and across PFTs and fit this model to seven leaf traits from the TRY database related to leaf
longevity, morphology, biochemistry, and photosynthetic metabolism. Although patterns of
trait covariation were generally consistent with the leaf economic spectrum, we found three
approximate tiers to this consistency. Relationships among morphological and biochemical
traits (specific leaf area [SLA], N, P) were the most robust within and across PFTs, suggesting
that covariation in these traits is driven by universal leaf construction trade-offs and stoi-
chiometry. Relationships among metabolic traits (dark respiration [Rd], maximum RuBisCo
carboxylation rate [Vc,max], maximum electron transport rate [Jmax]) were slightly less consis-
tent, reflecting in part their much sparser sampling (especially for high-latitude PFTs), but also
pointing to more flexible plasticity in plant metabolistm. Finally, relationships involving leaf
lifespan were the least consistent, indicating that leaf economic relationships related to leaf
lifespan are dominated by across-PFT differences and that within-PFT variation in leaf lifes-
pan is more complex and idiosyncratic. Across all traits, this covariance was an important
source of information, as evidenced by the improved imputation accuracy and reduced predic-
tive uncertainty in multivariate models compared to univariate models. Ultimately, our study
reaffirms the value of studying not just individual traits but the multivariate trait space and the
utility of hierarchical modeling for studying the scale dependence of trait relationships.

Key words: ecological modeling; functional trade-off; hierarchical modeling; leaf biochemistry; leaf
morphology; trait variation.

INTRODUCTION

Plant functional traits link directly measurable
features of individuals to their fitness within an ecosys-
tem, and are often related to various aspects of
whole-ecosystem function (Violle et al. 2007, Cardinale
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et al. 2012). Although global trait databases are larger
and more open now than ever before, large gaps and
sampling biases in these databases continue to pose a
challenge to trait ecology (Cornwell et al. 2019). If all
traits and plant species were completely independent
from each other, the only way forward would be to col-
lect more trait data, which is expensive and time con-
suming (Cornwell et al. 2019). Fortunately, recent trait
syntheses have revealed that variability in plant func-
tional traits is constrained by biophysical limitations
and trade-offs between ecological strategies (Wright
et al. 2004, Kattge et al. 2011, D�ıaz et al. 2015, Kleyer
and Minden 2015).
One such constraint is the “leaf economic spectrum,”

which defines a negative relationship between specific
leaf area (SLA) and leaf lifespan, and a positive rela-
tionship of SLA with Nmass, Pmass, and photosynthesis
and respiration rates (Wright et al. 2004, Shipley et al.
2006, Reich 2014, D�ıaz et al. 2015). Leaf economic
traits are correlated with plant productivity (Shipley
et al. 2005, Niinemets 2016, Wu et al. 2016b), litter
decomposition rates (Bakker et al. 2010, Hobbie 2015),
community composition (Burns 2004, Cavender-Bares
et al. 2004), and ecosystem function (Diaz et al. 2004,
Musavi et al. 2015). The position of species along the
leaf economic spectrum is related to climate and soil
conditions (Wright et al. 2004, 2005, Cornwell and
Ackerly 2009, Ordo~nez et al. 2009, Wigley et al. 2016).
As a result, relationships between leaf economic traits
and climate have been used in ecosystem models to
more finely resolve variation in plant function (Schei-
ter et al. 2013, Sakschewski et al. 2015, Verheijen et al.
2015).
The global, interspecific trait space in which the classic

leaf economic spectrum was defined is the end result of a
multitude of different processes operating at different
spatial, temporal, and phylogenetic scales. The subset of
these processes operating on time scales of centuries to
millennia, such as evolution or turnover in soil carbon
and nutrients, may not be relevant for predicting how
individual plants and ecosystems will respond to changes
on policy-relevant timescales of months to decades
(Shaw and Etterson 2012). The extent to which processes
operating on shorter timescales result in the same trait
trade-offs is an open question in trait ecology. Observa-
tional studies of trait correlations at smaller spatial
scales, such as sites, species, and individuals, produce
inconsistent results, with some studies finding consistent
correlations across scales (Wright et al. 2004, Albert
et al. 2010a, Asner et al. 2014) and others that correla-
tion strength and direction are scale dependent (Albert
et al. 2010b, Messier et al. 2010, 2017a, Wright and Sut-
ton-Grier 2012, Feng and Dietze 2013, Kichenin et al.
2013, Grubb et al. 2015, Wigley et al. 2016).
Many mechanisms have been suggested for scale

dependence of trait relationships. Trade-offs may only
apply when multiple competing strategies co-occur, and
alternative processes can drive community assembly

