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Chapter 1 

Introduction, aim and scope of the 

thesis 

Summary 

● Immunotherapies are an emerging treatment paradigm with potential application to many 

cancer types. 

● Currently, only a subset of patients responds to immunotherapy. Moreover, only a subset 

of cancers are currently treatable with immunotherapies. 

● Greater insight into T cell interactions with cancer will inform and improve 

immunotherapeutic strategies. 

● In this thesis, mathematical and computational models are applied to in vivo or in vitro 

datasets containing measurements of T cells. 

● By quantifying T cell interactions using models, this thesis aims to improve understanding 

of T cell behaviour and thus contribute to the rational design of immunotherapies.  

Immunotherapies for cancer 

The “immune surveillance” hypothesis was developed in the 1950’s and 1960’s in response to a 

number of studies which showed that mice could develop immunity to chemically induced 

tumours[1–3], as well as an increased understanding developed from homografts that the immune 

system could discriminate between cells which were native and non-native to the host[4]. The 

immune surveillance hypothesis was first proposed by Thomas Lewis[5] and later developed by 

Sir Macfarlane Burnet, who stated the following in 1964[6]:  

“The phenomena manifested in homograft immunity, tolerance and the like are based on the 

existence of a process of immunological surveillance, which eliminates cells with surface antigenic 

structure recognizably different from that normal to the individual. Any carcinogenic process will 

be successful only if this control can be overcome: (i) by inhibition of the effector process of control 

which is presumed to be by the direct action of immunologically competent cells; (ii) by loss of 

any antigens recognizable as foreign; (iii) by the development of growth potential capable of 

overriding any immunological control.” 

The immune surveillance hypothesis seemed to provide an explanation for several observations 

about the incidence of cancer in humans. Cancers occurred most frequently in the very young 

and old - when the immune system was just developing, or was in decline. Moreover, it had been 

noted that tumours occurred more frequently in patients with immune-deficiency disorders or 

those who had been administered immunosuppressive drugs[7]. In the following years a surge of 

interest followed, which is well exemplified by a rather pointed quote published in Immunological 

Reviews in 1971[8]:   

https://paperpile.com/c/u89w0Y/Dm0O+weMp+xORd
https://paperpile.com/c/u89w0Y/Pgs0
https://paperpile.com/c/u89w0Y/YUux
https://paperpile.com/c/u89w0Y/DtDZ
https://paperpile.com/c/u89w0Y/8dTA
https://paperpile.com/c/u89w0Y/GF4P
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“The theory of immunosurveillance of neoplasia is so well established that its further discussion 

and demonstration risk becoming rather boring. Any-one with the temerity to question its 

overriding importance is likely to be the subject of discrete but possibly well-deserved ridicule.” 

A body of scientists willing to risk ridicule apparently existed, because by the mid 1970’s the 

immune surveillance hypothesis was under attack. Other explanations for increased cancer 

frequency in immune-compromised humans were given: for example it was considered that 

cancer and immune-deficiency disorders may share a common cause, or that perhaps 

immunosuppressive drugs may themselves have had carcinogenic effects[9]. Studies which 

claimed to have demonstrated immunogenicity of tumours in mouse models were also called into 

question. Most evidence came from either allograft, chemically induced, or virally induced tumours 

in mice. It was argued that the process of allografting may have potentiated an immune 

response[10], or that tumours of chemical or viral origin were abnormally immunogenic and thus 

unrepresentative of spontaneously arising tumours[11]. The discovery of the nude mouse, which 

lacked a thymus and therefore was severely deficient in mature thymus cells (T cells)[12], 

provided evidence against the immune surveillance hypothesis: Nude mice showed no deficits in 

their ability to control chemically induced tumours[13] and no enhanced frequency of spontaneous 

tumour formation[14]. The immune surveillance hypothesis fell from favour, since the prevailing 

wisdom at the time was that the immune response simply discriminated between “self” and 

“nonself” - cancers were “self”, thus not usually recognised by the immune system. 

Several developments in the late 1980’s and the 1990’s led to renewed interest in the possibility 

that tumours could be recognised by the immune system. First, tumour infiltrating lymphocytes - 

isolated from human melanoma tumours and expanded ex vivo - exerted cytolytic activity against 

fresh melanoma cells[15]. Second, certain antigens were identified on tumour cells to which T 

cells reacted[16,17]. Third, perforin and interferon-γ (IFN-γ), known components of the immune 

system, were shown to be important in defending the host against tumorigenesis[18–21]. Fourth, 

tumours which developed in immunocompromised hosts were significantly more 

immunogenic[22], showing that tumours were sculpted by an immunogenic environment. 

On the basis of these results, new theoretical frameworks were proposed. The “laws of 

lymphotics” gave an alternative perspective on the requirements for T cell responses - rather than 

simply responding to “self” or “nonself”, it was proposed that the immune system should respond 

instead to “danger”[23]. The idea was that T cells exist with the capacity to recognise a broad 

range of antigens, including those derived from the host. However, when a T cell meets an 

antigen-presenting cell there is a requirement for costimulatory signals in order for the T cell to 

become activated. If these signals are not supplied, tolerance is promoted instead. A refined 

version of the immunosurveillance hypothesis, the immunoediting hypothesis, was put forward to 

explain 1) why immunocompetent individuals experience cancer and 2) why most tumours are 

immunologically silent[24]. In the immunoediting hypothesis, nascent tumours are surveilled by 

the immune system and may be eliminated. However, the immune system exerts a strong 

selection pressure on tumours, so that any tumour which has progressed enough to be clinically 

detectable must have acquired features which allow it to evade an immune response. The 

knowledge that tumours are potentially immunogenic, but have evolved strategies to suppress 

https://paperpile.com/c/u89w0Y/Qq9J
https://paperpile.com/c/u89w0Y/5snM
https://paperpile.com/c/u89w0Y/jnTx
https://paperpile.com/c/u89w0Y/CX8d
https://paperpile.com/c/u89w0Y/uD9O
https://paperpile.com/c/u89w0Y/Bxdl
https://paperpile.com/c/u89w0Y/5fdL
https://paperpile.com/c/u89w0Y/lLZT+YpDd
https://paperpile.com/c/u89w0Y/z3cd+YhJN+2vaH+eS0x
https://paperpile.com/c/u89w0Y/uhKp
https://paperpile.com/c/u89w0Y/kujb
https://paperpile.com/c/u89w0Y/ZHWr
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and evade an immune response, suggests that a broad range of cancers may be treatable if only 

the relevant immunosuppressive mechanisms can be identified and removed. 

Today, research efforts focussed on immunotherapy aim to characterise the interaction between 

the immune system and malignancies, to identify factors which may be limiting the immune 

response, and to devise strategies to augment the immune response to tumours. These strategies 

can be contextualised and understood by considering the “cancer-immunity cycle”[25]. The 

cancer-immunity cycle is a modern framework proposed to describe the self-reinforcing process 

which occurs after recognition of a malignancy by the immune system. Tumour antigens arrive in 

the draining lymph nodes where they are sampled by dendritic cells and then presented to naive 

CD8+ T cells. When presented with cognate antigen in the presence of appropriate costimulatory 

signals, T cells become activated and undergo rapid clonal expansion. The resulting clones 

recognize the antigen which triggered the expansion, thus they can attack the tumour. After T 

cells infiltrate the tumour and begin to kill tumour cells, further tumour antigens are released, 

thereby reinforcing the immune response. Any of these steps in the cancer-immunity cycle may 

be defective and could represent a therapeutic target. In a recent series of publications attempting 

to define the clinical immuno-oncology landscape[26–28], immunotherapeutic strategies for 

cancer treatment were stratified into 6 categories: 

1. Cell therapies utilise engineered T cells to attack cancer cells.  

2. T cell targeted immunomodulators modify T cell activity by activating stimulatory 

receptors or inhibiting suppressive receptors expressed on T cells. 

3. Other immunomodulators enhance immunity by modulating immune cells other than T 

cells (e.g. tumour associated macrophages).   

4. Cancer vaccines prime the immune system to respond to tumour-associated antigens[29] 

5. Oncolytic viruses selectively infect and kill tumour cells, resulting in subsequent 

engagement of the immune system at the site of the tumour[30]. 

6. CD3 targeted bispecific antibodies are designed to simultaneously engage tumour 

antigens and the T cell co-receptor CD3, thus redirecting the immune response towards 

a tumour[31]. 

Some of these strategies have now begun to see clinical success, and amongst the most 

successful have been a class of T cell targeted immunomodulators known as immune checkpoint 

inhibitors which function by suppressing inhibitory receptors expressed on T cells. Ipilimumab, an 

antibody targeting the inhibitory receptor cytotoxic-T-lymphocyte-antigen-4 (CTLA-4), was the first 

immune checkpoint inhibitor to be approved for treatment of advanced melanoma in 2011. A 

phase III study showed that median overall survival increased to 11.1 months in the study group 

treated with ipilimumab plus dacarbazine, compared with 9.1 months in the trial arm treated with 

dacarbazine plus placebo[32]. In another phase III study conducted at around the same time, 

ipilimumab was compared to the glycoprotein 100 vaccine and improved survival from 6.4 months 

to 10.1 months[33]. Since the approval of ipilimumab, other immune checkpoint inhibitors have 

been approved, most notably inhibitors for the programmed death receptor-1 (PD-1) and its 

ligand, PD-L1. The checkmate 067 trial (ClinicalTrials.gov Identifier: NCT01844505) initiated in 

2013 tested ipilimumab and the PD-1 inhibitor nivolumab either as monotherapies or in 

combination. At the recently published five year follow up, median overall survival was 19.9 

https://paperpile.com/c/u89w0Y/RTxH
https://paperpile.com/c/u89w0Y/Y0vy+SeQY+LPoy
https://paperpile.com/c/u89w0Y/yt6p
https://paperpile.com/c/u89w0Y/vhbf
https://paperpile.com/c/u89w0Y/wa7k
https://paperpile.com/c/u89w0Y/Ifp2
https://paperpile.com/c/u89w0Y/Na59
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months in the ipilimumab treated group; 36.9 months in the nivolumab treated group, and had not 

been reached in the combination treatment group (thus was greater than 60 months)[34]. 

Despite the extremely encouraging results demonstrated by the marked improvement in median 

survival time in the checkmate 067 study, not all patients responded to the therapy. Patient 

response was graded according to the RECIST criteria[35] which has 4 categories: Complete 

Response (CR), where no evidence of the disease remains; Partial Response (PR), where there 

is a measurable reduction in disease burden and no new lesions; Progressive Disease (PD), 

where there is a greater than 50% increase in the size of any existing lesion or there are new 

lesions; Stable Disease (SD), where none of the three other criteria have been met. The best 

responses achieved for the ipilimumab plus nivolumab combination in the checkmate 067 study 

were[34]: CR - 22%; PR - 36%; SD - 12%; PD - 24%, thus a significant number of patients did not 

respond to treatment. Indeed, a significant outstanding question in the field of immunotherapy is 

whether biomarkers can be found which predict which patients are most likely to benefit from 

treatment. Another question is whether other combinations exist that might yield enhanced clinical 

benefit, for example other immune checkpoints such as TIM-3 and LAG-3 which are both under 

investigation in combination with PD-1 inhibitors[36]. Further, although most successful so far in 

melanoma, immunotherapies are currently also employed in many other other types of cancer 

e.g. bladder cancer[37] and there is work to be done to expand the scope of immunotherapies 

further to other types of tumour. Improvements in our understanding of the interactions of T cells 

with  tumours will be vital for the rational design of immunotherapies. 

The role of Computational Models  

Theories provide an objective framework for interpreting experimental data[38]. An important 

feature of theories is that by logically following their consequences, predictions can be made. The 

iterative process of developing and revising theories, and then testing their consequences, is the 

basis for advancement of scientific knowledge. Therefore, theories are an indispensable 

component of the scientific method. Mathematical and computational models can be regarded as 

a class of theory, whose predictions are quantitative, specific, and precise. As such, mathematical 

modelling of the interaction between cancer and the immune system has an important role in 

guiding experimentation and generating new hypotheses. Mathematical modelling can 

incorporate processes believed to explain the dynamics of the system, and test whether these 

are indeed sufficient to explain what is actually observed. If the developed model can explain all 

the dynamics, the model is a cheap and convenient tool to study and predict the expected effect 

of different perturbations to the system. If the model cannot explain the system dynamics, new 

processes can be introduced into the model. In either case, the model should generate new and 

specific predictions which can be experimentally verified, in turn leading to new knowledge.  

Computational Models of Cytotoxic T Cells  

Computational models have been developed to address several of the obstacles facing the 

development of successful immunotherapies[39]. Examples are models which have identified 

patient specific parameters such as antigenicity[40] or tumour size[41] which might be predictive 

of response to treatment. Other models have been developed to identify optimal dosage and 

https://paperpile.com/c/u89w0Y/NfhL
https://paperpile.com/c/u89w0Y/j33m
https://paperpile.com/c/u89w0Y/NfhL
https://paperpile.com/c/u89w0Y/KrJf
https://paperpile.com/c/u89w0Y/yOrE
https://paperpile.com/c/u89w0Y/AR6f
https://paperpile.com/c/u89w0Y/QEya
https://paperpile.com/c/u89w0Y/KHEf
https://paperpile.com/c/u89w0Y/qWKx
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scheduling for immunotherapies[42], or to identify promising combination strategies for 

immunotherapeutic treatments[43]. Different model formalisms are typically employed depending 

on the studied phenomena of interest. For example, for the modelling of homogenous cell 

populations ordinary differential equation (ODE) models are typically applied[40,43,44]. When 

modelling populations of cells which are spatially heterogeneous but homogeneous otherwise, 

partial differential equation (PDE) models are employed[45,46]. When heterogeneous populations 

of cells are under consideration, agent based models (ABM) are applicable[47,48]. Different types 

of ABM are typically employed depending on the granularity required to describe the phenomena 

of interest. Cells are often represented as entities on  two-dimensional or three-dimensional 

lattices, with a set of rules specified to determine permissible interactions between individual 

entities. When only the spatial location of a cell is of interest each cell may be adequately 

described by assigning it only a single lattice site[49,50]. In contrast, when a more realistic 

description of the interaction between individual cells is desired[51,52], formalisms such as the 

cellular Potts model[53] may be employed in which many lattice sites are assigned to represent 

a single cell. 

In this thesis, we develop ODE models and ABMs of Cytotoxic T Lymphocytes (CTLs), otherwise 

known as “killer T cells” or CD8+ T cells. CTLs are key players in the immune response, since 

their specificity combined with their ability to form a long lasting memory holds promise for long 

lasting and highly targeted interventions. In broad terms, there are only two ways by which a 

tumour may conceivably be controlled. Tumour cells may either be killed, or their proliferation may 

be suppressed. This leads to a very simple calculus for describing the evolution of a tumour over 

time, when considering only the dynamics of the tumour: 

 𝑑𝑇

𝑑𝑡
= (𝑔 − 𝑑)𝑇, Eq. 1 

where 𝑇 is the number of tumour cells, 𝑔 is the proliferation rate of the tumour cells, and 𝑑 is the 

death rate of tumour cells. Noting that 𝑔 and 𝑑 are not necessarily constant and may depend on 

other cell types (see Eq’s 2-3 below), the model is extremely general and can be adapted to a 

wide range of realistic scenarios, and assumes only that “tumour cells” can be clearly defined and 

separated from normal (non malignant) cells. The model can exhibit 4 different types of behaviour 

corresponding to biologically relevant scenarios and analogous to the RECIST criteria for 

evaluating tumour response to therapy[35]. If 𝑔 > 𝑑, then tumour cells proliferate faster than they 

die, so the tumour is progressing analogously to the PD RECIST evaluation. When 𝑔 = 𝑑, the 

proliferation rate of tumour cells is exactly matched by their death rate, analogously to the SD 

RECIST evaluation. In the case where 𝑔 < 𝑑, tumour cells die at a rate greater than they 

proliferate, so the tumour is in a regressing state, analogously to the PR RECIST evaluation. 

Should the tumour remain in the regressing state for a sufficient duration, then 𝑇 → 0 and the 

tumour will be eliminated, corresponding to the CR RECIST evaluation. 

In order to introduce CTLs into this calculus, our general strategy is to consider the growth and 

death rates of the tumour as functions depending on the presence of CTLs inside the tumour, 

which are denoted 𝐸 (effectors) throughout this thesis: 

https://paperpile.com/c/u89w0Y/Ss5f
https://paperpile.com/c/u89w0Y/rkHv
https://paperpile.com/c/u89w0Y/KHEf+rkHv+K4or
https://paperpile.com/c/u89w0Y/78WI+XqsS
https://paperpile.com/c/u89w0Y/KKNU+DFZI
https://paperpile.com/c/u89w0Y/ZqIt+HA91
https://paperpile.com/c/u89w0Y/Df8N+hJ4C
https://paperpile.com/c/u89w0Y/llqv
https://paperpile.com/c/u89w0Y/j33m
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 𝑔 = 𝑓𝑔(𝐸, . . . ), Eq. 2 

 𝑑 = 𝑓𝑑(𝐸, . . . ), Eq. 3 

thus 𝑓𝑔 and 𝑓𝑑 are functions representing the tumour growth and death rates (respectively), 

modified by the presence of CTLs. Our methodology is to study experimental data in which 

measurements of 𝐸 and 𝑇 are available or can be estimated. We will then attempt to determine 

forms for the functions 𝑓𝑔 and 𝑓𝑑  which are capable of matching the measurements made from 

the experimental data, subject to any other constraints which can be placed on the model. The 

resulting models should contain the minimum possible set of elements required to describe a 

given set of observations. Thus we will be able to test whether known interactions are minimally 

sufficient to quantitatively describe tumour progression in the presence of CTLs. We will also be 

able to assess, among a group of interactions, which play the greatest role in control of a tumour. 

Finally, if known interactions do not appear to be consistent with observed dynamics, our models 

will provide insights into the type of interactions which might explain the data, which will lead to 

new hypotheses and directions for experimental work. 

Research questions  

Although the mathematical framework we have just established is simple, within it there lies scope 

for considerable complexity due to the plethora of pathways through which CTLs may be able to 

modify the proliferation or death rate of tumour cells. Within this scope, a number of specific 

research questions can be identified which will be addressed in this thesis. Below, the background 

of these questions is discussed, after which a thesis outline is provided. 

How can the rate at which CTLs kill target cells be quantified and what is the rate 

at which CTLs kill tumour cells? 

The canonical function of CTLs is their ability to recognise and kill antigen presenting targets. 

CTLs are able to do this in a number of ways: secretion of the cytotoxic perforin and granzyme 

molecules towards the target cell membrane[54,55], induction of death via Fas-ligand[20,56,57], 

or release of soluble factors such as tumour necrosis factor which may facilitate target cell 

death[58]. Although the ability to directly kill antigen presenting cells is perhaps the most well 

recognised function of CTLs, quantifying this behaviour may be difficult. For example, it has been 

reported that CTLs can require multiple hits to kill target cells[59,60] (the ‘multiple-hitting 

hypothesis’), which can influence the dynamics of the killing process[51,61] and thus may hamper 

accurate determination of the underlying killing rate of the CTLs. In this thesis we devote 

substantial effort to characterising the killing rate of CTLs.  

  

https://paperpile.com/c/u89w0Y/t48r+Z9Hb
https://paperpile.com/c/u89w0Y/jnN9+2vaH+MzK4
https://paperpile.com/c/u89w0Y/Jdkd
https://paperpile.com/c/u89w0Y/cDx5+kkYn
https://paperpile.com/c/u89w0Y/Df8N+2eIg
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How important is the contribution of CTL mediated killing towards control of 

tumours? 

In addition to the “direct” means of killing tumour cells discussed in the previous paragraph, the 

arrival of CTLs at the tumour may lead to further downstream events which increase the rate at 

which tumour cells die - for example by recruitment of innate effectors into the tumour which go 

on to kill tumour cells[62]. Thus in this thesis we aim to quantify the importance of direct killing of 

tumour cells by CTLs, and ask whether such killing is sufficient to account for the reduction in 

tumour growth following adoptive transfer of CTLs.  

How important are the antiproliferative effects that CTLs exert upon tumour cells? 

In addition to increasing the rate at which tumour cells die, there are also reported means by 

which CTLs may alter the growth rate of tumour cells. Activated CTLs secrete interferon-γ, which 

has an antiproliferative effect on some tumour cells[63–65]. Additionally, the presence of CTLs 

inside the tumour has been linked to destruction of tumour vasculature which should exert an 

antiproliferative effect on tumour cells by depriving them of nutrients required for proliferation[66]. 

Thus, in this thesis we aim to identify and quantify the importance of antiproliferative effects 

exerted by CTLs upon tumour CTLs towards tumour regression. 

What is the effect of CTL stimulation on their in vivo functionality? 

Since there is significant clinical interest in modulating the functions of CTLs to improve their anti-

tumoural potential, we also ask how CTL functions could be modulated in vivo. In this thesis, we 

address that question in two ways. First, we study how CTL functions are modified after 

administration of a stimulating compound. For this we analyse a series of experiments wherein 

rates relevant for various aspects of the CTL:tumour interaction (i.e. CTL and tumour cell 

apoptosis/mitosis rates) are recorded in the presence or absence of agonist antibody anti-CD137. 

Initial clinical trials of such antibodies as a potential immune stimulatory therapy led to liver 

damage due to an inflammatory response in that organ, yet modified approaches that aim to target 

CD137 agonists specifically to the tumour are ongoing, e.g., by using bispecific constructs [67,68].  

What is the contribution of immune checkpoint molecules towards CTL 

exhaustion?  

In our second approach to understanding potential for modulating CTL function, we studied the 

development of the “exhausted” phenotype among adoptively transferred CTLs. CTL exhaustion 

is characterised by a progressive loss of effector function alongside upregulation of inhibitory 

receptors among chronically stimulated populations of CTLs[69–71]. CTL exhaustion is currently 

of particular relevance due to the large number of immune checkpoint inhibitors currently being 

explored as immunotherapeutic strategies which aim to inhibit suppressive receptors expressed 

on CTLs and thereby reinvigorate exhausted CTLs. In this thesis we examine how CTL effector 

functions in vivo are diminished as the expression of several well known immune molecules 

increases, in order to characterise the contribution of these different immune checkpoints towards 

CTL exhaustion. 

https://paperpile.com/c/u89w0Y/SbCM
https://paperpile.com/c/u89w0Y/Y9zw+C7XA+IizJ
https://paperpile.com/c/u89w0Y/S5r8
https://paperpile.com/c/u89w0Y/ebNF+BJYN
https://paperpile.com/c/u89w0Y/cy0p+yfih+WZlj
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Thesis outline 

In the first section of this thesis (chapter 2), we study the killing behaviour of individual CTLs using 

stochastic models. Moreover, we develop statistical procedures which could be used to test for 

the multiple hitting hypothesis in future. In the second section of the thesis (chapters 3-5), we 

apply models to various in vivo datasets where CTLs were observed after adoptive transfer into 

tumours. By integrating data from different modalities to estimate values for key parameters which 

should determine tumour progression (e.g. the killing rate of CTLs and the proliferation rate of the 

tumour), we investigate the relationship between the estimated parameters and the progression 

of the tumours. This thesis concludes with a discussion of our findings, limitations of the work, 

and future research directions (chapter 6).   

In chapter 2, we develop stochastic models of individual CTLs in order to better characterise the 

expected killing kinetics of multiple hitting CTLs. With the aid of these models, we re-examined a 

previously published in vitro dataset where CTLs were confined with antigen presenting targets 

and their killing kinetics were monitored over a period of 12 hours. In that dataset, the killing 

kinetics of the CTLs could not be explained by existing models. Therefore, a subpopulation of 

“high rate killer” CTLs had been invoked to explain the kinetics, despite the fact that no other 

evidence could be provided for such a hypothesis. Applying our models to this data, we show that 

the multiple hitting hypothesis was sufficient to account for the unexplained CTL kinetics, without 

any requirement to invoke a subpopulation of “high rate killer” CTLs. Moreover, we developed 

statistical procedures to be used for identification of multiple hitting CTLs in imaging data, and 

suggested experimental strategies for determining the presence of multiple hitting in future 

experiments. 

In chapter 3, we study progression of a murine thymoma after adoptive transfer of CTLs. We 

parameterised spatial and nonspatial models with estimates of tumour proliferation rate, CTL 

killing rate, and estimates of the density of CTLs inside the tumours. In doing so, we showed that 

the reported killing rate of the CTLs was insufficient to account for the tumour regression that 

occurred in the experimental data. After also investigating whether uncertainties in the killing 

estimate due to multiple hitting could account for the apparent insufficiency in killing, we found 

that the discrepancy between the estimated versus observed rates of killing were too large to 

permit this explanation. Using a spatially explicit agent based model, we showed how an 

antiproliferative effect exerted by CTLs on the tumour could account for the discrepancy. 

In chapter 4, we develop ordinary differential equation models applied to an experimental murine 

model of B16F10 melanoma. In these experiments, CTLs were adoptively transferred to 

melanoma bearing mice in the presence or absence of a stimulating antibody targeting the CD137 

receptor. Our analysis revealed an extremely low killing rate of CTLs, and our models 

demonstrated that such a low killing rate combined with relatively low infiltration of CTLs should 

not have any important impact on tumour progression whatsoever. We also investigated the 

mechanisms underpinning the reduced rate of tumour progression in mice treated with CTLs 

alongside the stimulatory CD137 antibody. We found that CD137 antibody stimulation did not 

enhance the killing of transferred CTLs, but rather found that an improved antiproliferative effect 

or enhanced recruitment of CTLs to the site of the tumour was most compatible with the data. 
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In chapter 5, we again apply ordinary differential equation models applied to another experimental 

murine model of B16F10 melanoma following adoptive transfer of CTLs. In this series of 

experiments, a Fucci sensor was used allowing tracking of melanoma cells through the cell cycle. 

Additionally, transcript data was available to quantify the production of IFN-γ inside the tumour. 

These data allowed us to refine the models developed in chapters 3-4 to include an explicit 

description of the cell cycle and the effect of IFN-γ thereupon. The results obtained with this 

second B16F10 dataset agreed with those in chapter 4, i.e. an extremely low killing rate of CTLs 

meant that the IFN-γ mediated antiproliferative effect of CTLs had the most substantial effect on 

tumour progression. Moreover, we found evidence of the development of an exhausted state 

amongst the tumour infiltrating CTLs, and using transcriptomics data we characterised the 

immune checkpoint molecules which best defined the development of the exhausted state 

amongst tumour infiltrating CTLs. This thesis concludes with a discussion of our findings, 

limitations of the work, and future research directions (chapter 6). 

 

1.  Gross L. Intradermal Immunization of C3H Mice against a Sarcoma That Originated in an 

Animal of the Same Line. Cancer Res. 1943;3: 326–333. 

2.  Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer 

Inst. 1957;18: 769–778. 

3.  Foley EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain 

of origin. Cancer Res. 1953;13: 835–837. 

4.  Medawar PB. The Croonian Lecture: The homograft reaction. Proceedings of the Royal 

Society of London Series B - Biological Sciences. 1958;149: 145–166. 

5.  Thomas L, Lawrence HS. Cellular and humoral aspects of the hypersensitive states. New 

York: Hoeber-Harper. 1959; 529–532. 

6.  Burnet M. IMMUNOLOGICAL FACTORS IN THE PROCESS OF CARCINOGENESIS. Br 

Med Bull. 1964;20: 154–158. 

7.  Keast D. Immunosurveillance and cancer. Lancet. 1970;2: 710–712. 

8.  Prehn RT, Lappé MA. An immunostimulation theory of tumor development. Transplant 

Rev. 1971;7: 26–54. 

9.  Doll R, Kinlen L. Immunosurveillance and cancer: epidemiological evidence. Br Med J. 

1970;4: 420–422. 

10.  Andrews EJ. Failure of immunosurveillance against chemically induced in situ tumors in 

mice. J Natl Cancer Inst. 1974;52: 729–732. 

http://paperpile.com/b/u89w0Y/Dm0O
http://paperpile.com/b/u89w0Y/Dm0O
http://paperpile.com/b/u89w0Y/weMp
http://paperpile.com/b/u89w0Y/weMp
http://paperpile.com/b/u89w0Y/xORd
http://paperpile.com/b/u89w0Y/xORd
http://paperpile.com/b/u89w0Y/Pgs0
http://paperpile.com/b/u89w0Y/Pgs0
http://paperpile.com/b/u89w0Y/YUux
http://paperpile.com/b/u89w0Y/YUux
http://paperpile.com/b/u89w0Y/DtDZ
http://paperpile.com/b/u89w0Y/DtDZ
http://paperpile.com/b/u89w0Y/8dTA
http://paperpile.com/b/u89w0Y/GF4P
http://paperpile.com/b/u89w0Y/GF4P
http://paperpile.com/b/u89w0Y/Qq9J
http://paperpile.com/b/u89w0Y/Qq9J
http://paperpile.com/b/u89w0Y/5snM
http://paperpile.com/b/u89w0Y/5snM


10 
 

11.  Hewitt HB, Blake ER, Walder AS. A critique of the evidence for active host defence against 

cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br J Cancer. 

1976;33: 241–259. 

