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Abstract 

Although quantitative insights into the killing behaviour of Cytotoxic T Lymphocytes (CTLs) are 

necessary for the rational design of immune-based therapies, CTL killing function remains 

insufficiently characterised. One established model of CTL killing treats CTL cytotoxicity as a 

Poisson process, based on the assumption that CTLs serially kill antigen-presenting target cells 

via delivery of lethal hits, each lethal hit corresponding to a single injection of cytotoxic proteins 

into the target cell cytoplasm. Contradicting this model, a recent in vitro study of individual CTLs 

killing targets over a 12-hour period found significantly greater heterogeneity in CTL killing 

performance than predicted by Poisson-based killing. The observed killing process was dynamic 

and varied between CTLs, with the best performing CTLs exhibiting a marked increase in killing 

during the final hours of the experiments, along with a “burst killing” kinetic. Despite a search for 

potential differences between CTLs, no mechanistic explanation for the heterogeneous killing 

kinetics was found. Here we have used stochastic simulations to assess whether target cells 

might require multiple hits from CTLs before undergoing apoptosis, in order to verify whether 

multiple-hitting could explain the late onset, burst killing dynamics observed in vitro. We found 

that multiple-hitting from CTLs was entirely consistent with the observed killing kinetics. Moreover, 

the number of available targets and the spatiotemporal kinetics of CTL:target interactions 



16 
 

influenced the realised CTL killing rate. We subsequently used realistic, spatial simulations to 

assess methods for estimating the hitting rate and the number of hits required for target death, to 

be applied to microscopy data of individual CTLs killing targets. We found that measuring the 

cumulative duration of individual contacts that targets have with CTLs would substantially improve 

accuracy when estimating the killing kinetics of CTLs.  

 

Introduction 

Cytotoxic T Lymphocytes (CTLs) are key effectors in the adaptive immune response, therefore 

CTL function - or lack thereof - is relevant in many pathologies. A greater quantitative 

understanding of CTL effector function will aid in interpretation of prior experiments and should 

yield useful insights for the treatment of diseases in the future. However, the rate at which CTLs 

kill infected or malignant cells remains poorly characterised. Estimates of CTL killing based on in 

vitro and in vivo CTL killing assays vary, with some variation explained by e.g. different 

susceptibility of target cells to CTL killing or the type of antigen expressed by the targets [1,2]. 

Moreover, especially in vivo the presence of stimulatory or suppressive factors and difficulty in 

controlling or estimating the ratio of CTLs to target cells at the site of killing might confound CTL 

killing estimates [1,2].  

As a frequently discussed example, consider the in vivo CTL killing assay of Barber et. al. [3], in 

which CTLs demonstrated rapid killing against Lymphocytic Choriomeningitic Virus (LCMV). 

Although Barber et. al. initially estimated that CTLs took 15 minutes to kill targets, subsequent 

modelling studies based on the same data have estimated much faster killing rates [4,5,6], with 

one study implying an expected target survival time of 16 seconds after contact from a CTL [4] 

(see also [1] for a detailed summary of these estimates). Given that killing in those experiments 

was perforin-dependent[3], these fast estimates seem to contradict recent in-vivo imaging 

showing that the perforin-dependent killing process requires a minimal contact time. For example, 

long-lasting (median: 80s) calcium fluxes linked with CTL killing of virally infected cells occurred, 

on average, 480s (median) after CTLs established contact with virally infected targets[7]. Such 

killing times of around 10 minutes are consistent with the duration of killing events that can be 

observed in various supplemental videos elsewhere [8,9]. Given this lower bound it is difficult to 

see how solely granule-mediated killing could plausibly lead to killing rates in excess of ~6 hour-

1, even in optimal situations where CTLs are not limited in their supply of targets and do not require 

time to search for new targets between killing events.  

A major limitation of many prior estimates of CTL killing is that analysis is performed on population 

level data in in vivo settings, with no direct measurements of the killing process. This approach 

has a number of drawbacks: First, it can be challenging to accurately assess the frequency of 

CTLs and target cells. Second, other immune cells may contribute to the killing process, 

confounding estimates of the true CTL killing rate. Third, the processes underlying CTL killing are 

complex and it may be insufficient to describe them with a single, time invariant rate constant. 

Indeed, recent observations have indicated that target cells may require multiple hits before death 

either in vitro [10], or in vivo [7]. We have previously shown that such multiple-hitting can lead to 

https://paperpile.com/c/oMBHuP/02naA
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a time-increasing killing kinetic when CTLs are exposed to fresh targets [11,12], further 

complicating the killing rate estimation procedure.  

Besides analysing CTL killing performance at the population level, a potentially useful approach 

is to analyse CTL killing at the single cell level. Such analysis can yield greater insights into the 

dynamics of the killing process. This was exemplified in studies undertaken in the 1970’s in which 

the killing kinetics of CTLs conjugated with 1-4 EL4 tumour cell targets were examined under the 

microscope for a period of 3 hours [13,14]. Subsequent mathematical analysis of these studies 

indicated that the CTL killing process was well described as a Poisson process [15], indicating 

that CTLs kill targets sequentially rather than simultaneously. This analysis allowed the authors 

to conclude that CTL killing was mediated by secretory lysosomes, several years before this was 

demonstrated conclusively [16].  The aforementioned studies also revealed that the rate of CTL 

killing was not diminished after target lysis, an observation which led the authors to deduce that 

CTLs were able to discriminate between viable and killed targets. More recently, in vitro studies 

of individual natural killer cells have shown that killing occurs via both granzyme and death 

receptor mediated pathways, each having different kinetics [17,18]. 

Despite the utility of studying CTL killing at the single-cell level, there remains a shortage of in 

vitro CTL killing studies with statistical power sufficient to check the validity of the Poisson model 

first proposed in the 1980’s by Perelson et. al. [15]. Recently one such a study was performed: 

Over a 12 hour period, image-based killing measurements were taken from human-derived CTL 

clones, each CTL being separately confined within small micro-wells that contained an excess of 

JY target cells [19]. During the studied time period, the killing rate of CTLs was dynamic, exhibiting 

a marked increase in the final hours of the experiment. The total number of targets killed per CTL 

was overdispersed compared to the Poisson distribution, implying greater heterogeneity between 

individual CTL killing performance than anticipated. Vasconcelos et. al. (Vasconcelos et al. 2015) 

found the data was well described by a Poisson mixture model, and they postulated the existence 

of a subset of “high rate killers” comprising 30% of the population that emerged 8-10 hours after 

first exposure to target cells. However, no mechanistic explanation could be found to explain this 

result, despite a search for membrane markers that might identify and/or explain the variability of 

CTL killing characteristics.  

We hypothesised that a requirement for “multiple hits” to kill targets before apoptosis induction 

might explain heterogeneous killing amongst clonal CTLs in vitro. Perelson et. al. [20] previously 

considered the possibility of multiple-hitting, noting however that such a model was excessively 

complex to describe the limited experimental data available at that time. Recent evidence has 

directly shown that multiple-hitting does occur at least in some settings [7,10,21], and our previous 

modelling work has demonstrated that multiple-hitting can indeed lead to population-level killing 

kinetics increasing over time when CTLs are exposed to fresh targets [11]. Therefore, we here 

used stochastic simulations to investigate the compatibility of the multiple-hitting hypothesis with 

the findings of Vasconcelos et. al. [19]. We found that multiple-hitting was indeed able to explain 

the late onset, high-rate bursting kinetic of individual CTLs, with physiologically plausible 

parameters. We also highlight that multiple-hitting is expected to lead to a complex dependence 

of realised killing rate upon the number of available targets and on the ability of individual CTLs 

to form and abort conjugates with target cells. We subsequently developed spatially explicit, agent 

https://paperpile.com/c/oMBHuP/ZTAi
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based simulations of CTLs killing targets in micro-wells as a means of generating realistic yet 

noisy artificial data and assessing methods of recovering CTL hitting parameters from future 

microscopy data. Using these spatial simulations, we demonstrate how parameter estimation is 

substantially improved if contacts of individual targets with CTLs can be tracked throughout the 

duration of the experiments.  