where strong environmental filters severely limit the
range of feasible strategies (Grime and Pierce 2012,
Rosado and de Mattos 2017). Different selective pres-
sures dominate at different scales, particularly within vs.
across species (Albert et al. 2010b, Messier et al. 2010,
Kichenin et al. 2013), and different traits have different
sensitivities to such pressures (Messier et al. 2017b).
Experimental evidence shows that species can alter dif-
ferent aspects of their leaf economy independently
(Wright and Sutton-Grier 2012). Global analyses show
that allocation patterns (and therefore investment strate-
gies and trait relationships) vary across plant functional
types (Ghimire et al. 2017). Moreover, plants maintain
their fitness through multiple strategies, not just leaf eco-
nomics, which can lead to multiple mutually orthogonal
axes of trait variability. As a result, changes in leaf eco-
nomic traits often fail to predict changes in other aspects
of plant function, such as hydraulics (Li et al. 2015), dis-
persal (Westoby et al. 2002), and overall plant carbon
budget (Edwards et al. 2014).
For these reasons, observed global trait relationships

may have limited predictive power at finer scales. On
the other hand, trying to understand an ecosystem
through bottom-up approaches starting with individual
species is also challenging. For one, the required spe-
cies-specific trait observations do not exist for a very
large number of species (Cornwell et al. 2019). Even
where sufficient trait data are available, scaling func-
tional traits to ecosystem-scale processes also requires
data on species relative abundance (Grime 1998), which
can be even more uncertain than the trait data (Clark
2016). Finally, plant interactions can result in commu-
nity-level responses to environmental change that are
distinct from the sum of species-specific changes (Poor-
ter and Navas 2003).
An intermediate strategy is to aggregate species with

similar structural and functional characteristics into
plant functional types (PFTs). Although PFTs are most
widely used as the unit of plant functional differentia-
tion in dynamic vegetation and earth system models
(Prentice et al. 1992, Lavorel et al. 1997, Wullschleger
et al. 2014), the underlying concept of plant assemblages
has been an important part of ecological discourse for
over a century (Cowles 1899, Clements 1936, Naeem
and Wright 2003). Patterns of trait variation within and
across PFTs are relevant for several reasons. First, trait
covariance can be leveraged to impute missing trait val-
ues (Swenson 2013); the extent to which leveraging trait
covariance reduces the size (i.e., variability and/or uncer-
tainty) of the trait space has important implications for
quantifying the parametric uncertainty in vegetation
model projections (Dietze et al. 2013, 2014, LeBauer
et al. 2013). Second, the large uncertainty in model pro-
jections of future global carbon budgets (Friedlingstein
et al. 2006, 2014) has been at least partially attributed to
the models’ failure to account for plant adaptation to
changing environments (Sitch et al. 2008), which has led
to an increased interest in adding within-PFT trait
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plasticity to models (Van Bodegom et al. 2011, Verheijen
et al. 2015).
While the leaf economic spectrum has been investi-

gated at the global scale, where it is robust, and at local
scales, where deviations from it are common, it has
received less attention at the intermediate scale of PFTs.
Thus, this paper seeks to answer the following questions:
First, does the leaf economic spectrum hold within vs.
across PFTs? Second, can the leaf economic spectrum
and similar covariance patterns be leveraged to reduce
uncertainties in trait estimates, particularly under data
limitation? The answers to these question have implica-
tions for both functional ecology and ecosystem model-
ing. To address these questions, we developed a
hierarchical multivariate Bayesian model that explicitly
accounts for across- and within-PFT variability in trait
correlations. We then fit this model to a global trait data-
base to estimate mean trait values and variance-covar-
iance matrices for PFTs as defined in a major earth
system model (Community Land Model, CLM; Oleson
et al. 2013). We evaluate the ability of this model to
reduce uncertainties in trait estimates and reproduce
observed patterns of global trait variation compared to
univariate models. Finally, we assess the scale depen-
dence and generality of estimated trait covariances.

MATERIALS AND METHODS

Trait data

We focused on seven leaf traits obtained from the
TRY global database (Kattge et al. 2011; Appendix S1):
longevity (months), specific leaf area (SLA, m2/kg),
nitrogen content (Nmass, mg N/g or Narea, g/m

2), phos-
phorus content (Pmass, mg P/g or Parea, g/m

2), dark respi-
ration at 25°C (Rd,mass, lmol�g�1�s�1, or Rd,area,
lmol�m�2�s�1), maximum RuBisCO carboxylation rate
at 25°C (Vc,max,mass, lmol�g�1�s�1, or Vc,max,area,
lmol�m�2�s�1), and maximum electron transport
rate at 25°C (Jmax,mass, lmol�g�1�s�1, or Jmax,area,
lmol�m�2�s�1). For Vc,max, we only used values reported
at 25°C. For Rd and Jmax, we normalized the values to
25°C using reported leaf temperature values following
Atkin et al. (2015) and Kattge and Knorr (2007: Eq. 1
therein), respectively. To avoid issues with trait normal-
ization, we performed analyses separately for both mass-
and area-normalized traits (Lloyd et al. 2013, Osnas
et al. 2013). We restricted our analysis to quality-
controlled values from species with sufficient informa-
tion for functional type classification (Kattge et al.
2011). Following past studies (Wright et al. 2004, Onoda
et al. 2011, D�ıaz et al. 2015), we log-transformed all
trait values to correct for their strong right-skewness.