12.  Pantelouris EM. Absence of thymus in a mouse mutant. Nature. 1968;217: 370–371. 

13.  Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient 

athymic-nude mice. Science. 1974;183: 534–536. 

14.  Rygaard J, Povlsen CO. The mouse mutant nude does not develop spontaneous tumours. 

An argument against immunological surveillance. Acta Pathol Microbiol Scand B Microbiol 

Immunol. 1974;82: 99–106. 

15.  Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic 

immune responses against autologous tumor in humans bearing malignant melanoma. J 

Immunol. 1987;138: 989–995. 

16.  Barnd DL, Lan MS, Metzgar RS, Finn OJ. Specific, major histocompatibility complex-

unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad 

Sci U S A. 1989;86: 7159–7163. 

17.  van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, 

et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. 

Science. 1991;254: 1643–1647. 

18.  Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to 

rejection of tumor cells expressing dominant negative IFNγ receptors. Immunity. 1994;1: 447–

456. 

19.  Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, et al. Demonstration of 

an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl 

Acad Sci U S A. 1998;95: 7556–7561. 

20.  van den Broek ME, Kägi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, et al. Decreased 

tumor surveillance in perforin-deficient mice. J Exp Med. 1996;184: 1781–1790. 

21.  Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediated 

cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med. 2000;192: 755–760. 

22.  Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and 

lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 

2001;410: 1107–1111. 

23.  Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12: 

991–1045. 

http://paperpile.com/b/u89w0Y/jnTx
http://paperpile.com/b/u89w0Y/jnTx
http://paperpile.com/b/u89w0Y/jnTx
http://paperpile.com/b/u89w0Y/CX8d
http://paperpile.com/b/u89w0Y/uD9O
http://paperpile.com/b/u89w0Y/uD9O
http://paperpile.com/b/u89w0Y/Bxdl
http://paperpile.com/b/u89w0Y/Bxdl
http://paperpile.com/b/u89w0Y/Bxdl
http://paperpile.com/b/u89w0Y/5fdL
http://paperpile.com/b/u89w0Y/5fdL
http://paperpile.com/b/u89w0Y/5fdL
http://paperpile.com/b/u89w0Y/lLZT
http://paperpile.com/b/u89w0Y/lLZT
http://paperpile.com/b/u89w0Y/lLZT
http://paperpile.com/b/u89w0Y/YpDd
http://paperpile.com/b/u89w0Y/YpDd
http://paperpile.com/b/u89w0Y/YpDd
http://paperpile.com/b/u89w0Y/z3cd
http://paperpile.com/b/u89w0Y/z3cd
http://paperpile.com/b/u89w0Y/z3cd
http://paperpile.com/b/u89w0Y/YhJN
http://paperpile.com/b/u89w0Y/YhJN
http://paperpile.com/b/u89w0Y/YhJN
http://paperpile.com/b/u89w0Y/2vaH
http://paperpile.com/b/u89w0Y/2vaH
http://paperpile.com/b/u89w0Y/eS0x
http://paperpile.com/b/u89w0Y/eS0x
http://paperpile.com/b/u89w0Y/uhKp
http://paperpile.com/b/u89w0Y/uhKp
http://paperpile.com/b/u89w0Y/uhKp
http://paperpile.com/b/u89w0Y/kujb
http://paperpile.com/b/u89w0Y/kujb


11 
 

24.  Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from 

immunosurveillance to tumor escape. Nat Immunol. 2002;3: 991–998. 

25.  Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 

2013;39: 1–10. 

26.  Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-

oncology landscape. Ann Oncol. 2018;29: 84–91. 

27.  Tang J, Pearce L, O’Donnell-Tormey J, Hubbard-Lucey VM. Trends in the global immuno-

oncology landscape. Nat Rev Drug Discov. 2018;17: 783–784. 

28.  Xin Yu J, Hubbard-Lucey VM, Tang J. Immuno-oncology drug development goes global. 

Nat Rev Drug Discov. 2019;18: 899–900. 

29.  Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol. 2003;3: 

630–641. 

30.  Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy 

drugs. Nat Rev Drug Discov. 2015;14: 642–662. 

31.  Yuraszeck T, Kasichayanula S, Benjamin JE. Translation and Clinical Development of 

Bispecific T-cell Engaging Antibodies for Cancer Treatment. Clin Pharmacol Ther. 2017;101: 

634–645. 

32.  Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus 

dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364: 2517–2526. 

33.  Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved 

survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363: 711–723. 

34.  Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-Year 

Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 

2019;381: 1535–1546. 

35.  Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New 

response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J 

Cancer. 2009;45: 228–247. 

36.  Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, et al. Combining Immune 

Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in 

Melanoma. Front Immunol. 2019;10: 453. 

37.  Ghatalia P, Zibelman M, Geynisman DM, Plimack E. Approved checkpoint inhibitors in 

bladder cancer: which drug should be used when? Ther Adv Med Oncol. 2018;10: 

1758835918788310. 

http://paperpile.com/b/u89w0Y/ZHWr
http://paperpile.com/b/u89w0Y/ZHWr
http://paperpile.com/b/u89w0Y/RTxH
http://paperpile.com/b/u89w0Y/RTxH
http://paperpile.com/b/u89w0Y/Y0vy
http://paperpile.com/b/u89w0Y/Y0vy
http://paperpile.com/b/u89w0Y/SeQY
http://paperpile.com/b/u89w0Y/SeQY
http://paperpile.com/b/u89w0Y/LPoy
http://paperpile.com/b/u89w0Y/LPoy
http://paperpile.com/b/u89w0Y/yt6p
http://paperpile.com/b/u89w0Y/yt6p
http://paperpile.com/b/u89w0Y/vhbf
http://paperpile.com/b/u89w0Y/vhbf
http://paperpile.com/b/u89w0Y/wa7k
http://paperpile.com/b/u89w0Y/wa7k
http://paperpile.com/b/u89w0Y/wa7k
http://paperpile.com/b/u89w0Y/Ifp2
http://paperpile.com/b/u89w0Y/Ifp2
http://paperpile.com/b/u89w0Y/Na59
http://paperpile.com/b/u89w0Y/Na59
http://paperpile.com/b/u89w0Y/NfhL
http://paperpile.com/b/u89w0Y/NfhL
http://paperpile.com/b/u89w0Y/NfhL
http://paperpile.com/b/u89w0Y/j33m
http://paperpile.com/b/u89w0Y/j33m
http://paperpile.com/b/u89w0Y/j33m
http://paperpile.com/b/u89w0Y/KrJf
http://paperpile.com/b/u89w0Y/KrJf
http://paperpile.com/b/u89w0Y/KrJf
http://paperpile.com/b/u89w0Y/yOrE
http://paperpile.com/b/u89w0Y/yOrE
http://paperpile.com/b/u89w0Y/yOrE


12 
 

38.  Longo G, Soto AM. Why do we need theories? Prog Biophys Mol Biol. 2016;122: 4–10. 

39.  Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. Addressing current challenges in 

cancer immunotherapy with mathematical and computational modelling. J R Soc Interface. 

2017;14. doi:10.1098/rsif.2017.0150 

40.  Kirschner D, Panetta JC. Modeling immunotherapy of the tumor--immune interaction. J 

Math Biol. 1998;37: 235–252. 

41.  Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for 

malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol 

Immunother. 2008;57: 425–439. 

42.  Ghaffari A, Naserifar N. Optimal therapeutic protocols in cancer immunotherapy. Comput 

Biol Med. 2010;40: 261–270. 

43.  de Pillis LG, Gu W, Radunskaya AE. Mixed immunotherapy and chemotherapy of tumors: 

modeling, applications and biological interpretations. J Theor Biol. 2006;238: 841–862. 

44.  Talkington A, Dantoin C, Durrett R. Ordinary Differential Equation Models for Adoptive 

Immunotherapy. Bull Math Biol. 2018;80: 1059–1083. 

45.  Lai X, Friedman A. Combination therapy of cancer with cancer vaccine and immune 

checkpoint inhibitors: A mathematical model. PLoS One. 2017;12: e0178479. 

46.  Matzavinos A, Chaplain MAJ, Kuznetsov VA. Mathematical modelling of the spatio-

temporal response of cytotoxic T-lymphocytes to a solid tumour. Math Med Biol. 2004;21: 1–34. 

47.  Gong C, Milberg O, Wang B, Vicini P, Narwal R, Roskos L, et al. A computational 

multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 

and PDL1 inhibition. J R Soc Interface. 2017;14. doi:10.1098/rsif.2017.0320 

48.  Kim PS, Lee PP. Modeling protective anti-tumor immunity via preventative cancer 

vaccines using a hybrid agent-based and delay differential equation approach. PLoS Comput Biol. 

2012;8: e1002742. 

49.  Gerlee P, Anderson ARA. An evolutionary hybrid cellular automaton model of solid tumour 

growth. J Theor Biol. 2007;246: 583–603. 

50.  Monteagudo Á, Santos J. Treatment Analysis in a Cancer Stem Cell Context Using a 

Tumor Growth Model Based on Cellular Automata. PLoS One. 2015;10: e0132306. 

51.  Gadhamsetty S, Marée AFM, Beltman JB, de Boer RJ. A general functional response of 

cytotoxic T lymphocyte-mediated killing of target cells. Biophys J. 2014;106: 1780–1791. 

http://paperpile.com/b/u89w0Y/AR6f
http://paperpile.com/b/u89w0Y/QEya
http://paperpile.com/b/u89w0Y/QEya
http://paperpile.com/b/u89w0Y/QEya
http://dx.doi.org/10.1098/rsif.2017.0150
http://paperpile.com/b/u89w0Y/KHEf
http://paperpile.com/b/u89w0Y/KHEf
http://paperpile.com/b/u89w0Y/qWKx
http://paperpile.com/b/u89w0Y/qWKx
http://paperpile.com/b/u89w0Y/qWKx
http://paperpile.com/b/u89w0Y/Ss5f
http://paperpile.com/b/u89w0Y/Ss5f
http://paperpile.com/b/u89w0Y/rkHv
http://paperpile.com/b/u89w0Y/rkHv
http://paperpile.com/b/u89w0Y/K4or
http://paperpile.com/b/u89w0Y/K4or
http://paperpile.com/b/u89w0Y/78WI
http://paperpile.com/b/u89w0Y/78WI
http://paperpile.com/b/u89w0Y/XqsS
http://paperpile.com/b/u89w0Y/XqsS
http://paperpile.com/b/u89w0Y/KKNU
http://paperpile.com/b/u89w0Y/KKNU
http://paperpile.com/b/u89w0Y/KKNU
http://dx.doi.org/10.1098/rsif.2017.0320
http://paperpile.com/b/u89w0Y/DFZI
http://paperpile.com/b/u89w0Y/DFZI
http://paperpile.com/b/u89w0Y/DFZI
http://paperpile.com/b/u89w0Y/ZqIt
http://paperpile.com/b/u89w0Y/ZqIt
http://paperpile.com/b/u89w0Y/HA91
http://paperpile.com/b/u89w0Y/HA91
http://paperpile.com/b/u89w0Y/Df8N
http://paperpile.com/b/u89w0Y/Df8N


13 
 

52.  Gadhamsetty S, Marée AFM, de Boer RJ, Beltman JB. Tissue Dimensionality Influences 

the Functional Response of Cytotoxic T Lymphocyte-Mediated Killing of Targets. Front Immunol. 

2016;7: 668. 

53.  Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional 

extended Potts model. Phys Rev Lett. 1992;69: 2013–2016. 

54.  Cullen SP, Brunet M, Martin SJ. Granzymes in cancer and immunity. Cell Death Differ. 

2010;17: 616–623. 

55.  Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction 

and human pathology. Nat Rev Immunol. 2015;15: 388–400. 

56.  Caldwell SA, Ryan MH, McDuffie E, Abrams SI. The Fas/Fas ligand pathway is important 

for optimal tumor regression in a mouse model of CTL adoptive immunotherapy of experimental 

CMS4 lung metastases. J Immunol. 2003;171: 2402–2412. 

57.  Zhu Y, Huang B, Shi J. Fas ligand and lytic granule differentially control cytotoxic dynamics 

of natural killer cell against cancer target. Oncotarget. 2016;7: 47163–47172. 

58.  Faletti L, Peintner L, Neumann S, Sandler S, Grabinger T, Mac Nelly S, et al. TNFα 

sensitizes hepatocytes to FasL-induced apoptosis by NFκB-mediated Fas upregulation. Cell 

Death Dis. 2018;9: 909. 

59.  Caramalho I, Faroudi M, Padovan E, Müller S, Valitutti S. Visualizing CTL/melanoma cell 

interactions: multiple hits must be delivered for tumour cell annihilation. J Cell Mol Med. 2009;13: 

3834–3846. 

60.  Halle S, Keyser KA, Stahl FR, Busche A, Marquardt A, Zheng X, et al. In Vivo Killing 

Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell 

Cooperativity. Immunity. 2016;44: 233–245. 

61.  Gadhamsetty S, Marée AFM, Beltman JB, de Boer RJ. A Sigmoid Functional Response 

Emerges When Cytotoxic T Lymphocytes Start Killing Fresh Target Cells. Biophys J. 2017;112: 

1221–1235. 

62.  Nagoshi M, Sadanaga N, Joo HG, Goedegebuure PS, Eberlein TJ. Tumor-specific 

cytokine release by donor T cells induces an effective host anti-tumor response through 

recruitment of host naive antigen presenting cells. Int J Cancer. 1999;80: 308–314. 

63.  Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY. Cell growth arrest and induction 

of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science. 1996;272: 

719–722. 

http://paperpile.com/b/u89w0Y/hJ4C
http://paperpile.com/b/u89w0Y/hJ4C
http://paperpile.com/b/u89w0Y/hJ4C
http://paperpile.com/b/u89w0Y/llqv
http://paperpile.com/b/u89w0Y/llqv
http://paperpile.com/b/u89w0Y/t48r
http://paperpile.com/b/u89w0Y/t48r
http://paperpile.com/b/u89w0Y/Z9Hb
http://paperpile.com/b/u89w0Y/Z9Hb
http://paperpile.com/b/u89w0Y/jnN9
http://paperpile.com/b/u89w0Y/jnN9
http://paperpile.com/b/u89w0Y/jnN9
http://paperpile.com/b/u89w0Y/MzK4
http://paperpile.com/b/u89w0Y/MzK4
http://paperpile.com/b/u89w0Y/Jdkd
http://paperpile.com/b/u89w0Y/Jdkd
http://paperpile.com/b/u89w0Y/Jdkd
http://paperpile.com/b/u89w0Y/cDx5
http://paperpile.com/b/u89w0Y/cDx5
http://paperpile.com/b/u89w0Y/cDx5
http://paperpile.com/b/u89w0Y/kkYn
http://paperpile.com/b/u89w0Y/kkYn
http://paperpile.com/b/u89w0Y/kkYn
http://paperpile.com/b/u89w0Y/2eIg
http://paperpile.com/b/u89w0Y/2eIg
http://paperpile.com/b/u89w0Y/2eIg
http://paperpile.com/b/u89w0Y/SbCM
http://paperpile.com/b/u89w0Y/SbCM
http://paperpile.com/b/u89w0Y/SbCM
http://paperpile.com/b/u89w0Y/Y9zw
http://paperpile.com/b/u89w0Y/Y9zw
http://paperpile.com/b/u89w0Y/Y9zw


14 
 

64.  Harvat BL, Seth P, Jetten AM. The role of p27Kip1 in gamma interferon-mediated growth 

arrest of mammary epithelial cells and related defects in mammary carcinoma cells. Oncogene. 

1997;14: 2111–2122. 

65.  Matsushita H, Hosoi A, Ueha S, Abe J, Fujieda N, Tomura M, et al. Cytotoxic T 

lymphocytes block tumor growth both by lytic activity and IFNγ-dependent cell-cycle arrest. 

Cancer Immunol Res. 2015;3: 26–36. 

66.  Schietinger A, Arina A, Liu RB, Wells S, Huang J, Engels B, et al. Longitudinal confocal 

microscopy imaging of solid tumor destruction following adoptive T cell transfer. 

Oncoimmunology. 2013;2: e26677. 

67.  Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J 

Cancer. 2016;54: 112–119. 

68.  Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. New emerging targets in cancer 

immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open. 2020;4. doi:10.1136/esmoopen-

2020-000733 

69.  Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining “T cell 

exhaustion.” Nat Rev Immunol. 2019;19: 665–674. 

70.  Thommen DS, Schumacher TN. T Cell Dysfunction in Cancer. Cancer Cell. 2018;33: 547–

562. 

71.  Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev 

Immunol. 2015;15: 486–499. 

  

http://paperpile.com/b/u89w0Y/C7XA
http://paperpile.com/b/u89w0Y/C7XA
http://paperpile.com/b/u89w0Y/C7XA
http://paperpile.com/b/u89w0Y/IizJ
http://paperpile.com/b/u89w0Y/IizJ
http://paperpile.com/b/u89w0Y/IizJ
http://paperpile.com/b/u89w0Y/S5r8
http://paperpile.com/b/u89w0Y/S5r8
http://paperpile.com/b/u89w0Y/S5r8
http://paperpile.com/b/u89w0Y/ebNF
http://paperpile.com/b/u89w0Y/ebNF
http://paperpile.com/b/u89w0Y/BJYN
http://paperpile.com/b/u89w0Y/BJYN
http://dx.doi.org/10.1136/esmoopen-2020-000733
http://dx.doi.org/10.1136/esmoopen-2020-000733
http://paperpile.com/b/u89w0Y/cy0p
http://paperpile.com/b/u89w0Y/cy0p
http://paperpile.com/b/u89w0Y/yfih
http://paperpile.com/b/u89w0Y/yfih
http://paperpile.com/b/u89w0Y/WZlj
http://paperpile.com/b/u89w0Y/WZlj


15 
 

Chapter 2 

Heterogeneous, delayed-onset killing by 

multiple-hitting T cells: Stochastic 

simulations to assess methods for 

analysis of imaging data 

 

Richard J. Beck, Dario I. Bijker and Joost B. Beltman 

 

Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden 

University, Leiden, The Netherlands 

 

PLoS computational biology 16.7 (2020): e1007972. 

 

Abstract 

Although quantitative insights into the killing behaviour of Cytotoxic T Lymphocytes (CTLs) are 

necessary for the rational design of immune-based therapies, CTL killing function remains 

insufficiently characterised. One established model of CTL killing treats CTL cytotoxicity as a 

Poisson process, based on the assumption that CTLs serially kill antigen-presenting target cells 

via delivery of lethal hits, each lethal hit corresponding to a single injection of cytotoxic proteins 

into the target cell cytoplasm. Contradicting this model, a recent in vitro study of individual CTLs 

killing targets over a 12-hour period found significantly greater heterogeneity in CTL killing 

performance than predicted by Poisson-based killing. The observed killing process was dynamic 

and varied between CTLs, with the best performing CTLs exhibiting a marked increase in killing 

during the final hours of the experiments, along with a “burst killing” kinetic. Despite a search for 

potential differences between CTLs, no mechanistic explanation for the heterogeneous killing 

kinetics was found. Here we have used stochastic simulations to assess whether target cells 

might require multiple hits from CTLs before undergoing apoptosis, in order to verify whether 

multiple-hitting could explain the late onset, burst killing dynamics observed in vitro. We found 

that multiple-hitting from CTLs was entirely consistent with the observed killing kinetics. Moreover, 

the number of available targets and the spatiotemporal kinetics of CTL:target interactions 
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influenced the realised CTL killing rate. We subsequently used realistic, spatial simulations to 

assess methods for estimating the hitting rate and the number of hits required for target death, to 

be applied to microscopy data of individual CTLs killing targets. We found that measuring the 

cumulative duration of individual contacts that targets have with CTLs would substantially improve 

accuracy when estimating the killing kinetics of CTLs.  

 

Introduction 

Cytotoxic T Lymphocytes (CTLs) are key effectors in the adaptive immune response, therefore 

CTL function - or lack thereof - is relevant in many pathologies. A greater quantitative 

understanding of CTL effector function will aid in interpretation of prior experiments and should 

yield useful insights for the treatment of diseases in the future. However, the rate at which CTLs 

kill infected or malignant cells remains poorly characterised. Estimates of CTL killing based on in 

vitro and in vivo CTL killing assays vary, with some variation explained by e.g. different 

susceptibility of target cells to CTL killing or the type of antigen expressed by the targets [1,2]. 

Moreover, especially in vivo the presence of stimulatory or suppressive factors and difficulty in 

controlling or estimating the ratio of CTLs to target cells at the site of killing might confound CTL 

killing estimates [1,2].  

As a frequently discussed example, consider the in vivo CTL killing assay of Barber et. al. [3], in 

which CTLs demonstrated rapid killing against Lymphocytic Choriomeningitic Virus (LCMV). 

Although Barber et. al. initially estimated that CTLs took 15 minutes to kill targets, subsequent 

modelling studies based on the same data have estimated much faster killing rates [4,5,6], with 

one study implying an expected target survival time of 16 seconds after contact from a CTL [4] 

(see also [1] for a detailed summary of these estimates). Given that killing in those experiments 

was perforin-dependent[3], these fast estimates seem to contradict recent in-vivo imaging 

showing that the perforin-dependent killing process requires a minimal contact time. For example, 

long-lasting (median: 80s) calcium fluxes linked with CTL killing of virally infected cells occurred, 

on average, 480s (median) after CTLs established contact with virally infected targets[7]. Such 

killing times of around 10 minutes are consistent with the duration of killing events that can be 

observed in various supplemental videos elsewhere [8,9]. Given this lower bound it is difficult to 

see how solely granule-mediated killing could plausibly lead to killing rates in excess of ~6 hour-

1, even in optimal situations where CTLs are not limited in their supply of targets and do not require 

time to search for new targets between killing events.  

A major limitation of many prior estimates of CTL killing is that analysis is performed on population 

level data in in vivo settings, with no direct measurements of the killing process. This approach 

has a number of drawbacks: First, it can be challenging to accurately assess the frequency of 

CTLs and target cells. Second, other immune cells may contribute to the killing process, 

confounding estimates of the true CTL killing rate. Third, the processes underlying CTL killing are 

complex and it may be insufficient to describe them with a single, time invariant rate constant. 

Indeed, recent observations have indicated that target cells may require multiple hits before death 

either in vitro [10], or in vivo [7]. We have previously shown that such multiple-hitting can lead to 

https://paperpile.com/c/oMBHuP/02naA
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a time-increasing killing kinetic when CTLs are exposed to fresh targets [11,12], further 

complicating the killing rate estimation procedure.  

Besides analysing CTL killing performance at the population level, a potentially useful approach 

is to analyse CTL killing at the single cell level. Such analysis can yield greater insights into the 

dynamics of the killing process. This was exemplified in studies undertaken in the 1970’s in which 

the killing kinetics of CTLs conjugated with 1-4 EL4 tumour cell targets were examined under the 

microscope for a period of 3 hours [13,14]. Subsequent mathematical analysis of these studies 

indicated that the CTL killing process was well described as a Poisson process [15], indicating 

that CTLs kill targets sequentially rather than simultaneously. This analysis allowed the authors 

to conclude that CTL killing was mediated by secretory lysosomes, several years before this was 

demonstrated conclusively [16].  The aforementioned studies also revealed that the rate of CTL 

killing was not diminished after target lysis, an observation which led the authors to deduce that 

CTLs were able to discriminate between viable and killed targets. More recently, in vitro studies 

of individual natural killer cells have shown that killing occurs via both granzyme and death 

receptor mediated pathways, each having different kinetics [17,18]. 

Despite the utility of studying CTL killing at the single-cell level, there remains a shortage of in 

vitro CTL killing studies with statistical power sufficient to check the validity of the Poisson model 

first proposed in the 1980’s by Perelson et. al. [15]. Recently one such a study was performed: 

Over a 12 hour period, image-based killing measurements were taken from human-derived CTL 

clones, each CTL being separately confined within small micro-wells that contained an excess of 

JY target cells [19]. During the studied time period, the killing rate of CTLs was dynamic, exhibiting 

a marked increase in the final hours of the experiment. The total number of targets killed per CTL 

was overdispersed compared to the Poisson distribution, implying greater heterogeneity between 

individual CTL killing performance than anticipated. Vasconcelos et. al. (Vasconcelos et al. 2015) 

found the data was well described by a Poisson mixture model, and they postulated the existence 

of a subset of “high rate killers” comprising 30% of the population that emerged 8-10 hours after 

first exposure to target cells. However, no mechanistic explanation could be found to explain this 

result, despite a search for membrane markers that might identify and/or explain the variability of 

CTL killing characteristics.  

We hypothesised that a requirement for “multiple hits” to kill targets before apoptosis induction 

might explain heterogeneous killing amongst clonal CTLs in vitro. Perelson et. al. [20] previously 

considered the possibility of multiple-hitting, noting however that such a model was excessively 

complex to describe the limited experimental data available at that time. Recent evidence has 

directly shown that multiple-hitting does occur at least in some settings [7,10,21], and our previous 

modelling work has demonstrated that multiple-hitting can indeed lead to population-level killing 

kinetics increasing over time when CTLs are exposed to fresh targets [11]. Therefore, we here 

used stochastic simulations to investigate the compatibility of the multiple-hitting hypothesis with 

the findings of Vasconcelos et. al. [19]. We found that multiple-hitting was indeed able to explain 

the late onset, high-rate bursting kinetic of individual CTLs, with physiologically plausible 

parameters. We also highlight that multiple-hitting is expected to lead to a complex dependence 

of realised killing rate upon the number of available targets and on the ability of individual CTLs 

to form and abort conjugates with target cells. We subsequently developed spatially explicit, agent 

https://paperpile.com/c/oMBHuP/ZTAi
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based simulations of CTLs killing targets in micro-wells as a means of generating realistic yet 

noisy artificial data and assessing methods of recovering CTL hitting parameters from future 

microscopy data. Using these spatial simulations, we demonstrate how parameter estimation is 

substantially improved if contacts of individual targets with CTLs can be tracked throughout the 

duration of the experiments.  

 

Results 

Multiple-hitting CTLs exhibit heterogeneous late onset killing 

We first sought to establish whether the multiple-hitting hypothesis was a feasible explanation for 

the heterogeneous, delayed onset, “burst” killing kinetics observed and defined by Vasconcelos 

et. al. [19]. In brief, these high rate killer CTLs were a subset among a clonal population whose 

killing suddenly accelerated after 8-10 hours of experimentation, with no explanation readily 

apparent (Methods). In the current study, we used Monte Carlo simulations of individual CTLs 

killing targets to identify conditions under which multiple-hitting might lead to heterogeneous, 

“burst” killing. In these Monte Carlo simulations, CTLs hit targets at a constant rate 𝜆, then targets 

died after receiving 𝜂 hits. We simulated single- and multiple-hitting scenarios on the basis that 

the expected (mean) time for one target in contact with a CTL to be killed was 1 hour, i.e., we set 

𝜆 / 𝜂 =  1 (valid for entire Fig. 1). 

Firstly we simulated CTLs with 𝜂=1,2, or 10, with each simulation containing one CTL interacting 

with a single target. For such a strictly 1:1 CTL:target ratio, the waiting times for target death were 

gamma distributed with rate parameter 𝜆 and shape parameter 𝜂 (Fig. 1A). The gamma 

distributions (Fig. 1B, top panel), together with their accompanying survival probability functions 

(Fig.1B, middle panel), define the hazard function (Fig. 1B, bottom panel), which is the momentary 

rate of death experienced by a target, given that  the target has already survived an interaction 

for some time, t. When 𝜂 = 1, the hazard experienced by contacted targets does not change with 

time. In contrast, when 𝜂 > 1 the hazard experienced by contacted targets increases over time, 

as contacted targets become increasingly likely to have received (𝜂 − 1) hits and thus be killed 

by the next hit. For the case where CTLs interact with targets in a strictly 1:1 ratio, the gamma(η, 

λ) distribution parameters could be estimated from the mean and variance of the samples of the 

waiting time (yo): 𝑦𝑜̅̅ ̅ =
𝜂

𝜆
 and 𝑉𝑎𝑟(𝑦𝑜) =

𝜂

𝜆2 (Fig. 1C).  

We next extended our Monte Carlo simulations to allow CTL:target interactions in a 1:n ratio, for 

variable numbers of targets, n. CTLs were individually assigned their initial number of targets by 

drawing n from a Poisson distribution, with mean 𝑛̅ = 16 (Fig. 1D, blue bars). The total number of 

targets killed by a CTL during one simulation, x, should also follow the Poisson distribution, if the 

killing rate of each simulated CTL would be the same. Moreover, the mean and variance should 

be approximately equal for any set of Poisson distributed samples. Therefore, observation of a 

ratio 
𝑣𝑎𝑟(𝑥)

𝑥̅
> 1 for a set of killed targets would imply that the killing was more heterogeneous than 

expected under Poisson assumptions. For single-hit killing (𝜂 = 1), the variance of the 12 hour  
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Figure 1. Killing kinetics and heterogeneity of multiple-hitting CTLs. A)  Gamma probability density 

functions describing expected time for a CTL to kill 1 target in monogamous contact (red lines). Each point 

represents the sample killing density of one series of simulations (NS=10), each series comprising Nw=100 

CTL:target pairs. Observations were binned at 15 minute intervals. B) Theoretical Gamma probability 

density function (PDF), survival function, and hazard function for different values of 𝜂 as indicated. C) 

Estimation of parameters from simulations in panel A, by equating the first two moments (the mean and 

variance) with their estimators. D) Distribution of targets killed per CTL at 12 hours (red bars), with Poisson 
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distributions for the initial number of targets (using the same initialising distribution for all 𝜂; blue bars). Each 

panel contains results from Nw=5000 CTLs for different 𝜂, as indicated by facet labels on the right. Text 

inside panels indicates the mean and variance of the killed targets. E) Cumulative killing performance of Nw 

= 100 members (thin black lines) of the population shown in D; the red line is the mean calculated for the 

entire population (Nw=5000). F) Distribution of target killing times over extended (24 hours) simulations with 

CTL parameters matching D, with the 12 hour censorship indicated by a red line (Nw=5000, bars are kills 

per 30 min interval). G) Heatmap of the probability density for each simulation in C-D. Observations were 

binned according to unique combinations of the initial number of targets (individual columns), together with 

the number of killed targets at the indicated interval (individual rows). Thus, summing across columns will 

recover the initial Poisson distribution (blue bars in D), and summing across rows will produce the 

distribution of killed cells at the indicated time (e.g red bars in D at 12 hours).   