 

Results 

Multiple-hitting CTLs exhibit heterogeneous late onset killing 

We first sought to establish whether the multiple-hitting hypothesis was a feasible explanation for 

the heterogeneous, delayed onset, “burst” killing kinetics observed and defined by Vasconcelos 

et. al. [19]. In brief, these high rate killer CTLs were a subset among a clonal population whose 

killing suddenly accelerated after 8-10 hours of experimentation, with no explanation readily 

apparent (Methods). In the current study, we used Monte Carlo simulations of individual CTLs 

killing targets to identify conditions under which multiple-hitting might lead to heterogeneous, 

“burst” killing. In these Monte Carlo simulations, CTLs hit targets at a constant rate 𝜆, then targets 

died after receiving 𝜂 hits. We simulated single- and multiple-hitting scenarios on the basis that 

the expected (mean) time for one target in contact with a CTL to be killed was 1 hour, i.e., we set 

𝜆 / 𝜂 =  1 (valid for entire Fig. 1). 

Firstly we simulated CTLs with 𝜂=1,2, or 10, with each simulation containing one CTL interacting 

with a single target. For such a strictly 1:1 CTL:target ratio, the waiting times for target death were 

gamma distributed with rate parameter 𝜆 and shape parameter 𝜂 (Fig. 1A). The gamma 

distributions (Fig. 1B, top panel), together with their accompanying survival probability functions 

(Fig.1B, middle panel), define the hazard function (Fig. 1B, bottom panel), which is the momentary 

rate of death experienced by a target, given that  the target has already survived an interaction 

for some time, t. When 𝜂 = 1, the hazard experienced by contacted targets does not change with 

time. In contrast, when 𝜂 > 1 the hazard experienced by contacted targets increases over time, 

as contacted targets become increasingly likely to have received (𝜂 − 1) hits and thus be killed 

by the next hit. For the case where CTLs interact with targets in a strictly 1:1 ratio, the gamma(η, 

λ) distribution parameters could be estimated from the mean and variance of the samples of the 

waiting time (yo): 𝑦𝑜̅̅ ̅ =
𝜂

𝜆
 and 𝑉𝑎𝑟(𝑦𝑜) =

𝜂

𝜆2 (Fig. 1C).  

We next extended our Monte Carlo simulations to allow CTL:target interactions in a 1:n ratio, for 

variable numbers of targets, n. CTLs were individually assigned their initial number of targets by 

drawing n from a Poisson distribution, with mean �̅� = 16 (Fig. 1D, blue bars). The total number of 

targets killed by a CTL during one simulation, x, should also follow the Poisson distribution, if the 

killing rate of each simulated CTL would be the same. Moreover, the mean and variance should 

be approximately equal for any set of Poisson distributed samples. Therefore, observation of a 

ratio 
𝑣𝑎𝑟(𝑥)

�̅�
> 1 for a set of killed targets would imply that the killing was more heterogeneous than 

expected under Poisson assumptions. For single-hit killing (𝜂 = 1), the variance of the 12 hour  
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Figure 1. Killing kinetics and heterogeneity of multiple-hitting CTLs. A)  Gamma probability density 

functions describing expected time for a CTL to kill 1 target in monogamous contact (red lines). Each point 

represents the sample killing density of one series of simulations (NS=10), each series comprising Nw=100 

CTL:target pairs. Observations were binned at 15 minute intervals. B) Theoretical Gamma probability 

density function (PDF), survival function, and hazard function for different values of 𝜂 as indicated. C) 

Estimation of parameters from simulations in panel A, by equating the first two moments (the mean and 

variance) with their estimators. D) Distribution of targets killed per CTL at 12 hours (red bars), with Poisson 
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distributions for the initial number of targets (using the same initialising distribution for all 𝜂; blue bars). Each 

panel contains results from Nw=5000 CTLs for different 𝜂, as indicated by facet labels on the right. Text 

inside panels indicates the mean and variance of the killed targets. E) Cumulative killing performance of Nw 

= 100 members (thin black lines) of the population shown in D; the red line is the mean calculated for the 

entire population (Nw=5000). F) Distribution of target killing times over extended (24 hours) simulations with 

CTL parameters matching D, with the 12 hour censorship indicated by a red line (Nw=5000, bars are kills 

per 30 min interval). G) Heatmap of the probability density for each simulation in C-D. Observations were 

binned according to unique combinations of the initial number of targets (individual columns), together with 

the number of killed targets at the indicated interval (individual rows). Thus, summing across columns will 

recover the initial Poisson distribution (blue bars in D), and summing across rows will produce the 

distribution of killed cells at the indicated time (e.g red bars in D at 12 hours).   

 

killing samples was in fact slightly below the mean (Fig. 1D, upper row), resulting from some 

simulations where CTLs killed all their targets before the simulation had finished. However, for 

𝜂 = 2 (Fig. 1D, central row), the variance approached the mean and for 𝜂 = 10 far exceeded the 

mean (Fig. 1D, bottom row). In the latter case, a bimodal distribution occurred, which could be 

interpreted as a subpopulation of high-rate killers, yet importantly such a population did not exist 

in our simulations. 

In our simulations, the additional variability in killing performance of multiple-hitting CTLs was due 

to the allocation of subsequent hits amongst several different targets. When a group of targets 

share hits evenly, the time for a specified target to be hit is proportional to the number of other 

targets sharing. This has no effect on the killing rate observed if 𝜂 = 1, so the mean killing rate for 

our simulated single-hitting CTLs initially remained constant over time (Fig. 1E-F, top row; 

time<8h), gradually decreasing as some CTLs eliminated all their targets (Fig. 1E-F, top row; 

time>8h). In contrast, hit sharing in the case of multiple-hitting CTLs led to a delayed onset of 

killing (Fig. 1E-F), with the length of the delay dependent on the number of targets sharing hits 

(compare Figs 1A-B with single targets to Fig. 1F with multiple targets, for identical 𝜂). The 

interaction between 𝜂 and the number of initial targets can also be understood from heatmaps of 

targets killed (Fig. 1G). The expected cumulative number of kills increases over time for 𝜂, 𝜆 = 1, 

but this increase is independent of the initial number of targets except for the censorship implying 

a maximum target number that can be killed. For 𝜂, 𝜆 = 10, the dependency of the observed kills 

on the initial number of targets is very clear, with killing happening earlier in those wells with 

initially fewer targets. Moreover, these effects did not only depend on the initial number of targets. 

When we performed simulations with the hitting rate 𝜆 a random variable, this in turn increased 

the variability of killing amongst multiple-hitting CTLs to a greater extent than was the case for 

single-hitting CTLs (S1 Fig), implying that the killing of multiple-hitting CTLs is more sensitive to 

environmental variables than the single-hitting CTLs. Taken together, these results imply that 

multiple-hitting CTLs could explain both heterogeneous and delayed onset killing among clonal 

CTL populations.  
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Multiple-hitting is not identifiable based on population killing statistics only 

We asked if population-level killing statistics (as e.g. examined in [19] )) could be used to identify 

the hitting parameters (𝜆 and 𝜂) of CTLs. In our previous simulations (Fig. 1) we studied a scenario 

of simultaneous risk for target cells, yet this may be an oversimplification. For example, due to 

physical constraints the number of targets CTLs can simultaneously contact and thus hit must be 

limited. Therefore, we extended our 1:n Monte Carlo simulations to allow dynamic contacts 

between CTLs and targets, in order to check how the parameter estimates (𝜆 and 𝜂) would be 

impacted. To achieve this, we included an additional state for target cells, now distinguishing 

between targets that are contacting the CTL, versus those not in-contact (Fig. 2A; Methods). The 

killing kinetics realized by CTLs in these dynamic simulations indeed differed from those in our 

previous simulations (Fig. 1), where all the targets shared risk and so the killing rate of each CTL 

was dictated by the total number of yet-living targets. In contrast, for our Monte Carlo simulations 

allowing dynamic conjugate formation, only the targets presently being contacted were relevant. 

Here, small bursting events occurred throughout the simulations, which was the result of 

accumulating hits followed by rapid sequential killing among a subset of contacted targets (Fig. 

2B).  