Plant functional types

We assigned each species a PFT following the scheme
in the Community Land Model (CLM4.5, Oleson et al.

2013; Table 1, Fig. 1). We obtained categorical data on
growth form, leaf type, phenology, and photosynthetic
pathway from TRY. Where species attributes disagreed
between data sets, we assigned the most frequently
observed attribute (e.g., if five data sets say “shrub” but
only one says “tree,” we would use “shrub”). Where spe-
cies attributes were missing, we assigned attributes
based on higher order phylogeny if possible (e.g., Poa-
ceae family are grasses, Larix genus are deciduous
needleleaved trees) or omitted the species if not. For
biome specification, we matched geographic coordinates
for each species to annual mean temperature (AMT,
averaged 1970–2000) data from WorldClim-2 (Fick and
Hijmans 2017), calculated the mean AMT for all sites
where each species was observed, and then binned these
species based on the following cutoffs: boreal/arctic
(AMT ≤ 5°C), temperate (AMT ≤ 20°C), and tropical
(AMT > 20°C).

Multivariate analysis

Basic model description.—We compared three models
with different levels of complexity. The simplest was the
“univariate” model, in which each trait is independent.
For an observation xi,t of trait t and sample i

xi;t �Nðlt;rtÞ (1)

where N is the univariate Gaussian distribution with
mean lt and standard deviation rt for trait t.
The second-simplest model was the “multivariate”

model, in which traits are drawn from a single multivari-
ate distribution. For observed trait vector xi for sample i

xi �mvNðl;RÞ (2)

where mvN is the multivariate Gaussian distribution
with mean vector l and covariance matrix Σ. We fit both
of these models independently for each PFT and once
for the entire data set (i.e., one global PFT).
The most complex model was the “hierarchical mul-

tivariate” model (henceforth, just “hierarchical
model”), where traits are drawn from a PFT-specific
multivariate distribution describing within-PFT varia-
tion, and whose mean vector is itself sampled from a
global multivariate distribution describing variation
across PFTs. For observed trait vector xi,p for sample i
belonging to PFT p

xi;p �mvNðlp;RpÞ (3)

lp �mvNðlg;RgÞ (4)

where lp and Σp are the mean vector and covariance
matrix describing variation within PFT p, and lg and Σg

are the mean vector and covariance matrix describing
across-PFT (global) variation.
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Model implementation

We fit the above models using Gibbs sampling,
which leverages conjugate prior relationships for effi-
cient exploration of the sampling space. The main
advantages of Gibbs sampling over distribution-agnos-
tic Bayesian algorithms such as Metropolis Hastings
(Haario et al. 2001), Differential Evolution (ter Braak
and Vrugt 2008), and Hamiltonian Monte-Carlo
(Neal 2011) is that Gibbs sampling has a 100% pro-
posal acceptance rate (compared to 10–65% for these
algorithms), meaning that it requires roughly 2–10
times fewer Markov Chain Monte Carlo (MCMC)
iterations.
For priors on all multivariate mean vectors (l), we

used multivariate normal distributions. For priors on all
multivariate variance-covariance matrices, we used the
Wishart distribution (W), which leads to the following
posterior distribution

PðRjx; l; m0;R0Þ� ðWðm�;S�ÞÞ�1 (5)

m� ¼ 1þ m0 þ nþm (6)

S� ¼ ðS0 þ ð�x� lÞT ð�x� lÞÞ�1 (7)

where n is the number of observations, m is the number
of traits in data matrix x, and �x is the column means of
x. For further details on the derivation of the conjugate
relationship, see Gelman et al. (2003:72, Section 3.6).
We used weakly informative priors for trait means and

variances (diagonals of the multivariate normal covari-
ance matrix), the values of which are shown in
Appendix S2: Table S1. All of the covariance (off-diago-
nal) terms in the prior variance matrix were set to zero.
We used uninformative priors for the Wishart distribu-
tion (m0 ¼ 0, S0 = diag(1, m)).
The above equations defining the conjugacy relation-

ship do not work if the data matrix x has any missing val-
ues. Therefore, we modeled the partially missing
observations as latent variables conditioned on the present
observations and estimated mean vector and covariance

TABLE 1. Names, labels, species counts, and number of non-missing observations of each trait for plant functional types (PFTs)
used in this analysis.