 

killing samples was in fact slightly below the mean (Fig. 1D, upper row), resulting from some 

simulations where CTLs killed all their targets before the simulation had finished. However, for 

𝜂 = 2 (Fig. 1D, central row), the variance approached the mean and for 𝜂 = 10 far exceeded the 

mean (Fig. 1D, bottom row). In the latter case, a bimodal distribution occurred, which could be 

interpreted as a subpopulation of high-rate killers, yet importantly such a population did not exist 

in our simulations. 

In our simulations, the additional variability in killing performance of multiple-hitting CTLs was due 

to the allocation of subsequent hits amongst several different targets. When a group of targets 

share hits evenly, the time for a specified target to be hit is proportional to the number of other 

targets sharing. This has no effect on the killing rate observed if 𝜂 = 1, so the mean killing rate for 

our simulated single-hitting CTLs initially remained constant over time (Fig. 1E-F, top row; 

time<8h), gradually decreasing as some CTLs eliminated all their targets (Fig. 1E-F, top row; 

time>8h). In contrast, hit sharing in the case of multiple-hitting CTLs led to a delayed onset of 

killing (Fig. 1E-F), with the length of the delay dependent on the number of targets sharing hits 

(compare Figs 1A-B with single targets to Fig. 1F with multiple targets, for identical 𝜂). The 

interaction between 𝜂 and the number of initial targets can also be understood from heatmaps of 

targets killed (Fig. 1G). The expected cumulative number of kills increases over time for 𝜂, 𝜆 = 1, 

but this increase is independent of the initial number of targets except for the censorship implying 

a maximum target number that can be killed. For 𝜂, 𝜆 = 10, the dependency of the observed kills 

on the initial number of targets is very clear, with killing happening earlier in those wells with 

initially fewer targets. Moreover, these effects did not only depend on the initial number of targets. 

When we performed simulations with the hitting rate 𝜆 a random variable, this in turn increased 

the variability of killing amongst multiple-hitting CTLs to a greater extent than was the case for 

single-hitting CTLs (S1 Fig), implying that the killing of multiple-hitting CTLs is more sensitive to 

environmental variables than the single-hitting CTLs. Taken together, these results imply that 

multiple-hitting CTLs could explain both heterogeneous and delayed onset killing among clonal 

CTL populations.  
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Multiple-hitting is not identifiable based on population killing statistics only 

We asked if population-level killing statistics (as e.g. examined in [19] )) could be used to identify 

the hitting parameters (𝜆 and 𝜂) of CTLs. In our previous simulations (Fig. 1) we studied a scenario 

of simultaneous risk for target cells, yet this may be an oversimplification. For example, due to 

physical constraints the number of targets CTLs can simultaneously contact and thus hit must be 

limited. Therefore, we extended our 1:n Monte Carlo simulations to allow dynamic contacts 

between CTLs and targets, in order to check how the parameter estimates (𝜆 and 𝜂) would be 

impacted. To achieve this, we included an additional state for target cells, now distinguishing 

between targets that are contacting the CTL, versus those not in-contact (Fig. 2A; Methods). The 

killing kinetics realized by CTLs in these dynamic simulations indeed differed from those in our 

previous simulations (Fig. 1), where all the targets shared risk and so the killing rate of each CTL 

was dictated by the total number of yet-living targets. In contrast, for our Monte Carlo simulations 

allowing dynamic conjugate formation, only the targets presently being contacted were relevant. 

Here, small bursting events occurred throughout the simulations, which was the result of 

accumulating hits followed by rapid sequential killing among a subset of contacted targets (Fig. 

2B).  

Using our simulations including dynamic conjugate formation we searched for parameters 

consistent with the statistics reported previously [19]concerning high rate “burst killing” CTLs. For 

fitting we used the reported group mean (4) and variance (6.9) of the number of killed targets per 

CTL over 12 hours. Additionally, we aimed for a breakpoint in the mean killing rate such that half 

(2) of the observed kills occurred in the interval 0-9 hours and the other half in the interval 9-12 

hours (see Methods). We performed this fit using different values for 𝜂 (ranging from 1-5, or 10), 

and a Poisson variable with 𝑛̅ = 16 for the initial number of targets (S2 Fig). We obtained good 

fits for different values of 𝜂; in particular for all 𝜂 > 2 the cumulative killing was very closely 

matched (Fig. 2C, intersecting lines for 𝑛̅ = 16). Moreover, for values 𝜂 > 3 the fits to the mean 

and variance for cumulative targets killed at 12 hours were all similarly close to their target values 

of 4 and 6.9, respectively (Fig. 2D). Some differences for different 𝜂 were apparent, for example 

as the number of hits increased towards 𝜂 = 10 the breakpoint marking transition from low to high 

rate was more distinct (Fig. 2E). However, overall differences between 𝜂 were quite small (Fig. 

2F), and many simulated CTLs were required for these differences to emerge consistently (at 

least Nw=103 CTLs). Our results were also sensitive to the distribution for the initial number of 

targets per CTL: for simulations with 𝑛̅ = 12 or  20, substantial differences in the cumulative kills 

over time occurred (Fig. 2C). Thus, we conclude that multiple-hitting is not only qualitatively, but 

also quantitatively consistent with  the experimental results reported previously (Vasconcelos et 

al. 2015). However, our analysis shows that the mean and variance of the killing process 

measured for a group of CTLs are insufficient statistics to determine the number of hits CTLs 

require to kill targets, so CTL:target interactions should be explicitly accounted for if killing due to 

multiple-hitting is to be modelled accurately.   

https://paperpile.com/c/oMBHuP/ZTAi
https://paperpile.com/c/oMBHuP/ZTAi
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Figure 2. Burst killing and non-identifiability of dynamically interacting, multiple hitting CTLs. A) 

Schematic of the dynamic model (example with 𝜂 = 3). Target cells are represented by circles containing 

fractions (numerator: hits received; denominator: 𝜂). The observable state [𝐶  𝑈] consists of the total 

number of contacting, C, and non-contacting targets, U. The complete state of the system is represented 

by a matrix, with 𝜂 rows indicating the number of hits received (subscript) and with columns indicating 

whether the target is contacting (ci) or non-contacting (ui). B) Measured killing events (red dots, filled white) 

during Monte Carlo simulations with Nw=10 CTLs and the number of targets drawn from a Poisson 
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distribution with mean 𝑛̅ = 16 (top panels; 𝜆, 𝜂 = 10, 𝑘𝑜𝑓𝑓 = 0, 𝑘𝑜𝑛  → ∞), or a subset of targets at risk 

(bottom panels; 𝜆, 𝜂 = 10, 𝑘𝑜𝑛 = 1ℎ𝑟−1, 𝑘𝑜𝑓𝑓 = 0.3ℎ𝑟−1). Each horizontal strip is one single simulation, the 

right panel strips are colored according to the total number of alive targets and the left panel strips are 

colored according to the number of targets that are in contact with a CTL. C) Each line (coloured according 

to 𝜂) is the mean cumulative killing over time (CTL-1) from Nw=104 CTLs, simulated using parameters 

estimated by fitting the case with 𝑛̅ = 16 targets (central column). Straight lines show target values for 

fitting. All parameters except 𝑛̅ are constant across columns. D-F) Measured statistics within simulations 

with 𝑛̅ = 16 shown in the central column of C. Shown are the distribution of killed targets after 12 hours, 

with the mean and variance as indicated for each 𝜂 (D), and the mean killing rate over time for CTLs grouped 

by 𝜂 and shown either separately (E, rows), or together (F, colors), calculated as (𝑘𝑖𝑙𝑙𝑠 ⋅  (6 𝑚𝑖𝑛 ⋅ 𝑁𝑤)−1). 

 

An Agent Based Model of Multiple-hitting CTLs to test methods for estimation of 

killing parameters 

Since we found that in many situations the true hitting parameters for CTLs could not be 

determined based on group level killing mean and variance, we sought methods to compare the 

likelihood of different hitting models. We did not wish to consider a particular model for the process 

of CTLs finding targets, preferring a method that could be applied to determine the CTL hitting 

behaviour in general situations (i.e., in the absence of knowledge on contact dynamics). As a 

framework for testing we employed an agent based cellular Potts model (CPM) to generate 2D 

simulations of CTLs interacting with and killing targets (Fig. 3A). The resulting datasets were 

visually similar to realistic microscopy data and could be used to investigate methods for 

recovering the hitting parameters (𝜂 and 𝜆) of CTLs from experimental data under various 

conditions. For all CPM simulations we maintained the same underlying gamma model of CTL hit 

generation as was used for our Monte-Carlo simulations (Fig. 1-2), however we made several 

modifications that would lead to different (yet not predictable a priori) distributions of hits amongst 

targets. Specifically, instead of allocating hits to all contacted targets with equal probability, target 

risk of receiving a hit was proportional to the length of the interface between CTL and target at 

the moment of hit generation (Fig. 3A, target coloring on left images indicates interface length). 

We also considered the effect of a lower bound on the time required for a CTL to complete a hit, 

by introducing a delay condition that prohibited targets from being hit within an initial time window 

after contacting a CTL, which was reset every time the target broke contact with the CTL (Fig. 3A, 

target coloring on right images). Note that the delay condition was applied per target and therefore 

does not preclude the possibility of CTLs hitting other contacted targets simultaneously. 

Finally we varied CTL migration to create two groups of CTLs which we termed “high-motility” 

(Fig. 3B, S1 Video) or “low-motility” (Fig. 3C, S2 Video) CTLs. For both motility conditions the 

migration of the CTLs was influenced by the presence of the targets, as CTLs became corralled 

by surrounding targets. The difference between these models was that high-motility CTLs 

exhibited an increased propensity to break free from confinement and roam the well. This roaming 

ensured that over the course of 12 hours the high-motility CTL made new contacts with far greater 

frequency than low-motility CTLs (Fig. 3D), although the average number of simultaneously 

contacted targets at any time was similar (Fig. 3E). Thus, the high-motility CTL is expected to 
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approach the previously modeled ‘all targets at risk’ scenario more closely than the low-motility 

CTLs. 

 

Figure 3. Characterisation of high- and low-motility in silico CTLs within CPM simulations. A) Still 

images of a high motility CTL with 15 minute minimal hitting time, interacting with targets. Left color scheme: 

CTLs are red, uncontacted targets are grey, and contacted targets have various shades of blue based on 

their share of total CTL:target interface, which determines their probability of receiving a hit. Targets are 

overlaid with the number of hits they have received. Right color scheme: Lattice sites inhabited by the CTL 

are colored according to actin activity [22]. Targets are black, turning yellow after 15 minutes of continuous 

contact with the CTL. Elapsed simulation time is displayed in the upper left corner of the stills, presented in 

minutes since the first frame shown. B-C) Track plots showing movement of 3 randomly sampled CTLs of 

high (B) and low (C) motility throughout a simulation, for simulated η as shown. D-E) Frequency at which 

CTLs form new conjugates (D) and mean number of simultaneously contacted targets per CTL (E) for low- 

and high-motility CTLs. Plots are based on 100 simulations per condition, with each dot representing one 

CTL, and circles and error bars indicating mean +/- SD. 
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We used the CPM model to simulate CTLs (with 𝜂, 𝜆 = 1,2, 𝑜𝑟 10), in either high- or low-motility 

scenarios. The total amount of targets killed by each CTL depended on the interaction between 

the parameters 𝜆 and 𝜂, the CTL motility, and the presence or absence of the delay condition. In 

particular, the combination of high motility plus 15 minute delay resulted in a substantial decrease 

in killing in comparison to the other simulation groups, for all values of 𝜂 (Fig. 4A). Together with 

the high rate of contact formation in that group (Fig. 3D), this is consistent with targets spending 

significant time in transient contacts with the CTL, too short to result in successful hit delivery. 

The killing rate of the low-motility CTLs was initially greater than of high-motility CTLs, in particular 

for large 𝜂 (Fig. 4B), due to the more stable nature of the contacts leading to greater accumulation 

of hits among the contacted targets (Fig. 4C). High-motility CTLs reduced this deficit over the 

course of the simulations due to an accumulation of latent hits among uncontacted targets (Fig. 

4D). These spatial simulations therefore illustrate how CTL:target contact dynamics can play a 

role in determining killing performance. Moreover, since in these models CTLs with the same 

killing parameters - but different motility parameters - generated different killing kinetics, they are 

useful to test how underlying killing parameters might be recovered from microscopy data that are 

similar to data emanating from our realistic simulations. 
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Figure 4. Killing performance of multiple-hitting CTLs depends on motility. A) Mean cumulative killing 

over time (CTL-1) for CPM simulations of high- and low- motility CTLs (𝜂, 𝜆 = 1,2, 𝑜𝑟 10) B) Mean killing rate 

(CTL-1) for each simulated condition in A. C-D) Mean number of hits received per target, sampled over 

targets currently contacting the CTL (C) or over targets not currently contacting the CTL (D). 
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Estimating CTL hitting parameters through analysis of contact time and target 

survival  

Since we found that hitting parameters 𝜂 and 𝜆 could not be recovered via analysis of population 

averages only, we employed a parametric survival analysis to study the hazard experienced by 

individual targets contacting CTLs. Our analysis considers the different hazard functions identified 

earlier (Fig. 1B), which distinguish CTLs on the basis of their intrinsic hitting rate 𝜆 and the number 

of hits required for killing targets, 𝜂. Specifically, we analyse the cumulative duration of CTL:target 

contact events from the perspective of the target cells (example in Fig. 5A). To take into account 

shared hazard amongst a set of co-contacting targets, we recorded for each sampled frame the 

statistic 𝜃 = (𝑐)−1(per-target), representing the probability that each separate target out of the 

subset of 𝑐 targets co-contacting the CTL is presently being hit (Fig. 5B). Note that targets not in 

contact with the CTL were assigned 𝜃 = 0. Subsequently, we integrated the 𝜃 values over time 

to arrive at a set of ‘adjusted’ contact times, 𝜏, for each target (Fig. 5C), which takes into account 

uncertainty with respect to hitting of multiple co-contacted targets (Fig. 5C). This approach has 

the advantage that no explicit account needs to be taken of the CTL-target interaction dynamics. 

Moreover, estimation of cellular contact times occurs already frequently in time-lapse imaging 

data [7,23], hence is feasible. 

Applying the concept of adjusted contact times, 𝜏, on all our CPM simulations, we established 

maximum likelihood estimates for the hitting parameters within the simulations (S1 Text; S3 Fig). 

This yielded excellent estimates for the parameters in simulations without delay (Fig. 5D; 

𝜂𝐶𝑃𝑀, 𝜆𝐶𝑃𝑀 indicate input CPM parameter values, and 𝜆̂, 𝜂̂ indicate estimated values). We also 

tested our method of parameter recovery by fitting our model to small subsets taken from the 

CPM simulations each containing only Nw=10 CTLs (Fig. 5E), which led to good estimates. 

Additionally, we tested our model on sample data generated from a mixed dataset with two 

subpopulations of single-hitting CTLs, each with a different killing rate (S1 Text), in order to 

examine the high-rate-killer hypothesis put forth by Vasconcelos et. al. [19]. We found that the 

multiple-hitting model would not predict multiple-hitting unless multiple-hitting was indeed 

underlying the data, instead predicting a single-hitting population whose killing rate was the mean 

of the individual subpopulations (S1 Text; S4 Fig, S5 Fig). Thus, our maximum likelihood 

approach based on contact time monitoring can distinguish multiple-hitting from alternative 

hypotheses and is expected to work for a relatively small number of samples. 
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Figure 5. Parameter retrieval for multiple-hitting CTLs based on adjusted contact time. A) 

Hypothetical example illustrating sharing of subsequent CTL hits by target cells. Interaction history during 

a period of 12 hours for each of three target cells contacted by a single CTL, sampled at 30 minute intervals. 

B) Estimated probability (expressed as fraction 𝜃) that each target is being hit by the CTL, corresponding 

to the hypothetical interaction history shown in A. C) The quantity 𝝉 is defined as the cumulative sum over 

the course of the simulation of all sampled values of 𝜃 associated with each individual target. The samples 

resulting from interaction with this CTL include target 1, which was killed after a cumulative interaction 
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period of ~1.7h, and targets 2 and 3, which remained alive after cumulative interaction periods of ~2.4h and 

~7.9h, respectively. D) Heatmaps of the likelihood function around the maximum likelihood estimates for 

the killing parameters, in CPM simulations without hitting delay. Horizontal and vertical lines mark the values 

of the CPM parameters used to generate the data for each group. The boundary enclosing the 95% 

confidence region is also marked with a line. E) Results of fitting 30 randomly chosen subsets, each 

consisting of Nw=10 simulations, of the CPM simulations without hitting delay.  

 

Impact of a hitting threshold on killing parameter estimation 

Given the time needed for formation of a cytotoxic synapse that is required for hit delivery, brief 

interactions between CTLs and targets may not contribute to killing. Taking such brief interactions 

into account in our parameter estimation may thus interfere with correct estimation. Therefore, we 

tested our parameter recovery on those CPM simulations wherein a 15 minute minimal bound 

(+15m) was set for the time CTLs required to successfully execute each hit upon a target. In these 

CPM simulations, we generally obtained robust estimates for the number of hits needed to kill 

targets, 𝜂̂ (S6A Fig). However, after rounding to the nearest integer value for 𝜂, the estimated 

hitting rate parameter, 𝜆̂, was underestimated compared to the generating value (𝜆𝐶𝑃𝑀) in 

simulations with the 15m minimal hitting time. Since the realised killing was reduced in the 15m-

delay simulations, particularly for high-motility CTLS (Fig. 4), the estimated 𝜆̂ could be considered 

more appropriate than the generating value 𝜆𝐶𝑃𝑀. Nevertheless, to investigate further we 

performed additional simulations, using high motility CTLs, with variable hitting delays in the 

interval between 0-15 mins (Fig. 6A, S6B). We found that for the important boundary between 

single-hitting (𝜂 = 1) or multiple-hitting (𝜂 = 2), the estimated number of hits parameter 𝜂̂ was 

accurately classified for limited delays of less than 15 minutes (Fig. 6A, top row).  

A particular advantage of a parametric survivorship analysis such as that we employ here is that, 

having estimated the hitting parameters (𝜂, 𝜆), we can revisit the sample data and ask whether 

different subsets of targets were killed according to our expectation. We selected the high-motility 

+15m simulations with 𝜂
𝐶𝑃𝑀

= 1 for further study, since for this simulation group there was an 

ambiguous estimate of 𝜂̂. For comparison, we also analysed the data from CPM simulations with 

multiple-hitting CTLs (𝜂
𝐶𝑃𝑀

= 2). First, we inspected the Kaplan-Meier estimates of the survival 

functions (Fig. 6B, black lines) marking close agreement when the correct parameter estimate 

(𝜂̂ = 2) was applied to CPM data generated by multiple-hitting CTLs (Fig. 6B bottom, blue line, 

𝜂
𝐶𝑃𝑀

= 2), but not when the incorrect 𝜂̂ = 1 was applied (Fig. 6B bottom, red line, 𝜂
𝐶𝑃𝑀

= 2). For 

data generated by single-hitting CTLs, the Kaplan-Meier estimate lay exactly between the 

estimates using 𝜂̂ = 1 or 2, yet the shape of the survival function over the entire length better 

matched that for the single-hitting estimate 𝜂̂ = 1 (Fig. 6B top, red line, 𝜂
𝐶𝑃𝑀

= 1) than for the 

estimate 𝜂̂ = 2 (Fig. 6B top, blue line, 𝜂
𝐶𝑃𝑀

= 1). Second, visual inspections of the hazard 

experienced by individual targets throughout the simulations (Fig. 6C), revealed that in many CPM 

simulations with 𝜂
𝐶𝑃𝑀

= 1 and a +15m hitting delay there was substantial killing of targets that had 

not yet undergone long interactions with the CTL (Fig. 6C, first two grey bars), as would not be 

expected for multiple-hitting. Thus, both results (Fig. 6B-C) supported 𝜂̂ = 1 as the most likely 
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candidate for the data derived from simulations with 𝜂
𝐶𝑃𝑀

= 1. However, the most conclusive result 

was obtained by evaluating the mean hazard experienced by contacted targets according to either 

of the two candidate estimates for the number of hits (𝜂̂=1 or 2). Integrating this value over the 

duration of the experiments (Fig. 6D, black lines)  led to predictions for the killing rate over time 

which closely followed the data whenever a correct estimate for 𝜂̂ was applied (Fig. 6D, comparing 

black and red lines in the upper panel, or black and blue lines below). In contrast, killing 

predictions from incorrect estimates of 𝜂̂ were extremely poor, thus allowing for correct 

identification of the underlying 𝜂. Thus, our analysis shows that monitoring of cumulative 

interaction times between targets and single CTLs allows for proper estimates of the number of 

hits required for target cell death even when brief contacts between CTLs and targets cannot lead 

to hits, although the hitting rate may be underestimated in that case. 
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Figure 6. Parameter retrieval for multiple-hitting CTLs with underlying hitting delay. A) Estimated 

parameters (points), compared to the underlying parameter values used (red lines) in CPM simulations, 

featuring high-motility CTLs, in which we varied the lower bound for the time (in minutes, as indicated) 

needed for hitting. B) Kaplan-Meier survival functions (black lines), or survival functions plotted with 

estimated parameters fitted to data from Nw=100 CPM simulations generated by multiple-hitting (lower row, 

𝜂𝐶𝑃𝑀 = 2) or single-hitting CTLs (upper row, 𝜂𝐶𝑃𝑀 = 1). C) Heatmaps from one CPM simulation containing 

high-motility, single-hitting CTLs who had a 15 minute lower bound set on the hitting time. Each row 
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represents a single target. Target status is represented by colour: targets not-contacting the CTL are deep 

purple, and killed targets are grey. Contacted targets are coloured according to their momentary hazard 

according to two candidate parameter sets (top panel: 𝜂̂ = 1, 𝜆̂ = 0.65; bottom panel: 𝜂̂ = 2, 𝜆̂ = 1.65). D) 

Predicted killing rate according to two different candidate parameter sets (𝜂̂ = 1, red lines; 𝜂̂ = 2, blue lines), 

candidates being themselves applied to CPM simulations with high-motility, +15m CTLs  (𝜂𝐶𝑃𝑀 = 1, top 

panel; 𝜂𝐶𝑃𝑀 = 2, bottom panel).  

 

Discussion  

Here we have used stochastic simulations to show that ‘multiple-hitting’ is a plausible explanation 

for the heterogeneous and time-inhomogeneous killing activity recently observed for CTLs in vitro 

[19]. We showed that multiple-hitting leads to an increase in realised killing rate over time. 

Moreover, the extent of this late onset killing increases when more hits are required to kill targets, 

or when a greater number of antigen-presenting targets are simultaneously contacted. 

Furthermore, identical CTLs displayed varying killing performance depending on the number of 

targets available. Simulating CTLs with variable hitting rates, we also found that the killing 

performance of multiple-hitting CTLs is more heterogeneous than killing of single-hitting CTLs, 

given similar variation in underlying hitting rate. Overall, we conclude that multiple-hitting is 

sufficient to explain heterogeneous killing amongst clonal CTLs and there is no need to invoke an 

unobserved subpopulation of high-rate killers. 

Given the dependence of the killing performance of multiple-hitting CTLs on several parameters 

that we describe here, we developed spatially explicit CPM simulations to assess methods for 

investigating whether multiple hitting occurs in vitro or in vivo. Our specific goal was retrieval of 

the hitting rate and number of hits required for CTLs to kill targets. Our model of dynamic 

conjugate formation can be conceptualised using Kendall’s notation as an M/Er/1 queue [24]. 

Within this framework there is 1 “server” (in our case the CTL), with markovian arrival times (M: 

in our case conjugate formation events), and Erlang distributed (Er)  “service times” which 

represent the killing process. It is known that for such models, the mean and variance (or any 

similar measure of variability) are insufficient for estimating the true parameters, and can only be 

used to approximate the distribution [24]. Instead of using population-level killing statistics, we 

were able to accurately recover model parameters from the CPM data by analysing the ‘adjusted’ 

cumulative contact durations between CTLs and individual targets, i.e. the total length of the 

interaction until either the target was killed or the experiment ended. Importantly, we found that 

measurements for both killed and surviving cells are required for this approach to be successful. 

This is because the limited time window of observation renders data that are in part censored, yet 

elapsed contacts that have not yet resulted in killed targets also contain information on underlying 

killing parameters. In a similar fashion, we previously developed a method to estimate absolute 

(i.e., not cumulative) cellular interaction times based on time lapse imaging data [23]. 

Although CTL cooperativity and multiple-hitting have now been described in a number of settings 

[7,10-12], a detailed quantitative description of the sequence of intracellular events which might 

underlie multiple-hitting does not yet exist. Several mechanisms can be envisaged which 
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separately or collectively might result in target cells enduring sustained attacks from CTLs before 

death. A first factor which may explain the ability of target cells to endure sustained attacks is 

death occurring via the ‘extrinsic apoptosis pathway’, i.e., via tumour necrosis factor (TNF) or 

FAS-L. In the study of Vasconcelos et. al. [19], blockade of FAS-L did not diminish overall killing, 

suggesting that FAS-L was not involved in CTL killing. Moreover, separation of CTLs and targets 

in a transwell assay showed that contact was required before target cell apoptosis could occur. 

Although this result suggests that diffusible TNF did not contribute to target cell apoptosis, TNF 

is also expressed in transmembrane form [25] and may have contributed to contact-dependent 

killing, or could have synergised with other effector pathways. Furthermore, TNF or interferon-γ - 

another hallmark cytokine produced by activated CTLs - have been linked to an upregulation of 

FAS-L receptors in different cell types [26,27], or might otherwise synergise with FAS-L to induce 

target cell apoptosis [28]. The possibility of synergistic activators of the extrinsic apoptosis 

pathway is intriguing since activation of such mechanisms might explain delayed onset of burst-

killing. This was observed in recent studies in which natural killer cells initially controlled tumour 

cell targets with a fast-acting, perforin-dependent mechanism, before switching to a mechanism 

primarily depending on engagement of death receptors [17,18]. It would be useful to investigate 

whether CTLs also utilise this mechanism. 

A second factor which may account for multiple-hitting is heterogeneity in delivery of perforin and 

granzymes. Perforin alone induces rapid pore formation in target cell membranes, with such 

membrane disruption expected to increase the metabolic burden on target cells. Even if 

insufficient to directly induce apoptosis, one would expect such depletion to divert resources from 

adaptive cellular stress responses, thereby sensitising cells to death from other mechanisms. 

Granzymes are a diverse set of cytotoxic proteases with a broad array of intracellular targets [29]. 

A recent review highlights that perforin-mediated pore formation may or may not be accompanied 

by delivery of granzyme molecules into the cytosol [30]; a requirement for granzyme delivery 

appears to be the establishment of a sufficiently large pore at the point of contact between CTL 

and target. Examination of recent 4D images of CTL–target engagement highlight potential for 

heterogeneous delivery of cytotoxic molecules [8]. That study showed the capability of a single 

CTL to rapidly organise lytic molecules around the centrosome upon initial target recognition and 

to subsequently polarise the centrosome towards the target. This sequence of events results in a 

strong and stable cytotoxic synapse with a high local density of perforin and granzymes. 

Anecdotal evidence from this same work indicates that there can also be an alternative outcome: 

In one observation a CTL attempted to form two immunological synapses with one target, with 

the result that effective centrosome polarisation towards either synapse did not occur and 

ultimately both synapses were aborted without target cell death (see Video S8 in reference [8]). 

Other observations of CTLs simultaneously polarising granules towards multiple targets [9] 

demonstrate that the formation of multiple immunological synapses does not necessarily preclude 

CTLs from killing. Taken together, these observations suggest that due to the diversity of possible 

damage pathways activated by CTLs as well as the potential for heterogeneity in delivery of 

granules, several mechanistic explanations for multiple-hit induced killing remain open. 

Given the breadth of cytotoxic weaponry available to a single CTL, it is apparent that experimental 

interference with one or more CTL effector functions is insufficient to conclude that one or another 

pathway is primarily involved in target cell death in a given experiment. We suggest high 
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resolution, in vitro imaging as an effective means of achieving insight into the CTL killing process. 