Using our simulations including dynamic conjugate formation we searched for parameters 

consistent with the statistics reported previously [19]concerning high rate “burst killing” CTLs. For 

fitting we used the reported group mean (4) and variance (6.9) of the number of killed targets per 

CTL over 12 hours. Additionally, we aimed for a breakpoint in the mean killing rate such that half 

(2) of the observed kills occurred in the interval 0-9 hours and the other half in the interval 9-12 

hours (see Methods). We performed this fit using different values for 𝜂 (ranging from 1-5, or 10), 

and a Poisson variable with �̅� = 16 for the initial number of targets (S2 Fig). We obtained good 

fits for different values of 𝜂; in particular for all 𝜂 > 2 the cumulative killing was very closely 

matched (Fig. 2C, intersecting lines for �̅� = 16). Moreover, for values 𝜂 > 3 the fits to the mean 

and variance for cumulative targets killed at 12 hours were all similarly close to their target values 

of 4 and 6.9, respectively (Fig. 2D). Some differences for different 𝜂 were apparent, for example 

as the number of hits increased towards 𝜂 = 10 the breakpoint marking transition from low to high 

rate was more distinct (Fig. 2E). However, overall differences between 𝜂 were quite small (Fig. 

2F), and many simulated CTLs were required for these differences to emerge consistently (at 

least Nw=103 CTLs). Our results were also sensitive to the distribution for the initial number of 

targets per CTL: for simulations with �̅� = 12 or  20, substantial differences in the cumulative kills 

over time occurred (Fig. 2C). Thus, we conclude that multiple-hitting is not only qualitatively, but 

also quantitatively consistent with  the experimental results reported previously (Vasconcelos et 

al. 2015). However, our analysis shows that the mean and variance of the killing process 

measured for a group of CTLs are insufficient statistics to determine the number of hits CTLs 

require to kill targets, so CTL:target interactions should be explicitly accounted for if killing due to 

multiple-hitting is to be modelled accurately.   

https://paperpile.com/c/oMBHuP/ZTAi
https://paperpile.com/c/oMBHuP/ZTAi
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Figure 2. Burst killing and non-identifiability of dynamically interacting, multiple hitting CTLs. A) 

Schematic of the dynamic model (example with 𝜂 = 3). Target cells are represented by circles containing 

fractions (numerator: hits received; denominator: 𝜂). The observable state [𝐶  𝑈] consists of the total 

number of contacting, C, and non-contacting targets, U. The complete state of the system is represented 

by a matrix, with 𝜂 rows indicating the number of hits received (subscript) and with columns indicating 

whether the target is contacting (ci) or non-contacting (ui). B) Measured killing events (red dots, filled white) 

during Monte Carlo simulations with Nw=10 CTLs and the number of targets drawn from a Poisson 
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distribution with mean �̅� = 16 (top panels; 𝜆, 𝜂 = 10, 𝑘𝑜𝑓𝑓 = 0, 𝑘𝑜𝑛  → ∞), or a subset of targets at risk 

(bottom panels; 𝜆, 𝜂 = 10, 𝑘𝑜𝑛 = 1ℎ𝑟−1, 𝑘𝑜𝑓𝑓 = 0.3ℎ𝑟−1). Each horizontal strip is one single simulation, the 

right panel strips are colored according to the total number of alive targets and the left panel strips are 

colored according to the number of targets that are in contact with a CTL. C) Each line (coloured according 

to 𝜂) is the mean cumulative killing over time (CTL-1) from Nw=104 CTLs, simulated using parameters 

estimated by fitting the case with �̅� = 16 targets (central column). Straight lines show target values for 

fitting. All parameters except �̅� are constant across columns. D-F) Measured statistics within simulations 

with �̅� = 16 shown in the central column of C. Shown are the distribution of killed targets after 12 hours, 

with the mean and variance as indicated for each 𝜂 (D), and the mean killing rate over time for CTLs grouped 

by 𝜂 and shown either separately (E, rows), or together (F, colors), calculated as (𝑘𝑖𝑙𝑙𝑠 ⋅  (6 𝑚𝑖𝑛 ⋅ 𝑁𝑤)−1). 

 

An Agent Based Model of Multiple-hitting CTLs to test methods for estimation of 

killing parameters 

Since we found that in many situations the true hitting parameters for CTLs could not be 

determined based on group level killing mean and variance, we sought methods to compare the 

likelihood of different hitting models. We did not wish to consider a particular model for the process 

of CTLs finding targets, preferring a method that could be applied to determine the CTL hitting 

behaviour in general situations (i.e., in the absence of knowledge on contact dynamics). As a 

framework for testing we employed an agent based cellular Potts model (CPM) to generate 2D 

simulations of CTLs interacting with and killing targets (Fig. 3A). The resulting datasets were 

visually similar to realistic microscopy data and could be used to investigate methods for 

recovering the hitting parameters (𝜂 and 𝜆) of CTLs from experimental data under various 

conditions. For all CPM simulations we maintained the same underlying gamma model of CTL hit 

generation as was used for our Monte-Carlo simulations (Fig. 1-2), however we made several 

modifications that would lead to different (yet not predictable a priori) distributions of hits amongst 

targets. Specifically, instead of allocating hits to all contacted targets with equal probability, target 

risk of receiving a hit was proportional to the length of the interface between CTL and target at 

the moment of hit generation (Fig. 3A, target coloring on left images indicates interface length). 

We also considered the effect of a lower bound on the time required for a CTL to complete a hit, 

by introducing a delay condition that prohibited targets from being hit within an initial time window 

after contacting a CTL, which was reset every time the target broke contact with the CTL (Fig. 3A, 

target coloring on right images). Note that the delay condition was applied per target and therefore 

does not preclude the possibility of CTLs hitting other contacted targets simultaneously. 

Finally we varied CTL migration to create two groups of CTLs which we termed “high-motility” 

(Fig. 3B, S1 Video) or “low-motility” (Fig. 3C, S2 Video) CTLs. For both motility conditions the 

migration of the CTLs was influenced by the presence of the targets, as CTLs became corralled 

by surrounding targets. The difference between these models was that high-motility CTLs 

exhibited an increased propensity to break free from confinement and roam the well. This roaming 

ensured that over the course of 12 hours the high-motility CTL made new contacts with far greater 

frequency than low-motility CTLs (Fig. 3D), although the average number of simultaneously 

contacted targets at any time was similar (Fig. 3E). Thus, the high-motility CTL is expected to 
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approach the previously modeled ‘all targets at risk’ scenario more closely than the low-motility 

CTLs. 

 

Figure 3. Characterisation of high- and low-motility in silico CTLs within CPM simulations. A) Still 

images of a high motility CTL with 15 minute minimal hitting time, interacting with targets. Left color scheme: 

CTLs are red, uncontacted targets are grey, and contacted targets have various shades of blue based on 

their share of total CTL:target interface, which determines their probability of receiving a hit. Targets are 

overlaid with the number of hits they have received. Right color scheme: Lattice sites inhabited by the CTL 

are colored according to actin activity [22]. Targets are black, turning yellow after 15 minutes of continuous 

contact with the CTL. Elapsed simulation time is displayed in the upper left corner of the stills, presented in 

minutes since the first frame shown. B-C) Track plots showing movement of 3 randomly sampled CTLs of 

high (B) and low (C) motility throughout a simulation, for simulated η as shown. D-E) Frequency at which 

CTLs form new conjugates (D) and mean number of simultaneously contacted targets per CTL (E) for low- 

and high-motility CTLs. Plots are based on 100 simulations per condition, with each dot representing one 

CTL, and circles and error bars indicating mean +/- SD. 
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We used the CPM model to simulate CTLs (with 𝜂, 𝜆 = 1,2, 𝑜𝑟 10), in either high- or low-motility 

scenarios. The total amount of targets killed by each CTL depended on the interaction between 

the parameters 𝜆 and 𝜂, the CTL motility, and the presence or absence of the delay condition. In 

particular, the combination of high motility plus 15 minute delay resulted in a substantial decrease 

in killing in comparison to the other simulation groups, for all values of 𝜂 (Fig. 4A). Together with 

the high rate of contact formation in that group (Fig. 3D), this is consistent with targets spending 

significant time in transient contacts with the CTL, too short to result in successful hit delivery. 

