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Abstract 

Cytotoxic T Lymphocytes (CTLs) are an important component of the adaptive immune response 

and have an important role in controlling tumours. Improved understanding of CTL interactions 

within solid tumours will yield insights of benefit to the development of immunotherapeutic 

strategies against cancer. CTLs are best known for their ability to lyse antigen presenting targets, 

however they also secrete cytokines such as interferon-γ (IFN-γ), which can inhibit cell cycle 

progression and thus block proliferation of neighbouring cells. In this study, we take a systems 

biology approach to compare the importance of cytolytic versus IFN-γ mediated cytostatic effects 

in a murine melanoma model. We integrated measurements of tumour volume, fluorescent 

imaging data, and transcriptomics data to inform an ordinary differential equation (ODE) model of 

CTL activities inside the tumour. Our model predicted that the cytotoxic effects of CTLs were very 

small, and that the cytostatic effects of IFN-γ were likely responsible for almost all of the observed 

difference in tumour growth between the CTL treated versus the untreated tumours. Moreover, 

our analysis and subsequent modelling revealed that the window of IFN-γ production was much 

shorter than the period of CTLs infiltrating the tumour. This was consistent with the dynamics of 

delayed upregulation of CTL exhaustion markers TIM-3 and LAG-3 but not with the dynamics of 

PD-1 and PD-L1. This suggests that within B16F10 melanomas TIM-3 and LAG-3 have a more 

important role than the PD-1/PD-L1 axis in the development of a dysfunctional CTL phenotype, 

especially at late stages of anti-tumour T cell responses. 
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Introduction 

Immunotherapy is an emerging strategy for treatment of cancer, with an ever growing number of 

immunotherapies having reached clinical trials or been approved already[1]. Blood cancers were 

amongst the first to be successfully treated with immunotherapy[2]; to date solid tumours have 

proved more challenging. Despite this, several treatments are already available for solid tumours 

and many more are under trial[3]. Although there has been some success with immunotherapy 

so far, there is a pressing need for greater mechanistic understanding of the interactions of 

immune cells within solid tumours. Such understanding may help expand the scope of 

immunotherapies to different cancers, identify biomarkers to predict which patients might benefit 

from immunotherapy[4], optimise the dosing schedule for immunotherapies[5,6], or identify 

potential combination therapeutic strategies[7]. Mathematical or computational models are a 

useful tool to develop such understanding, since they can link data from different sources and 

make quantitative predictions for what we should expect under different conditions.  

CD8+ Cytotoxic T Lymphocytes (CTLs) are a key player in the anti-cancer immune response, and 

many immunotherapy strategies are focussed on these cells. Two prominent examples are 

blockade of inhibitory receptors such as PD-1 expressed on CTLs in hopes of “removing the 

brakes” on the immune response[8,9], or adoptive transfer of engineered (CAR) T Cells[10,11]. 

Therefore understanding the functioning of CTLs inside tumours is of foundational importance for 

the rational design of immunotherapies. Secretion of the cytokine IFN-γ is a hallmark of activated 

CTLs, yet due to its pleiotropic effects the exact effects of this cytokine in solid tumours remain 

poorly understood. Indeed, some have even noted the “paradoxical” role of IFN-γ in tumour 

progression[12], paradoxical in the sense that IFN-γ can have both pro-tumour and anti-tumour 

effects. Amongst the pro-tumour effects, IFN-γ can lead to recruitment of suppressive cells such 

as regulatory T cells or myeloid derived suppressor cells (MDSCs), or can induce expression of 

immune checkpoint ligands such as PD-L1 on tumour cells[13,14]. Amongst the anti-tumour 

effects, IFN-γ can aid in the recruitment of innate immune effectors, kill tumour cells, or exert 

antiproliferative effects on tumour cells[15–17].  

Here, we focus on the antiproliferative effects IFN-γ has on tumour cells. The antiproliferative 

effects are mediated by inhibitors of cyclin dependent kinases which result in arrest of tumour 

cells at the G1 phase of the cell cycle, which has been shown in a variety of cell lines[15–17]. 

However, IFN-γ also has anti-angiogenic effects which may in part explain the reduction in tumour 

cell proliferation. Previously we have used computational models to demonstrate how an 

antiproliferative effect mediated by cytokines could have a very potent effect on tumour 

progression, since through cytokine signalling CTLs can control many tumour cells, thus stalling 

tumour growth and buying time for killing of tumour cells by CTLs [18,19]. However, in our 

previous modeling work no direct data linking the proliferation of tumour cells to IFN-γ levels inside 

the tumours was available. Therefore, here we have used data from another study by Matshushita 

and coworkers where the antiproliferative effects of IFN-γ were explicitly explored[15]. In that 

study, CTLs strongly inhibited B16F10 melanoma tumour growth, but this effect was reversed 

when adoptive T cell transfer was accompanied by administration of anti-IFN-γ antibodies. In 
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https://paperpile.com/c/mOZoiQ/ub3Hn
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addition, histological analysis of tumours expressing a cell cycle sensor revealed that most cells 

were arrested in the G1-phase after CTL transfer.  

In the current study we sought to gain a quantitative understanding of the role of IFN-γ mediated 

antiproliferative effects, hence we specifically quantified how important were the effects of IFN-γ 

in tumour control relative to the canonical killing functions of CTLs. To answer that question, we 

developed an Ordinary Differential Equation model which integrated data from Matshushita et 

al.[15] to arrive at a coherent, quantitative description of the intratumoural activities of CTLs and 

their interactions with the tumour following adoptive transfer. Consistent with our previous study 

of B16F10 tumours[19], our model predicted that the cytotoxic effects of CTLs were very small, 

and that the cytostatic effects of IFN-γ were responsible for almost all of the observed difference 

in tumour growth between the CTL treated versus the untreated tumours. Moreover, our analysis 

and subsequent modelling indicated that the window of IFN-γ production was very short, with 

CTLs losing the ability to produce IFN-γ within a few days of CTLs infiltrating the tumour. Markers 

of CTL exhaustion such as TIM-3 and LAG-3 were still increasing over this period, suggesting 

that CTLs had become exhausted inside the tumour. In contrast to TIM-3 and LAG-3, the 

dynamics of PD-1 and PD-L1 did not coincide with the dynamics of CTL exhaustion, suggesting 

a relatively minor role for these checkpoints as determinants of CTL exhaustion in the B16F10 

melanoma model, at least at late stages of anti-tumour immune responses. 