Label PFT Species
Leaf

lifespan SLA

Mass Area

N P Rd Vc,max Jmax N P Rd Vc,max Jmax

BlETr Broadleaf
evergreen
tropical tree

1,229 153 11,710 7,547 2,912 237 205 58 4,023 1,684 326 225 152

BlETe Broadleaf
evergreen
temperate tree

363 135 2,210 1,811 1,194 121 36 16 928 339 196 106 87

BlDTr Broadleaf
deciduous
tropical tree

286 82 2,166 1,545 812 98 54 30 813 500 113 56 53

BlDTe Broadleaf
deciduous
temperate tree

345 181 9,536 5,982 2,163 942 245 576 2,163 398 866 697 849

BlDBo Broadleaf
deciduous
boreal tree

62 58 908 898 340 142 0 0 141 60 11 5 5

NlETe Needleleaf
evergreen
temperate tree

130 66 2,958 4,940 3,729 262 92 91 1,227 462 84 274 106

NlEBo Needleleaf
evergreen
boreal tree

30 24 530 1,457 393 493 0 0 101 14 16 3 3

NlD Needleleaf
deciduous tree

19 16 195 328 179 34 1 0 48 10 3 4 0

ShE Shrub evergreen 1,120 298 5,018 3,555 2,404 207 22 13 1,376 747 205 41 32
ShDTe Shrub deciduous

temperate
330 100 3,026 1,525 1,227 10 9 1 576 281 13 33 19

ShDBo Shrub deciduous
boreal

94 80 482 552 313 0 1 1 133 51 0 1 1

C3GAr C3 grass arctic 157 65 989 996 573 11 1 2 219 85 7 1 2
C3GTe C3 grass

temperate
624 76 6,322 3,802 1,541 103 21 27 1,257 382 93 52 47

C4G C4 grass 255 31 1,312 1,461 335 44 0 0 410 56 28 0 0

Notes: SLA, specific leaf area; Rd, dark respiration; Vc,max, maximum RuBisCo carboxylation rate at 25°C; Jmax, maximum elec-
tron transport rate at 25°C.
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matrix. This approach is conceptually similar to multiple
imputation (Graham 2009, White et al. 2010), and is quite
distinct from single imputation, where data are imputed
once in a separate step prior to parameter estimation
(Graham 2009, White et al. 2010). For a block of data x0

containing missing observations in columns m and present
observations in columns p, missing values x0[m] are drawn
randomly from a conditional multivariate normal distri-
bution at each iteration of the sampling algorithm:

x0½mjp� �mvNðl0;R0Þ (8)

l0 ¼ ðx0½p� � l0½p�ÞðR½p; p��1R½p;m�Þ (9)

R0 ¼ R½m;m� � R½m; p�ðR½p; p��1R½p;m�Þ. (10)

Sampling proceeds according to the following algo-
rithm: Let li and Σi be the estimates of the mean vector
and covariance matrix, respectively, at MCMC iteration
i. Similarly, let xi be the realization of the data x0 with
missing (latent) values imputed at MCMC iteration i.

1) Initialize l1 and Σ1 as a random draw from their
respective priors.

2) Generate x1 as a function of l1 and Σ1.
3) Draw l2 and Σ2 as a function of x1, according to the

corresponding Gibbs sampling step.

4) Generate x2 as function of l2 and Σ2.
5) Draw l3 and Σ3 as a function of x2.
6) Continue alternating these steps until a stable distri-

bution of l and Σ is reached.

A detailed demonstration of this approach is shown
in Appendix S2: Section S1. By performing imputa-
tion at every MCMC iteration, we integrate over the
uncertainty in the missing data. Combined with unin-
formative priors on the covariance centered on zero
(as previously described), this means our approach
provides an inherently conservative estimate of both
trait covariances and imputed missing values. Where
data are limited, our approach will tend towards
covariance estimates of 0 with wide credible intervals,
and the resulting weak and uninformative covariance
estimates will lead to larger uncertainties in the
imputed values.
For each model fit, we ran independent five chains,

continuing sampling until the final result achieved
convergence as determined by a univariate Gelman-
Rubin potential scale reduction statistic less than 1.1
for all parameters (Gelman and Rubin 1992). We
implemented this sampling algorithm in a publicly
available R (R Core Team 2019) package (available
online).13
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FIG. 1. Mean pairwise reduced major axis (RMA) slope estimates calculated from within- and across-PFT covariance matrix
estimates from the hierarchical model. The slope numerator (y) is the outer trait and the denominator (x) is the inner trait (so in the
top row, the slope is D(leaf lifespan)/D(SLA)). Blue colors indicate positive slopes and red colors indicate negative slopes, with dar-
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13 http://github.com/ashiklom/mvtraits
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Analysis of results

To assess the consistency of within- and across-PFT trait
trade-offs, we calculated the mean and 95% credible inter-
val of the pairwise reduced major axis slope (M) for each
trait pair (i, j) from posterior samples of their variance-
covariance matrices (Σ) using the following equation:

Mi;j ¼ Rj;j

Ri;i
signðRi;jÞ. (11)