The killing rate of the low-motility CTLs was initially greater than of high-motility CTLs, in particular 

for large 𝜂 (Fig. 4B), due to the more stable nature of the contacts leading to greater accumulation 

of hits among the contacted targets (Fig. 4C). High-motility CTLs reduced this deficit over the 

course of the simulations due to an accumulation of latent hits among uncontacted targets (Fig. 

4D). These spatial simulations therefore illustrate how CTL:target contact dynamics can play a 

role in determining killing performance. Moreover, since in these models CTLs with the same 

killing parameters - but different motility parameters - generated different killing kinetics, they are 

useful to test how underlying killing parameters might be recovered from microscopy data that are 

similar to data emanating from our realistic simulations. 
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Figure 4. Killing performance of multiple-hitting CTLs depends on motility. A) Mean cumulative killing 

over time (CTL-1) for CPM simulations of high- and low- motility CTLs (𝜂, 𝜆 = 1,2, 𝑜𝑟 10) B) Mean killing rate 

(CTL-1) for each simulated condition in A. C-D) Mean number of hits received per target, sampled over 

targets currently contacting the CTL (C) or over targets not currently contacting the CTL (D). 
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Estimating CTL hitting parameters through analysis of contact time and target 

survival  

Since we found that hitting parameters 𝜂 and 𝜆 could not be recovered via analysis of population 

averages only, we employed a parametric survival analysis to study the hazard experienced by 

individual targets contacting CTLs. Our analysis considers the different hazard functions identified 

earlier (Fig. 1B), which distinguish CTLs on the basis of their intrinsic hitting rate 𝜆 and the number 

of hits required for killing targets, 𝜂. Specifically, we analyse the cumulative duration of CTL:target 

contact events from the perspective of the target cells (example in Fig. 5A). To take into account 

shared hazard amongst a set of co-contacting targets, we recorded for each sampled frame the 

statistic 𝜃 = (𝑐)−1(per-target), representing the probability that each separate target out of the 

subset of 𝑐 targets co-contacting the CTL is presently being hit (Fig. 5B). Note that targets not in 

contact with the CTL were assigned 𝜃 = 0. Subsequently, we integrated the 𝜃 values over time 

to arrive at a set of ‘adjusted’ contact times, 𝜏, for each target (Fig. 5C), which takes into account 

uncertainty with respect to hitting of multiple co-contacted targets (Fig. 5C). This approach has 

the advantage that no explicit account needs to be taken of the CTL-target interaction dynamics. 

Moreover, estimation of cellular contact times occurs already frequently in time-lapse imaging 

data [7,23], hence is feasible. 

Applying the concept of adjusted contact times, 𝜏, on all our CPM simulations, we established 

maximum likelihood estimates for the hitting parameters within the simulations (S1 Text; S3 Fig). 

This yielded excellent estimates for the parameters in simulations without delay (Fig. 5D; 

𝜂𝐶𝑃𝑀, 𝜆𝐶𝑃𝑀 indicate input CPM parameter values, and �̂�, �̂� indicate estimated values). We also 

tested our method of parameter recovery by fitting our model to small subsets taken from the 

CPM simulations each containing only Nw=10 CTLs (Fig. 5E), which led to good estimates. 

Additionally, we tested our model on sample data generated from a mixed dataset with two 

subpopulations of single-hitting CTLs, each with a different killing rate (S1 Text), in order to 

examine the high-rate-killer hypothesis put forth by Vasconcelos et. al. [19]. We found that the 

multiple-hitting model would not predict multiple-hitting unless multiple-hitting was indeed 

underlying the data, instead predicting a single-hitting population whose killing rate was the mean 

of the individual subpopulations (S1 Text; S4 Fig, S5 Fig). Thus, our maximum likelihood 

approach based on contact time monitoring can distinguish multiple-hitting from alternative 

hypotheses and is expected to work for a relatively small number of samples. 
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Figure 5. Parameter retrieval for multiple-hitting CTLs based on adjusted contact time. A) 

Hypothetical example illustrating sharing of subsequent CTL hits by target cells. Interaction history during 

a period of 12 hours for each of three target cells contacted by a single CTL, sampled at 30 minute intervals. 

B) Estimated probability (expressed as fraction 𝜃) that each target is being hit by the CTL, corresponding 

to the hypothetical interaction history shown in A. C) The quantity 𝝉 is defined as the cumulative sum over 

the course of the simulation of all sampled values of 𝜃 associated with each individual target. The samples 

resulting from interaction with this CTL include target 1, which was killed after a cumulative interaction 
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period of ~1.7h, and targets 2 and 3, which remained alive after cumulative interaction periods of ~2.4h and 

~7.9h, respectively. D) Heatmaps of the likelihood function around the maximum likelihood estimates for 

the killing parameters, in CPM simulations without hitting delay. Horizontal and vertical lines mark the values 

of the CPM parameters used to generate the data for each group. The boundary enclosing the 95% 

confidence region is also marked with a line. E) Results of fitting 30 randomly chosen subsets, each 

consisting of Nw=10 simulations, of the CPM simulations without hitting delay.  

 

Impact of a hitting threshold on killing parameter estimation 

Given the time needed for formation of a cytotoxic synapse that is required for hit delivery, brief 

interactions between CTLs and targets may not contribute to killing. Taking such brief interactions 

into account in our parameter estimation may thus interfere with correct estimation. Therefore, we 

tested our parameter recovery on those CPM simulations wherein a 15 minute minimal bound 

(+15m) was set for the time CTLs required to successfully execute each hit upon a target. In these 

CPM simulations, we generally obtained robust estimates for the number of hits needed to kill 

targets, �̂� (S6A Fig). However, after rounding to the nearest integer value for 𝜂, the estimated 

hitting rate parameter, �̂�, was underestimated compared to the generating value (𝜆𝐶𝑃𝑀) in 

simulations with the 15m minimal hitting time. Since the realised killing was reduced in the 15m-

delay simulations, particularly for high-motility CTLS (Fig. 4), the estimated �̂� could be considered 

more appropriate than the generating value 𝜆𝐶𝑃𝑀. Nevertheless, to investigate further we 

performed additional simulations, using high motility CTLs, with variable hitting delays in the 

interval between 0-15 mins (Fig. 6A, S6B). We found that for the important boundary between 

single-hitting (𝜂 = 1) or multiple-hitting (𝜂 = 2), the estimated number of hits parameter �̂� was 

accurately classified for limited delays of less than 15 minutes (Fig. 6A, top row).  

A particular advantage of a parametric survivorship analysis such as that we employ here is that, 

having estimated the hitting parameters (𝜂, 𝜆), we can revisit the sample data and ask whether 

different subsets of targets were killed according to our expectation. We selected the high-motility 

+15m simulations with 𝜂
𝐶𝑃𝑀

= 1 for further study, since for this simulation group there was an 

ambiguous estimate of �̂�. For comparison, we also analysed the data from CPM simulations with 

multiple-hitting CTLs (𝜂
𝐶𝑃𝑀

= 2). First, we inspected the Kaplan-Meier estimates of the survival 

functions (Fig. 6B, black lines) marking close agreement when the correct parameter estimate 

(�̂� = 2) was applied to CPM data generated by multiple-hitting CTLs (Fig. 6B bottom, blue line, 

𝜂
𝐶𝑃𝑀

= 2), but not when the incorrect �̂� = 1 was applied (Fig. 6B bottom, red line, 𝜂
𝐶𝑃𝑀

= 2). For 

data generated by single-hitting CTLs, the Kaplan-Meier estimate lay exactly between the 

estimates using �̂� = 1 or 2, yet the shape of the survival function over the entire length better 

matched that for the single-hitting estimate �̂� = 1 (Fig. 6B top, red line, 𝜂
𝐶𝑃𝑀