Such high-resolution imaging would have several benefits: clear visualization of the polarisation 

of the lytic granules towards target cells would allow acquisition of statistics regarding the lethality 

of hits. Moreover, monitoring of individual target cells over time would provide statistics regarding 

the formation and abortion rates of immunological synapses and regarding the probability of target 

cell death after multiple hits. In addition, such approaches would allow investigation of the 

possibility of target cell recovery between successive hits, along with assessing the timescale 

over which such recovery might occur. Although such spatio-temporal resolution might be 

challenging to achieve experimentally, recent approaches using structured environments [31,32] 

provide a possible means of achieving more refined control of CTL-target interactions. 

In conclusion, in addition to recent efforts to further characterise heterogeneity amongst CTLs, 

greater attention is needed to simultaneous monitoring of mechanisms activated in target cells 

after the target has been contacted by a CTL, assisted by statistical analyses and computational 

methods such as those presented here. Experimental research particularly involving use of e.g. 

caspase-8 reporters or reporters of granzyme activity to compare the relative importance of 

different killing mechanisms, as recently done in NK cells [17,18] is crucial. Computational models 

can then be used to compare results between different experimental assays, thereby 

quantitatively assessing the contribution of identified CTL effector functions in different contexts. 

Methods 

Monte Carlo simulations 

We devised stochastic simulations representing different “wells” in which individual CTLs killed 

targets. The setup of the simulations was based on published data by Vasconcelos et al. [19]. In 

brief, Vasconcelos et al. incubated pre-activated human-derived CTL clones with Epstein-Barr 

virus transformed B cell targets for 12 hours in microwells (Nw=259). Each microwell contained a 

single CTL confined with an indeterminate (approximately 10-20, see Fig. 4A  in reference [19] ) 

number of targets. Microwells were approximately cylindrical and had a cross-section diameter of 

approximately 100μm. A caspase reporter was used to determine the killing rate of individual 

CTLs over time. Similarly, our simulations featured Nw independent simulations, each containing 

n initially unhit targets and lasting for a simulated time period of 12 hours, or until all targets had 

been killed. The simulations proceed as follows: 

1. A random variable 𝑥𝑤𝑎𝑖𝑡, representing the waiting time until the next CTL hit, is drawn from 

the exponential distribution with rate parameter equal to the CTL hitting rate 𝜆.  The current 

simulation time is increased by 𝑥𝑤𝑎𝑖𝑡. 

2. A random target is selected and its number of hits is increased by one. 

3. If a target has received sufficient hits for death (i.e., 𝜂 hits), it is immediately removed from 

the simulation. 

In some simulations, we extended the rules in order to reflect typical in vitro assays more 

accurately: 
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1) Variable target numbers. Each simulation contained a single CTL and a variable number 

of targets n. For each well the number of targets was drawn from a Poisson distribution 

with mean 𝑛̅. 

2) Variable hitting rate. For each simulation the hitting rate 𝜆 of each CTL was a normally 

distributed random variable. The standard deviation of this distribution was used as a 

model parameter, with larger standard deviation reflecting CTL populations with greater 

intrinsic heterogeneity in killing performance between individuals. 

3) Dynamic conjugate formation. We considered that hit delivery had to be preceded by 

conjugate formation and that at 𝑡 = 0 ℎ𝑟𝑠 the CTL has not yet encountered any targets, 

and that CTLs form new conjugates with targets at constant rate kon and abort conjugates 

with constant rate koff. Thus these simulations consider 4 distinct types of event: in addition 

to hitting and dying, we now have conjugate formation and conjugate abortation. The 

Gillespie algorithm was used to determine the type of event and waiting time between 

subsequent events [33], except for target cell death which occurs immediately after the 

lethal hit just as in our “all at risk” simulations. These simulations were used for estimating 

the parameters 𝜆 and 𝜂 from our spatial simulations. 

Parameter estimation for the dynamic conjugate formation model was based on four reported 

values from Vasconcelos et. al. [19]: the population killing averages for the high rate killers (6.4 

targets killed per 12 hours) or low rate killers (2.8 targets killed per 12 hours), the fraction of the 

population reported to be high rate killers (⅓), and the breakpoint after which the high rate 

phenotype appeared (8-10 hours; we took 9 hours for this value). From these 4 reported values 

we derived three statistics for fitting our Monte Carlo simulations with dynamic conjugate 

formation: the mean (a1) and variance (a2) of the number of killed targets per CTL after 12 hours, 

and the expected number of killed targets per CTL at the breakpoint of 9 hours (a3). We estimated 

the killing at 9 hours by noting that the high rate group had not yet emerged at 9 hours, before 

which all cells killed at an approximately constant rate. Thus extrapolating from the low rate killing 

average at 12 hours ( 2.8 x 9/12 ) gives approximately 2 targets killed at the 9-hour breakpoint 

(note that this is also consistent with Fig. 4B of Vasconcelos et. al [19]). Thus, the experimental 

estimates were: a1 = 4, a2 = 6.9 and a3=2. To fit to these estimates, we measured the same 

statistics (b1,2,3) from our simulations and then minimised the root mean squared error:  

 𝑅𝑀𝑆𝐸 = √ ( 1/3 ⋅ ∑ (𝑎𝑖 − 𝑏𝑖)
2

𝑖:1,2,3  ) , Eq. 1 

for different values of the parameters 𝜂, 𝜆, 𝑘𝑜𝑛, and 𝑘𝑜𝑓𝑓. For the stochastic optimisation we 

performed 10 repeats for all combinations of selected discrete values of 𝜂, 𝑘𝑜𝑛, and 𝑘𝑜𝑓𝑓 (S2 Fig), 

and then for each combination we estimated 𝜆 based on 𝑁𝑤 = 1000 repeats and the optimise 

function in R. Dynamic conjugate simulations were written in C++ using the Rcpp package. 

Biological interpretation of parameters for the stochastic simulations are summarised in Table 1 

and the parameter values used throughout the manuscript are provided in S1 Table. 
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Table 1. Stochastic simulation parameters 

parameter biological interpretation 

𝜂 number of hits required for target death 

𝑛̅ mean number of targets in a well 

𝜆 (hr-1) hitting rate 

kon (hr-1) conjugate formation rate 

koff (hr-1) conjugate dissociation rate 

 

Spatial Simulations 

We developed spatial simulations of CTLs killing in microwells, with the aim of generating noisy 

and undersampled artificial data representative of data generated by microscopy, data which can 

be used to test methods for recovery of parameters governing CTL hitting. To this end we 

employed the cellular Potts model (CPM) framework [34], a formalism we used previously to 

simulate T cell-target cell interactions [11,35,36]. The CPM is a lattice based model, with entities 

such as cells represented by assigning individual lattice sites a ‘spin’ value, to identify them as 

belonging to a specific entity. The model evolves via minimisation of an energy function, the 

Hamiltonian: 

 𝐻 = 𝐻𝑠𝑜𝑟𝑡 + 𝐻𝑙 + 𝐻𝑎𝑐𝑡. Eq. 2 

Here, 𝐻𝑠𝑜𝑟𝑡 represents interactions between cell surfaces and deviations from a target  cell area; 

𝐻𝑠𝑜𝑟𝑡 is defined as [34]: 
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 𝐻𝑠𝑜𝑟𝑡 = ∑ 𝐽 ( 𝑞( 𝜎(𝑖, 𝑗)), 𝑞( 𝜎(𝑖′, 𝑗′))) (1 − 𝛿𝜎(𝑖,𝑗),𝜎(𝑖′,𝑗′)) +(𝑎(𝜎)−𝐴𝑞(𝜎))2

𝜁𝑎 ∑ (𝑎(𝜎) − 𝐴𝑞(𝜎))2
𝑠𝑝𝑖𝑛 𝑡𝑦𝑝𝑒𝑠 𝜎 , 

Eq. 3 

where 𝜎(𝑖, 𝑗) is the spin of an individual cell of type 𝑞 at grid point with x coordinate i and y 

coordinate j; 𝐽(𝑞, 𝑞′) is the surface energy between cells of type 𝑞 and 𝑞′; 𝛿𝜎,𝜎′ represents the 

Kronecker delta; 𝑎(𝜎) represents the actual area of a cell and 𝐴𝑞(𝜎) the target area for a cell of 

type 𝑞 (we refer to this as area rather than volume because we employ 2D simulations); 𝜍𝑎 is a 

weighting term for the area constraint; Note that the sum of the surface energies are calculated 

over each third order neighbour of a 2D grid site. 

Our model also includes a term for surface area conservation of individual cells [37]: 

 𝐻𝑙 = 𝜁𝑙 ∑ (𝑙(𝜎) − 𝐿𝑞(𝜎))2
𝜎 , Eq. 4 

where 𝐿𝑞(𝜎) is the target perimeter for cells of type 𝑞, 𝑙(𝜎) is the current perimeter of a cell with 

type 𝜎 (determined as the total length of the boundary interfaces with grid sites of differing spin), 

and 𝜁𝑙 is the weight of the perimeter constraint. We set 𝐿𝑞 = 2𝜋√𝐴𝑞, i.e., the ratio of a circle’s 

perimeter to its area, so that the term 𝐻𝑙 is minimised when cells become perfectly circular. We 

set 𝜁𝑙 lower for the CTLs than for the target cells, implying that the targets retained a spherical 

shape whereas CTLs were much more deformable in our simulations. 

Finally, the Hamiltonian includes a term 𝐻𝐴𝑐𝑡 to drive the motility of CTLs [22]: 

 𝐻𝐴𝑐𝑡 =
𝜍𝐴𝑐𝑡

𝑀𝑎𝑥𝐴𝑐𝑡
(𝐺𝑀𝐴𝑐𝑡(𝑢) − 𝐺𝑀𝐴𝑐𝑡(𝑣)). Eq. 5 

This follows an actin-driven cell motility model with protrusions driving the migration of cells. In 

this model actin is modelled explicitly and when a cell occupies a new site on the lattice, the site 

is given an actin value 𝑀𝑎𝑥𝐴𝑐𝑡. The actin activity 𝐴𝑐𝑡 in that site then decreases by one at every 

Monte carlo step until it reaches 0. The function:  

 

𝐺𝑀𝐴𝑐𝑡(𝑢) = ( ∏ 𝐴𝑐𝑡(𝑦)

𝑦∈𝑉(𝑢)

)

1/|𝑉(𝑢)|

 

Eq. 6 

calculates the geometric mean actin activity around site 𝑢, where |𝑉(𝑢)| are the second order 

Moore neighbours of site 𝑢 (see Fig. 1 of reference [22]). The model favours updates from sites 

𝑢 with high actin activity into neighbouring sites 𝑣 with low actin activity, resulting in local positive 

feedback. The CPM parameter 𝜍𝐴𝑐𝑡 is a weighting term the strength of which we varied to control 
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the motility of the CTLs. The 𝐻𝑎𝑐𝑡 term was not applied to target cells, which are moved only 

passively via interactions with the CTL and other targets.  

In our spatial simulations we also implemented a contact-limited hitting behaviour for the CTL. 

We take CTL killing of targets to occur primarily via the perforin/granzyme pathway so we consider 

only contacted targets to be at risk, although our model should also apply to FAS-Ligand mediated 

killing, which is also contact-limited. When multiple targets are contacted by a CTL, it seems likely 

that the risk of getting hit is not equal for all targets, as polarisation of the lysosome towards 

specific targets should occur in order to permit delivery of lytic molecules to the target [8,9]. 

Although we did not model the polarisation of the lysosome explicitly, we do take into account a 

tendency for CTLs to unequally distribute hits towards contacted  targets. To achieve this, we 

implement the same baseline hitting probability as in the Gillespie simulations, and multiply this 

by 𝜃𝑖(𝑡), the proportional fraction of CTL: target membrane interface occupied by the target at 

time point t: 

 𝜃𝑖(𝑡) =
𝑙𝑖(𝑡)

𝐿𝑖(𝑡)
 , Eq. 7 

where 𝑙𝑖(𝑡) is the length of the interaction interface between target i and the CTL inhabiting the 

same well, 𝐿𝑖(𝑡) the total interaction interface length of the CTL that contacts target i, including 

any other co-contacting targets. Because CTLs are considered to hit targets at a constant rate 𝜆, 

for simulations without delayed hitting each target’s risk of being hit during a brief time interval 𝛥𝑡  

equals 𝜆𝜃(𝑡) ⋅ 𝛥𝑡. For some simulations we introduced a rule preventing CTLs from hitting targets 

for a specified delay period each time a CTL contacted or recontacted a target. This was 

implemented by means of a counting variable inside each target, such that hits would not register 

until the target had been in continuous contact with the CTL for the specified interval.  

Simulations had a spatial scale of 1 μm pixel-1 and were 100 μm2 in area. The simulation space 

consisted of a circular area representing a microwell within which one CTL and usually between 

10-20 targets were constrained to move. Simulations had a temporal scale of 1 second per Monte 

Carlo step. Parameters employed in the CPM simulations are given in Table 2. Simulation output 

was produced every 120 Monte Carlo steps (2 minute intervals),  corresponding to a typical 

sampling frequency in time-lapse imaging data with multiple wells [19]. CPM simulations were 

developed within the morpheus framework [38].  
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Table 2. Cellular Potts simulation parameters 

parameter value description 

𝐽𝜎,𝜎′ 𝐽𝑡𝑎𝑟,𝑡𝑎𝑟 = 0.7; 

𝐽𝑐𝑡𝑙,𝑡𝑎𝑟 = −3; 

𝐽𝑡𝑎𝑟,𝑤𝑒𝑙𝑙 = 0;   

𝐽𝑐𝑡𝑙,𝑤𝑒𝑙𝑙 = 0; 

surface energies between cell types 

𝐴𝑞 𝐴𝑐𝑡𝑙 = 140 𝜇𝑚2 

𝐴𝑡𝑎𝑟 = 340 𝜇𝑚2 

the target area for a cell of type 𝑞 

𝐿𝑞 
2√𝜋𝐴𝑞 

the target perimeter for a cell of type 𝑞 

𝜍𝑙 𝜍𝑙,𝑐𝑡𝑙 = 0.1 

𝜍𝑙,𝑡𝑎𝑟 = 0.25 

strength of cell perimeter constraint 

𝜍𝑎 𝜍𝑎,𝑐𝑡𝑙 = 1 

𝜍𝑎,𝑡𝑎𝑟 = 1 

strength of cell area constraint 

𝜍𝐴𝑐𝑡 𝜍𝐴𝑐𝑡,𝑙𝑜𝑤 = 2 

𝜍𝐴𝑐𝑡,ℎ𝑖𝑔ℎ = 10 

strength of actin protrusion dynamics: 𝜍𝐴𝑐𝑡,𝑙𝑜𝑤 for low-motility and 

𝜍𝐴𝑐𝑡,ℎ𝑖𝑔ℎfor high motility CTLs 

𝑀𝑎𝑥𝐴𝑐𝑡 50 Actin activity value when CTLs occupy a new lattice site  
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Supplementary Data 

Additional supplementary data for this chapter are available online with the links provided below: 

S1 Table. Summary of parameters used in stochastic simulations. Data and code used in this 

project are available (http://doi.org/10.17605/OSF.IO/6GQYP). 

https://doi.org/10.1371/journal.pcbi.1007972.s001  

S1 Text. Fitting procedure and hypothesis comparison for multiple-hitting model and 

subpopulation model. 

https://doi.org/10.1371/journal.pcbi.1007972.s002 

S1 Video. Simulation of high-motility CTL, requiring 5 hits to kill targets. 

https://doi.org/10.1371/journal.pcbi.1007972.s009 

S2 Video. Simulation of low-motility CTL, requiring 5 hits to kill targets. 

https://doi.org/10.1371/journal.pcbi.1007972.s010 

In all videos, CTLs are shown in red whilst uncontacted targets are in grey. Contacted targets are 

shaded blue based on their share of total CTL:target interface, i.e. the probability that they will 

receive the next hit generated by the CTL. Targets are overlaid with the number of hits they have 

received. Elapsed simulation time (hours:minutes) is displayed in the upper right corner of the 

videos. 
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S1 Fig. Multiple hitting increases inherent variability in killing performance between individual 

CTLs. A-B) Distribution of killed target numbers after 12 hours (A) when intrinsic hitting rates 𝜆 (B) are 

drawn from a normal distribution with mean 𝜆̅ and standard deviation 𝜎𝜆 ( 𝜆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜆̅, 𝜎𝜆) ). C) 

Overdispersion for the variance in killed targets in A relative to the variance expected for a Poisson 

distribution, i.e., the ratio of the variance (𝑣𝑎𝑟(𝑥)) to the mean (𝑥̅) number of targets killed after 12 hours 
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(vertical axis). The horizontal axis is the ratio of the standard deviation to the mean value of the intrinsic 

hitting rate.   

 

S2 Fig. Parameter estimation for Monte Carlo simulations with dynamic contacts. A) Estimated hitting 

rates (𝜆, represented by colour) for various combinations of  the number of hits (𝜂, rows), contact formation 

rates (kon, vertical axes in sub-panels), or  contact escape rates (koff, horizontal axes in sub-panels). Ten 
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repeats (across columns) were performed for the optimisation step, using Nw=103 CTLs per tested value of 

𝜆. After fitting we validated our results by performing Nw=104 simulations with each best fitting parameter 

combination, which is shown here. B) Root mean square residual errors for the best fitting parameter 

estimates (panel arrangement is as described in S2A Fig legend). Results are from validation simulations, 

using Nw=104 simulations per parameter combination.   

 

S3 Fig. Monte Carlo simulated CTL:target interaction durations amongst surviving and killed 

targets. (displayed on previous page) A) Sample density of killed targets in Monte Carlo simulations lasting 
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until all targets were killed, with different numbers of hits (𝜂, on different rows). B) Sample density of killed 

targets in Monte Carlo simulations stopped after 12 hours. C) Sample density of surviving targets, 

corresponding to the ‘absent’ portion of the distribution for killed targets in B. The red line in A and B is the 

probability density function fk  for a gamma distributed waiting time until targets receive η hits arriving at a 

constant rate 𝜆. For all S3 Fig: Nw=100, n=12  targets per well, all targets equally at risk. Parameter 

combinations used were: (𝜂 = 1, 𝜆 = 0.34;   𝜂 = 2, 𝜆 = 1.17;  𝜂 = 3, 𝜆 = 2.12;  𝜂 = 4, 𝜆 = 3.14;   𝜂 = 1, 𝜆 =

4.22). 
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S4 Fig. Maximum likelihood estimation for the killing rate of single-hitting CTLs. A) Poisson 

distributions for the number of targets used to start simulations in Fig. S4, with mean 𝑛̅ = 8 𝑜𝑟 16 as shown. 

B) Number of killed targets after 12 hours for Nw=2 x 3 x 1000 simulations, each group of Nw=1000  started 

with one of the 2 distributions in A, and with one of the 3 indicated parameter settings. C) Density of killed 

targets after 12 hours from ‘Mixed’ distributions resulting from 𝜂 = 1, 𝜆𝑳𝑹 = 𝟎. 2, 𝜆𝐻𝑅 = 0.7 and either 𝑛̅ =

8 𝑎𝑛𝑑 𝑚 = 0 (left panel), or 𝑛̅ = 16 𝑎𝑛𝑑 𝑚 = 0.67 (right panel). Note that for 𝑛̅ = 8 the killing of multiple-
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hitting CTLs became greater than the high rate subpopulation of single-hitting CTLs; 𝑛̅ = 8 was only used 

for testing robustness of the estimators on heavily censored data. D) Relative likelihood of candidate hitting 

rate estimates, 𝜆̂, compared to the maximum likelihood estimate, 𝜆̂𝑀𝐿, resulting from application of the 

Poisson estimator separately to each of the single-hitting (𝜂 = 1) datasets shown in B. Relative likelihood 

are shown either for the dataset in its entirety (dashed lines), or for a randomly selected sample of NW=10 

(solid lines). E) Examples of testing datasets derived from the multiple-hitting population (B, 𝑛̅ = 16, 𝜂 =

10) or from a mixture of single-hitting CTLs (B, 𝑛̅ = 16, 𝜂 = 1, where the true density of killed targets in the 

mixture distribution is in C). F) Relative likelihood of candidate hitting rate estimates, 𝜆̂, compared to the 

maximum likelihood estimate, 𝜆̂𝑀𝐿, for constrained fits constructed from either the subpopulation datasets, 

or from multiple-hitting datasets, for three samples with either Nw=30,100, or 1000 (note the multiple-hitting-

generated data (𝜂 = 10)  is therefore fully represented by the Nw= 1000 case). 
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S5 Fig. Testing for multiple-hitting CTLs versus subpopulations of single-hitting CTLs. A) Maximum 

likelihood estimates for the hitting rate, 𝜆̂𝑀𝐿, with either the gamma or Poisson estimators, both constrained 

to a uniform single-hitting population (i.e. by forcing 𝜂 = 1 for the gamma estimator and by forcing 𝑚 = 1 

for the Poisson estimator). Each of the 2x4x10=80 points represents one of the 4x10 testing populations 

from S4E Fig (here indicated by facet labels), fit with both of our estimators (x-axis). B) Difference between 

the log likelihood function evaluated with the constrained versus unconstrained Gamma estimator 
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𝑙𝑜𝑔 𝐿(𝜆̂𝑀𝐿, 𝜂̂𝑀𝐿)(dark bars); or with the constrained versus unconstrained Poisson estimator 

𝑙𝑜𝑔 𝐿(𝜆̂𝐻𝑅,𝑀𝐿 , 𝜆̂𝐿𝑅,𝑀𝐿, 𝑚̂𝑀𝐿)(light bars). Each of the 40 testing populations occupies one horizontal bar, with 

the details of the testing populations as indicated in facet labels. For the x-axis scaling (negative values are 

not possible), the relative size of the dark v.s. light bars is proportional to the strength of the evidence for 

the multiple-hitting hypothesis (dark bars) versus the subpopulation hypothesis (light bars). C) The 

constrained estimates for the hitting rate parameters, 𝜆̂𝑀𝐿, (circles; also shown in A) or their unconstrained 

counterparts (red asterisks) for each testing population (points on x-axis). For the Gamma estimator (top 

row) the estimated 𝜂̂𝑀𝐿is shown only where 𝜂̂𝑀𝐿 > 1. For the Poisson estimator (bottom row), the 

unconstrained estimates for 𝜆̂𝐻𝑅,𝑀𝐿 , 𝜆̂𝐿𝑅,𝑀𝐿are above and below their counterpart constrained estimates, and 

the Gamma and Poisson estimators can be compared per population. D) Distribution of all cumulative 

interaction times, 𝜏 (killed and surviving targets shown separately in columns), for all Nw=1000 members of 

each of the 3 generating populations (as shown in S4B Fig). Although the 2 single-hitting populations were 

combined (upper row), the separate contribution of the 𝜆𝐻𝑅 (red) or 𝜆𝐿𝑅 (blue) populations is indicated by 

color. Multiple-hitting CTLs (green) are shown separately (bottom row).  
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S6 Fig. Maximum likelihood estimation for CPM simulations with a hitting threshold time. A-B) 

Heatmaps of the likelihood function around the maximum likelihood estimates for the killing parameters 𝜂 

and 𝜆, in CPM simulations under various conditions. In A, results are shown for various 𝜂 values (rows) and 

for both high-motility (left colum) and low-motility (right column) conditions for simulations with 15 minute 

hitting delay. In B, results are shown for high motility CTLs at all tested values of the delay (in range 0-15 

minutes, across columns). The horizontal and vertical lines in A-B mark the values of the CPM parameters 

used to generate the data for each group and the boundary enclosing the 95% confidence region is marked 

with a thin blue line.  
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Abstract 

Immunotherapies are an emerging strategy for treatment of solid tumors. Improved understanding 

of the mechanisms employed by cytotoxic T lymphocytes (CTLs) to control tumors will aid in the 

development of immunotherapies. CTLs can directly kill tumor cells in a contact-dependent 

manner or may exert indirect effects on tumor cells via secretion of cytokines. Here we aim to 

quantify the importance of these mechanisms in murine thymoma EL4/EG7 cells. We developed 

an agent-based model (ABM) and an ordinary differential equation (ODE) model of tumor 

regression after adoptive transfer of a population of CTLs. Models were parameterized based on 

in vivo measurements of CTL infiltration and killing rates applied to EL4/EG7 tumors and OTI T 

cells. We quantified whether infiltrating CTLs are capable of controlling tumors through only direct, 

contact-dependent killing. Both models agreed that the low measured killing rate of CTLs in vivo 

was insufficient to cause tumor regression. In our ABM we also simulated CTL production of the 

cytokine interferon gamma (IFNγ) in order to explore how an antiproliferative effect of IFNγ might 

aid CTLs in tumor control. In this model IFNγ substantially reduced tumor growth compared to 

direct killing alone. Collectively these data demonstrate that contact-dependent killing is 

insufficient for EL4 regression in vivo and highlight the potential importance of cytokine-induced 

antiproliferative effects in T cell mediated tumor control. 
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Introduction 

In the last decade, immunotherapies for cancer have moved into the mainstream of clinical 

oncology. Antibodies targeting immune checkpoints have been particularly successful, offering 

significant advantages over chemotherapy in a range of advanced metastatic, relapsed, and 

refractory solid tumors. CTLA-4, PD-1, and PD-L1 inhibitors are now approved in melanoma, non-

small-cell lung cancer, renal cell carcinoma, urothelial carcinoma, merkel cell carcinoma, and 

some colon cancers[1]. Another promising immunotherapeutic approach has been the transfer of 

large numbers of cytotoxic T lymphocytes (CTLs). The transferred cells can be either autologously 

derived tumor infiltrating lymphocytes (TILs), or engineered with a chimeric antigen receptor 

(CAR) for tumor specificity. 2017 saw the first FDA approvals of CAR T cells for treatment of B 

cell malignancies[2]. The potential of adoptive transfer therapies for solid tumors has been 

highlighted in trials using TILs against melanoma[3–5], or CAR T cells against a range of solid 

tumors[6–8]. However, these promising early results have so far failed to transfer into the clinic. 

Many attempts are being made to improve the efficacy and broaden the scope of cancer 

immunotherapies. For example, immunotherapies can have a synergistic effect when applied 

together with other immunotherapies[9,10], or with traditional treatments such as radiotherapy 

and chemotherapy[11,12]. Optimal treatment scheduling and dosages are yet to be determined. 

Given the danger of life threatening immune related adverse events following immunotherapy as 

well as the high costs involved, biomarkers to indicate which patients are likely to benefit from 

these treatments will be highly valuable. In particular, the immunosuppressive microenvironment 

which often characterises solid tumors represents a significant hurdle to the expansion and 

improvement of immunotherapies. Given the complex nature of the various mechanisms of 

interaction involved in determining the success of immunotherapies, a quantitative understanding 

of the contribution of these various mechanisms will be highly beneficial for the rational design 

and optimisation of cancer immunotherapies. 

One highly relevant topic requiring greater quantitative insight regards the mechanisms employed 

by CTLs to control tumors in vivo. Indeed, these cells are key players in anti-tumor immune 

responses, which they are thought to achieve through being extremely efficient killers. This 

reputation has primarily been established by in vitro studies showing evidence of serial or 

simultaneous killing of several target cells in a short time frame[13,14]. Killing by CTLs is usually 

considered to be ‘direct’, i.e., contact dependent, and mediated by either perforin and granzymes, 

or FAS-L. Several studies have suggested that direct lysis of tumor cells by CTLs is extremely 

important in tumor control[15–18]. However, the reported killing rates of CTLs in vivo are typically 

low[19] and it is not clear whether these rates are indeed sufficient for control of tumors. Several 

studies have highlighted the importance of ‘indirect’ effects of cytokine signalling by activated T 

cells in the control of tumors, in particular IFNγ [20,21]. IFNγ may control tumors by exertion of an 

antiproliferative effect[22], sensitization of tumor cells to FAS-L mediated death[23], recruitment 

of effector cells of the innate immune system[24], and by causing widespread necrosis of tumor 

cells along with tumor vasculature destruction[25]. 
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In the current study we quantitatively compare the importance of direct, contact dependent killing, 

with indirect cytokine mediated tumor control, based on published experiments in which EL4/EG7 

tumor cells were infused into mice[18]. We chose to focus on the EL4 tumor cell line which, along 

with its transformed Ova antigen expressing derivative EG7, has been widely used to explore the 

anti-tumor activities of CTLs in an in vivo setting[18,21,26–29]. Using these cell lines, evidence 

has emerged supporting an important role for IFNγ in tumor control by CTLs yet a negligible role 

for direct killing, along with apparently contradictory evidence suggesting an important role for 

direct killing. Hollenbaugh et al.[30] transferred perforin and FasL deficient T cells into EG7 tumor 

bearing mice, and these deficient T cells were able to control tumors almost as well as their wild 

type counterparts. However, IFNγ deficient T cells displayed a marked reduction in tumor control, 

suggesting that IFNγ rather than direct cytotoxicity was the primary mechanism used by CTLs to 

control the tumor. In contrast, Breart et al.[18] used intravital two-photon imaging to show that 

apoptotic events almost exclusively occurred when tumor cells were contacted by T cells, thus 

arguing for a major role of direct cytotoxicity. Moreover, they generated mixed tumors, comprising 

both Ova-expressing EG7 cells and non-Ova-expressing EL4 cells. In these mixed tumors only 

the antigen expressing EG7 cells were eliminated, arguing against an indiscriminate effect from 

IFNγ. We integrate the data acquired at various levels into both an ordinary differential equation 

(ODE) model, and a spatial agent-based model (ABM). Applying these models to the in vivo data 

we show that the observed T cell densities and slow killing rate were insufficient to explain the 

population-level tumor regression observed in the mice. We found that an antiproliferative effect 

mediated through IFNγ signalling allowed CTLs to influence far more cells than direct killing alone, 

therefore leading to a substantially greater impact on tumor progression. Our modelled scenario 

corroborated the notion that IFNγ plays a crucial role in EL4 tumor control, and reconciles this 

with the apparently conflicting observation of low reported killing rates and density of infiltrating 

CTLs.  