Although this is a Bayesian analysis and therefore has
no formal tests of statistical significance, we approxi-
mated the statistical significance of slope estimates as
those whose 95% credible interval did not overlap zero.
We calculated reduced major axis slopes both within
and across PFTs.
To explore patterns of trait variation across PFTs, and

to provide updated parameter values for earth system
models, we calculated the mean and 95% credible inter-
vals of PFT-level trait estimates from our hierarchical
model. We also compare these values to the default
parameter values of CLM 4.5 (Oleson et al. 2013:
Table 8.1) for SLA, Nmass, Narea, Vc,max,mass and Vc,max,

area. To convert CLM’s reported C:N ratio to Nmass, we
assumed a uniform leaf C fraction of 0.46. We then
divided this calculated Nmass by the reported SLA to
obtain Narea. We calculated Vc,max,mass by multiplying
the reported Vc,max,area by the reported SLA.
To compare the ability of the different models to pre-

dict missing trait observations, we performed a cross-
validation where we randomly removed 1,000 observa-
tions from the data and evaluated the ability of the fitted
models to impute these missing observations. We report
the results of the normalized mean root mean square
error (RMSE) of these predicted observations.
To test whether multivariate and hierarchical models

offer relatively more utility at smaller sample sizes, we
calculated the relative uncertainty (a) as a function of
the mean (l) and upper (q0.975) and lower (q0.025) confi-
dence limits of trait estimates

a ¼ q0:975 � q0:025
l

. (12)

We then fit a log-linear least-squares regression relat-
ing relative uncertainty to sample size (n) for each model
(univariate, multivariate, and hierarchical; Fig. 4)

log a ¼ b0 þ b1 log n. (13)

If all three models performed equally well at all sam-
ple sizes, their respective slope and intercept coefficients
would be statistically indistinguishable. Meanwhile,
models that perform better should have a lower intercept
(b0), indicating lower overall uncertainty, and a lower
slope (b1), indicating reduced sensitivity of uncertainty
(a) to sample size (n).

Data and code availability

All R analyses were run using R version 3.6.1 (R Core
Team 2019). The R code and data for running these
analyses is publicly available online via the Open Science
Framework (see Data Availability). To comply with TRY
intellectual property guidelines, the trait data used in this
study have been “anonymized” such that they can only
be identified to the PFT level (not the species level) as
required to reproduce this analysis. The complete TRY
data request used for this analysis has been archived
online (see Data Availability).

RESULTS

Trait covariance patterns within and across PFTs

The direction and magnitude of pairwise trait rela-
tionships was quite variable within and across PFTs
(Fig. 1). Broadly, this variability can be captured by
breaking up the seven leaf traits considered in this analy-
sis into three groups: morphology and biochemistry
(SLA, N, P), metabolism (Rd, Vc,max, Jmax), and leaf
lifespan.
Morphological and biochemical traits (SLA, N, P)

showed the most robust and consistent mutual covari-
ance of these three groups. SLA was positively related
to Nmass and Pmass, and negatively related to Narea and
Parea, both across PFTs and within all PFTs. The mag-
nitude of the slopes between N and P (regardless of
normalization), and of SLA with Narea and Parea, were
relatively constant within all PFTs, but the magnitude
of the slopes of SLA with Nmass and Pmass were more
variable. In particular, temperate tree species (BlETe,
BlDTe, NlETe) showed steeper SLA-Nmass slopes (more
variation in SLA relative to Nmass) than most other
PFTs.
Covariance among metabolic traits (Rd, Vc,max, Jmax)

was slightly less robust. Pairwise relationships among
metabolic traits were weaker across-PFTs than within-
PFTs. Across-PFT relationships among metabolic traits
were also weaker than across-PFT relationships among
SLA, N, and P. Within PFTs, the relationship between
Vc,max and Jmax (regardless of normalization) was largely
consistent in magnitude and direction, while the rela-
tionship of Rd with both of these traits was more vari-
able. Within-PFT relationships of metabolic traits with
N and P were usually positive, and relationships with
SLA were usually positive under mass normalization
and negative under area normalization. Two PFTs had
notable deviations from these patterns under area nor-
malization: Broadleaved deciduous temperate (BlDTe)
trees had opposite slopes for the SLA–Rd,area, SLA–
Jmax,area, and Narea–Rd,area, while needleleaved evergreen
temperate trees (NlETe) had opposite slopes for Rd,area–
Vc,max,area and SLA–Vc,max,area. Finally, an important
feature of metabolic traits is the much larger number of
near-zero pairwise slope estimates, which is driven by
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the relative paucity of observations (especially pairwise
observations) of these traits for many PFTs.
Slopes of all of the above traits with leaf lifespan

showed the most variability. Across-PFT relationships of
leaf lifespan with other traits were, on average, stronger
than across-PFT relationships among the other traits,
especially for mass-normalized traits. Within-PFT rela-
tionships of leaf lifespan with mass normalized traits
were most often positive, but varied systematically with
leaf habit and biome. Namely, among deciduous PFTs,
leaf lifespan–SLA and leaf lifespan–Nmass slopes were
less positive or more negative in colder biomes than war-
mer ones (BlETr > BlETe, BlDTr > BlDTe > BlDBo,
ShDTe > ShDBo, C3GTe > C3GAr). Meanwhile, slopes
of leaf lifespan with area-normalized traits were generally
weaker and idiosyncratic.
An important caveat to these results is that many