= 1) than for the 

estimate �̂� = 2 (Fig. 6B top, blue line, 𝜂
𝐶𝑃𝑀

= 1). Second, visual inspections of the hazard 

experienced by individual targets throughout the simulations (Fig. 6C), revealed that in many CPM 

simulations with 𝜂
𝐶𝑃𝑀

= 1 and a +15m hitting delay there was substantial killing of targets that had 

not yet undergone long interactions with the CTL (Fig. 6C, first two grey bars), as would not be 

expected for multiple-hitting. Thus, both results (Fig. 6B-C) supported �̂� = 1 as the most likely 
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candidate for the data derived from simulations with 𝜂
𝐶𝑃𝑀

= 1. However, the most conclusive result 

was obtained by evaluating the mean hazard experienced by contacted targets according to either 

of the two candidate estimates for the number of hits (�̂�=1 or 2). Integrating this value over the 

duration of the experiments (Fig. 6D, black lines)  led to predictions for the killing rate over time 

which closely followed the data whenever a correct estimate for �̂� was applied (Fig. 6D, comparing 

black and red lines in the upper panel, or black and blue lines below). In contrast, killing 

predictions from incorrect estimates of �̂� were extremely poor, thus allowing for correct 

identification of the underlying 𝜂. Thus, our analysis shows that monitoring of cumulative 

interaction times between targets and single CTLs allows for proper estimates of the number of 

hits required for target cell death even when brief contacts between CTLs and targets cannot lead 

to hits, although the hitting rate may be underestimated in that case. 
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Figure 6. Parameter retrieval for multiple-hitting CTLs with underlying hitting delay. A) Estimated 

parameters (points), compared to the underlying parameter values used (red lines) in CPM simulations, 

featuring high-motility CTLs, in which we varied the lower bound for the time (in minutes, as indicated) 

needed for hitting. B) Kaplan-Meier survival functions (black lines), or survival functions plotted with 

estimated parameters fitted to data from Nw=100 CPM simulations generated by multiple-hitting (lower row, 

𝜂𝐶𝑃𝑀 = 2) or single-hitting CTLs (upper row, 𝜂𝐶𝑃𝑀 = 1). C) Heatmaps from one CPM simulation containing 

high-motility, single-hitting CTLs who had a 15 minute lower bound set on the hitting time. Each row 
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represents a single target. Target status is represented by colour: targets not-contacting the CTL are deep 

purple, and killed targets are grey. Contacted targets are coloured according to their momentary hazard 

according to two candidate parameter sets (top panel: �̂� = 1, �̂� = 0.65; bottom panel: �̂� = 2, �̂� = 1.65). D) 

Predicted killing rate according to two different candidate parameter sets (�̂� = 1, red lines; �̂� = 2, blue lines), 

candidates being themselves applied to CPM simulations with high-motility, +15m CTLs  (𝜂𝐶𝑃𝑀 = 1, top 

panel; 𝜂𝐶𝑃𝑀 = 2, bottom panel).  

 

Discussion  

Here we have used stochastic simulations to show that ‘multiple-hitting’ is a plausible explanation 

for the heterogeneous and time-inhomogeneous killing activity recently observed for CTLs in vitro 

[19]. We showed that multiple-hitting leads to an increase in realised killing rate over time. 

Moreover, the extent of this late onset killing increases when more hits are required to kill targets, 

or when a greater number of antigen-presenting targets are simultaneously contacted. 

Furthermore, identical CTLs displayed varying killing performance depending on the number of 

targets available. Simulating CTLs with variable hitting rates, we also found that the killing 

performance of multiple-hitting CTLs is more heterogeneous than killing of single-hitting CTLs, 

given similar variation in underlying hitting rate. Overall, we conclude that multiple-hitting is 

sufficient to explain heterogeneous killing amongst clonal CTLs and there is no need to invoke an 

unobserved subpopulation of high-rate killers. 

Given the dependence of the killing performance of multiple-hitting CTLs on several parameters 

that we describe here, we developed spatially explicit CPM simulations to assess methods for 

investigating whether multiple hitting occurs in vitro or in vivo. Our specific goal was retrieval of 

the hitting rate and number of hits required for CTLs to kill targets. Our model of dynamic 

conjugate formation can be conceptualised using Kendall’s notation as an M/Er/1 queue [24]. 

Within this framework there is 1 “server” (in our case the CTL), with markovian arrival times (M: 

in our case conjugate formation events), and Erlang distributed (Er)  “service times” which 

represent the killing process. It is known that for such models, the mean and variance (or any 

similar measure of variability) are insufficient for estimating the true parameters, and can only be 

used to approximate the distribution [24]. Instead of using population-level killing statistics, we 

were able to accurately recover model parameters from the CPM data by analysing the ‘adjusted’ 

cumulative contact durations between CTLs and individual targets, i.e. the total length of the 

interaction until either the target was killed or the experiment ended. Importantly, we found that 

measurements for both killed and surviving cells are required for this approach to be successful. 

This is because the limited time window of observation renders data that are in part censored, yet 

elapsed contacts that have not yet resulted in killed targets also contain information on underlying 

killing parameters. In a similar fashion, we previously developed a method to estimate absolute 

(i.e., not cumulative) cellular interaction times based on time lapse imaging data [23]. 

Although CTL cooperativity and multiple-hitting have now been described in a number of settings 

[7,10-12], a detailed quantitative description of the sequence of intracellular events which might 

underlie multiple-hitting does not yet exist. Several mechanisms can be envisaged which 
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separately or collectively might result in target cells enduring sustained attacks from CTLs before 

death. A first factor which may explain the ability of target cells to endure sustained attacks is 

death occurring via the ‘extrinsic apoptosis pathway’, i.e., via tumour necrosis factor (TNF) or 

FAS-L. In the study of Vasconcelos et. al. [19], blockade of FAS-L did not diminish overall killing, 

suggesting that FAS-L was not involved in CTL killing. Moreover, separation of CTLs and targets 

in a transwell assay showed that contact was required before target cell apoptosis could occur. 

Although this result suggests that diffusible TNF did not contribute to target cell apoptosis, TNF 

is also expressed in transmembrane form [25] and may have contributed to contact-dependent 

killing, or could have synergised with other effector pathways. Furthermore, TNF or interferon-γ - 

another hallmark cytokine produced by activated CTLs - have been linked to an upregulation of 

FAS-L receptors in different cell types [26,27], or might otherwise synergise with FAS-L to induce 

target cell apoptosis [28]. The possibility of synergistic activators of the extrinsic apoptosis 

pathway is intriguing since activation of such mechanisms might explain delayed onset of burst-

killing. This was observed in recent studies in which natural killer cells initially controlled tumour 

cell targets with a fast-acting, perforin-dependent mechanism, before switching to a mechanism 

primarily depending on engagement of death receptors [17,18]. It would be useful to investigate 

whether CTLs also utilise this mechanism. 

A second factor which may account for multiple-hitting is heterogeneity in delivery of perforin and 

granzymes. Perforin alone induces rapid pore formation in target cell membranes, with such 

membrane disruption expected to increase the metabolic burden on target cells. Even if 

insufficient to directly induce apoptosis, one would expect such depletion to divert resources from 

adaptive cellular stress responses, thereby sensitising cells to death from other mechanisms. 

Granzymes are a diverse set of cytotoxic proteases with a broad array of intracellular targets [29]. 

A recent review highlights that perforin-mediated pore formation may or may not be accompanied 

by delivery of granzyme molecules into the cytosol [30]; a requirement for granzyme delivery 

appears to be the establishment of a sufficiently large pore at the point of contact between CTL 

and target. Examination of recent 4D images of CTL–target engagement highlight potential for 

heterogeneous delivery of cytotoxic molecules [8]. That study showed the capability of a single 

CTL to rapidly organise lytic molecules around the centrosome upon initial target recognition and 

to subsequently polarise the centrosome towards the target. This sequence of events results in a 

strong and stable cytotoxic synapse with a high local density of perforin and granzymes. 

Anecdotal evidence from this same work indicates that there can also be an alternative outcome: 

In one observation a CTL attempted to form two immunological synapses with one target, with 

the result that effective centrosome polarisation towards either synapse did not occur and 

ultimately both synapses were aborted without target cell death (see Video S8 in reference [8]). 