Methods 

Data interpretation 

Since the main aim of this work is to test whether CTLs could have controlled the tumor through 

the sole means of direct killing, we favoured ‘optimism’ from the CTL viewpoint wherever the in 

vivo dataset was ambiguous. Thus, we chose model assumptions that promoted tumor control 

through direct CTL killing.  

Tumor Cells. Tumor volume measurements in the absence of CTL transfer were used to fit the 

growth rate of both our ODE model and ABM. Based on manual counting of the images, we 

estimated that the density of tumor cells was approximately 106 cells mm-3. This value is the 

default used in all our models. Moreover, Breart et al.[18] used flow cytometry to estimate the 

absolute number of tumor cells inside two tumors 10 days after inception (in the absence of 

infused T cells). An average of 4 x 106 cells were recovered, at a time-point where the average 

tumor volume was ~17mm3, corresponding to a density of approximately 0.25 x 106 cells mm-3. 

Given that a substantial fraction of tumor cells were likely lost during the cell isolation 

procedure[31], this can be viewed as an absolute underestimate of the tumor cell density. To 
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convert between tumor volume and number of tumor cells, we consider direct proportionality 

between these quantities. 

Dead tumor cells are not recognised by CTLs in our models yet are not immediately removed 

from the models. Parnaik et al. [32] found that cultured rat cerebellar neurons were completely 

cleared within 3 hours of apoptosis by professionally phagocytic microglia, whereas the same 

cells were incompletely cleared after 9 hours by non-professionally phagocytic epithelial cells. We 

therefore considered tumor cells to persist for an average of 6 hours after apoptosis. Because the 

number of CTLs in our modelled tumors is proportional to the tumor volume (the sum of numbers 

of dead and alive cells), inclusion of dead tumor cells increases the ratio of effector : alive target 

(E:T ratio) and thereby increases the total killing rate. 

CTLs. Breart et al.[18] transferred CTLs to mice on day 5 after tumor injection. Before this point 

we consider CTLs to be absent from the tumor. Because killing undertaken by any endogenous 

CTL should also occur in the control tumors where no CTLs were transferred, this is already 

accounted for in our fit to the tumor growth data in the absence of CTLs.  Breart et al.[18] 

measured the density of CTLs within the tumor on days 7 (12500 CTLs mm-3) and 8 (25000 CTLs 

mm-3). Based on our estimate of 106 tumor cells mm-3, this corresponds to an Effector:Target ratio 

of 1:80 on day 7, and 1:40 on day 8. Due to the temporally sparse measurements the exact 

dynamics of T cell infiltration into the tumor are not known and for simplicity we linearly 

interpolated between the available data points. Beyond day 8, further data on the density of 

infiltrating CTLs was not recorded. In reality T cell numbers likely peak and then decline a few 

days after adoptive transfer[22], and T cells often suffer from exhaustion after extended time in 

the tumor[33,34]. However, it is certainly possible that CTL numbers continued to increase beyond 

day 8. In line with our policy of taking the most optimistic assumptions from the CTL viewpoint, 

we considered the ratio of effector T cells to total tumor cells (Effector:Tumor-Cell ratio) to 

continue to linearly increase after day 8. Also in line with our policy, we do not consider CTLs to 

diminish in effector function over time (which would make it more difficult to control the tumor). 

CTLs kill tumor cells at a default rate of k = 4 CTL-1 day-1. 

ODE Model 

Model setup. ODE simulations were performed in the R language, using the package ‘deSolve 

1.14’. Models were fitted using the Levenberg Marquardt algorithm in the package ‘minpack.lm 

1.2-1’. Our ODE model was designed to test whether CTLs could control tumors with the observed 

direct killing rate of k = 4 kills CTL-1 day-1. Therefore, we deliberately simplified the model, with 

assumptions chosen to maximise the likelihood of tumor control. The model consists of two 

coupled equations: 

 𝑑𝑇

𝑑𝑡
= 𝑔𝑇 − 𝑘𝐸(𝑡) , (1) 
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 𝑑𝐷

𝑑𝑡
= 𝑘𝐸(𝑡) −  𝑑𝐷, (2) 

Thus, tumor cells T are considered to grow exponentially with rate g (day-1) in the absence of 

CTLs, because the experimental tumors clearly did not yet suffer from competition for resources 

during the measurement interval (Fig. 1A). Tumor cells are killed at rate k (CTL-1 day-1) by a 

population of effector cells E(t), where E(t) is determined based on the number of dead and alive 

tumor cells (Data Interpretation, Fig. 1B): 

 

E(𝑡) = λ(𝑇 + 𝐷) {

0                                                  𝑖𝑓 (𝑡 ≤ 5)

(𝑡 − 5)                              𝑖𝑓 (5 < 𝑡 ≤ 7)

2(1 + (𝑡 − 7))                        𝑖𝑓 (7 < 𝑡),

 

(3) 

with the parameter 𝜆 arising from interpolation of the data (𝜆 =
1

160
𝑐𝑒𝑙𝑙−1 𝑑𝑎𝑦−1), which defines 

the rate of increase in the Effector:Tumor-Cell ratio 𝐸: (𝑇 + 𝐷). 

Killed cells D are cleared at rate d (day-1). We took the killing rate to be proportional to the number 

of CTLs and independent of the number of target cells, implying that CTLs are considered to 

always kill at their maximal rate. In reality a dual saturation function, with saturation in both effector 

and tumor cell number T, is a more complete description of CTL killing (Supplementary Methods) 

[35,36]. However, we aimed to model a situation that favours CTL control of the tumor. In such a 

best-case scenario from the CTL viewpoint, CTLs always have sufficient targets to kill and need 

never search for targets. As such our simplified ODE model is an extremely optimistic scenario 

from the point of view of the CTLs. This simplification implies that our model is a good 

approximation as long as the E:T ratio remains sufficiently low.  

ABM 

Model setup. ABM simulations were implemented in C++14, using boost 1.69.0. Visualisations 

were rendered in C++ using VTK 8.0. We use an asynchronously updating ABM to simulate tumor 

growth, T cell infiltration and migration, and tumor regression. Our ABM features two types of 

agents: CTLs and tumor cells. Tumor cells live on a regular 3D lattice where each cell occupies 

a single lattice site; tumor cells do not share sites with each other. Empty sites in the lattice 

represent extracellular matrix, or other cell types not interfering with the tumor.  Lattice sites have 

length 10μm by default, roughly corresponding to our default tumor cell density assumptions. 

Each tumor cell grid point contains information on the tumor cell type (either EG7 or EL4), the 

amount of damage it has sustained from CTL attacks, and whether it is alive or not. Throughout 

the simulation we track the displacement of the furthest tumor cell from the centre of the lattice; 

this measurement is used to dynamically adjust the size of the simulation domain. The domain is 

a sphere, extending from the lattice centre out to a radius 5 lattice sites (50μm) beyond the 

displacement of the furthest tumor cell. 

https://paperpile.com/c/3pAp00/sn9aR+Heqxx
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Tumor cell behaviour. The tumor is initialised on day 0, by filling T0 lattice sites with tumor cells 

within a radius of Ri from the lattice centre. The simulation is advanced in timesteps of 1 minute 

(Δt). At each timestep each tumor cell is liable to to replicate with probability gΔt. Cells replicate 

into a random neighbouring square if one is available. We implemented short range dispersal 

(similar to [37]) as a computationally inexpensive means to achieve exponential, spheroidal tumor 

growth whilst comfortably allowing simulation of over 108 individual agents. Candidate dividing 

cells whose surroundings are fully occupied attempt to disperse from the tumor with probability 

pdisp. Dispersing cells produce a daughter cell for which a new location is chosen based on a 

random walk with mean dispersal distance proportional to the current tumor radius. If the chosen 

site is vacant the daughter cell occupies this site, otherwise the dispersal attempt fails.   

CTL infiltration. CTLs are associated with a location corresponding to a grid site, however they 

are not explicitly represented on the grid and as such can share space with other CTLs or tumor 

cells. Thus, CTLs do not contribute to the tumor mass and are able to move through tumor tissue, 

attempting to form conjugates with antigen expressing tumor cells. We allowed for such co-

occupancy because CTLs can easily move in between other cells in densely packed 

environments such as a lymph node[38] or the skin epidermis[39], and are able to cooperate to 

kill individual targets[19]. Because of the relatively low Effector:Tumor-Cell ratios observed in the 

experimental data, in practise our CTLs rarely share lattice sites. Specifically, two or more CTLs 

share a lattice site only ~2% of the time, and 3 or more share a site ~0.01% of the time on day 8 

of a typical simulation. Following the experimental setup, CTLs infiltrate the tumor on day 5 after 

tumor inception. New CTLs arrive at random points within the existing simulation domain. At each 

timestep a target number of CTLs is calculated based on the Effector:Tumor-Cell ratio we 

estimated from the data (in equivalence with the ODE model). If the number of CTLs inside the 

simulation is below the current target, new CTLs are added to the simulation until the target is 

reached. CTLs are only removed from the simulation when they migrate outside the simulation 

domain. The number of CTLs may therefore exceed the target density, albeit only whilst the tumor 

disappears more quickly than CTLs migrate out of the simulation domain. 

CTL migration. CTLs migrate until they reach a site occupied by a tumor cell; CTLs that migrate 

outside the simulation domain are removed. Whilst a CTL is migrating, each time-step it randomly 

moves to an adjacent lattice site within its 3D Moore neighbourhood including its current location. 

Thus, there is a 1/27 probability of no movement, a 6/27 probability of a 10 μm movement, 8/27 

probability of a10√2μm movement, and a 8/27 probability of a 10√3μm movement. Therefore, the 

resulting migration speed is 11.5μm per minute, which is in close agreement with previously 

measured values in the EL4/EG7 tumor [29]. CTLs that find tumor cells arrest with probability parr, 

and subsequently attack tumor cells with probability phit or detach and resume migration with 

probability pdet
.. By default  parr = 1 and  pdet = 0, although these are varied to parr = 0.9 and  pdet = 

0.01 in the simulations where we examine multi hitting CTL. CTLs are immediately released from 

conjugates if the target cell dies. 

Effects of CTLs on tumor cells.  Tumor cells may sustain nhit hits from CTLS before apoptosis 

occurs. By default nhit = 1, in which case CTLs attack targets with an attack rate identical to the 

killing rate. In simulations where multiple hits are required for tumor cell death the base attack 

rate is multiplied by the number of hits required for apoptosis. Therefore the overall killing potential 
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of the CTLs is controlled between single-hit and multiple-hit simulations to obtain equal killing 

rates. 

In simulations with IFNγ, that cytokine is produced at a constant rate by CTLs whilst conjugated 

with tumor cells. IFNγ is consumed by tumor cells, and tumor cells cannot divide when the local 

IFNγ concentration exceeds a threshold value. We set the diffusion parameters such that the 

threshold occurs at around 3 cell lengths away from a conjugated CTL. For details see the 

Supplementary Methods. 

Mixed tumors. We simulated mixed EL4/EG7 tumors by seeding a 50/50 mixture of cells on day 

0. The only difference between these cell types is that EG7 cells are not recognised by CTLs. 

Results 

Direct CTL cytotoxicity is not sufficient to mediate in vivo regression of EG7 tumors 

In the in vivo data of Breart et al.[18], transferred OTI effector T cells rapidly controlled an infused 

EG7 tumor, following direct contact with tumor cells. However, each infiltrating CTL killed on 

average only 4 tumor cells per day and it is unclear if tumor regression should be expected based 

on the density and cytotoxic activity observed in this in vivo data. To test whether CTLs could 

reasonably be expected to control the in vivo tumors, we employed an ODE model (see Methods) 

that integrated the measurements made at various levels. Instead of providing a detailed 

description of the tumor and its interactions with the immune system, the goal of this model was 

rather to assess the possibility that direct killing could have solely accounted for tumor regression. 

The simplifications that we made in the ODE model always favoured the CTLs, i.e., they made 

tumor regression more likely. If indeed CTLs were capable of controlling the tumor by direct killing 

alone, tumor regression would certainly be observed in this simplified model. 

Modelling tumor growth as an exponential process resulted in a good match to the tumor 

measurements from Breart et al.[18] for the case without T cell transfer (Fig. 1A), suggesting that 

tumor growth was not yet inhibited by factors such as competition for nutrients. Subsequently, we 

introduced a population of CTLs into this model, with Effector:Tumor-Cell ratio based also upon 

experimental measurements (Fig. 1B).  The impact on the tumor was limited when CTLs killed 

tumor cells at a rate of k=4 CTL-1day-1 as reported by Breart et al.[18] (Fig. 1C), despite the 

continuous increase in intratumoral T cell numbers (Fig. 1D). The killing rate measurements were 

relatively uncertain compared to the other parameters in the ODE model, perhaps having varied 

over time or throughout the tumor. To address that uncertainty,we simulated CTL populations 

killing with rate up to k=16 CTL-1day-1, which is at the high end of the range of reported estimates 

for CTL killing performance in vivo [40]. As a side note, in this model such a 4-fold increase of the 

killing rate is equivalent to a 4-fold increase of the CTL infiltration rate. With k=16 our simulated 

tumors were controlled, although this control occurred only at much later time points than was the 

case for the in vivo tumors. Thus, even for the extremely optimistic scenario we consider and 

using a substantially higher killing rate than was measured experimentally, direct CTL lysis alone 

could not explain the observed in vivo tumor regression. 
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Figure 1. ODE model suggests direct T cell cytotoxicity is insufficient for control of EG7  tumors. A) Tumor 

growth is described as exponential growth (g=0.86 day-1). B) Effector:Tumor-Cell ratio in the ODE model is 

estimated by linear interpolation of measured data points. After day 8, we assume a linear increase in CTL 

density. Arrows in B-D indicate time of CTL transfer. C) ODE simulation of tumor dynamics in the presence 

of actively killing CTLs, with two different killing rates. Lines represent model fits and dots represent 

experimental data. D) Total number of CTLs in simulations with killing.  

Agent Based Model supports notion that CTL cytotoxicity is insufficient to mediate 

in vivo regression of EG7 tumors 

We developed a spatially explicit ABM with tumor cells and CTLs as agents to contrast against 

the idealised ODE model (Fig. 2A-B).  As in the ODE model, in the ABM the overall growth rate 

of the tumor was matched to the data in the absence of CTLs (Fig. 2C), although the ABM differs 

in that tumor cells cannot divide when fully surrounded, i.e., there is competition for space. Tumors 

were much less well controlled in the ABM than they were in the ODE model (Fig. 2D); even at a 

killing rate of k=16 CTL-1day-1 the tumor was not controlled in the ABM. There are two reasons for 

this discrepancy. Firstly, when compared to the ODE model, the ABM has the added requirement 

that CTLs must migrate in order to find tumor cells to kill. Indeed, the fraction of CTLs in 

conjugates was lower in simulations with k=16 CTL-1day-1 than in those with k=4 CTL-1day-1(Fig. 

2E), because faster killing CTLs spend less time conjugated with tumor cells. The second source 

of discrepancy between the ODE and ABM results stems from the competition for space between 

tumor cells that occurs in our ABM; CTL killing eases such competition, so tumor control is more 

difficult. Thus, the idealised ABM highlights that CTLs might make their own job more difficult by 
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being highly efficient killers. Overall, the ABM simulations confirm that CTL-mediated direct killing 

alone cannot explain EG7 tumor regression. 

 

Figure 2. ABM confirms that direct T cell cytotoxicity is insufficient for control of EG7 tumors. A-B) ABM 

tumor infiltrated by CTLs on day 7. EG7 with free adjacent lattice sites can proliferate (EG7p). EG7 with no 

free adjacent lattice sites are non-proliferating (EG7n.p), although they may still disperse (see Methods). C-

D) Comparison of tumor evolution in ABM (solid lines) and ODE model (dashed lines) without (C) and with 

(D) transferred CTLs, where arrow indicates time of CTL transfer. E) Fraction of CTLs in a conjugate with 

a tumor cell throughout ABM simulations. 
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IFNy-mediated cell cycle arrest is sufficient for tumor control  

Because IFNγ has been widely implicated in tumor eradication [20,21,23–25,41], we added 

production and diffusion of this cytokine to our ABM. We focussed on an antiproliferative effect of 

IFNγ because Breart et al.[18] only detected apoptosis in tumor cells directly contacted by CTLs, 

an observation which is inconsistent with the notion of significant IFNγ cytotoxicity towards EG7 

cells. To test the contribution of the putative antiproliferative effect of IFNγ, we simulated tumors 

with k=4 CTL-1day-1 or k=16 CTL-1day-1, in the presence or absence of IFNγ. In our simulated 

tumors, the antiproliferative effect of IFNγ was much stronger than the contact dependent CTL 

lysis, even with k=16 CTL-1day-1 (Fig. 3A). Although tumors were rapidly controlled in our model 

with IFNγ, they were not entirely eradicated. This can be explained by the low number of CTLs in 

the IFNγ simulations (Fig. 3B), together with the fraction of conjugated CTLs which drops after 

the onset of tumor regression for k=16 CTL-1day-1 (Fig. 3C). CTLs mostly eradicate tumor cells in 

the centre of the spheroid, but some pockets of tumor cells in the periphery survive and allow the 

tumor to escape (Fig. 3D, Video S2). These modelled behaviours are consistent with literature 

observations that solid tumors “melt from the inside” [42], and that EL4 tumors may rebound after 

an initial response to transferred CTLs [43]. In summary, tumor cell cycle arrest due to cytokine 

production by CTLs in addition to their cytotoxicity can explain the observed response of EG7 

cells to a population of transferred CTLs. 

CTL cooperativity leads to heterogeneity in killing rate 

Our ABM predicted an almost negligible role for direct killing in tumor regression, with or without 

the presence of IFNγ. However, the CTL killing rate may in reality have been higher than the 

measured k=4 CTL-1day-1 and may not have been constant over time [36]. Factors that could play 

a role here include the ability of CTLs to kill collaboratively [19]  and that of cancer cells to resist 

multiple CTL ‘hits’ before apoptosis is triggered [44]. We therefore used our ABM to assess 

whether the measurement of k=4 CTL-1day-1 could have resulted from a higher ‘intrinsic’ CTL 

killing rate. We compared simulations in which tumor cells die after a single ‘lethal hit’ with 

simulations where an accumulation of several hits was required for apoptosis. There was no 

substantive difference between the single hit and multi hit scenarios in terms of tumor growth (Fig. 

4A), or number of CTLs (Fig. 4B). At early time points, the fraction of CTLs in conjugates in the 

multi hit model was slightly higher than in the single hit model (Fig. 4C) and the temporal pattern 

of killing rate per simulated CTL (Fig. 4D) or per conjugated CTL (Fig. 4E) differs between the two 

settings. Multi hitting CTL populations initially killed at a low rate, because targets had generally 

not acquired enough damage to die. Subsequently, targets accumulated damage and the 

manifested killing rate per conjugated CTL rose above the killing rate for the single hit scenario 

(Fig. 4E). Similar to the killing rate-measurement procedure of Breart et al. [18], we measured 

killing in 100𝝻m x 100𝝻m x 30𝝻m ‘windows’ for a two hour period at the beginning of day 8 during 

a cumulative total of 75 hours of conjugated CTL imaging time[18]. Our analysis shows that such 

sample sizes in general reflect the global killing rate well (Fig. 4F). As a side note, in our model 

the infiltration of the tumors by CTLs was relatively homogeneous, meaning that damage to 

targets occurred roughly evenly throughout the tumor (Fig. 4G). Although heterogeneous 

infiltration may lead to strong spatial variability in killing rate, we conclude that temporal variation 

in killing is likely large, especially when CTLs cooperate.  
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Figure 3. Antiproliferative IFNγ leads to tumor control. A) Simulated tumor volume compared with and 

without IFNγ producing CTLs. B) Total CTL numbers in simulations with or without IFNγ. C) Fraction of 

CTLs in conjugates in simulations with and without IFNγ. D) Tumor on day 8, in the presence of IFNγ. 
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Figure 4. T cell cooperativity causes 

heterogeneity in killing rate. A-E) 

Comparison of (A) simulated tumor volume, 

(B)  total number of CTLs, (C) fraction of 

conjugated CTLs, (D) killing rate per 

simulated CTL and (E) killing rate per 

conjugated CTL between simulations 

where CTLs required 1 or 5 hits to kill 

targets, in the presence of IFNγ. Arrow in A 

indicates CTL transfer. F) Killing rate 

measured from 2-hour windows beginning 

on day 8. G) Distribution of dead (EG7d), 

damaged (‘hit’, EG7h), or healthy 

(‘unhit’,EG7u) tumor cells.  
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Direct killing plus antiproliferative IFNγ accounts for selective elimination of 

antigen positive cells 

Breart et al.[18] noted that in mixed EL4/EG7 tumors, the non-cognate antigen expressing tumor 

cells (EL4) grew more or less unconstrained and it is unclear whether the antiproliferative effect 

of IFNγ is consistent with this finding. We therefore simulated mixed tumors, containing patches 

of antigen positive EG7 cells or antigen negative EL4 cells. EL4 cells were considered not to be 

recognized and thus not affected by direct interactions with CTLs, but could be affected by IFNγ 

that diffused from nearby locations. When initialised with a 50% mixture of EL4/EG7 cells, our 

simulated tumors form patches with similar spatial dimensions to the images from Breart et. al. 

(Fig. 5A). We simulated the transfer of CTLs into the mixed tumor model, upon which CTLs 

preferentially accumulated in regions of Ova-expressing EG7 cells where they began killing these 

cells and secreting IFNγ (Fig. 5B,Video S3). IFNγ concentrations were generally higher in regions 

of EG7 cells compared to regions of EL4 cells, yet despite the limited (~30 μm) range of IFNγ 

diffusion in our model many EL4 cells were prevented from replicating for a period of 

approximately 2 days, when the activity of the CTLs was greatest (Fig. 5C). By day 10 most EG7 

cells were eliminated, and the CTLs, being deprived of stimulation, stopped producing IFNγ. After 

this point EL4 cells resumed growth, eventually filling the spaces left behind by the dead EG7 

cells. EL4 cells were thus not so much  affected by the presence of the CTLs. In conclusion, local 

production of anti-proliferative IFNγ is consistent with the experimental observation that within 

mixed tumors primarily cognate-antigen expressing cells were cleared by CTLs. 

https://paperpile.com/c/3pAp00/f49y4


66 
 

 

Figure 5. Antiproliferative IFNγ explains selective destruction of EG7 cells within EG7/EL4 mixed tumors. 

A) Example 2D slice from the centre of a simulated mixed tumor 8 days after tumor inception. B) Images 

showing examples of tumor composition (T cells in red, EG7 cells in yellow, EL4 cells in blue and IFNγ 

concentrations in purple) on day 8 during the course of EG7 regression. C) Evolution of the total volume of 

EG7 or EL4 cells in mixed tumor simulations. Arrow indicates time of CTL transfer.  
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Discussion 

Immunotherapies involving CTLs are able to mediate regression or tumor control in cancers that 

were previously out of reach for conventional treatments. Despite major progress, many patients 

fail to respond, and the mechanistic insight required to explain this disparity in outcomes is lacking. 

Lysis of infected or malignant cells following direct physical contact is the canonical CTL effector 

function, but indirect effects of CTLs such as production of cytokines are increasingly recognised 

as having an important role in CTL mediated tumor regression[21,22,25,45]. The relative 

importance of these different mechanisms remains unclear and is likely to depend on 

characteristics of both the tumor and the T cells involved. Here we developed an ABM and an 

ODE model of tumor regression following adoptive transfer of a population of CTLs attacking 

EL4/EG7 tumor cells. Using these models, we attempted to quantify the relative contribution of 

direct CTL killing towards tumor regression in the EL4/EG7 model. Our simulated tumors were 

not controlled by direct CTL killing only, so we conclude that direct killing was not a sufficient 

explanation for regression in the EL4 tumor model. 

In our ABM we also included simulation of an antiproliferative effect of IFNγ, because Hollenbaugh 

et. al.[21] observed that IFNγ deficient T cells display substantially reduced tumor controlling 

abilities. We modelled an antiproliferative effect because the tumor cells were only observed to 

die after CTL contact, evidence against a substantial long distance cytotoxic effect of IFNγ in this 

in vivo setting. IFNγ secreted by CTLs has been shown to contribute to regression in a different 

tumor model[22], by arresting the cell cycle of tumor cells. Although IFNγ has no direct 

antiproliferative effect on EL4 cells in vitro[22] it has been shown that nitric oxide (NO) is secreted 

by stromal cells after exposure to IFNγ[21]. Such NO reduces proliferation of EL4 cells in vitro[21], 

and thereby provides a possible mechanism for the growth inhibition included in our model. Note 

that we incorporated a direct effect of IFNγ on tumor proliferation rather than explicitly including 

this potential cascade of events, because detailed quantitative measurements on these 

mechanisms are currently lacking. 

Although the antiproliferative effect of IFNγ may be an important contributor to tumor control, IFNγ 

may have had other effects which we did not take into account. First, although we were able to 

explain regression without a substantial cytotoxic effect of IFNγ, we cannot exclude that 

possibility. Since such an effect does not act specifically towards tumor cells presenting cognate 

antigen it may be an important mechanism to control antigen loss variants, which might otherwise 

allow tumors to recur.  Second, IFNγ may induce immuno-tolerance leading to decreased CTL 

effector function[46]. Third, it has been speculated that IFNγ aids in control of tumors by 

recruitment of innate effector cells[24], or destruction of tumor vasculature[45]. Our model 

included neither of these effects because they were not apparent in the experiments we based 

our model on. However, it is possible that these events happened at a later time, after 

observations of CTL killing were made. This further underlines that measurements are required 

throughout the entire course of tumor rejection, in order to gain a full understanding of the 

sequence of events that occurs. 
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Apart from the role that IFNγ may play in tumor control, our modeling has also highlighted a 

potential explanation for temporal variation in measured killing rates of CTLs. Tumor cells may be 

able to endure multiple attacks from CTLs before apoptosis is triggered[19,44], When we 

implemented such variability in our model, we indeed found an increase in killing rate over the 

course of tumor regression. This dependence of killing rate upon measurement time is in 

agreement with our previous modelling work[36] on T cell-target cell interactions.  

A criticism of our approach could be that our simulations do not capture all the myriad complex 

interactions within the tumor microenvironment. Indeed, our models are a highly idealised 

representation of reality, since they contain only the mechanisms we explicitly chose to include. 

This would likely be a problem if using the model as a fully predictive tool for other settings, since 

the model predictions will not be valid in tumors where unincluded mechanisms are important. 

However, when applying the model as a diagnostic tool (as we have here), model simplicity is a 

major advantage. This approach allowed us to quantitatively test whether observations made at 

the cellular level could explain emergent behaviour of the tumor as a whole, without the 

interference of confounding variables.  

Our work highlights the need for further investigation of indirect effects mediated by CTLs in an 

anti-tumor immune response. Although many mechanisms utilised by CTLs to control tumors 

have been identified, quantitative measurements detailing their contribution to regression are 

scarce. Such quantitative understanding would enable a more sophisticated and systems based 

understanding of the interplay of various mechanisms in tumor regression following 

immunotherapy - and likely enable better targeted interventions. Future studies should therefore 

aim to characterise the potential contribution of various mechanisms to tumor regression. 

Computational models that integrate in vitro and in vivo experiments, such as those developed 

here and as developed by others[47–49], can be a valuable tool to aid in this process.   
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Table 1: Overview of parameters used in models, what they represent, and their default value. Parameters 

apply to ABM and ODE model unless indicated otherwise. Parameter values are based on data in Breart 

et al.[18] unless indicated otherwise. 

Parameter Description Default value 

T0 Number of tumor cells at time 0 1450 (ODE) 

180 (ABM) 

E0 Number of CTLs at time 0 0 

D0 Number of killed tumor cells at time 0 0 

k CTL killing rate 4 kills CTL-1 day-1 

g Tumor growth rate 0.86 day-1 (ODE) 

1.97 day-1 (ABM) 

da Disappearance rate of killed tumor cells 2 day-1 

parr Probability of conjugate formation 1 (ABM) 

nhit
b
 Number of hits before tumor cell apoptosis 1  (ABM)  

pdet Probability of conjugate splitting 0 (ABM) 

pdisp
 Probability of tumor cell dispersal 0.03 (ABM) 

Ri Initial tumor radius 120μm (ABM) 

a  based on Parnaik et al.[32] ; b  based on Halle et al.[19] 

  

https://paperpile.com/c/3pAp00/f49y4
https://paperpile.com/c/3pAp00/jPk9p
https://paperpile.com/c/3pAp00/F8QMx
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Supplementary Data 

Video S1. Growth of ABM tumour from day 0 to day 5. EG7 cells that have no available space to 

divide are indicated in green (others in yellow). 