Results 

Presence of CTLs correlates with cell cycle arrest in tumour cells 

Previously, the adoptive transfer of CTLs was shown to induce G1-phase cell cycle arrest of 

B16F10 tumour cells in an IFN-γ dependent manner[15], however the temporal evolution of this 

arrested state and correlation with the number of tumour infiltrating CTLs was not explicitly 

quantified. Therefore, we exploited previously unquantified images from the same study, taken at 

multiple time points after CTL transfer, to estimate the number of tumour infiltrating CTLs and 

B16F10 tumour nuclei. Moreover, due to the incorporated Fucci cell cycle sensor it was also 

possible to discriminate between B16F10 nuclei in the G1-phase and nuclei that were in other (S-

G2-M) phases of the cell cycle. In order to quantify the number of B16F10 nuclei in either the G1 

phase or in the S-G2-M phases at different timepoints after CTL transfer, we developed automated 

pipelines using the ilastik[20] cell density estimation tool (see Methods). Comparison of the ilastik 

predictions for small subregions of sample images (Fig. 1A) selected across different time points 

to our own manual counts made for the same images demonstrated that our pipeline was reliable 

(Fig. 1B). Moreover, our estimated densities of G1 phase (Fig. 1C) or S-G2-M phase (Fig. 1D) on 

day 3 were comparable to those in the study of Matsushita et. al[15], as were the ratios of cells in 

G1:S-G2-M phases (Fig. 1E). The number of CTLs per slide was far more difficult to determine 

automatically, which was likely due to the irregular morphology of the CTLs and their lack of a 

visible nucleus. Since the number of CTLs was much lower than the number of B16F10 nuclei, 

we instead performed a manual count of the number of CTLs across all images (Fig.1F). We 

found a strong negative correlation between the number of CTLs and the G1:S-G2-M ratio in the 

sample images (Fig. 1G), with a Pearson’s correlation coefficient of -0.60 (95% confidence  

https://paperpile.com/c/mOZoiQ/MsK69
https://paperpile.com/c/mOZoiQ/TcdcS
https://paperpile.com/c/mOZoiQ/MsK69
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Figure 1. (displayed on previous page) Dynamics of tumour cell cycle arrest correlates closely with CTL 

presence. A) Comparison of cryosection image (left), with probabilities predicted by ilastik (right). G1 and 

S-G2-M phase nuclei are shown (respectively) in red or green. CTLs appear blue in the cryosection image 

and were not quantified using ilastik. Image shown is an example of a subregion (175x175μm) of one 

complete cryosection (750x550μm), which was used for training the classifier. B) Number of nuclei in 

cryosection subregions used for training the classifier, comparing manually counted (horizontal axis) nuclei 

with the ilastik estimate (vertical axis). C-D) Results of automated quantification of the number of B16F10 

nuclei in the G1 phase (C) or in the S-G2-M phases (D), applied to the full set of cryosection images. E) 

Ratio of cells in S-G2-M:G1 phases determined from the automated density estimation results (shown in C-

D). F) Number of CTLs manually counted in each cryosection. Each small red point in C-F represents the 

total number of cells counted per cryosection, large black points and error bars are (respectively) mean +/- 

standard deviation. G) Comparison of the number of CTLs (horizontal axis) with the tumour cell S-G2-M:G1 

ratio (vertical axis) for each available fluorescent image. 

interval between -0.7757570 and -0.3289711) allowing us to reject the null hypothesis of no 

correlation (p=0.00015). In summary, the G1 cell cycle arrest following CTL transfer lasted for up 

to 5 days and its temporal dynamics were closely linked to the presence of CTLs inside the 

tumour. 

Tumour cell cycle arrest correlates with tumour growth reduction 

To check if the temporary G1 cell cycle arrest was consistent with tumour volume progression, we 

also incorporated tumour volume measurements into our analysis. An exponential model of 

tumour growth was sufficient to describe tumour progression over the studied interval (Fig. 2A), 

i.e. within the observed range of tumour sizes there was not yet any indication for a potential 

carrying capacity limiting tumour growth. Volume estimates were available from three separate 

experiments with CTL treatment (Fig. 2B). We noted some minor yet apparent systematic 

differences between experiments. For instance, almost all volumes recorded on day -1 were 

larger in one of the biological replicates (compare red and green points in Fig. 2A-B, day -1). 

Despite these minor discrepancies, the broad pattern of tumour progression was similar across 

replicates, with substantially arrested growth between days 3-7. Nevertheless, such systematic 

differences between experiments could potentially distort our results, for example because the 

switching from 12 mice to 2 mice between measurements going from days 7-10 (Fig. 2B) would 

artificially introduce a period of tumour growth above even the untreated growth rate into our data. 

To avoid this issue, we converted the data into estimates of the tumour growth rate between 

measurement intervals for both the data without CTL transfer (Fig. 2C) and those with CTL 

transfer (Fig. 2D). For the experiments where CTLs were transferred, this resulted in consistent 

values between experiments and allowed us to safely incorporate the additional measurements 

from the 2 mice that were recorded up until day 14. From this analysis, reduced tumour growth 

was apparent between days 3-7 (Fig. 2D; points centred on days 4 and 6), but growth recovery 

in the measurement interval between days 7-10 (Fig. 2D; point centred on day 8.5). Therefore the 

period of tumour growth reduction was coincident with the period of G1 phase tumour cell cycle 

arrest (Fig. 1E), and by extension also coincident with the presence of CTLs within the tumour 

(Fig. 1F).    
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Figure 2. Tumour volume dynamics corresponds to G1 cell cycle arrest and CTL presence. A) Tumour 

volume progression from 2 different experiments (n=5 mice per experiment) without CTL treatment. B) 

Tumour volume progression from 3 different experiments (n=5 mice in experiments 1&2, n=2 mice in 

experiment 3) with CTLs transferred on day 0. C) Untreated tumour growth rate estimates for each mouse 

taken across each of the measurement intervals shown in A. D) Tumour growth rate estimates for each 

mouse receiving CTL transfer on day 0.  Solid black lines in A-D show results of fitting an exponential 

growth model (g=0.4 day-1) to the untreated data (A,C) and are shown alongside CTL treated data (B,D) for 

comparison. Black points and error bars in C-D represent (respectively) mean +/- standard deviation of all 

points. Points in C-D are shown at the midpoint of the interval over which they were estimated. Coloured 

dots in all panels indicate the independent experiments consisting of multiple mice. 

Loss of IFN-γ production precedes loss of CTLs from tumours  

IFN-γ secreted by CTLs was the putative agent which led to cell cycle arrest and the transient 

reduction of tumour progression in our studied data[15]. As a proxy for IFN-γ levels inside the 

tumour we used mRNA expression data recorded within the same experiments as the previously 

analysed image (Fig. 1) and volume progression data (Fig. 2). We found that Cd8a transcription 

dynamics (Fig.3A row 1) matched the CTL dynamics measured in the images (Fig. 1F), indicating 

agreement between the transcriptomics data and the imaging data with respect to CTL 

abundance. However, the dynamics of IFN-γ transcription appeared much different to those of 

the CTLs (Fig.3A, row 2). IFN-γ transcription peaked sharply on day 3 after CTL transfer, but had 

dropped sharply by day 5 and returned to basal levels on day 7, when CTLs still remained inside 

the tumour. To verify the dynamics of IFN-γ, we also checked Stat1 and Socs1 (Fig 3A, rows 3-

https://paperpile.com/c/mOZoiQ/MsK69
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4) which are downstream of the IFN-γ receptor[21] in the IFN-γ signalling pathway. These followed 

very similar dynamics to IFN-γ mRNA, lending support to the idea that the IFN-γ mRNA 

expression data was a suitable proxy for IFN-γ signalling dynamics inside the tumour. 

We hypothesized that the difference in dynamics between CTLs and IFN-γ transcription was due 

to a gradual CTL exhaustion inside the tumour, leading to a loss of their effector functions. 