slopes, including all of the across-PFT slopes, had 95%
credible intervals that intersected zero—i.e., we are less
than 95% confident in the direction of these slopes. This
is primarily due to variations in the effective number of
pairwise observations used to estimate the covariance
matrix: the more pairwise observations are available, the
smaller the minimum covariance that can be estimated
with the same level of statistical power and confidence.
For example, a power analysis of correlation coefficients
(‘pwr::pwr.r.test’ in R; Champely 2018) showed that,
with 14 plant functional types (n = 14), the smallest
across-PFT correlation we would be able to estimate
with 95% power (a = 0.95) and confidence (P = 0.05) is
0.74, so we can confidently say that all PFT correlation
coefficients (different from, but closely related to slope)
were smaller than that value. That being said, because
all across-PFT slopes have the same sample size, we can
reasonably expect differences in the mean strength of
pairwise across-PFT trait relationships to be ecologically
meaningful. The situation is more complex for PFT-level
estimates, where sample size varies by multiple orders of
magnitude by PFT and trait pair (Table 1; Appendix S2:
Table S4). In particular, high-latitude PFTs (BlDBo,
NlEBo, NlD, ShDBo, and C3GAr) and metabolic traits
(Rd, Vc,max, Jmax) stand out as having particularly low
sample sizes.

Estimates of PFT-level means

Across-PFT patterns in SLA, Nmass, Pmass, and Rd,mass

were similar, with the highest values in temperate broad-
leaved deciduous PFTs and the lowest values in ever-
green PFTs (Fig. 2). However, none of these patterns
was universal to all four traits. For example, tropical
evergreen trees had relatively high Nmass and average
SLA and Rd,mass, but among the lowest Pmass. Similarly,
compared to grass PFTs, temperate and boreal shrubs
had similar SLA but higher Nmass and Pmass. Patterns
were different when these traits were normalized by area
instead of mass. For example, needleleaf evergreen trees
had relatively low Nmass and Pmass but relatively high

Narea and Parea, while the opposite was true of deciduous
temperate trees and shrubs.
A key application of this study was to provide data-

driven parameter estimates for Earth System models. To
this end, we compared our mean parameter estimates
with corresponding default parameters in CLM 4.5 (Ole-
son et al. 2013; Fig. 2). Our SLA estimates were lower
(non-overlapping 95% credible interval) than CLM
parameters for all PFTs except tropical broadleaved
evergreen trees. Our Nmass estimates showed more
across-PFT variability than CLM parameters, and only
agreed with CLM for evergreen temperate trees, needle-
leaved trees, and C3 Arctic grasses. Similarly to Kattge
et al. (2009), we found that CLM overestimates Vc,max,
both by mass and area.

Comparing different models

Both our multivariate and hierarchical models consis-
tently outperformed the univariate approach in terms of
their ability to impute missing trait values (Fig. 3). The
relative amount of improvement from the univariate to
the multivariate or hierarchical model was roughly pro-
portional to the sample size of the underlying trait. For
instance, for SLA, the best-sampled trait in our analysis,
the hierarchical model’s RMSE improved on the uni-
variate model by only 4–6%, while the improvement for
the much more sparsely observed Vc,max and Jmax was
30–40%. The differences between the grouped multivari-
ate model and the hierarchical model were negligible,
indicating that the additional information content of the
across-PFT covariance is limited.
In general, leaf trait estimates from the univariate,

multivariate, and hierarchical models were similar
(Appendix S2: Fig. S1). Where estimates differed
between models, the largest differences were between
the univariate and multivariate models, and additional
constraint from the hierarchical model relative to PFT-
specific multivariate models had a minimal effect on
trait estimates. Significant differences in trait estimates
between univariate and multivariate models occurred
even for well-sampled traits, such as leaf nitrogen con-
tent. We also observed differences in posterior predic-
tive uncertainties of mean estimates with respect to
sample size. High-latitude PFTs had large uncertainties
relative to other PFTs, and the traits with the largest
uncertainties were dark respiration, Vc,max, and Jmax.
For many of these trait-PFT combinations, the addi-
tional constraint from trait covariance provided by the
multivariate and hierarchical models reduced error bars,
making it possible to compare estimates against those
of other PFTs. Our analysis of the relationship between
sample size and trait uncertainty found that, compared
to the univariate model, the multivariate model both
reduced uncertainty overall (lower intercept) and
reduced the sensitivity of uncertainty to sample size
(lower slope; Fig. 4). The hierarchical model further
reduced both sensitivity to sample size and overall
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uncertainty, but this benefit was primarily detectable
only at very small sample sizes.