Video S2. CTLs (red) producing IFNγ (purple), which prevents proliferation of EG7 cells (yellow). 

Video shows day 8, where almost all cells in the tumour centre are affected by IFNγ, but isolated 

peripheral pockets are escaping. 

Video S3. CTLs (red) producing IFNγ (purple) when conjugated with EG7 cells (yellow) but not 

when conjugated with EL4 cells (blue), in mixed tumours on day 8. IFNγ prevents both tumour 

cell types from dividing. Note that CTLs congregate in EG7 patches and many EL4 cells remain 

unaffected. 

Supplementary Methods. Additional details of our modeling approach with respect to the killing 

term employed in the ODE model and IFNγ production and diffusion in the ABM. 

Supplementary Methods and Videos S1-S3 are available online (https://doi.org/10.1158/0008-

5472.CAN-18-3147). 
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Abstract 

Several immunotherapeutic strategies for the treatment of cancer are under development. Two 

prominent strategies are adoptive cell transfer (ACT) of cytotoxic T lymphocytes (CTLs) and 

modulation of CTL function with immune checkpoint inhibitors or with costimulatory antibodies. 

Despite some success with these approaches, there remains a lack of detailed and quantitative 

descriptions of the events following CTL transfer and the impact of immunomodulation. 

Here, we have applied ordinary differential equation models to two photon imaging data derived 

from a B16F10 murine melanoma. Models were parameterised with data from two different 

treatment conditions: either ACT-only, or ACT with intratumoural costimulation using a CD137 

targeted antibody. Model dynamics and best fitting parameters were compared, in order to assess 

the mode of action of the CTLs and examine how the CD137 antibody influenced their activities. 

We found that the cytolytic activity of the transferred CTLs was minimal without CD137 

costimulation, and that the CD137 targeted antibody did not enhance the per-capita killing ability 

of the transferred CTLs. Instead, the results of our modelling study suggest that an 

antiproliferative effect of CTLs exerted upon the tumour likely accounted for the majority of the 
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reduction in tumour growth after CTL transfer. We found that CD137 most likely improved tumour 

control via enhancement of this antiproliferative effect, as well as prolonging the period in which 

CTLs were inside the tumour, leading to a sustained duration of their antitumour effects following 

CD137 stimulation. 

Introduction 

The global immuno-oncology pipeline grew by 67% between 2017-2018 [1]. A substantial 

component of this growth came from “cell therapies”, defined in the context of immuno-oncology 

as therapies “that engineer immune cells such as T cells to directly attack cancer cells” [2]. 

Another significant component of the pipeline were therapies classified as “immunomodulators”, 

defined as therapies which “act on inhibitory or activating molecules expressed by T cells (…) 

other immune cells or the tumour immune microenvironment to unleash antitumour immunity” [2]. 

The rapid growth in this field reflects increasing progress in our ability to engineer Cytotoxic T 

Lymphocytes (CTLs) with ability to recognise and attack tumour cells, then modulate that 

response via therapeutic targeting of various “checkpoints”, such as the inhibitory CTLA-4 or PD-

1 / PD-L1 signalling axes which are among the best known immunomodulators and have been 

most successful in the clinic so far[3–5]. Although rapid growth is an indicator that the field of 

immuno-oncology is promising, due to the burgeoning body of literature it can be difficult to 

achieve consensus. In that context, mathematical and computational models are a useful tool to 

aid reuse and integration of previous studies. Such models can be used to integrate data from 

multiple sources, check their consistency, and identify those mechanisms which are most 

important for explaining the overall dynamics of the studied system. This systems biology 

approach can create novel insights into biological phenomena [6–8]. 

One immunomodulator which has received much recent attention is CD137: in 2017 there were 

9 trials with therapies targeting CD137; in 2018 there were 36 [2]. Although several anti-CD137 

agonists are under clinical evaluation [9], the mechanisms through which anti-CD137 influences 

cancer immunotherapy remain under debate [10,11]. CD137 is a costimulatory molecule 

classified as a member of the Tumour Necrosis Factor Receptor superfamily, which is expressed 

on both innate and adaptive immune cells. Targeting the CD137 signalling domain has been 

linked to a gain of effector functions in CD8+ T cells including enhanced proliferation and 

resistance to apoptosis [12–14]. A recent study examined Cytotoxic T Lymphocyte (CTL) 

functions in a B16F10 OVA expressing mouse melanoma, in combination with anti-CD137 agonist 

antibody administered intraperitoneally [13]. OT1 CTLs were adoptively transferred to tumour 

bearing mice in both the presence and absence of anti-CD137, after which tumour volume 

progression was recorded and the activities of tumour infiltrating CTLs were observed by means 

of intravital two-photon microscopy. In that study, anti-CD137 treated mice differed from control 

mice in the following respects: 1) Tumour bearing mice treated with adoptively transferred CTLs 

plus anti-CD137 (ACT+mAb) showed improved tumour control compared to counterparts treated 

with CTL but no antibody (ACT-only). 2) Flow cytometry analysis of cell suspensions retrieved 

from tumours revealed that CTLs from ACT+mAb tumours expressed greater levels of markers 

associated with the effector phenotype than did those recovered from tumours treated with ACT-

only. 3) Intravital images gave evidence for altered CTL functioning in vivo after anti-CD137 

https://paperpile.com/c/xd0eCV/VALeg
https://paperpile.com/c/xd0eCV/sjPga
https://paperpile.com/c/xd0eCV/sjPga
https://paperpile.com/c/xd0eCV/AJRE+RkLu+rHQC
https://paperpile.com/c/xd0eCV/erPM4+9nFg+kWgj
https://paperpile.com/c/xd0eCV/sjPga
https://paperpile.com/c/xd0eCV/FwTC
https://paperpile.com/c/xd0eCV/J5fs+jKN1
https://paperpile.com/c/xd0eCV/6OVB8+TZdm+J7tW
https://paperpile.com/c/xd0eCV/TZdm
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treatment. Mitosis and apoptosis rates of both tumour and CTLs were affected, as was the 

migration behaviour of the CTLs. Taken together these findings support the idea that anti-CD137 

together with adoptive CTL transfer improves the outcome of ACT. The suggestion was also that 

anti-CD137 treatment boosts the effector functions of CTLs in vivo, since anti-CD137 treatment 

both increased apoptosis and reduced proliferation of tumour cells compared to control. However, 

there was no quantification of the various effects of anti-CD137 upon CTL-mediated tumour 

control, so it remains unclear which enhancements to CTL effector function played the most 

substantial role in the improved tumour control after anti-CD137 treatment.  

We previously quantified the effect of CTLs on solid tumours, considering both cytotoxicity through 

direct cellular interactions [6,15] and production of cytokines which inhibit tumour cell proliferation 

(e.g., IFNγ) as potential agents by which CTLs could control tumours [6]. We here provide a re-

assessment of the in vivo melanoma data summarised above, aided by computational models. 

The goal was to develop a quantitative picture of the functioning of adoptively transferred CTLs 

in vivo, and of the effect that costimulatory anti-CD137 treatment had upon their functioning. 

Specifically, we aimed to determine the extent to which an antiproliferative effect contributed to 

tumour control, compared to direct cytotoxicity. We also asked whether the improvement in 

tumour control after anti-CD137 treatment was due to a numeric increase in CTLs, or due to a 

difference in CTL performance. To answer these questions, we developed an ordinary differential 

equation (ODE) model to describe the dynamical evolution of CTL treated tumours. We fit the 

ODE model to the in-vivo data, and examined how the model parameters differed in the presence 

or absence of anti-CD137. We did not find any evidence that the ability of CTLs to kill tumour cells 

was improved in the ACT+mAb group relative to ACT only, when killing was considered on a per-

capita basis. Moreover, in both ACT-only and ACT+mAb conditions, an antiproliferative effect 

associated with transferred CTLs explained a far larger share of the reduction in tumour 

progression than did CTL cytotoxicity towards tumour cells. Finally, an increased antiproliferative 

effect associated with anti-CD137 treatment, together with a more sustained presence of  CTLs 

within the tumour after anti-CD137 treatment, could explain the reduced tumour progression in 

our data. 

Results 

Population dynamics of tumour cells and infiltrating CTLs 

In this work our aim was to integrate dynamic two-photon imaging and volumetric tumour 

progression data [13], to create a systems-based description of a murine melanoma after ACT. 

To understand the expansion and retraction of CTL populations in the tumour during therapy and 

in relation to local tumour response, we first plotted apoptosis against mitosis rates of tumour cells 

(Fig.1A) and of CTLs (Fig.1B), both stratified by mouse (Fig. 1A-B, shapes) and by the day of 

measurement (Fig. 1A-B, colours). Apoptosis and mitosis events were derived from 2 hour time-

lapse sequences, allowing accurate calculation of net cell proliferation or regression rates. Each 

plot splits into two regions: net population growth when mitosis exceeded apoptosis (Fig. 1A-B, 

above dashed lines) and net population reduction otherwise (Fig. 1A-B, below dashed lines). 

There was net growth of tumour cells in all except one measured position with ACT only (Fig. 1A, 

https://paperpile.com/c/xd0eCV/erPM4+9yZCl
https://paperpile.com/c/xd0eCV/erPM4
https://paperpile.com/c/xd0eCV/TZdm
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left panel), whereas with ACT+mAb this was true for only half of the measured positions (Fig. 1A, 

right panel). In contrast to tumour cells which were mostly proliferating, CTL apoptosis matched 

or exceeded mitosis in almost all measured positions (Fig.1B), suggesting that transferred CTL 

populations were only able to sustain their numbers, but were not “expanding” inside the tumour. 

Nevertheless, we observed much higher absolute rates of apoptosis or mitosis for CTLs 

compared to tumour cells (compare axes values between Figs. 1A-B), suggesting that there is 

more potential for rapid changes in the number of CTLs compared to tumour cells inside the 

tumour if CTL apoptosis could be reduced relative to mitosis. 

Besides mitosis and apoptosis rates (Fig. 1A-B), the intravital dataset also consists of the total 

numbers of each cell type which are represented by point size in separate plots for tumour cells 

(Fig. 1C) or CTLs (Fig. 1D). Considering the data per-mouse (Fig. 1A-B, shapes or C-D, colors), 

it is apparent that all measurements from the same day pertaining to a given tumour are clustered 

(valid for both CTLs and tumour cells). Similar measurements at different sites within one tumour 

indicated that tumours were spatially relatively homogeneous, at least for the peripheral areas 

that were imaged in the study. However, the fact that the clusters travel over time indicates that 

conditions inside the tumours were not temporally homogeneous. Comparing tumour cells 

between ACT-only and ACT+mAb (Fig. 1A,C; columns), the population dynamics appear most 

different in two of the mice, both corresponding to the ACT+mAb group (m65 d6&d9, m49 d6). 

Measurements from those mice occur in the region of the plot below the red dashed line where 

local tumour regression is apparent, which was barely reached in any ACT-only mouse. 

Interestingly, the mitosis rates of tumour cells in the ACT-only group decrease between days 6-

9, yet over the same time interval TC mitosis rates in the ACT+mAb group increase (Fig. 1E). 

This result suggests that tumours were recovering proliferative capacity after ACT+mAb treatment 

faster than the ACT-only treated group, seemingly at odds with the more sustained CTL activity 

previously reported [13]. Similarly, there was a more sustained replacement of the CTL population 

in the ACT+mAb group compared to the ACT-only group (Fig. 1B and 1F, solid lines in right panels 

remain parallel to the dashed line), which was due mainly to an increase in mitosis rather than to 

a decrease in apoptosis. Overall, these results indicate that the ACT+mAb treatment improved 

tumour control by shifting tumour cell dynamics towards a regime where net apoptosis exceeded 

mitosis, but it is unclear from these data how CTLs participated in this process. 

https://paperpile.com/c/xd0eCV/TZdm
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Figure 1. Comparison of apoptosis and mitosis rates for tumour cells and CTLs. A-B) Apoptosis and mitosis 

rates of tumour cells (A) or CTLs (B) with or without anti-CD137 (columns). Each small point represents 

two simultaneous apoptosis (x-axis) and mitosis (y-axis) rates measured at one site within a tumour. Points 

are coloured based on the day of measurement, and different mice are indicated by shape. Large points 
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are the mean values per position/day; these are connected by solid black lines for cases where we have 

intravital measurements on both days 6 and 9 from the same mouse. The red dashed line marks net zero 

population growth. C-D) Apoptosis and mitosis rates of tumour cells (C) or CTLs (D) where point size 

indicates the total number of cells recorded per site. Segments connect all points from the same mouse 

imaged on the same day.  E-F) Change in the apoptosis and mitosis rates of tumour cells (E) or CTLs (F) 

based on intravital data for two mice per condition (constructed via linear translation of the mean values in 

A-B such that the day 6 measurement lies at the origin). 

Impact of CTLs on the population dynamics of tumour cells 

In addition to the intravital statistics, volume progression data for the tumours from the same 

experiments were also available (Fig. 2A). There were two control conditions: one where ACT 

was applied on day 3 but tumour cells did not express the cognate OVA antigen for recognition 

by adoptively transferred CTLs (Fig. 2A, top row left), and another where tumour cells expressed 

OVA but mice did not receive ACT (Fig. 2A, top row right). In the middle row are the two 

experiments (corresponding to Fig. 1 intravital data) where ACT was applied 3 days after mice 

were inoculated with tumours, and in the final row ACT treatment was delayed until day 7 after 

tumour inoculation. Data points from mice that had not (yet) received ACT are black, whereas 

points from mice that had received ACT are green. To compare these volumetric data with the 

intravital dataset we converted the volumetric data for each mouse into growth rates (Fig. 2B), i.e. 

each point represents the growth rate of a single tumour between successive volume 

measurements. This conversion ensured that all our data points later used for model fitting would 

have the same units (day-1). We estimated that the growth rate of the untreated tumours was 

approximately 0.5 day-1 (Fig. 2B grey lines; also slope of grey lines in 2A). The impact of the 

transferred CTLs is clear from the transient decrease in volumetric growth rate observable after 

ACT (2A-B, green lines 2nd and 3rd rows). 

To verify whether the activity of the CTLs observed in the intravital data was consistent with the 

measurements of tumour progression based on the volumetric data, we considered two possible 

effects of CTLs on tumours: either killing of tumour cells by CTLs, or prevention of proliferation. 

In the intravital dataset we studied whether the number of tumour cells per position influenced the 

killing rate of CTLs, but found no clear evidence that this was the case (S1. Fig). We found that 

the number of TC apoptosis events per position could be adequately described by a 

straightforward Poisson model [16], with the intensity of the killing directly proportional to the 

number of CTLs (Fig. 2C left panel). The correlation between TC mitosis and CTL numbers was 

less clear, although appeared to be negative since the positions with the most tumour cell mitosis 

were those with few CTLs (Fig 2C right panel, S2 Fig). Thus, the intravital data suggest the 

presence of CTLs led to killing of tumour cells and inhibition of their proliferation, which is 

consistent with the volumetric data. However, it was unclear which of these effects were most 

important in the control of the tumours. 

https://paperpile.com/c/xd0eCV/armP
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Figure 2. Impact of CTLs on the population dynamics of tumour cells. A) Tumour volume measurements 

over time. Row 1: control tumours, either treated with ACT 3 days after inoculation but not expressing OVA 

(top left), or OVA expressing tumours not treated with ACT (top right). Rows 2 and 3: OVA expressing 
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tumours treated with ACT 3 days (row 2) or 7 days (row 3) after inoculation, without anti-CD137 (left) or 

with anti-CD137 (right). B) Volumetric growth rates of tumours corresponding to (A). Estimates of tumour 

growth rate are made over the interval between two successive volume measurements. Points representing 

estimates are displayed at the midpoint of the interval. Treatments for conditions are indicated in facet 

labels as “day of ACT”.“treatment details”. Points in (A)-(B) are connected with straight lines visualizing the 

trajectories for individual mice. Points/lines corresponding to mice that had not (yet) received ACT are black, 

and green indicates that mice have received ACT. C) Relationship between the number of TC apoptosis 

(left panel) or mitosis (right panel) events vs. number of CTLs per position. The number of events has been 

normalised (hour-1) to account for differences in imaging time between positions. In the left panel the 

expected number of kills per hour (red line) and 5-95% confidence interval (shaded region) are shown for 

a Poisson process where individual CTLs kill at a constant rate (0.44 CTL-1 day-1). See also Fig. S2 for day 

7 mitosis data.  

Ordinary Differential Equation model CTLs v.s. B16F10 Melanoma 

In order to probe the relative contributions of these two effects (antimitotic or killing) we elected 

to develop an ODE model to combine all the disparate measurements together and check them 

for internal consistency and with other reports in the literature. The absolute number of tumour 

cells per field in the imaging data depended strongly on the location of the imaging windows which 

were sometimes located in the centre of the tumour but other times near the periphery, or 

contained large features like vessels (Fig. 3A). Therefore we opted to discard the absolute 

numbers of CTLs and tumour cells, instead using the CTL:TC (Effector:Target, E:T) ratio to 

develop our ODE model. A further advantage of utilising the dimensionless E:T ratio for fitting is 

that it prevents the physical size of the imaging windows unduly influencing our results. Our ODE 

model (Fig. 3B) features CTLs (E) either killing tumour cells (T) or preventing them from 

proliferating, which in our model happens via transfer of proliferating (Tp) tumour cells into a 

quiescent state (Tq). To describe the population dynamics of CTLs we considered CTLs to 

infiltrate across the tumour boundary at a constant rate s per unit area of boundary. Additionally, 

since CTL mitosis and apoptosis measurements within the tumour were available we included 

these processes in our model as well via incorporation of two loops. The first loop considered a 

factor stimulating CTL proliferation (Induction/Interleukin: I), whereas the second loop described 

a tumour resistance factor (R). The resistance factor increased over time spent with CTLs inside 

the tumour and led to an increase in CTL apoptosis (see Methods).  
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Figure 3. ODE model linking intravital and volumetric measurements from ACT treated tumours. A) 

Examples of imaged positions with varying numbers of tumour cells, shown with their presumed location 

inside the tumour (circle). B) Schematic of ODE model. C) Best fitting parameters for the ODE model. Each 

point represents 1 of 5 fits using the stochastic evolutionary algorithm. Horizontal lines represent the mean 

fitted parameter for either ACT-only (red) or ACT+mAb (blue) conditions.  

An antiproliferative effect of CTLs is most important for controlling tumour 

progression  

We fit our model simultaneously to all available measurements, except for the tumour growth rate 

in the untreated condition, which we fixed before fitting (using g=0.5 day-1). Overall we varied 7 

parameters for either the ACT-only or the ACT+mAb condition (Fig. 3C) to obtain the best match 

between model and tumour data. We then studied our best fitting models to gain insight into the 

dynamics and activities of the transferred CTLs. When we took best fitting parameter sets for 

either ACT-only or ACT+mAb conditions and varied the killing rate ke, abrogation of killing (by 

setting ke=0; Fig. 4A) had only marginal impact on the progression of the tumours. In contrast, 

with abrogation of CTL-induced tumour proliferation arrest (by setting kq=0; Fig. 4B) tumour 

growth progression continued virtually unaffected by the presence of the CTLs killing at the best 

fitted rates. This indicated that the antiproliferative effect, rather than the killing, accounted for the 

majority of deviation from exponential growth. Notably, when we simulated progressive increases 

to CTL killing we saw progressively improved tumour control for both ACT-only and ACT+mAb 

conditions (ke>1; Fig. 4A). However, the antimitotic effect appeared to be close to saturation, 

particularly for the ACT+mAb condition, since further increases to the kq parameter hardly led to 

further improvements in tumour control (kq>1; Fig. 4B). These results imply that strategies for 
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increasing CTL killing (ke) could be of greater therapeutic benefit than strategies aiming to further 

enhance the antimitotic effect (kq).  

 

Figure 4. Relative impacts of antiproliferative and killing effects of adoptively transferred CTLs. A-B) Impact 

of varying the killing rate (ke; A) and the rate parameter for induction of antiproliferative effect (kq; B). Using 

the best fitting parameter sets, both rates were multiplied by a factor of 0,1,3 or 4 (indicated by columns). 

Hats on parameters indicate best fitting values. 

anti-CD137 leads to superior tumour control by enhancing the antiproliferative 

effect of CTLs 

We finally sought to identify differences in the dynamics of CTLs and their interactions with the 

tumour after the CD137 antibody costimulation. Since abrogating killing by setting ke=0 had no 

substantial impact on tumour volume progression (Fig. 4A), it seemed unlikely that ACT+mAb 

enhanced control of the tumour by improving the ability of CTLs to kill tumour cells. Indeed, there 

was no improvement in the per-capita CTL killing performance of CTLs after ACT+mAb. In fact 
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the best fitting killing rates from ACT-only (ke=0.75 day-1) were even somewhat higher than for 

the ACT+mAb condition (ke=0.5 day-1) (Fig. 3B & Fig. 5A-B, row 2). 

Since the E:T ratio was also higher in the ACT+mAb tumours (Fig. 5C-D) it could be that increased 

killing due to more CTLs could explain the improved tumour control in the ACT+mAb group. There 

are multiple indications that this was not the case. First, tumour growth reduction was broadly 

similar between tumours treated with ACT+mAb on d3 (Fig. 5E) and those treated on d7 (Fig. 

5F), despite substantially lower E:T ratios in the d7 treated group - consistent with the notion of a 

small number of CTLs being quickly able to control a large number of tumour cells through 

cytostatic effects. Second, the tumour cell mitosis predicted by the best fitting models followed 

the volumetric tumour growth closely, leaving little room for a contribution from killing (compare 

Fig. 5E-F with Fig. 5A-B, top row). 

Rather than an increase in killing, a stronger reduction in tumour proliferation for ACT+mAb 

tumours compared to ACT-only tumours accounts for the difference in results. Note that different 

values for the preset growth rate parameter resulted in similar best fitting parameters and similar 

model dynamics, therefore our conclusions about the relative importance of killing versus 

antiproliferative effect do not appear to be especially sensitive to our choice for the tumour growth 

rate (S3. Fig). Our model suggests two means by which enhanced reduction of proliferation for 

ACT+mAb tumours could have occurred. First, our fits resulted in larger values of kq for the 

ACT+mAb group (Fig. 3C), which is necessary to account for the similar reductions in volumetric 

growth in the ACT+mAb treated tumours whether treated on d3 or d7 (Fig. 2B, blue lines), despite 

a much lower E:T ratio in the d7 treated group. The second possibility our model highlights stems 

from the different dynamics of the CTL population between ACT-only and ACT+mAb treated 

groups. At late times the population dynamics of the CTLs was an important determinant of the 

E:T ratio, due to a combination of slow dynamics for CTL mitosis (Figs. 5A-B, row 3) and a delayed 

onset of CTL apoptosis (Figs. 5A-B, row 4). Notably, although the fitted rate parameter controlling 

the increase in CTL mitosis  (ki) was substantially larger for the ACT-only condition than for the 

ACT+mAb condition (Fig. 3C), this did not reduce CTL mitosis overall - instead the peak of CTL 

mitosis simply shifted to later time points. These altered  dynamics led to significant improvement 

in E:T ratio for the ACT+mAb group at late time points after treatment. Overall, our model indicates 

that ACT+mAb costimulation resulted in CTLs which were able to more rapidly prevent tumour 

cell mitosis after administration of ACT. Moreover, the dynamics of both CTL proliferation and 

apoptosis were delayed, resulting in a CTL population which remained inside the tumours for 

longer and therefore increasing the period of time in which CTLs could exert control of the tumour. 
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Figure 5. Enhanced antiproliferative effect and extended effector window of CD137 stimulated CTLs. A-F) 

Results of parameter estimation. Model output represented by lines, data plotted as mean and s.d. Shown 

are observed and fitted process rates (A-B), effector:target ratio (C-D) and net tumour growth (E-F) for 

either tumours treated on day 3 (A, C, E) or day 7 (B, D, F). Process rates considered in (A-B) are: TCm 

(Tumour Cell mitosis); killing (of tumour cells by CTLs); CTLm (CTL mitosis); CTLa (CTL apoptosis). 
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Table 1 Best fitting model parameter values and their explanations  

Parameter name Explanation ACT+mAb ACT-only 

𝑔(𝑑𝑎𝑦−1) TC mitosis rate 0.5 0.5 

𝒔(𝑇𝐶−2/3 𝑑𝑎𝑦−1) Rate constant for CTL infiltration into 

tumour 

0.9 0.75 

𝑘𝑒(𝐶𝑇𝐿−1𝑑𝑎𝑦−1) Rate at which CTLs kill tumour cells 0.5 0.75 

𝑘𝑖(𝑑𝑎𝑦−1) Rate of CTL-induced increase in CTL 

mitosis  

1  45  

𝑑𝑖(𝑑𝑎𝑦−1) Rate of decrease in CTL-induced CTL 

mitosis 

0.25  10  

𝑘𝑟(𝑑𝑎𝑦−1) Rate of CTL-induced CTL apoptosis 

(resistance). 

1.3  3.4 

𝑘𝑞(𝑑𝑎𝑦−1) Rate at which CTLs induce 

antiproliferative effect 

45  9  

𝑑𝑞(𝑑𝑎𝑦−1) Rate at which CTL induced 

antiproliferative effect disappears 

1.3  0.38  

Discussion 

Here we used an ODE model to quantify the effector functions and population dynamics of CTLs 

and tumour cells, following ACT therapy within murine melanoma tumours. To parameterise our 

models we used data where mice were treated in the presence or absence of anti-CD137 [13]. 

The data consisted of counts of the number of CTLs/tumour cells and the number of 

apoptosis/mitosis events associated with each respective cell type, at various locations within the 

melanoma tumours being attacked by CTLs. We used our models to investigate the means by 

which adoptively transferred CTLs controlled the tumours, and also what caused the improved 

tumour control after anti-CD137 costimulation. We found that the apoptosis rates of tumour cells 

were well fitted by a linear dependency on the number of CTLs, indicating that local presence of 

https://paperpile.com/c/xd0eCV/TZdm
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CTLs was required for TC apoptosis. However, we found that the CTL killing rate was very low 

and contributed little to tumour reduction overall. Instead, the antiproliferative effect had a large 

effect, with tumour cell mitosis rates observed in vivo being far below those needed to explain the 

growth of the untreated tumours. We found that almost all of the reduction in tumour growth after 

CTL treatment could be explained by decreased TC mitosis. 

Importantly, we also sought to understand mechanistically what caused the improved tumour 

control after treatment with anti-CD137. Killing per CTL was unchanged after  anti-CD137 

stimulation and hence still contributed little to tumour control, so the improvement in tumour 

control was largely due to an enhanced antimitotic effect after anti-CD137 treatment. Our model 

suggested that this enhanced antimitotic effect could  be explained either by an increased per-

capita ability of CTLs to exert an antimitotic effect, or simply by a numeric increase of CTLs inside 

the tumour (each with similar antimitotic effects to unstimulated CTLs when considered per-

capita). In our model these effects were difficult to separate, since increased mitotic effect of CTLs 

(on a per-capita basis) should also have the effect of increasing E:T ratio, by reducing the 

denominator. However, differences in E:T ratio between ACT-only and ACT+mAb treated groups 

emerged later than the differences in tumour cell proliferation and tumour size, which were already 

apparent by day 6 after tumour inoculation. Thus the data from early time points suggest a more 

rapid per-capita ability of anti-CD137 stimulated CTLs to prevent proliferation of tumour cells, 

compared to their unstimulated counterparts. Additionally, our model predicted that the increased 

E:T ratio, which was most apparent at late time points after ACT, should also play a role in 

improved tumour control. Although the rates of CTL mitosis were generally low and the net CTL 

population growth (mitosis minus apoptosis) was negative in almost all videos, the overall 

dynamics of the anti-CD137 stimulated CTL populations appeared different to their unstimulated 

counterparts. Specifically, the peak rate of CTL mitosis occurred later in the ACT+mAb treated 

group, which together with a delayed onset of apoptosis led to a more sustained presence in the 

tumour. In summary, after anti-CD137 treatment CTLs were able to rapidly shut down mitosis of 

tumour cells, but also remained present in the tumour for longer, both contributing to the 

improvement in tumour control. 