Exhausted T Cells display hierarchical loss of effector functions including secretion of cytokines 

such as proliferative ability, capacity to kill target cells, and secretion of IFN-γ[22,23]. Several 

genes are associated with the exhausted T Cell state[24,25], and as T Cells become progressively 

more exhausted they express a greater diversity of inhibitory receptors[23]. Indeed, we could 

identify transcripts for a number of well described immune checkpoint molecules in the mRNA 

dataset, including PD1, its ligand PD-L1, LAG-3, and TIM-3 (Fig. 3B). Overall, our analysis 

suggests that the pulse of IFN-γ transcription remains brief despite CTLs still being present within 

the tumour and is due to development of an exhausted phenotype amongst the transferred CTLs.  

 

Figure 3. Dynamics of selected genes from microarray dataset. A) Comparison of dynamics of probes 

specific for Cd8a (row1), Ifng (row 2), Socs1 (row 3), or Stat1 (row 4) between CTL treated and untreated 

mice (across columns). Black points and error bars in A represent (respectively) mean +/- s.d for all probes 

https://paperpile.com/c/mOZoiQ/KrsNr
https://paperpile.com/c/mOZoiQ/GDU14+HnvLZ
https://paperpile.com/c/mOZoiQ/lqEiB+O4BSL
https://paperpile.com/c/mOZoiQ/HnvLZ
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at a given time point. B) Comparison of dynamics of probes specific for mRNA coding PD-1 (Pdcd1) and 

PD-L1 (Cd274), TIM-3 (Havcr2) and LAG-3 (Lag3) (along rows), between CTL treated and untreated mice 

(across columns). Red points in A-B represent expression values after normalisation at the 75th percentile.  

IFN-γ transcription dynamics are compatible with G1 phase tumour cell cycle arrest  

Due to the early reduction in IFN-γ signalling, it is unclear whether IFN-γ can be entirely 

responsible for the G1 phase tumour cell cycle arrest which followed highly similar dynamics to 

the CTLs. To test the compatibility of the IFN-γ transcription data with the dynamics of the CTLs 

and the tumour cell cycle dynamics, we developed an ODE model. Our ODE model describing 

the interactions between CTLs and the tumour (Fig. 4A) features an explicit description of the cell 

cycle of tumour cells, in which they cycle from G1 phase into S-G2-M phases at rate kgs, and then 

back into G1 phase at rate ksg. The model also features CTLs which kill tumour cells at rate ke and 

produce IFN-γ, which precludes tumour cells from transferring from G1 phase to S phase. The 

sensitivity of tumour cell cycle arrest to IFN-γ is determined by the parameter ki. To test the 

contribution of the two CTL effector functions to tumour control (i.e., killing and antiproliferative 

effect), we linearly interpolated between the experimental data for the number of CTLs (Fig. 4B) 

and for IFN-γ expression (Fig. 4C), and used these interpolations directly as inputs to our model. 

Subsequently, we tested different combinations of the parameters ke and ki (Fig. 4D) to find the 

best fit to the tumour growth rate (Fig. 4E, red line) and the S-G2-M : G1 ratios (Fig. 4F, red line) 

determined from the experimental data. Our best fitting parameter set (Fig. 4D; marked with black 

circle) had a value of ke=1 (CTL-1 day-1) although other values for ke in the range 0-3 (CTL-1 day-

1) led to relatively low errors, consistent with killing rates we have previously estimated for CTLs 

against B16F10 melanoma tumours[19]. The best fitting value for the antiproliferative effect 

(ki=8.5 IFN-1 mm3) led to sharp reductions in the transition rate of tumour cells out of the G1 phase 

for the IFN-γ expression levels found in our data (Fig. 4G). At the peak of IFN-γ expression on 

day 3, the transition rate from G1 to S-G2-M phases (kgs) was reduced to 7% of its original value, 

and even at the lower IFN-γ expression levels measured on other days kgs was significantly 

reduced (Figs. 4C, 4G; dashed lines). Thus our best fitting parameters implied that cycling tumour 

cells are sensitive to IFN-γ even at low expression levels. When we took the best fitting 

parameters and disabled killing by setting ke=0 (Fig. 4D; marked with black square), most of the 

tumour growth reduction was preserved (Fig. 4E, blue dashed line). In contrast, taking our best 

fitting parameters and disabling the antiproliferative effect of IFN-γ (Fig. 4D; marked with triangle) 

resulted in only a very small reduction in the net growth rate of the tumours (Fig. 4E, green dashed 

line). Overall, these results support our previous analysis showing that an antiproliferative effect 

of IFN-γ is more important than CTL cytotoxicity to control B16F10 tumours[19]. Moreover, these 

results show that the dynamics of IFN-γ are compatible with the dynamics of the tumour cell cycle 

arrest, despite the apparently short duration of IFN-γ production.  

https://paperpile.com/c/mOZoiQ/TcdcS
https://paperpile.com/c/mOZoiQ/TcdcS
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Figure 4. Compatibility of IFN-γ transcription dynamics with tumour cell cycle arrest. A) Schematic for ODE 

model to compare CTL killing and IFN-γ mediated antiproliferative effect in B16F10 melanoma. B-C) Linear 

interpolation of mean CTL density (B) and mean IFN-γ expression (C). D) Heatmap showing root-mean-

square error (RMSE) for different combinations of the CTL killing rate parameter (ke) and the parameter 

controlling the sensitivity of cell-cycle arrest to IFN-γ (ki). E-F) Predictions for tumour growth rate (E) and 

ratio of tumour cells in S-G2-M : G1 states (F) for the combination of parameters with the lowest RMSE 

(solid red line). In addition, simulations are shown with either the best fitting k i parameter and ke=0 (blue 

long dashed line), or with the best fitting ke parameter and ki=0 (green short dashed line). G) Fractional 

reduction in transition rate from G1 to S-G2-M phase with varying IFN-γ expression levels, for the best-fitting 
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parameter value ki=8.5 IFN-1 mm3. Dashed lines in C and G highlight the predicted reduction in transition 

rate from G1 to S-G2-M phase for the mean IFN-γ expression levels measured on days 3 (cyan),5 (magenta) 

and 7 (yellow).  

CTL exhaustion quantitatively explains IFN-γ transcription dynamics 

In order to explain the dynamics of CTLs and IFN-γ and to quantify the importance of different 

immune checkpoints in these dynamics, we extended our ODE model (Fig. 5A). In this extended 

model, CTLs infiltrate the tumour at a basal rate s0 , expand within the tumour at rate se, and die 

with rate de. In addition to their killing of tumour cells, CTLs inside the tumour produce IFN-γ. 

Finally our model includes the immune checkpoints LAG-3, TIM-3, PD1, and its ligand PDL1, 

which decrease the activity of CTLs (see Methods). We fit this ODE model simultaneously to all 

the experimental data discussed in Figures 1-3, using Min-Max feature scaling to surmount the 

issue of comparing measurements from different modalities (see Methods), which resulted in an 

excellent model fit (Fig. 5B-C, magenta lines). Importantly, without using any checkpoints, we 

could not obtain a good fit to any of the experimental measurements (Fig. 5B, red lines), 

demonstrating that T cell exhaustion is required to explain the T cell anti-tumour response. 