Other observations of CTLs simultaneously polarising granules towards multiple targets [9] 

demonstrate that the formation of multiple immunological synapses does not necessarily preclude 

CTLs from killing. Taken together, these observations suggest that due to the diversity of possible 

damage pathways activated by CTLs as well as the potential for heterogeneity in delivery of 

granules, several mechanistic explanations for multiple-hit induced killing remain open. 

Given the breadth of cytotoxic weaponry available to a single CTL, it is apparent that experimental 

interference with one or more CTL effector functions is insufficient to conclude that one or another 

pathway is primarily involved in target cell death in a given experiment. We suggest high 
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resolution, in vitro imaging as an effective means of achieving insight into the CTL killing process. 

Such high-resolution imaging would have several benefits: clear visualization of the polarisation 

of the lytic granules towards target cells would allow acquisition of statistics regarding the lethality 

of hits. Moreover, monitoring of individual target cells over time would provide statistics regarding 

the formation and abortion rates of immunological synapses and regarding the probability of target 

cell death after multiple hits. In addition, such approaches would allow investigation of the 

possibility of target cell recovery between successive hits, along with assessing the timescale 

over which such recovery might occur. Although such spatio-temporal resolution might be 

challenging to achieve experimentally, recent approaches using structured environments [31,32] 

provide a possible means of achieving more refined control of CTL-target interactions. 

In conclusion, in addition to recent efforts to further characterise heterogeneity amongst CTLs, 

greater attention is needed to simultaneous monitoring of mechanisms activated in target cells 

after the target has been contacted by a CTL, assisted by statistical analyses and computational 

methods such as those presented here. Experimental research particularly involving use of e.g. 

caspase-8 reporters or reporters of granzyme activity to compare the relative importance of 

different killing mechanisms, as recently done in NK cells [17,18] is crucial. Computational models 

can then be used to compare results between different experimental assays, thereby 

quantitatively assessing the contribution of identified CTL effector functions in different contexts. 

Methods 

Monte Carlo simulations 

We devised stochastic simulations representing different “wells” in which individual CTLs killed 

targets. The setup of the simulations was based on published data by Vasconcelos et al. [19]. In 

brief, Vasconcelos et al. incubated pre-activated human-derived CTL clones with Epstein-Barr 

virus transformed B cell targets for 12 hours in microwells (Nw=259). Each microwell contained a 

single CTL confined with an indeterminate (approximately 10-20, see Fig. 4A  in reference [19] ) 

number of targets. Microwells were approximately cylindrical and had a cross-section diameter of 

approximately 100μm. A caspase reporter was used to determine the killing rate of individual 

CTLs over time. Similarly, our simulations featured Nw independent simulations, each containing 

n initially unhit targets and lasting for a simulated time period of 12 hours, or until all targets had 

been killed. The simulations proceed as follows: 

1. A random variable 𝑥𝑤𝑎𝑖𝑡, representing the waiting time until the next CTL hit, is drawn from 

the exponential distribution with rate parameter equal to the CTL hitting rate 𝜆.  The current 

simulation time is increased by 𝑥𝑤𝑎𝑖𝑡. 

2. A random target is selected and its number of hits is increased by one. 

3. If a target has received sufficient hits for death (i.e., 𝜂 hits), it is immediately removed from 

the simulation. 

In some simulations, we extended the rules in order to reflect typical in vitro assays more 

accurately: 
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1) Variable target numbers. Each simulation contained a single CTL and a variable number 

of targets n. For each well the number of targets was drawn from a Poisson distribution 

with mean �̅�. 

2) Variable hitting rate. For each simulation the hitting rate 𝜆 of each CTL was a normally 

distributed random variable. The standard deviation of this distribution was used as a 

model parameter, with larger standard deviation reflecting CTL populations with greater 

intrinsic heterogeneity in killing performance between individuals. 

3) Dynamic conjugate formation. We considered that hit delivery had to be preceded by 

conjugate formation and that at 𝑡 = 0 ℎ𝑟𝑠 the CTL has not yet encountered any targets, 

and that CTLs form new conjugates with targets at constant rate kon and abort conjugates 

with constant rate koff. Thus these simulations consider 4 distinct types of event: in addition 

to hitting and dying, we now have conjugate formation and conjugate abortation. The 

Gillespie algorithm was used to determine the type of event and waiting time between 

subsequent events [33], except for target cell death which occurs immediately after the 

lethal hit just as in our “all at risk” simulations. These simulations were used for estimating 

the parameters 𝜆 and 𝜂 from our spatial simulations. 

Parameter estimation for the dynamic conjugate formation model was based on four reported 

values from Vasconcelos et. al. [19]: the population killing averages for the high rate killers (6.4 

targets killed per 12 hours) or low rate killers (2.8 targets killed per 12 hours), the fraction of the 

population reported to be high rate killers (⅓), and the breakpoint after which the high rate 

phenotype appeared (8-10 hours; we took 9 hours for this value). From these 4 reported values 

we derived three statistics for fitting our Monte Carlo simulations with dynamic conjugate 

formation: the mean (a1) and variance (a2) of the number of killed targets per CTL after 12 hours, 

and the expected number of killed targets per CTL at the breakpoint of 9 hours (a3). We estimated 

the killing at 9 hours by noting that the high rate group had not yet emerged at 9 hours, before 

which all cells killed at an approximately constant rate. Thus extrapolating from the low rate killing 

average at 12 hours ( 2.8 x 9/12 ) gives approximately 2 targets killed at the 9-hour breakpoint 

(note that this is also consistent with Fig. 4B of Vasconcelos et. al [19]). Thus, the experimental 

estimates were: a1 = 4, a2 = 6.9 and a3=2. To fit to these estimates, we measured the same 

statistics (b1,2,3) from our simulations and then minimised the root mean squared error:  

 𝑅𝑀𝑆𝐸 = √ ( 1/3 ⋅ ∑ (𝑎𝑖 − 𝑏𝑖)
2

𝑖:1,2,3  ) , Eq. 1 

for different values of the parameters 𝜂, 𝜆, 𝑘𝑜𝑛, and 𝑘𝑜𝑓𝑓. For the stochastic optimisation we 

performed 10 repeats for all combinations of selected discrete values of 𝜂, 𝑘𝑜𝑛, and 𝑘𝑜𝑓𝑓 (S2 Fig), 

and then for each combination we estimated 𝜆 based on 𝑁𝑤 = 1000 repeats and the optimise 

function in R. Dynamic conjugate simulations were written in C++ using the Rcpp package. 

Biological interpretation of parameters for the stochastic simulations are summarised in Table 1 

and the parameter values used throughout the manuscript are provided in S1 Table. 
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Table 1. Stochastic simulation parameters 

parameter biological interpretation 

𝜂 number of hits required for target death 

�̅� mean number of targets in a well 

𝜆 (hr-1) hitting rate 

kon (hr-1) conjugate formation rate 

koff (hr-1) conjugate dissociation rate 

 

Spatial Simulations 

We developed spatial simulations of CTLs killing in microwells, with the aim of generating noisy 

and undersampled artificial data representative of data generated by microscopy, data which can 

be used to test methods for recovery of parameters governing CTL hitting. To this end we 

employed the cellular Potts model (CPM) framework [34], a formalism we used previously to 

simulate T cell-target cell interactions [11,35,36]. The CPM is a lattice based model, with entities 

such as cells represented by assigning individual lattice sites a ‘spin’ value, to identify them as 

belonging to a specific entity. The model evolves via minimisation of an energy function, the 

Hamiltonian: 

 𝐻 = 𝐻𝑠𝑜𝑟𝑡 + 𝐻𝑙 + 𝐻𝑎𝑐𝑡. Eq. 2 

Here, 𝐻𝑠𝑜𝑟𝑡 represents interactions between cell surfaces and deviations from a target  cell area; 

𝐻𝑠𝑜𝑟𝑡 is defined as [34]: 
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 𝐻𝑠𝑜𝑟𝑡 = ∑ 𝐽 ( 𝑞( 𝜎(𝑖, 𝑗)), 𝑞( 𝜎(𝑖′, 𝑗′))) (1 − 𝛿𝜎(𝑖,𝑗),𝜎(𝑖′,𝑗′)) +(𝑎(𝜎)−𝐴𝑞(𝜎))2

𝜁𝑎 ∑ (𝑎(𝜎) − 𝐴𝑞(𝜎))2
𝑠𝑝𝑖𝑛 𝑡𝑦𝑝𝑒𝑠 𝜎 , 

Eq. 3 

where 𝜎(𝑖, 𝑗) is the spin of an individual cell of type 𝑞 at grid point with x coordinate i and y 

coordinate j; 𝐽(𝑞, 𝑞′) is the surface energy between cells of type 𝑞 and 𝑞′; 𝛿𝜎,𝜎′ represents the 

Kronecker delta; 𝑎(𝜎) represents the actual area of a cell and 𝐴𝑞(𝜎) the target area for a cell of 

type 𝑞 (we refer to this as area rather than volume because we employ 2D simulations); 𝜍𝑎 is a 

weighting term for the area constraint; Note that the sum of the surface energies are calculated 

over each third order neighbour of a 2D grid site. 