Our results fit well with other reports about the effects of anti-CD137 stimulatory effects on CTL 

function in the literature. To our knowledge, there are no clear reports that CD137 enhances the 

cytotoxicity of CTLs. Instead, in agreement with our findings, studies which have directly 

measured CTL cytolytic activity have found similar killing after blockade of CD137 signalling [17], 

and CAR T cells engineered with a CD137 costimulatory module did not exhibit superior cytotoxic 

potential compared to CAR T cells lacking the CD137 module[18]. Several studies have found 

that CD137 costimulation induces IFN-γ production by CTLs [17–19]. Enhanced IFN-γ production 

by CTLs provides a possible mechanism for the increased ability of CTLs to prevent tumour cell 

proliferation suggested by our models, since IFN-γ has been shown to play an important role in 

control of B16F10 melanoma tumours via arrest of the tumour cell cycle [20]. The prolonged 

presence of CTLs inside the tumour for the anti-CD137 treated group due to delayed apoptosis 

is in agreement with reports of anti-apoptotic effects of CD137 signalling on activated T cells 

[21,22].  
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One limitation of our model is that there is no representation of space, so the tumour is treated as 

homogeneous throughout. The B16F10 melanoma tumours are highly invasive [23] and events 

at the invading margins may be more important than events elsewhere in determining tumour 

growth, with tumour cells near the periphery having more space and more opportunities for 

proliferation. Anti-CD137 treatment reduced CTL migration inside the tumour resulting in long-

lasting interactions with tumour cells [13], so it may be that CTLs remained near the tumour border 

or tumour vasculature and were more effective here than the control cells which migrated deeper 

into the tumour. Our model would not be sensitive to such an effect. Furthermore, we took the 

tumour cell density as constant but in reality this may have reduced if tumour cells continued to 

migrate outwards but proliferation was inhibited and killing occurred. In this case our estimates of 

the number of tumour cells are too high and our model underestimates the impact of the 

antiproliferative effect on the tumour, possibly explaining the remaining error in the tumour cell 

mitosis rate for our best fitting models. A spatially explicit model such as a partial differential 

equation model [24,25] could be developed, to take into account these limitations. This would 

however increase the complexity of the model, so more detailed measurements from the tumour 

would be required in order to determine the model parameters. Specifically, measurements of 

mitosis and killing rates categorised based on the distance to the center or periphery of the tumour 

would be useful to parameterise such a spatial model. Another useful measurement would be the 

net migration rate of both CTLs and tumour cells, along with the direction of migration. 

Our model predictions can be tested in various ways. Although we included the tumours treated 

on day 7 in our analysis, we were not able to determine the number of TC apoptosis events or 

the apoptosis/mitosis of CTLs. That was because, whilst absolute cell numbers or TC mitosis 

events were relatively easy to detect, the other events were ambiguous. Nevertheless, our model 

does make predictions for these values which could in principle be checked. Moreover, our model 

predicts the arrival rate of new CTLs into the tumours which could be checked against time-lapse 

images. In our data CTL apoptosis increased over time, so we introduced a resistance variable R 

to account for this. This is consistent with recent reports that long range IFN-γ signalling can 

cause upregulation of PD-L1 in cells across distances of up to 800𝜇𝑚[26]; or that IFN-γ-

dependent invasion of myeloid-derived suppressor cells could be the major source of suppression 

[27]; or other immune checkpoint death receptors such as FAS-L [28]; or perhaps competition 

between tumour cells and CTLs for nutrients was a primary mediator of CTL apoptosis in our 

model, since both activated CTLs and tumour cells rely heavily on anaerobic glycolysis or 

glycolysis as sources of fuel [29], and interactions between CTLs and stromal cells resulted in 

catastrophic destruction of tumour vasculature [30], which ought to result in a reduction in glucose 

supply to the tumour and might account for increased apoptosis of CTLs over time. It would be 

useful to acquire more experimental data which could shed light on the reasons for this apparent 

time-increasing apoptosis rate.  

Overall, our modelling study provides insights into the mechanisms CTLs use to control tumours, 

as well as insights into how these mechanisms may have changed upon costimulation with 

agonist antibody targeting the CD137 receptor. Moreover, the results of our model identify specific 

directions for future experimental work which would help elucidate the effect of CD137 stimulation 

upon CTLs.    
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Models and Methods 

Experimental data 

The experimental data we have used derives from a previously published study where mice were 

inoculated with B16F10 melanoma tumours, which were then studied over a period of up to 15 

days post-inoculation through dorsal imaging windows, by means of two-photon microscopy [13]. 

In total there were 6 distinct experimental conditions. There were two control conditions, one with 

OVA antigen expressing tumour cells where ACT was not administered, and another with tumour 

cells not expressing OVA, but with ACT administered. A further two conditions had OVA 

expressing tumour cells, with ACT administered on either day 3 or day 7 post tumour inoculation. 

Finally, there were two conditions where ACT was administered to mice bearing OVA expressing 

tumours, together with costimulation using agonist anti-CD137 (clone 1D8), again on either day 

3 or day 7 post tumour inoculation. For these costimulated conditions, anti-CD137 was delivered 

intraperitoneally, on the same day as ACT.  

The dataset comprises estimates of tumour volume measured at days 1, 3, 6, 9, 13 and 15 in all 

mice. Moreover, for the mice treated with ACT on day 3 and bearing OVA expressing tumours, 

statistics were available for the number of  CTLs and tumour cells, as well as their mitosis and 

apoptosis rates, on either day 6 or day 9 after tumour inoculation (days 3 and 6 after CTL transfer). 

These statistics are samples from imaging volumes of size 0.35 ⋅ 0.35 ⋅ 0.1𝑚𝑚 which were imaged 

for 1-3h (See Fig. 6B,6D of ref: [13]). Finally, intravital images were available for the mice treated 

on day 7, although no statistics for these images had yet been recorded. We therefore quantified 

the number of CTLs and tumour cells, and the number of tumour cell mitosis events in these 

images as well. The number of CTLs and TC mitosis events was determined via manual counting, 

whereas the number of tumour cells was determined automatically using ImageJ as follows: we 

first processed images using a 3D gaussian blur (sigma=2 in the x-y directions, and sigma=0.2 in 

the z direction). Then, we selected every third slice in the Z direction to avoid repeated counting 

of the same cell. Remaining slices were then thresholded using the Li method [31]. Following 

thresholding, the watershed method [32] was used to separate touching cells. Finally, the “analyse 

particles” plugin was used to quantify cells, excluding particles of less than 10 pixels in area. 

To determine the killing rate from the experimental data we considered the number of apoptosis 

events counted per position as a Poisson distributed random variable. We evaluated two 

possibilities for the Poisson rate parameter, which we termed “linear” or “mass-action”. For the 

linear model, we considered the rate parameter to be proportional to the number of CTLs counted 

at the position. For the mass-action model, we considered the rate parameter to be proportional 

to the product of the number of CTLs and the number of tumour cells counted at the position. For 

either model, we determined the rate parameter which maximised the likelihood of the counted 

apoptosis events from the Poisson distribution. We considered all samples together, or 

alternatively samples grouped by treatment, resulting in different numbers of fitted rate 
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parameters required to describe the data. To compare the quality of fits while accounting for 

different numbers of parameters, we used Akaike’s and Bayes’ information criteria.  

Ordinary Differential Equation model CTLs v.s. B16F10 Melanoma 

We used ODE models for tumour growth, CTL population dynamics and the effect of the CTLs on 

tumours, thus approximating tumours as well-mixed entities. Although some degree of 

intratumoural heterogeneity can be expected, considering them to be spatially homogeneous is a 

reasonable initial approach given the small size of the tumours.  

Tumour growth in the absence of CTLs 

The available tumour growth data derives from B16F10 murine melanoma tumours recorded for 

15 days after their implantation [13]. We opted for the simplest possible model for tumour growth 

in the absence of CTLs, i.e., the exponential growth model which considers a volume of tumour 

(𝑉) made of tumour cells who undergo mitosis with an average rate 𝑔, because it was sufficient 

to describe the part of the data without ACT very well. Indeed, within the 15 day time period we 

studied, tumours remained small: the median tumour volume (considering all our data) was 

0.04mm3 on day 3 and 0.93mm3 on day 15. Thus, there was no need to take into account a 

reduction in TC proliferation as the tumour volume increases, as is commonly seen when models 

are applied to large malignancies and the logistic growth model is applied [33–36]. For all our 

simulations we took 𝑔 = 0.5(day-1) in the absence of CTLs, based on growth rates for tumours in 

the data for conditions either without ACT or periods before CTL transfer in the ACT treated 

groups. This corresponds to a doubling time of 1.4 days for the tumour cell population, and it is 

approximately consistent with doubling times in the region 1.7 - 2 (day-1) reported for B16F10 

tumours growing up to 100mm3 in another study, where B16F10 cells were implanted into the 

ears of mice [37] (instead of the deep dermis as was the case for the data we studied here).  

Effects of CTLs on tumours 

In our data the frequency of tumour cell apoptosis was low, so in our models we included an 

antiproliferative effect of CTLs on the tumour. For this, we denote separately 𝑇𝑝, the subset of 

tumour cells which are proliferating and 𝑇𝑞, a subset of “quiescent”, non-proliferating tumour cells: 

 𝑇𝑝 + 𝑇𝑞 = 𝑇, Eq. 1 

where 𝑇 is the total number of tumour cells in the tumour. Invading CTLs have 2 different effects 

on tumour cells: either killing which occurs at rate 𝑘𝑒 (CTL-1 day-1), or induction of the quiescent 

state which happens at rate 𝑘𝑞(CTL-1 day-1). Our quiescent state is motivated by observations of 

an 𝐼𝐹𝑁𝛾-dependent cell-cycle arrest in B16F10 melanoma after ACT [20], which we previously 

implicated in control of murine EL4 lymphoma [6] and for which there is also evidence in ovarian 

and breast carcinoma models [26]. In B16F10 melanoma, quiescent tumour cells recover from 
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CTL induced cell cycle arrest after a few days [20]. In our model recovery occurs with rate 𝑑𝑞 

(day-1). The dynamics of proliferating and quiescent tumour cells can thus be described as: 

 𝑑𝑇𝑝

𝑑𝑡
= 𝑔𝑇𝑝 − (𝑘𝑒 + 𝑘𝑞) (𝑇𝑝/𝑇) 𝐸 + 𝑑𝑞𝑇𝑞 

Eq. 2 

 𝑑𝑇𝑞

𝑑𝑡
= 𝑘𝑞  (𝑇𝑝/𝑇) 𝐸 − 𝑘𝑒  (𝑇𝑞/𝑇) 𝐸 − 𝑑𝑞𝑇𝑞. Eq. 3 

Note that we found no evidence in the data to suggest that killing of tumour cells by CTLs might 

depend on the number of tumour cells (S1. Fig). Therefore, we considered the sum of all CTL 

killing activity to be 𝑘𝑒 𝐸 (day-1) in our ODE model, i.e. the killing rate is independent of the number 

of tumour cells and is shared between proliferating and quiescent tumour cells in accordance with 

their fraction in the tumour. 

CTL population dynamics 

Our model considers only transferred CTLs (since only these could be seen with the fluorescent 

reporter system), therefore neglecting any endogenous response. Although endogenous CTLs 

may have been present, robust tumour control in the presence of ACT was still achieved in RAG 

-/- mice (See Fig. 1H [13]) for approximately 30 days before tumours regrew. From this we 

concluded that endogenous CTLs did not contribute significantly to early tumour regression in the 

experimental set-up we are modeling here, but were required for long term tumour control. 

Negligible contribution of the endogenous (or innate) immune response are also consistent with 

our observation that TC apoptosis correlated strongly with the local number of transferred CTLs 

(See Fig 2C), although we cannot exclude that the local density of endogenous/innate effectors 

might also have correlated with the local density of transferred CTLs. The total number of tumour-

infiltrating CTLs, E, inside the tumour is described by: 

 𝑑𝐸

𝑑𝑡
= 𝑠𝑇2/3 + 𝐸(𝐼 − 𝑅)/𝑇. Eq.4 

The first term represents the net movement of transferred CTLs into the tumour. Since we have 

no measurements directly pertaining to CTL infiltration of the tumours, we opted for a simple 

model where CTLs infiltrate across the tumour boundary at a constant rate s (per unit area of the 

boundary). The ⅔ power can be interpreted as a constant rate of infiltration across the boundary 

of the tumour, which we consider to be approximately spherical [38]. To take the CTL population 

dynamics into account, the second term of Eq. 4 includes two additional variables I and R to 

describe the dynamics of CTL proliferation and apoptosis inside the tumour. The variable I 

represents an auto-inductive response of CTLs upon encounter with antigen expressing cells and 

https://paperpile.com/c/xd0eCV/QmQ0G
https://paperpile.com/c/xd0eCV/TZdm
https://paperpile.com/c/xd0eCV/xXrv


93 
 

is based on other models which have included Interleukin-2 as a driver of CTL mitosis [34,39]. 

Such stimulatory signals could originate from other CD8+ T cells by means of quorum regulation 

[40] or from other immune cells such as CD4+ T cells. Our model accounts for either possibility:  

 𝑑𝐼

𝑑𝑡
= 𝑘𝐼 𝐸 − 𝑑𝐼𝐼. Eq. 5 

Thus, CTLs induce their own mitosis at rate 𝑘𝐼and the stimulus disappears at rate 𝑑𝐼.  

The second variable R represents a resistance acquired by the tumour in response to infiltrating 

CTLs. Pro-apoptotic signals through the PD-1 receptor are a candidate source of this resistance, 

since in other experiments with B16F10 tumours treated with agonist antibody for CD137 tumour 

rejection was enhanced when agonist anti-CD137 was coadministered with an antagonist 

antibody for PD1 [41]. However, since other possible explanations are equally consistent with our 

data (see Discussion), we used the general term “resistance”  for this variable:  

 𝑑𝑅

𝑑𝑡
= 𝑘𝑅  𝐸. Eq. 6 

Thus, CTLs induce resistance proportional to their number inside the tumour at a constant rate𝑘𝑅. 

The I and R terms are divided by the number of tumour cells in Eq. 4, since if I and R represent 

e.g. stimulating or suppressive cell populations (respectively), then their frequency among tumour 

cells should determine their effect on CTLs. 

Model Fitting Procedure 

Models are fit by minimising the Root Mean Square Error between model prediction and each 

individual data point. “Individual data points”  are considered to be either one volumetric growth 

estimate, or one statistic estimated from one intravital position. Thus a single mouse where the 

tumour volume was measured on days 1, 3, 6, 9, 13 and 15 and where intravital data was 

recorded at four positions on days 6 and 9 would produce 5 volumetric growth estimates, plus 8 

estimates for each intravital process rate (32 in total) and a further 8 E:T ratio estimates. The 

correspondence between the intravital process rates determined from the experimental dataset 

and those determined from the ODE model is given in table 2. Minimisation was performed using 

the a differential evolution algorithm with the DEoptim [42] package in R, using the local-to-best 

evolution strategy. Each parameter estimation was performed with 5 repeats, using different 

randomly selected starting parameter values for each repeat. Individual repeats had population 

sizes of 200, and ran for 500 generations. ACT-only and ACT+mAb groups were fit separately 

with no overlapping parameters, except for the tumour growth rate parameter (g) which was fixed 

to the same value for both ACT-only and ACT+mAb conditions before fitting. 
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Table 2  Calculation of intravital process rates from experimental data and from ODE model 

Intravital process 

rate 

Calculation from experimental data Calculation 

from model 

CTL killing rate 𝑡𝑢𝑚𝑜𝑢𝑟 𝑐𝑒𝑙𝑙 𝑎𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠

𝐶𝑇𝐿𝑠
 

𝑘𝑒 

Tumour cell mitosis 

rate 

𝑡𝑢𝑚𝑜𝑢𝑟 𝑐𝑒𝑙𝑙 𝑚𝑖𝑡𝑜𝑠𝑖𝑠

𝑡𝑢𝑚𝑜𝑢𝑟 𝑐𝑒𝑙𝑙𝑠
 

𝑔𝑇𝑝/𝑇 

CTL mitosis rate 𝐶𝑇𝐿 𝑚𝑖𝑡𝑜𝑠𝑖𝑠

𝐶𝑇𝐿𝑠
 

𝐼/𝑇 

CTL apoptosis rate 𝐶𝑇𝐿 𝑎𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠

𝐶𝑇𝐿𝑠
 

𝑅/𝑇 

 

Data Availability 

Source code for this work is available (https://doi.org/10.5281/zenodo.4443230). 
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Supplementary Data 

 

S1 Fig. Information content of linear or mass-action CTL killing models. A) Akaike (top 2 rows) or Bayes 

(bottom 2 rows) information criteria values for either linear or mass-action killing models. For the linear 

model, the killing intensity is taken to be linearly proportional to the number of CTLs. For the mass-action 

killing model, the killing intensity is proportional to the product of the number of CTLs and tumour cells at 

each position. Fits were performed for either all the samples grouped together (rows 1&3), or separately for 

ACT+mAb and ACT-only treatment conditions (rows 2&4). B-C) Linear killing (B) or mass action killing (C) 

model fits for all samples grouped together (left columns), or ACT-only (central columns) and ACT+mAb 

(right columns) fitted separately. 
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S3 Fig. Sensitivity of ODE model fitting to the growth rate parameter, g. For all panels the preset growth 

rate parameter is indicated by the value across columns. A) Net tumour growth predicted by each of the 

best fitting parameter sets, for either tumours exposed to ACT on day 3 (top row) or day 7 (bottom row). B) 

Effector:target ratio predicted by each of the best fitting parameter sets, for either tumours exposed to ACT 

on day 3 (top row) or day 7 (bottom row).  C) Best fitting parameters for the ODE model. Each point 

represents 1 of 5 fits using the stochastic evolutionary algorithm, and horizontal lines represent the mean 

fitted parameter for either ACT-only (red) or ACT+mAb (blue) conditions. D) Root Mean Square Error 

(RMSE) for each fitted parameter set. E-F) Intravital process rates predicted by each of the best fitting 

parameter sets for tumours exposed to ACT on day 3 (E) or day 7 (F). Process rates considered are: TCm 

(Tumour Cell mitosis); killing (of tumour cells by CTLs); CTLm (CTL mitosis); CTLa (CTL apoptosis).  
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Abstract 

Cytotoxic T Lymphocytes (CTLs) are an important component of the adaptive immune response 

and have an important role in controlling tumours. Improved understanding of CTL interactions 

within solid tumours will yield insights of benefit to the development of immunotherapeutic 

strategies against cancer. CTLs are best known for their ability to lyse antigen presenting targets, 

however they also secrete cytokines such as interferon-γ (IFN-γ), which can inhibit cell cycle 

progression and thus block proliferation of neighbouring cells. In this study, we take a systems 

biology approach to compare the importance of cytolytic versus IFN-γ mediated cytostatic effects 

in a murine melanoma model. We integrated measurements of tumour volume, fluorescent 

imaging data, and transcriptomics data to inform an ordinary differential equation (ODE) model of 

CTL activities inside the tumour. Our model predicted that the cytotoxic effects of CTLs were very 

small, and that the cytostatic effects of IFN-γ were likely responsible for almost all of the observed 

difference in tumour growth between the CTL treated versus the untreated tumours. Moreover, 

our analysis and subsequent modelling revealed that the window of IFN-γ production was much 

shorter than the period of CTLs infiltrating the tumour. This was consistent with the dynamics of 

delayed upregulation of CTL exhaustion markers TIM-3 and LAG-3 but not with the dynamics of 

PD-1 and PD-L1. This suggests that within B16F10 melanomas TIM-3 and LAG-3 have a more 

important role than the PD-1/PD-L1 axis in the development of a dysfunctional CTL phenotype, 

especially at late stages of anti-tumour T cell responses. 
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Introduction 

Immunotherapy is an emerging strategy for treatment of cancer, with an ever growing number of 

immunotherapies having reached clinical trials or been approved already[1]. Blood cancers were 

amongst the first to be successfully treated with immunotherapy[2]; to date solid tumours have 

proved more challenging. Despite this, several treatments are already available for solid tumours 

and many more are under trial[3]. Although there has been some success with immunotherapy 

so far, there is a pressing need for greater mechanistic understanding of the interactions of 

immune cells within solid tumours. Such understanding may help expand the scope of 

immunotherapies to different cancers, identify biomarkers to predict which patients might benefit 

from immunotherapy[4], optimise the dosing schedule for immunotherapies[5,6], or identify 

potential combination therapeutic strategies[7]. Mathematical or computational models are a 

useful tool to develop such understanding, since they can link data from different sources and 

make quantitative predictions for what we should expect under different conditions.  

CD8+ Cytotoxic T Lymphocytes (CTLs) are a key player in the anti-cancer immune response, and 

many immunotherapy strategies are focussed on these cells. Two prominent examples are 

blockade of inhibitory receptors such as PD-1 expressed on CTLs in hopes of “removing the 

brakes” on the immune response[8,9], or adoptive transfer of engineered (CAR) T Cells[10,11]. 

Therefore understanding the functioning of CTLs inside tumours is of foundational importance for 

the rational design of immunotherapies. Secretion of the cytokine IFN-γ is a hallmark of activated 

CTLs, yet due to its pleiotropic effects the exact effects of this cytokine in solid tumours remain 

poorly understood. Indeed, some have even noted the “paradoxical” role of IFN-γ in tumour 

progression[12], paradoxical in the sense that IFN-γ can have both pro-tumour and anti-tumour 

effects. Amongst the pro-tumour effects, IFN-γ can lead to recruitment of suppressive cells such 

as regulatory T cells or myeloid derived suppressor cells (MDSCs), or can induce expression of 

immune checkpoint ligands such as PD-L1 on tumour cells[13,14]. Amongst the anti-tumour 

effects, IFN-γ can aid in the recruitment of innate immune effectors, kill tumour cells, or exert 

antiproliferative effects on tumour cells[15–17].  

Here, we focus on the antiproliferative effects IFN-γ has on tumour cells. The antiproliferative 

effects are mediated by inhibitors of cyclin dependent kinases which result in arrest of tumour 

cells at the G1 phase of the cell cycle, which has been shown in a variety of cell lines[15–17]. 

However, IFN-γ also has anti-angiogenic effects which may in part explain the reduction in tumour 

cell proliferation. Previously we have used computational models to demonstrate how an 

antiproliferative effect mediated by cytokines could have a very potent effect on tumour 

progression, since through cytokine signalling CTLs can control many tumour cells, thus stalling 

tumour growth and buying time for killing of tumour cells by CTLs [18,19]. However, in our 

previous modeling work no direct data linking the proliferation of tumour cells to IFN-γ levels inside 

the tumours was available. Therefore, here we have used data from another study by Matshushita 

and coworkers where the antiproliferative effects of IFN-γ were explicitly explored[15]. In that 

study, CTLs strongly inhibited B16F10 melanoma tumour growth, but this effect was reversed 

when adoptive T cell transfer was accompanied by administration of anti-IFN-γ antibodies. In 
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addition, histological analysis of tumours expressing a cell cycle sensor revealed that most cells 

were arrested in the G1-phase after CTL transfer.  

In the current study we sought to gain a quantitative understanding of the role of IFN-γ mediated 

antiproliferative effects, hence we specifically quantified how important were the effects of IFN-γ 

in tumour control relative to the canonical killing functions of CTLs. To answer that question, we 

developed an Ordinary Differential Equation model which integrated data from Matshushita et 

al.[15] to arrive at a coherent, quantitative description of the intratumoural activities of CTLs and 

their interactions with the tumour following adoptive transfer. Consistent with our previous study 

of B16F10 tumours[19], our model predicted that the cytotoxic effects of CTLs were very small, 

and that the cytostatic effects of IFN-γ were responsible for almost all of the observed difference 

in tumour growth between the CTL treated versus the untreated tumours. Moreover, our analysis 

and subsequent modelling indicated that the window of IFN-γ production was very short, with 

CTLs losing the ability to produce IFN-γ within a few days of CTLs infiltrating the tumour. Markers 

of CTL exhaustion such as TIM-3 and LAG-3 were still increasing over this period, suggesting 

that CTLs had become exhausted inside the tumour. In contrast to TIM-3 and LAG-3, the 

dynamics of PD-1 and PD-L1 did not coincide with the dynamics of CTL exhaustion, suggesting 

a relatively minor role for these checkpoints as determinants of CTL exhaustion in the B16F10 

melanoma model, at least at late stages of anti-tumour immune responses. 

Results 

Presence of CTLs correlates with cell cycle arrest in tumour cells 

Previously, the adoptive transfer of CTLs was shown to induce G1-phase cell cycle arrest of 

B16F10 tumour cells in an IFN-γ dependent manner[15], however the temporal evolution of this 

arrested state and correlation with the number of tumour infiltrating CTLs was not explicitly 

quantified. Therefore, we exploited previously unquantified images from the same study, taken at 

multiple time points after CTL transfer, to estimate the number of tumour infiltrating CTLs and 

B16F10 tumour nuclei. Moreover, due to the incorporated Fucci cell cycle sensor it was also 

possible to discriminate between B16F10 nuclei in the G1-phase and nuclei that were in other (S-

G2-M) phases of the cell cycle. In order to quantify the number of B16F10 nuclei in either the G1 

phase or in the S-G2-M phases at different timepoints after CTL transfer, we developed automated 

pipelines using the ilastik[20] cell density estimation tool (see Methods). Comparison of the ilastik 

predictions for small subregions of sample images (Fig. 1A) selected across different time points 

to our own manual counts made for the same images demonstrated that our pipeline was reliable 

(Fig. 1B). Moreover, our estimated densities of G1 phase (Fig. 1C) or S-G2-M phase (Fig. 1D) on 

day 3 were comparable to those in the study of Matsushita et. al[15], as were the ratios of cells in 

G1:S-G2-M phases (Fig. 1E). The number of CTLs per slide was far more difficult to determine 

automatically, which was likely due to the irregular morphology of the CTLs and their lack of a 

visible nucleus. Since the number of CTLs was much lower than the number of B16F10 nuclei, 

we instead performed a manual count of the number of CTLs across all images (Fig.1F). We 

found a strong negative correlation between the number of CTLs and the G1:S-G2-M ratio in the 

sample images (Fig. 1G), with a Pearson’s correlation coefficient of -0.60 (95% confidence  
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Figure 1. (displayed on previous page) Dynamics of tumour cell cycle arrest correlates closely with CTL 

presence. A) Comparison of cryosection image (left), with probabilities predicted by ilastik (right). G1 and 

S-G2-M phase nuclei are shown (respectively) in red or green. CTLs appear blue in the cryosection image 

and were not quantified using ilastik. Image shown is an example of a subregion (175x175μm) of one 

complete cryosection (750x550μm), which was used for training the classifier. B) Number of nuclei in 

cryosection subregions used for training the classifier, comparing manually counted (horizontal axis) nuclei 

with the ilastik estimate (vertical axis). C-D) Results of automated quantification of the number of B16F10 

nuclei in the G1 phase (C) or in the S-G2-M phases (D), applied to the full set of cryosection images. E) 

Ratio of cells in S-G2-M:G1 phases determined from the automated density estimation results (shown in C-

D). F) Number of CTLs manually counted in each cryosection. Each small red point in C-F represents the 

total number of cells counted per cryosection, large black points and error bars are (respectively) mean +/- 

standard deviation. G) Comparison of the number of CTLs (horizontal axis) with the tumour cell S-G2-M:G1 

ratio (vertical axis) for each available fluorescent image. 

interval between -0.7757570 and -0.3289711) allowing us to reject the null hypothesis of no 

correlation (p=0.00015). In summary, the G1 cell cycle arrest following CTL transfer lasted for up 

to 5 days and its temporal dynamics were closely linked to the presence of CTLs inside the 

tumour. 

Tumour cell cycle arrest correlates with tumour growth reduction 

To check if the temporary G1 cell cycle arrest was consistent with tumour volume progression, we 

also incorporated tumour volume measurements into our analysis. An exponential model of 

tumour growth was sufficient to describe tumour progression over the studied interval (Fig. 2A), 

i.e. within the observed range of tumour sizes there was not yet any indication for a potential 

carrying capacity limiting tumour growth. Volume estimates were available from three separate 

experiments with CTL treatment (Fig. 2B). We noted some minor yet apparent systematic 

differences between experiments. For instance, almost all volumes recorded on day -1 were 

larger in one of the biological replicates (compare red and green points in Fig. 2A-B, day -1). 

Despite these minor discrepancies, the broad pattern of tumour progression was similar across 

replicates, with substantially arrested growth between days 3-7. Nevertheless, such systematic 

differences between experiments could potentially distort our results, for example because the 

switching from 12 mice to 2 mice between measurements going from days 7-10 (Fig. 2B) would 

artificially introduce a period of tumour growth above even the untreated growth rate into our data. 

To avoid this issue, we converted the data into estimates of the tumour growth rate between 

measurement intervals for both the data without CTL transfer (Fig. 2C) and those with CTL 

transfer (Fig. 2D). For the experiments where CTLs were transferred, this resulted in consistent 

values between experiments and allowed us to safely incorporate the additional measurements 

from the 2 mice that were recorded up until day 14. From this analysis, reduced tumour growth 

was apparent between days 3-7 (Fig. 2D; points centred on days 4 and 6), but growth recovery 

in the measurement interval between days 7-10 (Fig. 2D; point centred on day 8.5). Therefore the 

period of tumour growth reduction was coincident with the period of G1 phase tumour cell cycle 

arrest (Fig. 1E), and by extension also coincident with the presence of CTLs within the tumour 

(Fig. 1F).    



106 
 

 

Figure 2. Tumour volume dynamics corresponds to G1 cell cycle arrest and CTL presence. A) Tumour 

volume progression from 2 different experiments (n=5 mice per experiment) without CTL treatment. B) 

Tumour volume progression from 3 different experiments (n=5 mice in experiments 1&2, n=2 mice in 

experiment 3) with CTLs transferred on day 0. C) Untreated tumour growth rate estimates for each mouse 

taken across each of the measurement intervals shown in A. D) Tumour growth rate estimates for each 

mouse receiving CTL transfer on day 0.  Solid black lines in A-D show results of fitting an exponential 

growth model (g=0.4 day-1) to the untreated data (A,C) and are shown alongside CTL treated data (B,D) for 

comparison. Black points and error bars in C-D represent (respectively) mean +/- standard deviation of all 

points. Points in C-D are shown at the midpoint of the interval over which they were estimated. Coloured 

dots in all panels indicate the independent experiments consisting of multiple mice. 