In order to identify which of the identified immune checkpoint (IC) molecules is the most important 

determinant of the exhausted CTL state in the in vivo experimental setting with B16F10 tumours, 

we tried fitting our model with each IC separately. Including only PD1-PDL1 as an inhibitor (green 

lines; Fig. 5B-C), the fits improved compared to our model with no ICs, however we were still not 

able to achieve a good fit to the number of CTLs counted inside the tumour, nor to the dynamics 

of PD-1 and PD-L1 themselves. We achieved equally good fits with LAG-3 (Fig 5B-C, dark blue 

lines), with TIM-3 (Fig. 5B-C, cyan lines), and with the combination model including all checkpoints 

together (Fig 5B-C, magenta lines). Note that these model variants gave similar predictions to the 

simplified model, where CTLs and IFN-γ were used as inputs to the model, in terms of the relative 

importance of cytotoxic effects versus antiproliferative effects (Fig. S1). We also examined the 

dynamics of the exhausted state, comparing the level of exhaustion for each inhibitor (Fig. 5D). 

When fit individually, exhaustion due to LAG-3 increased throughout the simulated period (Fig. 

5D, row 1); for TIM-3, exhaustion (Fig. 5D, row 3) increased and then remained constant from 

day 5 until the end of the simulated period; and for PD-1/PD-L1, exhaustion peaked on day 5 and 

then declined afterwards (Fig, 5D, row 2). We also investigated how much the individual ICs 

contributed to the evolution of CTL exhaustedness for models fit with all inhibitors simultaneously, 

which resulted in similar exhaustion dynamics for each IC as when they were fit individually (Fig. 

5E). However, the relative contributions of each individual inhibitor to the overall exhausted state 

was clearly different. For the best fitting parameter set (Fig. 5E, row 1), the contributions of TIM-

3 and PD-1/PD-L1 towards exhaustion became negligible compared to that of LAG-3, which we 

verified by removing each IC individually from this best fitting parameter set (Fig. 5F, column 1). 

Compared to the situation with all ICs in place the model dynamics were virtually unaffected by 

knockout of PD-1/PD-L1 or TIM-3, whilst knockout of LAG-3 completely disrupted the model 

dynamics. 
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Figure 5. (displayed on previous page) Early cessation of IFN-γ is quantitatively compatible with the 

development of CTL exhaustion. A) Schematic for ODE model of CTLs versus B16F10 melanoma. Pointed 

arrows represent a positive effect (i.e. transfer, production, recruitment), whilst flat-headed arrows represent 

an inhibiting effect. CTL functions that are reduced due to CTL exhaustion are represented by lines passing 

through the translucent blue box. B) Model fits to CTL density (top row), IFN-γ mRNA expression (2nd row), 

ratio of S-G2-M:G1 nuclei (3rd row), or volumetric tumour growth (bottom row). C) Model fit to ICs for each 

considered combination of ICs used for fitting the model. Different ICs are shown in each row as indicated 

by facet label. Colored lines in B-C represent model output, and model fits with different ICs are indicated 

by colour. D) CTL exhaustion level, when individual ICs were used to fit the model (as indicated in rows). 

Different coloured lines are the contribution for each term in Eq. 11 (see Methods), i.e: dark blue - 𝑘𝑙𝐿/𝐸; 

cyan - 𝑘ℎ𝐻/𝐸; green - 𝑘𝑝(𝑃/𝐸)(𝑃𝐿𝑉/𝑉0). E) Contribution of different ICs to CTL exhaustion level, when all 

ICs were used to fit the model. Shown are results from the best fitting parameter set (top row), and two 

selected parameter sets with the highest contributions towards exhaustion from TIM-3 (middle row) or from 

PD-1/PD-L1 (bottom row). F) Results of knocking out individual inhibitors (as indicated by color and 

linetype) when all inhibitors were initially included in the fit: for either the best fitting model (column 1), the 

model with highest contribution from TIM-3 (column 2), or the model with highest contribution from PD-

1/PD-L1 (column 3). In all panels, points and error bars represent (respectively) mean +/- s.d. of 

experimental data used to fit the model, and lines represent model simulations. Parameter values for best 

fitting models are given in Table 1. 

Since our fitting procedure generated a range of parameter sets, we checked whether any of the 

other generated parameter sets might permit a larger role for TIM-3 or PD-1/PD-L1. To this end 

we selected the best fitting 20% of parameter sets amongst the final generation of our evolutionary 

algorithm, all of which resulted in reasonably good fits to the experimental data (Fig. S2). From 

this subset, we selected the parameter sets with either the highest value of kt relative to the other 

exhaustion parameters or the highest relative value of kp, i.e. the parameters which (respectively) 

controlled the contribution of TIM-3 and PD-1/PD-L1 towards exhaustion. The parameter set with 

a high value for kt resulted in development of an exhausted state that was dominated by the 

contribution of TIM-3 (Fig. 5E, row 2), and knockout of TIM-3 in this model completely disrupted 

model dynamics (Fig. 5F, column 2). This supports the result from the individual fits because it 

shows that TIM-3, similarly to LAG-3, correlates well with the exhausted CTL state. The parameter 

set with a high value for kp resulted in development of an exhausted state that had initially 

approximately equal contributions from all ICs, before PD-1/PD-L1 dropped and LAG-3 and TIM-

3 took over the role as determinants of exhaustion (Fig. 5E, row 3). There, knockout of any of the 

ICs disrupted the dynamics of the model, although PD1/PD-L1 knockout led to disruption of early 

dynamics and LAG-3 or TIM-3 knockout to disruption of late dynamics (Fig. 5F, column 3). Overall, 

these results show that the brief window of IFN-γ production is quantitatively consistent with 

development of an exhausted state amongst CTLs, and that expression of the immune checkpoint 

molecules LAG-3 and TIM-3 correlate best with the development of this exhausted state. Our 

analysis suggests that of the three ICs considered, PD-1/PD-L1 is the least important determinant 

of the exhausted CTL state, however our model remains compatible with PD-1/PD-L1 playing a 

role in CTL exhaustion at early time points after CTL infiltration of the tumour. 
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Discussion 

In a previous study on which our work was built, Matsushita et. al. found that tumour control of 

B16F10 melanoma by CTLs was mediated by a combination of cytotoxic and cytostatic effects, 

with the cytostatic effects being due to IFN-γ mediated cell cycle arrest of the melanoma cells[15]. 

However, the progression of cytostatic and antiproliferative effects over time was not explicitly 

explored. Here, we analysed image data, tumour volume measurements, and transcriptomics 

data from the study by Matsushita et. al[15], using data acquired at multiple timepoints after CTL 

transfer. We found that the presence of CTLs inside the tumour strongly correlated with tumour 

cell cycle arrest, as well as with the inhibition of volumetric tumour growth. However, IFN-γ 

signalling within the tumours followed early dynamics, with CTLs primarily producing IFN-γ early 

after arrival in the tumours. Since the loss of IFN-γ preceded the recovery of tumour cell 

proliferation, it was unclear whether IFN-γ signalling could completely account for the observed 

tumour cell cycle arrest, and what role T cell exhaustion had in these processes. Therefore, we 

developed an ODE model to describe tumour growth, CTL infiltration,  CTL production of IFN-γ 

and subsequent interference with cell cycle progression, and also killing of tumour cells by CTLs. 

Using this model we were able to describe all the experimental data, which led us to conclude 

that IFN-γ mediated tumour cell cycle arrest, together with killing of tumour cells by CTLs, were 

sufficient mechanisms to account for the experimental data. We also used our models to compare 

the contribution of CTL mediated cytotoxic or cytostatic effects towards tumour control. Our model 

predicted CTL killing rates (ke) between 0-3 CTL-1 day-1, which resulted in only a minor contribution 

of CTL killing towards tumour control compared to the IFN-γ mediated cell cycle arrest, consistent 

with our findings from a B16F10 tumour we have previously analysed[19].   