DISCUSSION

Scale dependence of the leaf economic spectrum

Our first objective was to investigate the extent to
which the global relationships defined by the leaf

economic spectrum, namely, positive relationships
among SLA, Nmass, Pmass, and Rd,mass and negative rela-
tionships of all these traits with leaf lifespan (Wright
et al. 2004, Shipley et al. 2006, Reich 2014, D�ıaz et al.
2015), hold within and across PFTs. Our results suggest
that, among the seven traits we investigated, there are
three levels of “robustness” for leaf economic relation-
ships. The top tier of leaf economic relationships
involves morphological and biochemical traits, SLA, N,
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and P, which had covariance patterns consistent with the
leaf economic spectrum both across PFTs and within all
PFTs. The second tier involves metabolic traits, Rd,
Vc,mass, and Jmax, which were generally consistent with
the leaf economic spectrum, but with a weaker relation-
ship across PFTs and with notable deviations within
specific PFTs. The third tier involves leaf lifespan, which
had a relatively strong leaf economic spectrum signal
across PFTs and within a majority of PFTs, but which
showed systematic deviations from the leaf economic
spectrum within many PFTs.
The consistent direction of relationships among

SLA, N, and P (by mass and area) across and within
all PFTs suggests that they are driven by processes that
are more-or-less universal (Fig. 1). The consistent posi-
tive relationship between N and P (by mass or area)
reflects the tight stoichiometric link between these two
nutrients, and suggests that the variations in nutrient
supply that would drive changes in the N:P ratio are

larger within-PFTs than across (Elser et al. 2010).
Meanwhile, the consistent positive relationships of
SLA with mass-
normalized N and P reflects the fact that increases in
leaf mass per area (i.e., decreases in SLA) are driven
primarily by increases in structural carbohydrates,
which inevitably leads to a decline in nutrient mass
fractions (Poorter et al. 2009). At the same time, the
consistent negative relationships of SLA with area-
normalized N and P reflect the role of these nutrients
in structural proteins (Onoda et al. 2017). It should be
noted that, although the direction of SLA-Nmass and
SLA-Pmass relationships was consistent, the magnitude
of their slopes showed non-trivial variation, particu-
larly on a mass basis.
The less robust leaf economic spectrum signal in meta-

bolic traits (Fig. 1) is likely a combination of two fac-
tors: more plasticity in plant metabolism relative to
morphological and biochemical traits, and much smaller
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sample sizes for confidently estimating relationships.
Plasticity in plant metabolic traits independent of the
leaf economic spectrum is well documented. For exam-
ple, Kattge et al. (2009) showed that across-PFT varia-
tion in Vc,max,area was driven by differences in
photosynthetic N use efficiency while variation within
PFTs was driven by differences in N content, and that
Narea–Vc,max,area relationships within PFTs were variable.
More generally, there is substantial variability across
PFTs in how leaf N is allocated to photosynthesis (Ghi-
mire et al. 2017) and across leaf biochemical consituents
more generally (Onoda et al. 2011). The scale depen-
dence we observed in Vc,max–Jmax relationship, namely,
that its slope was consistent within PFTs, but very weak
across PFTs, may be a reflection of strong variation in
growth irradiance and temperature across biomes, which
have been shown to alter the Jmax/Vc,max ratio (Hikosaka
2005, Hikosaka et al. 2005, Xiang et al. 2013). An
important limitation to these results is the relative scar-
city of metabolic trait measurements, especially for high-
latitude PFTs (Table 1; Appendix S2: Table S4). More
simultaenous observations of metabolic traits and other
leaf economic traits on the same leaf samples are needed
to better understand how much these are actual ecologi-
cal patterns vs. just artifacts of sampling bias.
The fact that trait relationships involving leaf lifespan

showed the most scale dependence and within-PFT vari-
ability (Fig. 1) is not particularly surprising considering
that leaf habit (deciduous vs. evergreen), the largest driver
of global variability in leaf lifespan, is a part of the PFT
definition. As noted by Wright et al. (2004) in their

original presentation of the leaf economic spectrum,
specific leaf area and leaf lifespan were decoupled in
deciduous species, largely because of these specues’ rela-
tively small variation in leaf lifespan. The very inconsis-
tent direction of relationships of area-normalized traits
with leaf lifespan is also consistent with the results of
Wright et al. (2004). The systematic differences in the leaf
lifespan-SLA relationship with biome we observed among
deciduous PFTs can be interpreted in terms of within-
PFT climate variability. Specifically, for deciduous species,
leaf lifespan is primarily driven by the length of the local
growing season, which generally decreases with annual
mean temperature, whereas the larger variability in leaf
lifespan of evergreen species is less sensitive (or even
inversely related) to changes in climate (Appendix S2:
Fig. S2). Ultimately, this suggests that leaf economic rela-
tionships related to leaf lifespan are dominated by across-
PFT differences, particularly those between deciduous
and evergreen PFTs, while factors driving variability in
leaf lifespan within PFTs are more complex and idiosyn-
cratic (Reich et al. 2014, Wu et al. 2016a).