Our model also includes a term for surface area conservation of individual cells [37]: 

 𝐻𝑙 = 𝜁𝑙 ∑ (𝑙(𝜎) − 𝐿𝑞(𝜎))2
𝜎 , Eq. 4 

where 𝐿𝑞(𝜎) is the target perimeter for cells of type 𝑞, 𝑙(𝜎) is the current perimeter of a cell with 

type 𝜎 (determined as the total length of the boundary interfaces with grid sites of differing spin), 

and 𝜁𝑙 is the weight of the perimeter constraint. We set 𝐿𝑞 = 2𝜋√𝐴𝑞, i.e., the ratio of a circle’s 

perimeter to its area, so that the term 𝐻𝑙 is minimised when cells become perfectly circular. We 

set 𝜁𝑙 lower for the CTLs than for the target cells, implying that the targets retained a spherical 

shape whereas CTLs were much more deformable in our simulations. 

Finally, the Hamiltonian includes a term 𝐻𝐴𝑐𝑡 to drive the motility of CTLs [22]: 

 𝐻𝐴𝑐𝑡 =
𝜍𝐴𝑐𝑡

𝑀𝑎𝑥𝐴𝑐𝑡
(𝐺𝑀𝐴𝑐𝑡(𝑢) − 𝐺𝑀𝐴𝑐𝑡(𝑣)). Eq. 5 

This follows an actin-driven cell motility model with protrusions driving the migration of cells. In 

this model actin is modelled explicitly and when a cell occupies a new site on the lattice, the site 

is given an actin value 𝑀𝑎𝑥𝐴𝑐𝑡. The actin activity 𝐴𝑐𝑡 in that site then decreases by one at every 

Monte carlo step until it reaches 0. The function:  

 

𝐺𝑀𝐴𝑐𝑡(𝑢) = ( ∏ 𝐴𝑐𝑡(𝑦)

𝑦∈𝑉(𝑢)

)

1/|𝑉(𝑢)|

 

Eq. 6 

calculates the geometric mean actin activity around site 𝑢, where |𝑉(𝑢)| are the second order 

Moore neighbours of site 𝑢 (see Fig. 1 of reference [22]). The model favours updates from sites 

𝑢 with high actin activity into neighbouring sites 𝑣 with low actin activity, resulting in local positive 

feedback. The CPM parameter 𝜍𝐴𝑐𝑡 is a weighting term the strength of which we varied to control 
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the motility of the CTLs. The 𝐻𝑎𝑐𝑡 term was not applied to target cells, which are moved only 

passively via interactions with the CTL and other targets.  

In our spatial simulations we also implemented a contact-limited hitting behaviour for the CTL. 

We take CTL killing of targets to occur primarily via the perforin/granzyme pathway so we consider 

only contacted targets to be at risk, although our model should also apply to FAS-Ligand mediated 

killing, which is also contact-limited. When multiple targets are contacted by a CTL, it seems likely 

that the risk of getting hit is not equal for all targets, as polarisation of the lysosome towards 

specific targets should occur in order to permit delivery of lytic molecules to the target [8,9]. 

Although we did not model the polarisation of the lysosome explicitly, we do take into account a 

tendency for CTLs to unequally distribute hits towards contacted  targets. To achieve this, we 

implement the same baseline hitting probability as in the Gillespie simulations, and multiply this 

by 𝜃𝑖(𝑡), the proportional fraction of CTL: target membrane interface occupied by the target at 

time point t: 

 𝜃𝑖(𝑡) =
𝑙𝑖(𝑡)

𝐿𝑖(𝑡)
 , Eq. 7 

where 𝑙𝑖(𝑡) is the length of the interaction interface between target i and the CTL inhabiting the 

same well, 𝐿𝑖(𝑡) the total interaction interface length of the CTL that contacts target i, including 

any other co-contacting targets. Because CTLs are considered to hit targets at a constant rate 𝜆, 

for simulations without delayed hitting each target’s risk of being hit during a brief time interval 𝛥𝑡  

equals 𝜆𝜃(𝑡) ⋅ 𝛥𝑡. For some simulations we introduced a rule preventing CTLs from hitting targets 

for a specified delay period each time a CTL contacted or recontacted a target. This was 

implemented by means of a counting variable inside each target, such that hits would not register 

until the target had been in continuous contact with the CTL for the specified interval.  

Simulations had a spatial scale of 1 μm pixel-1 and were 100 μm2 in area. The simulation space 

consisted of a circular area representing a microwell within which one CTL and usually between 

10-20 targets were constrained to move. Simulations had a temporal scale of 1 second per Monte 

Carlo step. Parameters employed in the CPM simulations are given in Table 2. Simulation output 

was produced every 120 Monte Carlo steps (2 minute intervals),  corresponding to a typical 

sampling frequency in time-lapse imaging data with multiple wells [19]. CPM simulations were 

developed within the morpheus framework [38].  
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Table 2. Cellular Potts simulation parameters 

parameter value description 

𝐽𝜎,𝜎′ 𝐽𝑡𝑎𝑟,𝑡𝑎𝑟 = 0.7; 

𝐽𝑐𝑡𝑙,𝑡𝑎𝑟 = −3; 

𝐽𝑡𝑎𝑟,𝑤𝑒𝑙𝑙 = 0;   

𝐽𝑐𝑡𝑙,𝑤𝑒𝑙𝑙 = 0; 

surface energies between cell types 

𝐴𝑞 𝐴𝑐𝑡𝑙 = 140 𝜇𝑚2 

𝐴𝑡𝑎𝑟 = 340 𝜇𝑚2 

the target area for a cell of type 𝑞 

𝐿𝑞 
2√𝜋𝐴𝑞 

the target perimeter for a cell of type 𝑞 

𝜍𝑙 𝜍𝑙,𝑐𝑡𝑙 = 0.1 

𝜍𝑙,𝑡𝑎𝑟 = 0.25 

strength of cell perimeter constraint 

𝜍𝑎 𝜍𝑎,𝑐𝑡𝑙 = 1 

𝜍𝑎,𝑡𝑎𝑟 = 1 

strength of cell area constraint 

𝜍𝐴𝑐𝑡 𝜍𝐴𝑐𝑡,𝑙𝑜𝑤 = 2 

𝜍𝐴𝑐𝑡,ℎ𝑖𝑔ℎ = 10 

strength of actin protrusion dynamics: 𝜍𝐴𝑐𝑡,𝑙𝑜𝑤 for low-motility and 

𝜍𝐴𝑐𝑡,ℎ𝑖𝑔ℎfor high motility CTLs 

𝑀𝑎𝑥𝐴𝑐𝑡 50 Actin activity value when CTLs occupy a new lattice site  
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Supplementary Data 

Additional supplementary data for this chapter are available online with the links provided below: 

S1 Table. Summary of parameters used in stochastic simulations. Data and code used in this 

project are available (http://doi.org/10.17605/OSF.IO/6GQYP). 

https://doi.org/10.1371/journal.pcbi.1007972.s001  

S1 Text. Fitting procedure and hypothesis comparison for multiple-hitting model and 

subpopulation model. 

https://doi.org/10.1371/journal.pcbi.1007972.s002 

S1 Video. Simulation of high-motility CTL, requiring 5 hits to kill targets. 