As part of our study, we developed a model describing the dynamics and effector functions of 

tumour infiltrating CTLs. Based on mRNA expression data, IFN-γ transcription peaked on day 3, 

had fallen sharply by day 5, and was virtually zero on day 7. This was in contrast to the number 

of CTLs which remained present in similar numbers on days 3 and 5, and were still observable in 

reasonable numbers at late time points. Therefore, our model required inclusion of the 

development of CTL exhaustion in order to account for this loss in ability to produce IFN-γ. CTL 

exhaustion is identified by a progressive increase in the number and diversity of inhibitory 

receptors expressed by CTLs[23,26,27]. We identified four well known inhibitory molecules 

amongst the available transcriptomics data: LAG-3, TIM-3, PD-1, and the PD-1 ligand PD-L1. 

With our model we were able to obtain good fits if the exhausted state was correlated with TIM-3 

or LAG-3, but not with PD-1/PD-L1, which was due to the early peak of PD-1 and PD-L1 

transcription that was already well in decline on day 5 whilst CTL numbers in the tumour remained 

high. This early peak was not compatible with the idea that CTLs were becoming gradually more 

exhausted over time. On the other hand, LAG-3 and TIM-3 increased relative to the CTLs over 

time and therefore correlated most with the loss of IFN-γ transcription. Consistent with our model 

prediction, LAG-3 and TIM-3 have been previously shown to have high correlation with 

dysfunctional “exhausted” phenotype in CD8+ CTLs in melanoma[24]. Our model was not 

compatible with the dynamics of PD-1/PD-L1 as sole correlates of the exhausted state, which 

appears at first sight to contradict reports indicating that PD-1/PD-L1 signalling is relevant for 

immunosuppression in melanoma[28,29], although our result agrees with others showing the 

https://paperpile.com/c/mOZoiQ/MsK69
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https://paperpile.com/c/mOZoiQ/lqEiB
https://paperpile.com/c/mOZoiQ/FXrgM+KDIPm
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B16F10 cell line in particular may be resistant to PD-1 antagonist monotherapy[30,31] . Since our 

model was compatible with PD-1/PD-L1 signalling making a partial contribution to CTL exhaustion 

at early time points, it may be that PD-L1/PD-1 plays only an initial role in immune suppression 

and that this role is taken over later by other checkpoints, which is consistent with findings that 

blockade of LAG-3 as well as PD-1 receptors is required to prevent relapse in melanoma[28]. One 

caveat for the data employed to fit our model is that only one probe was available per checkpoint. 

Therefore future experiments should confirm the dynamics of the expression of these immune 

checkpoint molecules and further investigate their contribution to T cell exhaustion.  

Our model implies that the reduced activity of CTLs and in particular the apparent reduction in 

IFN-γ which preceded the disappearance of CTLs in the tumour by several days, could be 

explained by the development of an exhausted phenotype in the tumour infiltrating CTLs. 

Moreover, in our model IFN-γ played an important role in driving this exhausted phenotype. For 

exhaustion related to the PD-L1/PD-1 axis, this is clearly justified, because IFN-γ can induce 

upregulation of PD-L1 on tumour cells[13]. Moreover, IFN-γ induces increased antigen 

presentation on tumour cells[12], which should lead to increased stimulation of CTLs via their T 

cell receptors. This could explain the contribution of IFN-γ towards upregulation of the other 

immune checkpoints included in our model, which are more commonly associated with excessive 

and prolonged exposure to antigen[27]. In order to further study the dynamics of the CTL 

population in the tumour it would be useful to perform a second transfer of CTLs, which may help 

elucidate the extent to which the mechanisms of decline in CTL function are due to transferred 

CTLs becoming exhausted (and therefore a second transfer of “fresh” CTLs should result in 

similar anti-tumour effects) or are due to resistive mechanisms deployed by the tumour (in which 

case a second transfer of CTLs would be expected to provide only limited benefit).   

Our study was limited by a lack of direct data concerning several important aspects of the CTL 

dynamics within the tumour. First, we had no direct data on the killing rate (ke) of the CTLs inside 

the tumour, so this parameter was allowed to vary freely during the fitting process. Depending on 

which immune checkpoint molecules were included in the fitting process, we recovered a range 

of different values for ke, although these parameters were all plausible and comparable with other 

values for the killing rate of tumour cells by CTLs in vivo reported elsewhere[32], including that 

for attack of B16F10 cells[19]. Importantly, however, the choice of immune checkpoint molecules 

and the resultant values of ke did not impact our conclusion that IFN-γ mediated cell cycle arrest 

was the main determinant of tumour control. A second limitation surrounds our model of CTL 

exhaustion inside the tumours. Two specific questions we could not address due to the whole-

tumour microarray data we used were: 1) which cells were expressing inhibitory molecules and 

2) whether our results would have been different had we included ‘missing’ relevant molecules 

from the transcriptomics data, e.g. the immune checkpoint CTLA-4. Unbiased gene expression 

data generated at the single cell level, using single cell RNA-Seq techniques, would therefore be 

interesting to incorporate into similar modelling strategies in future. A third limitation is the possible 

presence of other tumour infiltrating cells, such as MDSCs which are recruited to B16F10 tumours 

after adoptive transfer of CTLs and exert suppressive effects on the tumour infiltrating CTLs[33]. 

The frequency of various immune cell types can be inferred from either single cell, or bulk 

transcriptomic data using computational methods[34], and it would be interesting to extend our 

modelling approach to include other relevant immune cells using such methods in future.  

https://paperpile.com/c/mOZoiQ/q41l5+ndPqF
https://paperpile.com/c/mOZoiQ/FXrgM
https://paperpile.com/c/mOZoiQ/EPM0u
https://paperpile.com/c/mOZoiQ/ub3Hn
https://paperpile.com/c/mOZoiQ/YlJAy
https://paperpile.com/c/mOZoiQ/PDgLo
https://paperpile.com/c/mOZoiQ/TcdcS
https://paperpile.com/c/mOZoiQ/gq3NZ
https://paperpile.com/c/mOZoiQ/NbVZp
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In our analysis, we used mRNA expression as a substitute for protein expression. Previous 

studies report that mRNA levels are substantially predictive of protein expression levels[35,36]. 

Moreover, although some delay should be expected between mRNA expression and protein 

expression, this delay has been estimated to last for only a few hours[36] and thus should not 

have a significant impact on our data, which consists of measurements made across several days. 

For the in vivo setting we studied, the rapid decline in the S-G2-M : G1 ratio after transfer of CTLs 

indeed suggests that protein expression rapidly follows mRNA expression. Conversely, the S-G2-

M : G1 ratio does not appear to recover immediately upon downregulation of IFN-γ mRNA. One 

explanation could be that the effect of IFN-γ lasts longer than the protein due to downstream 

signaling. Another is that tumour cells are very sensitive to low levels of IFN-γ, therefore the effect 

could persist even after IFN-γ synthesis has substantially declined. The latter explanation seems 

to be in line with a study which found that bystander sensing of IFN-γ could occur at distances of 

over 40 cell lengths[13], implying high sensitivity of tumour cells to this cytokine.   