Covariance as constraint

The second objective of this paper was to investigate
the information content of trait covariance; i.e., how
much more can we learn about specific traits based on
their relationships with other traits? We show that
accounting for covariance both improved the accuracy
of trait imputation (Fig. 3) and reduced posterior pre-
dictive uncertainty around PFT-level trait means,
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particularly for undersampled trait–PFT combinations
(Fig. 4; Appendix S2: Fig. S1). Moreover, accounting
for covariance occasionally resulted in small but statisti-
cally significant differences in the position of trait mean
estimates even for well-sampled PFT-trait combinations
(e.g., Nmass for temperate broadleaved deciduous trees,
Appendix S2: Fig. S1). This result echoes D�ıaz et al.
(2015) in demonstrating the importance of studying the
multivariate trait space rather than individual traits. Sig-
nificant differences between univariate and multivariate
estimates of trait means suggest that sampling of these
traits in TRY is not representative (Table 1;
Appendix S2: Section S2; see also Kattge et al. 2011).
These differences also indicate that parameter estimates
based on univariate trait data (LeBauer et al. 2013,
Dietze et al. 2014, Butler et al. 2017) may not only over-
estimate uncertainty, but may also be systematically
biased. Although some traits in our analysis (Rd, Vc,max,
and Jmax) had too few observations to estimate covari-
ance patterns for some PFTs with much statistical power,
we show that leveraging covariance increases the effec-
tive sample size of all traits. This means that field and
remote sensing studies that estimate only certain traits
(like SLA and Nmass) may be able to use trait correla-
tions to provide constraint on traits they do not directly
observe (such as Pmass and Rd,mass; Serbin et al. 2014,
Musavi et al. 2015, Singh et al. 2015, Lepine et al.
2016). As such, future observational campaigns should
consider trait covariance when deciding which traits to
measure.
The additional benefit of hierarchical multivariate

modeling in our study was limited, due to a combination
of the low number of points used to estimate across-PFT
covariance, the weak slopes of those relationships, and
the usually consistent direction of pairwise slopes within
and across PFTs. Therefore, for parameterizing the cur-
rent generation of ecosystem models using well-sampled
traits, simple multivariate models fit independently to
each PFT may be sufficient and the additional concep-
tual challenges and computational overhead of hierar-
chical modeling are not required. However, for modeling
larger numbers of PFTs, the benefits of hierarchical
modeling may accumulate (Clark 2004, Dietze et al.
2008, Cressie et al. 2009, Webb et al. 2010), particularly
in situations where within- and across-group covariance
patterns differ. Future work should use similar methods,
potentially in combination with additional information
from phylogenetic or taxonomic similarity (Symonds
and Blomberg 2014), to explore the extent to which leaf
economic relationships hold within vs. across other
groups, such as taxonomic levels (species, genus, family,
clade), successional stages, or spatial domains.
This raises the question: What is the “best” way to rep-

resent plant functional diversity in the next generation
of terrestrial ecosystem models? The current PFTs are
products of an era in which computational power was
more limited and data on functional diversity were rela-
tively scarce (Prentice et al. 1992, Box 1995, Woodward

and Cramer 1996); this study, among others, points to
their limitations. This PFT structure is, however, not
immutable. One alternative would be to explicitly
account for systematic differences in trait values between
regions with similar climates (Butler et al. 2017). A sec-
ond alternative is to further disaggregate PFTs based on
successional stage, shade tolerance, or similar ecological
characteristic (Hickler et al. 2011, Longo et al. 2019). A
third is to allow PFTs to emerge from the data by apply-
ing classification and clustering techniques to functional
trait observations (Boulangeat et al. 2012). Finally, one
could eschew PFTs in favor of modeling individual spe-
cies (Post and Pastor 1996, Weng et al. 2015), or even
abandon discrete categories altogether and model the
continuous trait space (Scheiter et al. 2013). Our meth-
ods for quantifying trait covariance would benefit any or
all of these approaches.
More generally, we foresee tremendous potential for

multivariate and hierarchical modeling to elucidate the
relationship between traits and organismal and ecosys-
tem function. A natural next step would be to apply the
same approach to traits whose relationship to the leaf
economic spectrum is less clear. One example is hydrau-
lic traits: While stem and leaf hydraulic traits are corre-
lated (Bartlett et al. 2016), the scaling between hydraulic
and leaf economic traits is poorly understood (Reich
2014, Li et al. 2015). Similarly, reexamining the relation-
ships defining wood (Chave et al. 2009, Baraloto et al.
2010, Fortunel et al. 2012) and root (Kramer-Walter
et al. 2016, Valverde-Barrantes and Blackwood 2016)
economic spectra, as well as their relationship to the
foliar traits, would provide useful information on scale-
dependence of plant growth and allocation strategies.
The difficulty of measuring hydraulic and other non-
foliar traits (Jansen et al. 2015) further increases the
value of any technique that can fully leverage the infor-
mation they provide. Ultimately, multivariate and hierar-
chical modeling may reveal functional trade-offs that are
mutually confounding at different scales, thereby
enhancing our understanding of processes driving func-
tional diversity.
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SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2064/full

DATA AVAILABILITY

R code and data are available from the Open Science Framework: https://osf.io/w8y73/. Trait data are archived in the TRY Plant
Trait Database at http://www.try-db.org and can be retrieved by providing TRYdata request ID #1584.
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