https://doi.org/10.1371/journal.pcbi.1007972.s009 

S2 Video. Simulation of low-motility CTL, requiring 5 hits to kill targets. 

https://doi.org/10.1371/journal.pcbi.1007972.s010 

In all videos, CTLs are shown in red whilst uncontacted targets are in grey. Contacted targets are 

shaded blue based on their share of total CTL:target interface, i.e. the probability that they will 

receive the next hit generated by the CTL. Targets are overlaid with the number of hits they have 

received. Elapsed simulation time (hours:minutes) is displayed in the upper right corner of the 

videos. 
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S1 Fig. Multiple hitting increases inherent variability in killing performance between individual 

CTLs. A-B) Distribution of killed target numbers after 12 hours (A) when intrinsic hitting rates 𝜆 (B) are 

drawn from a normal distribution with mean �̅� and standard deviation 𝜎𝜆 ( 𝜆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(�̅�, 𝜎𝜆) ). C) 

Overdispersion for the variance in killed targets in A relative to the variance expected for a Poisson 

distribution, i.e., the ratio of the variance (𝑣𝑎𝑟(𝑥)) to the mean (�̅�) number of targets killed after 12 hours 
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(vertical axis). The horizontal axis is the ratio of the standard deviation to the mean value of the intrinsic 

hitting rate.   

 

S2 Fig. Parameter estimation for Monte Carlo simulations with dynamic contacts. A) Estimated hitting 

rates (𝜆, represented by colour) for various combinations of  the number of hits (𝜂, rows), contact formation 

rates (kon, vertical axes in sub-panels), or  contact escape rates (koff, horizontal axes in sub-panels). Ten 
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repeats (across columns) were performed for the optimisation step, using Nw=103 CTLs per tested value of 

𝜆. After fitting we validated our results by performing Nw=104 simulations with each best fitting parameter 

combination, which is shown here. B) Root mean square residual errors for the best fitting parameter 

estimates (panel arrangement is as described in S2A Fig legend). Results are from validation simulations, 

using Nw=104 simulations per parameter combination.   

 

S3 Fig. Monte Carlo simulated CTL:target interaction durations amongst surviving and killed 

targets. (displayed on previous page) A) Sample density of killed targets in Monte Carlo simulations lasting 
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until all targets were killed, with different numbers of hits (𝜂, on different rows). B) Sample density of killed 

targets in Monte Carlo simulations stopped after 12 hours. C) Sample density of surviving targets, 

corresponding to the ‘absent’ portion of the distribution for killed targets in B. The red line in A and B is the 

probability density function fk  for a gamma distributed waiting time until targets receive η hits arriving at a 

constant rate 𝜆. For all S3 Fig: Nw=100, n=12  targets per well, all targets equally at risk. Parameter 

combinations used were: (𝜂 = 1, 𝜆 = 0.34;   𝜂 = 2, 𝜆 = 1.17;  𝜂 = 3, 𝜆 = 2.12;  𝜂 = 4, 𝜆 = 3.14;   𝜂 = 1, 𝜆 =

4.22). 
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S4 Fig. Maximum likelihood estimation for the killing rate of single-hitting CTLs. A) Poisson 

distributions for the number of targets used to start simulations in Fig. S4, with mean �̅� = 8 𝑜𝑟 16 as shown. 

B) Number of killed targets after 12 hours for Nw=2 x 3 x 1000 simulations, each group of Nw=1000  started 

with one of the 2 distributions in A, and with one of the 3 indicated parameter settings. C) Density of killed 

targets after 12 hours from ‘Mixed’ distributions resulting from 𝜂 = 1, 𝜆𝑳𝑹 = 𝟎. 2, 𝜆𝐻𝑅 = 0.7 and either �̅� =

8 𝑎𝑛𝑑 𝑚 = 0 (left panel), or �̅� = 16 𝑎𝑛𝑑 𝑚 = 0.67 (right panel). Note that for �̅� = 8 the killing of multiple-
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hitting CTLs became greater than the high rate subpopulation of single-hitting CTLs; �̅� = 8 was only used 

for testing robustness of the estimators on heavily censored data. D) Relative likelihood of candidate hitting 

rate estimates, �̂�, compared to the maximum likelihood estimate, �̂�𝑀𝐿, resulting from application of the 

Poisson estimator separately to each of the single-hitting (𝜂 = 1) datasets shown in B. Relative likelihood 

are shown either for the dataset in its entirety (dashed lines), or for a randomly selected sample of NW=10 

(solid lines). E) Examples of testing datasets derived from the multiple-hitting population (B, �̅� = 16, 𝜂 =

10) or from a mixture of single-hitting CTLs (B, �̅� = 16, 𝜂 = 1, where the true density of killed targets in the 

mixture distribution is in C). F) Relative likelihood of candidate hitting rate estimates, �̂�, compared to the 

maximum likelihood estimate, �̂�𝑀𝐿, for constrained fits constructed from either the subpopulation datasets, 

or from multiple-hitting datasets, for three samples with either Nw=30,100, or 1000 (note the multiple-hitting-

generated data (𝜂 = 10)  is therefore fully represented by the Nw= 1000 case). 
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S5 Fig. Testing for multiple-hitting CTLs versus subpopulations of single-hitting CTLs. A) Maximum 

likelihood estimates for the hitting rate, �̂�𝑀𝐿, with either the gamma or Poisson estimators, both constrained 

to a uniform single-hitting population (i.e. by forcing 𝜂 = 1 for the gamma estimator and by forcing 𝑚 = 1 

for the Poisson estimator). Each of the 2x4x10=80 points represents one of the 4x10 testing populations 

from S4E Fig (here indicated by facet labels), fit with both of our estimators (x-axis). B) Difference between 

the log likelihood function evaluated with the constrained versus unconstrained Gamma estimator 
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𝑙𝑜𝑔 𝐿(�̂�𝑀𝐿, �̂�𝑀𝐿)(dark bars); or with the constrained versus unconstrained Poisson estimator 

𝑙𝑜𝑔 𝐿(�̂�𝐻𝑅,𝑀𝐿 , �̂�𝐿𝑅,𝑀𝐿, �̂�𝑀𝐿)(light bars). Each of the 40 testing populations occupies one horizontal bar, with 

the details of the testing populations as indicated in facet labels. For the x-axis scaling (negative values are 

not possible), the relative size of the dark v.s. light bars is proportional to the strength of the evidence for 

the multiple-hitting hypothesis (dark bars) versus the subpopulation hypothesis (light bars). C) The 

constrained estimates for the hitting rate parameters, �̂�𝑀𝐿, (circles; also shown in A) or their unconstrained 

counterparts (red asterisks) for each testing population (points on x-axis). For the Gamma estimator (top 

row) the estimated �̂�𝑀𝐿is shown only where �̂�𝑀𝐿 > 1. For the Poisson estimator (bottom row), the 

unconstrained estimates for �̂�𝐻𝑅,𝑀𝐿 , �̂�𝐿𝑅,𝑀𝐿are above and below their counterpart constrained estimates, and 

the Gamma and Poisson estimators can be compared per population. D) Distribution of all cumulative 

interaction times, 𝜏 (killed and surviving targets shown separately in columns), for all Nw=1000 members of 

each of the 3 generating populations (as shown in S4B Fig). Although the 2 single-hitting populations were 

combined (upper row), the separate contribution of the 𝜆𝐻𝑅 (red) or 𝜆𝐿𝑅 (blue) populations is indicated by 

color. Multiple-hitting CTLs (green) are shown separately (bottom row).  
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S6 Fig. Maximum likelihood estimation for CPM simulations with a hitting threshold time. A-B) 

Heatmaps of the likelihood function around the maximum likelihood estimates for the killing parameters 𝜂 

and 𝜆, in CPM simulations under various conditions. In A, results are shown for various 𝜂 values (rows) and 

for both high-motility (left colum) and low-motility (right column) conditions for simulations with 15 minute 

hitting delay. In B, results are shown for high motility CTLs at all tested values of the delay (in range 0-15 

minutes, across columns). The horizontal and vertical lines in A-B mark the values of the CPM parameters 

used to generate the data for each group and the boundary enclosing the 95% confidence region is marked 

with a thin blue line.  