In summary, we have presented a mathematical model that can successfully predict inhibition of 

tumour growth following adoptive T cell transfer. We used this model to quantify the contribution 

of IFN-γ and cytotoxicity to the antitumour activity of CTLs, which led to the conclusion that IFN-

γ contributes most to tumour growth blockade by CTLs. Our model also includes anti-tumourigenic 

(antiproliferative, enhancing recruitment of CTLs) and pro-tumourigenic (driver of CTL 

exhaustion) effects of IFN-γ. The presence of opposing effects of IFN-γ have led to descriptions 

of an “IFN-γ paradox”[12]. Our model, by including these different effects associated with IFN-γ, 

can serve as a quantitative baseline to be augmented in future, and may help guide further 

experimental work.  

Methods 

Data Summary 

For the development of the mathematical model, data from the paper by Matsushita et al.[15] 

were used. In brief, the experimental protocol in that previous study involved inoculation with 107 

B16F10 melanoma cells into C57BL/6 mice, followed 9 days later by adoptive transfer of 106 

activated pmel-1 transgenic T cells recognising the gp100 peptide (note that throughout the current 

study, the day of CTL transfer is designated “day 0”). The data included measurements of tumour 

volume from experiments in mice either with or without subsequent adoptive transfer of CTLs. 

From the same experiments we also used fluorescence microscope images of cryosections of 

B16F10 tumours expressing the fucci cell cycle sensor, taken on days 1,3,5,7,10 & 14 following 

CTL transfer. Finally, the data set included microarray RNA expression data from B16F10 

tumours at days 1, 3, 5 & 7 after CTL transfer. 

Image analysis 

Automated estimates of the number of G1 or S-G2-M phase nuclei were produced using the ilastik 

(version 1.1.3) cell density estimation tool. Training and classification was performed using 

merged (RGB) images. For training the classifier we selected subregions (100-200μm2) from the 

larger (750x550μm) cryosections. One subregion was selected from each available time point to 

https://paperpile.com/c/mOZoiQ/86Bvh+RFhfB
https://paperpile.com/c/mOZoiQ/RFhfB
https://paperpile.com/c/mOZoiQ/EPM0u
https://paperpile.com/c/mOZoiQ/ub3Hn
https://paperpile.com/c/mOZoiQ/MsK69
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ensure a representative training set. Pipelines for different nuclei (G1 or S-G2-M ) were trained 

separately. Training was performed by manually labelling training images until the classifier 

estimated numbers of cells achieved a satisfactory match with manual counts for the same data.  

Analysis of gene expression data 

Microarray data were downloaded from the Gene Expression Omnibus (GEO) database (series 

GSE57304; samples GSM1379331– GSM1379344). These data correspond to the same set of 

experiments as the image and tumour volume progression data we have used, and the 

methodology for acquisition of these data has been described previously[15]. Briefly, tumour 

tissues from mice were harvested on different days (1,3,5,7) after CTL transfer, or on the same 

days in the untreated (without CTLs) condition. Each sample contained 500ng of pooled RNA 

from 3-4 different tumours, and microarray analysis was performed with 45,018 probes to quantify 

expression levels of the targeted genes. We performed similar data processing steps to the 

original publication: probes were discarded when their gIsWellAboveBG flag was zero at all 

samples, and we normalised different samples at the 75th percentile.  

Basic ODE Model 

We developed an ODE model to describe the intratumoral activities of the transferred CTLs. The 

basic model of tumour growth (in the absence of CTLs) considers two possible states for alive 

tumour cells: they can be either in the G1 phase of the cell cycle (denoted in the equation as G), 

or else in the S, G2, or M phase (together denoted S in the model equations). The reason for 

choosing these states as explicit model variables was because the Fucci cell cycle reporter used 

in the experiments, which our model is based upon, could distinguish only between G1 or S-G2-M 

phases. Cells move from the G1 state into the S-G2-M state at rate kgs, and leave the S-G2-M state 

at rate ksg (Eq. 1): 

 𝑑𝑆

𝑑𝑡
= 𝑘𝑔𝑠𝐺 − 𝑘𝑠𝑔𝑆. Eq 1 

The S-G2-M state concludes when a tumour cell undergoes mitosis. To include this increase in 

tumour cells in our model, we consider that for every cell which leaves the S-G2-M state, two cells 

enter the G1 state (Eq 2): 

 𝑑𝐺

𝑑𝑡
= −𝑘𝑔𝑠𝐺 + 2𝑘𝑠𝑔𝑆. Eq 2 

The resulting tumours grow exponentially when the ratio of cells in G and S states is at its steady 

state value. When CTLs (E) are introduced into the tumours, our basal model of tumour growth 

(Eq’s 1-2) is modified to include two possible effects CTLs can have on the tumour. The first of 

these effects is direct killing of tumour cells, which occurs with a constant rate 𝑘𝑒 (per CTL). As 

https://paperpile.com/c/mOZoiQ/MsK69
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we have done previously[18,19], we take the total killing activity of CTLs to be directly proportional 

to the number of CTLs inside the tumour, such that the total killing activity of the CTLs is given by 

𝛼keE (note that 𝛼is a scalar used to modify the effector functions of CTLs if their activity is reduced 

due to being exhausted: see Eq’s 7-12). We consider that killing is directed equally towards cells 

in G1 or S-G2-M phases, so that the fraction of tumour cells in either state (i.e. 𝐺 (𝑆 + 𝐺)−1 or 

𝑆 (𝑆 + 𝐺)−1, respectively) determines the fraction of the total killing activity that each subset of 

tumour cells receives. 

The second effect that CTLs can have on the tumour is an antiproliferative effect, mediated by 

IFN-γ, which results in an arrest of the cell cycle in the G1 phase. To include this effect in our 

model we reduce the transition of cells out of the G1 phase by scaling with the term  (1 + 𝑘𝑖𝐼/𝑉)−1. 

Here, the variable I represents the total quantity of IFN-γ inside the tumour and 𝑉 is the variable 

representing tumour volume. Thus, the term I / V represents the concentration of IFN-γ inside the 

tumours, and 𝑘𝑖 determines the concentration dependence of the IFN-γ dependent reduction in 

the rate at which tumour cells can leave the G1 phase. The equations to describe the evolution of 

the number of tumour cells in G1 or S-G2-M phases become: 

 𝑑𝑆

𝑑𝑡
= 𝑘𝑔𝑠𝐺 (1 + 𝑘𝑖𝐼/𝑉)−1 − 𝑘𝑠𝑔𝑆 − 𝛼𝑘𝑒  𝐸 𝑆 (𝑆 + 𝐺)−1, Eq 3 

 𝑑𝐺

𝑑𝑡
= −𝑘𝑔𝑠𝐺 (1 + 𝑘𝑖𝐼/𝑉)−1 + 2𝑘𝑠𝑔 ⋅ 𝑆 − 𝛼𝑘𝑒 𝐸 𝐺 (𝑆 + 𝐺)−1. Eq 4 

To test the compatibility of IFN-γ transcription dynamics with G1 tumour cell cycle arrest Eq’s 3-4 

were used directly. I and E were estimated by linearly interpolating between the mean of the 

experimental data at each available time point, and these linear interpolations were used as inputs 

to the model. 

ODE Model with CTL dynamics 

To describe the dynamics of the CTL population and their production of IFN-γ, we extended our 

basic ODE model with further equations. We consider that after transfer, CTLs would begin to 

arrive in any given region of the tumour at a constant rate 𝑠0. We take a constant rate of CTL 

arrival per unit volume of tumour, hence the rate at which CTLs can find the tumour scales with 

tumour volume. Moreover, we consider that CTLs expand within the tumour at rate 𝑠𝑒, and die at 

a constant rate, 𝑑𝐸. CTL expansion inside the tumour is also reduced according to the level of 

CTL exhaustion (𝛼). Thus, CTL dynamics is described by the following equation:   

 𝑑𝐸

𝑑𝑡
= 𝑠0𝑉 + 𝛼𝑠𝑒𝐸 − 𝑑𝐸𝐸. Eq 5 

https://paperpile.com/c/mOZoiQ/JQobO+TcdcS
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We consider CTLs to be the major source of IFN-γ inside the tumours, therefore IFN-γ production 

is proportional to the number of CTLs, but is reduced according to their level of exhaustion (𝛼), 

and IFN-γ disappears from the system with a rate 𝑑𝑖: 

 𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − 𝑑𝑖𝐼. Eq 6 

Finally, we include a mechanism whereby CTLs become exhausted inside the tumour. T cell 

exhaustion is characterised by a loss of effector functions along with a progressive increase in 

the amount and diversity of inhibitory receptors expressed by T cells[23,26,27]. We used the well 

described PD1, PD-L1, LAG-3 & TIM-3 inhibitory molecules as indicators of exhausted T cells[24], 

which in our model appear with variable names P, PL, L, and H (respectively):  

 𝑑𝑃

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑝𝑃, Eq 7 

 𝑑𝑃𝐿

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑝𝑙𝑃𝐿, Eq 8 

 𝑑𝐿

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑙𝐿, Eq 9 

 𝑑𝐻

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑡𝐻. Eq 10 

We tested several model variants, one with no immune checkpoints, three in which we consider 

one checkpoint at a time, and one considering all checkpoints simultaneously. All inhibitory 

molecules follow similar dynamics, increasing in proportion to the number of CTLs inside the 

tumour and disappearing from the system with different rate constants dp,dpl,dl, and dt 

(respectively). Production is increased proportional to the term(1 + 𝑘𝐴𝐼/𝑉) , which allows for a 

contribution of IFN-γ to the exhausted state. Note that the IFN-γ induction of exhaustion may be 

direct or indirect, e.g. by increasing antigenicity of tumour cells and thereby increasing stimulation 

of T cells via the T cell receptor. In our model, we consider PD1, LAG-3, and HAVCR2 as 

expressed on the membrane of CTLs, so the ratio of each of these checkpoint molecules to the 

number of CTLs determines the overall level of exhaustion of the CTLs in our model. PDL1 is 

modelled differently, being a ligand for the PD1 receptor, and the concentration of PDL1 in our 

model is multiplied together with the membrane density of PD1 expressed on CTLs to determine 

https://paperpile.com/c/mOZoiQ/HnvLZ+lc9DS+YlJAy
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the contribution from PD1-PDL1 signalling (see Eq. 11 in ref: [37]). To describe the joint effect of 

these inhibitory molecules on the CTLs, we consider a weighted sum R:  

 𝑅 = 𝑘𝑙𝐿/𝐸 + 𝑘𝑡𝐻/𝐸 + 𝑘𝑝(𝑃/𝐸)(𝑃𝐿/𝑉). Eq 11 

R represents the total “exhaustedness” of the CTL population inside the tumour. The parameters 

kl, kt, and kp represent the individual contribution of (respectively) LAG-3, TIM-3, and PD-1/PD-L1 

signalling towards the level of exhaustion of CTLs. In absence of detailed information about the 

impact of exhaustion level on CTL functions (killing, IFN-γ production, expansion), we take all 

these functions to be equally reduced with the level of CTL exhaustion: 

 𝛼 = 1 − (1 + 𝑘𝑒𝑥/𝑅)−1. Eq 12 

Here, 𝑘𝑒𝑥 is the level of exhaustion at which all effector functions are half of their maximum value. 

Thus, Equation 12 scales the exhaustion level to a scaled term 𝛼 which can range from 0 to 1 and 

is applied to the relevant rate constants in Equations 3-6.  

Parameter estimation 

Parameter estimation for the two parameters in the basal tumour growth model was performed 

separately from the other parameters. We consider that the density of the tumour cells remained 

constant over time, so that volumetric tumour growth rate could be taken as a proxy for the 

expansion rate of the tumour cell population. We obtained an estimate for the untreated tumour 

growth rate (g) from fitting an exponential model of tumour growth to the volumetric growth data 

for the untreated tumours. Moreover, estimates of the ratio of tumour cells in the S-G2-M : G1 

phase gave a second measurement allowing the two parameter (kgs, ksg) basal model of tumour 

growth to be completely defined, considering that the ratio of S-G2-M : G1 phase tumour cells has 

reached a steady state (which is reasonable since we deal with data two weeks after tumour 

inoculation). Then, using the equation for exponential growth:  

 𝑑(𝑆+𝐺)

𝑑𝑡
= 𝑔 (𝑆 + 𝐺), Eq 13 

where g is the tumour growth rate, one can substitute the left hand side of Eq.13 with 𝑘𝑠𝑔𝑆, noting 

that 𝑘𝑠𝑔𝑆is the total rate of new tumour cell production obtained from summing Eq’s. 1-2.  

Following the substitution, an expression for g can be found in terms of S and G:  

https://paperpile.com/c/mOZoiQ/1OUbv
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 𝑔 = 𝑘𝑠𝑔𝑆 / (𝑆 + 𝐺). Eq 14 

Since our model results in an exponentially growing tumour with a constant ratio of cells in S:G 

states, explicit equations for the growth of the populations in each state can be written separately:  

 𝑆(𝑡) = 𝑆𝑠𝑠𝑒𝑔𝑡, Eq 15 

 𝐺(𝑡) = 𝐺𝑠𝑠𝑒𝑔𝑡, Eq 16 

with the subscript (SS) indicating validity of these equations when the initial populations are at 

their steady state ratio. Following differentiation of each equation:   

 𝑑𝑆

𝑑𝑡
= 𝑔𝑆𝑠𝑠𝑒𝑔𝑡, Eq 17 

 𝑑𝐺

𝑑𝑡
= 𝑔𝐺𝑠𝑠𝑒𝑔𝑡, Eq 18 

the resulting equations (17-18) can be combined to remove the common terms (𝑔𝑒𝑔𝑡). This leads 

to the following:  

 1

𝑆

𝑑𝑆

𝑑𝑡
=

1

𝐺

𝑑𝐺

𝑑𝑡
, Eq 19 

where we have omitted the subscript with the understanding that Eq. 19 is valid only when the 

tumour is growing exponentially with the ratio S/G at a steady state value. Therefore, by 

substituting the expressions for 
𝑑𝐺

𝑑𝑡
 and 

𝑑𝑆

𝑑𝑡
 given in Eq’s 1-2, the Eq’s 14 & 19 can be rearranged 

to express the 𝑘𝑠𝑔 and 𝑘𝑔𝑠 parameters for the basal tumour growth model as a function of tumour 

growth rate (g) and the ratio of S-G2-M : G1 phase tumour cells at steady state: 

 𝑘𝑠𝑔 = 𝑔 (1 + 𝑆/𝐺)(𝑆/𝐺)−1, Eq 20 
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 𝑘𝑔𝑠 = 𝑔 (1 + 2𝑆/𝐺). Eq 21 

The remaining model parameters which relate to the dynamics of the CTLs and their effects on 

the tumours were obtained together, by fitting to all available data over time simultaneously (i.e. 

the CTL counts; the S/G ratios; the volumetric growth data; the IFN-γ expression data; the immune 

checkpoint expression data). The measurements derived from the experimental data are 

multivariate and do not have the same dimension or scale. To avoid the set of measurements 

with the largest numerical values from dominating the fit, we could not easily use studentized 

residuals (i.e. dividing residuals by the estimated standard deviation of the measurements) to 

remove the dimensionality of each measurement, because for a number of experimental 

observations (CTLs on day 1, all immune checkpoints) the estimated standard deviation would 

be zero. Instead, we opted to apply Min-Max feature scaling. For a given set of experimental 

measurements of the same type denoted X (where X could be, for example, the number of CTLs 

counted on each different day of measurement),  the equation for the transform is given by the 

following: 

 𝑋𝑠 =  (𝑋 − 𝑚𝑖𝑛(𝑋))/(𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)), Eq 22 

where 𝑋𝑠 is the set of Min-Max rescaled measurements and min(X) and max(X) are the smallest 

and largest values for the subset of experimental data under consideration. Thus, all experimental 

data is linearly rescaled to the range between 0-1. The same transformation is applied to the 

measurements sampled from the model,   

 𝑌𝑠 =  (𝑌 − 𝑚𝑖𝑛(𝑋))/(𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)). Eq 23 

Note that the model output is scaled relative to the experimental data, thus rescaled values for 

modelled variables are allowed to take values outside the range 0-1. Finally, the root-mean-

square error (RMSE) is calculated: 

 
𝑅𝑀𝑆𝐸 = √

∑𝑛 (𝑥𝑛−𝑦𝑛)2

𝑛
, 

Eq 24 

where n is the total number of measurement points used in the fitting and xn and yn are the 

individual measurements taken from the experimental data and the model output, respectively. 

After fitting the reverse calculation is applied to convert back to the original scaling for the 
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experimental data. For the basic model with I and E used as inputs, there were only two 

parameters (ki and ke) to be estimated, therefore we tested all combinations of the parameters in 

the range 0-20 at intervals of 0.1 and selected the combination with the lowest RMSE. For the 

model including CTL dynamics we used an evolutionary algorithm[38] to minimise the RMSE, 

following the local-to-best strategy, with a population size of 500 and lasting for 1500 generations. 

Best-fitting parameter sets are provided in Table 1. 

  

https://paperpile.com/c/mOZoiQ/q6ESH
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Table 1. Description of model parameters, with best fitting parameter values. Columns 2-4 give 

values for ICs fit individually, columns 5-7 give values for fits with all ICs included. 

symbol Best 

(LAG) 

Best 

(TIM) 

Best 

(PD) 

Best (all) Best (all- 

high kt) 

Best(all- 

high kp) 

Units Description 

s0 0.011 0.087 0.007 0.032 0.04 0.008 ( mm-3 day-1) Infiltration rate of CTLs into tumour 

se 8.39 9.10 13.56 14.97 116 17.97 (day-1) Expansion rate of CTL population within 
tumour 

de 0.91 0.89 0.47 1.19 0.4 1.23 (day-1) Death rate of CTLs inside tumour 

di 4.74 3.87 0.80 25.1 1.06 10.1 (day-1) Rate at which IFN-γ disappears from the 
system. 

kgs 1.64 (day-1) Basal tumour cell transition rate from G1 
to S-G2-M cell cycle phases 

ksg 0.66 (day-1) Basal tumour cell transition rate from S-
G2-M to G1 cell cycle phase 

ki 0.011 0.035 0.063 0.038 0.18 0.35 (IFN-1 mm3) Determines the concentration of IFN-γ 
required to prevent transfer of tumour 
cells from G1 to S-G2-M cell cycle 
phases. ki

-1 is the concentration of IFN-γ 

required to reduce the transition rate by 
50%. 

ke 3.57 4.20 0.007 2.72 1.44 0.007 (CTL-1 day-1) Rate at which CTLs kill tumour cells 

kA 0.69 0.013 0.011 0.025 0.016 0.012 (IFN-1 mm3) Relative contribution of IFN-γ to immune 
checkpoint expression 

kex  22.4 28.9 13.6 7.92 0.9 0.067 CTL-1 Determines level of immune checkpoint 
expression required to decrease CTL 
function 

kl 0.78 NA NA 52.5 0.02 0.13 (LAG-1) Contribution of LAG3 towards CTL 
exhaustion 

kt NA 48.6 NA 0.043 104 0.21 (TIM-1) Contribution of TIM3 towards CTL 

exhaustion 

kp NA NA 0.007 0.10 0.009 0.01 (PD1-1
 PDL1-1 

mm3) 
Contribution of PD-1/PD-L1  towards 
CTL exhaustion 

dl  0.41 NA NA 0.74 0.053 0.37 (day-1) Disappearance rate of LAG3 inside the 
system 

dt  NA 0.51 NA 1.18 0.3 0.57 (day-1) Disappearance rate of TIM3 inside the 
system 

dp  NA NA 0.22 67.3 13.7 125 (day-1) Disappearance rate of PD-1 inside the 
system 

dpl  NA NA 0.26 15.1 116 20.4 (day-1) Disappearance rate of PD-L1 inside the 
system 
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Supplementary Data 

 

Figure S1. Relative effects of killing and IFN-γ in the fitted models. A) Different CTL killing rates predicted 

using the best fits for three IC combination models (only LAG-3, only TIM-3, or the combination of LAG-3, 

TIM-3 and PD-1/PD-L1), each of which resulted in a good fit to the experimental data. Each fitted 

combination is represented by a different color. B) Comparison of the number of tumour cells, predicted 

over time for each of the three selected IC combinations (along rows). Total cells (blue), G1 phase cells 

(red), or S-G2-M phases (green) are shown separately for each condition. Along columns are simulations 

with either all parameters as fitted (left), with killing disabled (middle), or with the antiproliferative effect 

disabled (right). C) Comparison of total number of tumour cells in the model for the 9 conditions simulated 

in B. An additional line (“untreated”, purple) shows the growth of the tumour simulated without any CTLs. 
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Figure S2. Parameter variability amongst the final generation of the evolutionary algorithm, when all ICs 

were used to fit the model. A) Model fits to CTL density (top row), IFN-γ mRNA expression (2nd row), ratio 

of S-G2-M:G1 nuclei (3rd row), or volumetric tumour growth (bottom row). B) Model fit to each IC as indicated 

by facet labels per row. Symbols and error bars in A-B represent experimental measurements and SD, 

whereas lines represent model output, and are coloured according to whether they were in the top 20% of 

the best fitting parameter sets. C) Distribution of root-mean-square-error (RMSE) for parameter sets in the 

final generation. Red line indicates the cutoff for the top 20% of parameter sets. D) Parameter values for 

the top 20% of parameter sets in the final generation of the evolutionary algorithm. Coloured dots indicate 

parameter sets for best fit (red) and for high relative values of kt (green) and of kp (blue) compared to other 

exhaustion parameters (these sets are used in Fig. 5E-F in main text). 

  