Loss of IFN-γ production precedes loss of CTLs from tumours  

IFN-γ secreted by CTLs was the putative agent which led to cell cycle arrest and the transient 

reduction of tumour progression in our studied data[15]. As a proxy for IFN-γ levels inside the 

tumour we used mRNA expression data recorded within the same experiments as the previously 

analysed image (Fig. 1) and volume progression data (Fig. 2). We found that Cd8a transcription 

dynamics (Fig.3A row 1) matched the CTL dynamics measured in the images (Fig. 1F), indicating 

agreement between the transcriptomics data and the imaging data with respect to CTL 

abundance. However, the dynamics of IFN-γ transcription appeared much different to those of 

the CTLs (Fig.3A, row 2). IFN-γ transcription peaked sharply on day 3 after CTL transfer, but had 

dropped sharply by day 5 and returned to basal levels on day 7, when CTLs still remained inside 

the tumour. To verify the dynamics of IFN-γ, we also checked Stat1 and Socs1 (Fig 3A, rows 3-

https://paperpile.com/c/mOZoiQ/MsK69
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4) which are downstream of the IFN-γ receptor[21] in the IFN-γ signalling pathway. These followed 

very similar dynamics to IFN-γ mRNA, lending support to the idea that the IFN-γ mRNA 

expression data was a suitable proxy for IFN-γ signalling dynamics inside the tumour. 

We hypothesized that the difference in dynamics between CTLs and IFN-γ transcription was due 

to a gradual CTL exhaustion inside the tumour, leading to a loss of their effector functions. 

Exhausted T Cells display hierarchical loss of effector functions including secretion of cytokines 

such as proliferative ability, capacity to kill target cells, and secretion of IFN-γ[22,23]. Several 

genes are associated with the exhausted T Cell state[24,25], and as T Cells become progressively 

more exhausted they express a greater diversity of inhibitory receptors[23]. Indeed, we could 

identify transcripts for a number of well described immune checkpoint molecules in the mRNA 

dataset, including PD1, its ligand PD-L1, LAG-3, and TIM-3 (Fig. 3B). Overall, our analysis 

suggests that the pulse of IFN-γ transcription remains brief despite CTLs still being present within 

the tumour and is due to development of an exhausted phenotype amongst the transferred CTLs.  

 

Figure 3. Dynamics of selected genes from microarray dataset. A) Comparison of dynamics of probes 

specific for Cd8a (row1), Ifng (row 2), Socs1 (row 3), or Stat1 (row 4) between CTL treated and untreated 

mice (across columns). Black points and error bars in A represent (respectively) mean +/- s.d for all probes 

https://paperpile.com/c/mOZoiQ/KrsNr
https://paperpile.com/c/mOZoiQ/GDU14+HnvLZ
https://paperpile.com/c/mOZoiQ/lqEiB+O4BSL
https://paperpile.com/c/mOZoiQ/HnvLZ
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at a given time point. B) Comparison of dynamics of probes specific for mRNA coding PD-1 (Pdcd1) and 

PD-L1 (Cd274), TIM-3 (Havcr2) and LAG-3 (Lag3) (along rows), between CTL treated and untreated mice 

(across columns). Red points in A-B represent expression values after normalisation at the 75th percentile.  

IFN-γ transcription dynamics are compatible with G1 phase tumour cell cycle arrest  

Due to the early reduction in IFN-γ signalling, it is unclear whether IFN-γ can be entirely 

responsible for the G1 phase tumour cell cycle arrest which followed highly similar dynamics to 

the CTLs. To test the compatibility of the IFN-γ transcription data with the dynamics of the CTLs 

and the tumour cell cycle dynamics, we developed an ODE model. Our ODE model describing 

the interactions between CTLs and the tumour (Fig. 4A) features an explicit description of the cell 

cycle of tumour cells, in which they cycle from G1 phase into S-G2-M phases at rate kgs, and then 

back into G1 phase at rate ksg. The model also features CTLs which kill tumour cells at rate ke and 

produce IFN-γ, which precludes tumour cells from transferring from G1 phase to S phase. The 

sensitivity of tumour cell cycle arrest to IFN-γ is determined by the parameter ki. To test the 

contribution of the two CTL effector functions to tumour control (i.e., killing and antiproliferative 

effect), we linearly interpolated between the experimental data for the number of CTLs (Fig. 4B) 

and for IFN-γ expression (Fig. 4C), and used these interpolations directly as inputs to our model. 

Subsequently, we tested different combinations of the parameters ke and ki (Fig. 4D) to find the 

best fit to the tumour growth rate (Fig. 4E, red line) and the S-G2-M : G1 ratios (Fig. 4F, red line) 

determined from the experimental data. Our best fitting parameter set (Fig. 4D; marked with black 

circle) had a value of ke=1 (CTL-1 day-1) although other values for ke in the range 0-3 (CTL-1 day-

1) led to relatively low errors, consistent with killing rates we have previously estimated for CTLs 

against B16F10 melanoma tumours[19]. The best fitting value for the antiproliferative effect 

(ki=8.5 IFN-1 mm3) led to sharp reductions in the transition rate of tumour cells out of the G1 phase 

for the IFN-γ expression levels found in our data (Fig. 4G). At the peak of IFN-γ expression on 

day 3, the transition rate from G1 to S-G2-M phases (kgs) was reduced to 7% of its original value, 

and even at the lower IFN-γ expression levels measured on other days kgs was significantly 

reduced (Figs. 4C, 4G; dashed lines). Thus our best fitting parameters implied that cycling tumour 

cells are sensitive to IFN-γ even at low expression levels. When we took the best fitting 

parameters and disabled killing by setting ke=0 (Fig. 4D; marked with black square), most of the 

tumour growth reduction was preserved (Fig. 4E, blue dashed line). In contrast, taking our best 

fitting parameters and disabling the antiproliferative effect of IFN-γ (Fig. 4D; marked with triangle) 

resulted in only a very small reduction in the net growth rate of the tumours (Fig. 4E, green dashed 

line). Overall, these results support our previous analysis showing that an antiproliferative effect 

of IFN-γ is more important than CTL cytotoxicity to control B16F10 tumours[19]. Moreover, these 

results show that the dynamics of IFN-γ are compatible with the dynamics of the tumour cell cycle 

arrest, despite the apparently short duration of IFN-γ production.  

https://paperpile.com/c/mOZoiQ/TcdcS
https://paperpile.com/c/mOZoiQ/TcdcS
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Figure 4. Compatibility of IFN-γ transcription dynamics with tumour cell cycle arrest. A) Schematic for ODE 

model to compare CTL killing and IFN-γ mediated antiproliferative effect in B16F10 melanoma. B-C) Linear 

interpolation of mean CTL density (B) and mean IFN-γ expression (C). D) Heatmap showing root-mean-

square error (RMSE) for different combinations of the CTL killing rate parameter (ke) and the parameter 

controlling the sensitivity of cell-cycle arrest to IFN-γ (ki). E-F) Predictions for tumour growth rate (E) and 

ratio of tumour cells in S-G2-M : G1 states (F) for the combination of parameters with the lowest RMSE 

(solid red line). In addition, simulations are shown with either the best fitting k i parameter and ke=0 (blue 

long dashed line), or with the best fitting ke parameter and ki=0 (green short dashed line). G) Fractional 

reduction in transition rate from G1 to S-G2-M phase with varying IFN-γ expression levels, for the best-fitting 
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parameter value ki=8.5 IFN-1 mm3. Dashed lines in C and G highlight the predicted reduction in transition 

rate from G1 to S-G2-M phase for the mean IFN-γ expression levels measured on days 3 (cyan),5 (magenta) 

and 7 (yellow).  

CTL exhaustion quantitatively explains IFN-γ transcription dynamics 

In order to explain the dynamics of CTLs and IFN-γ and to quantify the importance of different 

immune checkpoints in these dynamics, we extended our ODE model (Fig. 5A). In this extended 

model, CTLs infiltrate the tumour at a basal rate s0 , expand within the tumour at rate se, and die 

with rate de. In addition to their killing of tumour cells, CTLs inside the tumour produce IFN-γ. 

Finally our model includes the immune checkpoints LAG-3, TIM-3, PD1, and its ligand PDL1, 

which decrease the activity of CTLs (see Methods). We fit this ODE model simultaneously to all 

the experimental data discussed in Figures 1-3, using Min-Max feature scaling to surmount the 

issue of comparing measurements from different modalities (see Methods), which resulted in an 

excellent model fit (Fig. 5B-C, magenta lines). Importantly, without using any checkpoints, we 

could not obtain a good fit to any of the experimental measurements (Fig. 5B, red lines), 

demonstrating that T cell exhaustion is required to explain the T cell anti-tumour response. 

In order to identify which of the identified immune checkpoint (IC) molecules is the most important 

determinant of the exhausted CTL state in the in vivo experimental setting with B16F10 tumours, 

we tried fitting our model with each IC separately. Including only PD1-PDL1 as an inhibitor (green 

lines; Fig. 5B-C), the fits improved compared to our model with no ICs, however we were still not 

able to achieve a good fit to the number of CTLs counted inside the tumour, nor to the dynamics 

of PD-1 and PD-L1 themselves. We achieved equally good fits with LAG-3 (Fig 5B-C, dark blue 

lines), with TIM-3 (Fig. 5B-C, cyan lines), and with the combination model including all checkpoints 

together (Fig 5B-C, magenta lines). Note that these model variants gave similar predictions to the 

simplified model, where CTLs and IFN-γ were used as inputs to the model, in terms of the relative 

importance of cytotoxic effects versus antiproliferative effects (Fig. S1). We also examined the 

dynamics of the exhausted state, comparing the level of exhaustion for each inhibitor (Fig. 5D). 

When fit individually, exhaustion due to LAG-3 increased throughout the simulated period (Fig. 

5D, row 1); for TIM-3, exhaustion (Fig. 5D, row 3) increased and then remained constant from 

day 5 until the end of the simulated period; and for PD-1/PD-L1, exhaustion peaked on day 5 and 

then declined afterwards (Fig, 5D, row 2). We also investigated how much the individual ICs 

contributed to the evolution of CTL exhaustedness for models fit with all inhibitors simultaneously, 

which resulted in similar exhaustion dynamics for each IC as when they were fit individually (Fig. 

5E). However, the relative contributions of each individual inhibitor to the overall exhausted state 

was clearly different. For the best fitting parameter set (Fig. 5E, row 1), the contributions of TIM-

3 and PD-1/PD-L1 towards exhaustion became negligible compared to that of LAG-3, which we 

verified by removing each IC individually from this best fitting parameter set (Fig. 5F, column 1). 

Compared to the situation with all ICs in place the model dynamics were virtually unaffected by 

knockout of PD-1/PD-L1 or TIM-3, whilst knockout of LAG-3 completely disrupted the model 

dynamics. 
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Figure 5. (displayed on previous page) Early cessation of IFN-γ is quantitatively compatible with the 

development of CTL exhaustion. A) Schematic for ODE model of CTLs versus B16F10 melanoma. Pointed 

arrows represent a positive effect (i.e. transfer, production, recruitment), whilst flat-headed arrows represent 

an inhibiting effect. CTL functions that are reduced due to CTL exhaustion are represented by lines passing 

through the translucent blue box. B) Model fits to CTL density (top row), IFN-γ mRNA expression (2nd row), 

ratio of S-G2-M:G1 nuclei (3rd row), or volumetric tumour growth (bottom row). C) Model fit to ICs for each 

considered combination of ICs used for fitting the model. Different ICs are shown in each row as indicated 

by facet label. Colored lines in B-C represent model output, and model fits with different ICs are indicated 

by colour. D) CTL exhaustion level, when individual ICs were used to fit the model (as indicated in rows). 

Different coloured lines are the contribution for each term in Eq. 11 (see Methods), i.e: dark blue - 𝑘𝑙𝐿/𝐸; 

cyan - 𝑘ℎ𝐻/𝐸; green - 𝑘𝑝(𝑃/𝐸)(𝑃𝐿𝑉/𝑉0). E) Contribution of different ICs to CTL exhaustion level, when all 

ICs were used to fit the model. Shown are results from the best fitting parameter set (top row), and two 

selected parameter sets with the highest contributions towards exhaustion from TIM-3 (middle row) or from 

PD-1/PD-L1 (bottom row). F) Results of knocking out individual inhibitors (as indicated by color and 

linetype) when all inhibitors were initially included in the fit: for either the best fitting model (column 1), the 

model with highest contribution from TIM-3 (column 2), or the model with highest contribution from PD-

1/PD-L1 (column 3). In all panels, points and error bars represent (respectively) mean +/- s.d. of 

experimental data used to fit the model, and lines represent model simulations. Parameter values for best 

fitting models are given in Table 1. 

Since our fitting procedure generated a range of parameter sets, we checked whether any of the 

other generated parameter sets might permit a larger role for TIM-3 or PD-1/PD-L1. To this end 

we selected the best fitting 20% of parameter sets amongst the final generation of our evolutionary 

algorithm, all of which resulted in reasonably good fits to the experimental data (Fig. S2). From 

this subset, we selected the parameter sets with either the highest value of kt relative to the other 

exhaustion parameters or the highest relative value of kp, i.e. the parameters which (respectively) 

controlled the contribution of TIM-3 and PD-1/PD-L1 towards exhaustion. The parameter set with 

a high value for kt resulted in development of an exhausted state that was dominated by the 

contribution of TIM-3 (Fig. 5E, row 2), and knockout of TIM-3 in this model completely disrupted 

model dynamics (Fig. 5F, column 2). This supports the result from the individual fits because it 

shows that TIM-3, similarly to LAG-3, correlates well with the exhausted CTL state. The parameter 

set with a high value for kp resulted in development of an exhausted state that had initially 

approximately equal contributions from all ICs, before PD-1/PD-L1 dropped and LAG-3 and TIM-

3 took over the role as determinants of exhaustion (Fig. 5E, row 3). There, knockout of any of the 

ICs disrupted the dynamics of the model, although PD1/PD-L1 knockout led to disruption of early 

dynamics and LAG-3 or TIM-3 knockout to disruption of late dynamics (Fig. 5F, column 3). Overall, 

these results show that the brief window of IFN-γ production is quantitatively consistent with 

development of an exhausted state amongst CTLs, and that expression of the immune checkpoint 

molecules LAG-3 and TIM-3 correlate best with the development of this exhausted state. Our 

analysis suggests that of the three ICs considered, PD-1/PD-L1 is the least important determinant 

of the exhausted CTL state, however our model remains compatible with PD-1/PD-L1 playing a 

role in CTL exhaustion at early time points after CTL infiltration of the tumour. 

  



113 
 

Discussion 

In a previous study on which our work was built, Matsushita et. al. found that tumour control of 

B16F10 melanoma by CTLs was mediated by a combination of cytotoxic and cytostatic effects, 

with the cytostatic effects being due to IFN-γ mediated cell cycle arrest of the melanoma cells[15]. 

However, the progression of cytostatic and antiproliferative effects over time was not explicitly 

explored. Here, we analysed image data, tumour volume measurements, and transcriptomics 

data from the study by Matsushita et. al[15], using data acquired at multiple timepoints after CTL 

transfer. We found that the presence of CTLs inside the tumour strongly correlated with tumour 

cell cycle arrest, as well as with the inhibition of volumetric tumour growth. However, IFN-γ 

signalling within the tumours followed early dynamics, with CTLs primarily producing IFN-γ early 

after arrival in the tumours. Since the loss of IFN-γ preceded the recovery of tumour cell 

proliferation, it was unclear whether IFN-γ signalling could completely account for the observed 

tumour cell cycle arrest, and what role T cell exhaustion had in these processes. Therefore, we 

developed an ODE model to describe tumour growth, CTL infiltration,  CTL production of IFN-γ 

and subsequent interference with cell cycle progression, and also killing of tumour cells by CTLs. 

Using this model we were able to describe all the experimental data, which led us to conclude 

that IFN-γ mediated tumour cell cycle arrest, together with killing of tumour cells by CTLs, were 

sufficient mechanisms to account for the experimental data. We also used our models to compare 

the contribution of CTL mediated cytotoxic or cytostatic effects towards tumour control. Our model 

predicted CTL killing rates (ke) between 0-3 CTL-1 day-1, which resulted in only a minor contribution 

of CTL killing towards tumour control compared to the IFN-γ mediated cell cycle arrest, consistent 

with our findings from a B16F10 tumour we have previously analysed[19].   

As part of our study, we developed a model describing the dynamics and effector functions of 

tumour infiltrating CTLs. Based on mRNA expression data, IFN-γ transcription peaked on day 3, 

had fallen sharply by day 5, and was virtually zero on day 7. This was in contrast to the number 

of CTLs which remained present in similar numbers on days 3 and 5, and were still observable in 

reasonable numbers at late time points. Therefore, our model required inclusion of the 

development of CTL exhaustion in order to account for this loss in ability to produce IFN-γ. CTL 

exhaustion is identified by a progressive increase in the number and diversity of inhibitory 

receptors expressed by CTLs[23,26,27]. We identified four well known inhibitory molecules 

amongst the available transcriptomics data: LAG-3, TIM-3, PD-1, and the PD-1 ligand PD-L1. 

With our model we were able to obtain good fits if the exhausted state was correlated with TIM-3 

or LAG-3, but not with PD-1/PD-L1, which was due to the early peak of PD-1 and PD-L1 

transcription that was already well in decline on day 5 whilst CTL numbers in the tumour remained 

high. This early peak was not compatible with the idea that CTLs were becoming gradually more 

exhausted over time. On the other hand, LAG-3 and TIM-3 increased relative to the CTLs over 

time and therefore correlated most with the loss of IFN-γ transcription. Consistent with our model 

prediction, LAG-3 and TIM-3 have been previously shown to have high correlation with 

dysfunctional “exhausted” phenotype in CD8+ CTLs in melanoma[24]. Our model was not 

compatible with the dynamics of PD-1/PD-L1 as sole correlates of the exhausted state, which 

appears at first sight to contradict reports indicating that PD-1/PD-L1 signalling is relevant for 

immunosuppression in melanoma[28,29], although our result agrees with others showing the 

https://paperpile.com/c/mOZoiQ/MsK69
https://paperpile.com/c/mOZoiQ/MsK69
https://paperpile.com/c/mOZoiQ/TcdcS
https://paperpile.com/c/mOZoiQ/lc9DS+HnvLZ+YlJAy
https://paperpile.com/c/mOZoiQ/lqEiB
https://paperpile.com/c/mOZoiQ/FXrgM+KDIPm
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B16F10 cell line in particular may be resistant to PD-1 antagonist monotherapy[30,31] . Since our 

model was compatible with PD-1/PD-L1 signalling making a partial contribution to CTL exhaustion 

at early time points, it may be that PD-L1/PD-1 plays only an initial role in immune suppression 

and that this role is taken over later by other checkpoints, which is consistent with findings that 

blockade of LAG-3 as well as PD-1 receptors is required to prevent relapse in melanoma[28]. One 

caveat for the data employed to fit our model is that only one probe was available per checkpoint. 

Therefore future experiments should confirm the dynamics of the expression of these immune 

checkpoint molecules and further investigate their contribution to T cell exhaustion.  

Our model implies that the reduced activity of CTLs and in particular the apparent reduction in 

IFN-γ which preceded the disappearance of CTLs in the tumour by several days, could be 

explained by the development of an exhausted phenotype in the tumour infiltrating CTLs. 

Moreover, in our model IFN-γ played an important role in driving this exhausted phenotype. For 

exhaustion related to the PD-L1/PD-1 axis, this is clearly justified, because IFN-γ can induce 

upregulation of PD-L1 on tumour cells[13]. Moreover, IFN-γ induces increased antigen 

presentation on tumour cells[12], which should lead to increased stimulation of CTLs via their T 

cell receptors. This could explain the contribution of IFN-γ towards upregulation of the other 

immune checkpoints included in our model, which are more commonly associated with excessive 

and prolonged exposure to antigen[27]. In order to further study the dynamics of the CTL 

population in the tumour it would be useful to perform a second transfer of CTLs, which may help 

elucidate the extent to which the mechanisms of decline in CTL function are due to transferred 

CTLs becoming exhausted (and therefore a second transfer of “fresh” CTLs should result in 

similar anti-tumour effects) or are due to resistive mechanisms deployed by the tumour (in which 

case a second transfer of CTLs would be expected to provide only limited benefit).   

Our study was limited by a lack of direct data concerning several important aspects of the CTL 

dynamics within the tumour. First, we had no direct data on the killing rate (ke) of the CTLs inside 

the tumour, so this parameter was allowed to vary freely during the fitting process. Depending on 

which immune checkpoint molecules were included in the fitting process, we recovered a range 

of different values for ke, although these parameters were all plausible and comparable with other 

values for the killing rate of tumour cells by CTLs in vivo reported elsewhere[32], including that 

for attack of B16F10 cells[19]. Importantly, however, the choice of immune checkpoint molecules 

and the resultant values of ke did not impact our conclusion that IFN-γ mediated cell cycle arrest 

was the main determinant of tumour control. A second limitation surrounds our model of CTL 

exhaustion inside the tumours. Two specific questions we could not address due to the whole-

tumour microarray data we used were: 1) which cells were expressing inhibitory molecules and 

2) whether our results would have been different had we included ‘missing’ relevant molecules 

from the transcriptomics data, e.g. the immune checkpoint CTLA-4. Unbiased gene expression 

data generated at the single cell level, using single cell RNA-Seq techniques, would therefore be 

interesting to incorporate into similar modelling strategies in future. A third limitation is the possible 

presence of other tumour infiltrating cells, such as MDSCs which are recruited to B16F10 tumours 

after adoptive transfer of CTLs and exert suppressive effects on the tumour infiltrating CTLs[33]. 

The frequency of various immune cell types can be inferred from either single cell, or bulk 

transcriptomic data using computational methods[34], and it would be interesting to extend our 

modelling approach to include other relevant immune cells using such methods in future.  

https://paperpile.com/c/mOZoiQ/q41l5+ndPqF
https://paperpile.com/c/mOZoiQ/FXrgM
https://paperpile.com/c/mOZoiQ/EPM0u
https://paperpile.com/c/mOZoiQ/ub3Hn
https://paperpile.com/c/mOZoiQ/YlJAy
https://paperpile.com/c/mOZoiQ/PDgLo
https://paperpile.com/c/mOZoiQ/TcdcS
https://paperpile.com/c/mOZoiQ/gq3NZ
https://paperpile.com/c/mOZoiQ/NbVZp


115 
 

In our analysis, we used mRNA expression as a substitute for protein expression. Previous 

studies report that mRNA levels are substantially predictive of protein expression levels[35,36]. 

Moreover, although some delay should be expected between mRNA expression and protein 

expression, this delay has been estimated to last for only a few hours[36] and thus should not 

have a significant impact on our data, which consists of measurements made across several days. 

For the in vivo setting we studied, the rapid decline in the S-G2-M : G1 ratio after transfer of CTLs 

indeed suggests that protein expression rapidly follows mRNA expression. Conversely, the S-G2-

M : G1 ratio does not appear to recover immediately upon downregulation of IFN-γ mRNA. One 

explanation could be that the effect of IFN-γ lasts longer than the protein due to downstream 

signaling. Another is that tumour cells are very sensitive to low levels of IFN-γ, therefore the effect 

could persist even after IFN-γ synthesis has substantially declined. The latter explanation seems 

to be in line with a study which found that bystander sensing of IFN-γ could occur at distances of 

over 40 cell lengths[13], implying high sensitivity of tumour cells to this cytokine.   

In summary, we have presented a mathematical model that can successfully predict inhibition of 

tumour growth following adoptive T cell transfer. We used this model to quantify the contribution 

of IFN-γ and cytotoxicity to the antitumour activity of CTLs, which led to the conclusion that IFN-

γ contributes most to tumour growth blockade by CTLs. Our model also includes anti-tumourigenic 

(antiproliferative, enhancing recruitment of CTLs) and pro-tumourigenic (driver of CTL 

exhaustion) effects of IFN-γ. The presence of opposing effects of IFN-γ have led to descriptions 

of an “IFN-γ paradox”[12]. Our model, by including these different effects associated with IFN-γ, 

can serve as a quantitative baseline to be augmented in future, and may help guide further 

experimental work.  

Methods 

Data Summary 

For the development of the mathematical model, data from the paper by Matsushita et al.[15] 

were used. In brief, the experimental protocol in that previous study involved inoculation with 107 

B16F10 melanoma cells into C57BL/6 mice, followed 9 days later by adoptive transfer of 106 

activated pmel-1 transgenic T cells recognising the gp100 peptide (note that throughout the current 

study, the day of CTL transfer is designated “day 0”). The data included measurements of tumour 

volume from experiments in mice either with or without subsequent adoptive transfer of CTLs. 

From the same experiments we also used fluorescence microscope images of cryosections of 

B16F10 tumours expressing the fucci cell cycle sensor, taken on days 1,3,5,7,10 & 14 following 

CTL transfer. Finally, the data set included microarray RNA expression data from B16F10 

tumours at days 1, 3, 5 & 7 after CTL transfer. 

Image analysis 

Automated estimates of the number of G1 or S-G2-M phase nuclei were produced using the ilastik 

(version 1.1.3) cell density estimation tool. Training and classification was performed using 

merged (RGB) images. For training the classifier we selected subregions (100-200μm2) from the 

larger (750x550μm) cryosections. One subregion was selected from each available time point to 

https://paperpile.com/c/mOZoiQ/86Bvh+RFhfB
https://paperpile.com/c/mOZoiQ/RFhfB
https://paperpile.com/c/mOZoiQ/EPM0u
https://paperpile.com/c/mOZoiQ/ub3Hn
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ensure a representative training set. Pipelines for different nuclei (G1 or S-G2-M ) were trained 

separately. Training was performed by manually labelling training images until the classifier 

estimated numbers of cells achieved a satisfactory match with manual counts for the same data.  

Analysis of gene expression data 

Microarray data were downloaded from the Gene Expression Omnibus (GEO) database (series 

GSE57304; samples GSM1379331– GSM1379344). These data correspond to the same set of 

experiments as the image and tumour volume progression data we have used, and the 

methodology for acquisition of these data has been described previously[15]. Briefly, tumour 

tissues from mice were harvested on different days (1,3,5,7) after CTL transfer, or on the same 

days in the untreated (without CTLs) condition. Each sample contained 500ng of pooled RNA 

from 3-4 different tumours, and microarray analysis was performed with 45,018 probes to quantify 

expression levels of the targeted genes. We performed similar data processing steps to the 

original publication: probes were discarded when their gIsWellAboveBG flag was zero at all 

samples, and we normalised different samples at the 75th percentile.  

Basic ODE Model 

We developed an ODE model to describe the intratumoral activities of the transferred CTLs. The 

basic model of tumour growth (in the absence of CTLs) considers two possible states for alive 

tumour cells: they can be either in the G1 phase of the cell cycle (denoted in the equation as G), 

or else in the S, G2, or M phase (together denoted S in the model equations). The reason for 

choosing these states as explicit model variables was because the Fucci cell cycle reporter used 

in the experiments, which our model is based upon, could distinguish only between G1 or S-G2-M 

phases. Cells move from the G1 state into the S-G2-M state at rate kgs, and leave the S-G2-M state 

at rate ksg (Eq. 1): 

 𝑑𝑆

𝑑𝑡
= 𝑘𝑔𝑠𝐺 − 𝑘𝑠𝑔𝑆. Eq 1 

The S-G2-M state concludes when a tumour cell undergoes mitosis. To include this increase in 

tumour cells in our model, we consider that for every cell which leaves the S-G2-M state, two cells 

enter the G1 state (Eq 2): 

 𝑑𝐺

𝑑𝑡
= −𝑘𝑔𝑠𝐺 + 2𝑘𝑠𝑔𝑆. Eq 2 

The resulting tumours grow exponentially when the ratio of cells in G and S states is at its steady 

state value. When CTLs (E) are introduced into the tumours, our basal model of tumour growth 

(Eq’s 1-2) is modified to include two possible effects CTLs can have on the tumour. The first of 

these effects is direct killing of tumour cells, which occurs with a constant rate 𝑘𝑒 (per CTL). As 

https://paperpile.com/c/mOZoiQ/MsK69
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we have done previously[18,19], we take the total killing activity of CTLs to be directly proportional 

to the number of CTLs inside the tumour, such that the total killing activity of the CTLs is given by 

𝛼keE (note that 𝛼is a scalar used to modify the effector functions of CTLs if their activity is reduced 

due to being exhausted: see Eq’s 7-12). We consider that killing is directed equally towards cells 

in G1 or S-G2-M phases, so that the fraction of tumour cells in either state (i.e. 𝐺 (𝑆 + 𝐺)−1 or 

𝑆 (𝑆 + 𝐺)−1, respectively) determines the fraction of the total killing activity that each subset of 

tumour cells receives. 

The second effect that CTLs can have on the tumour is an antiproliferative effect, mediated by 

IFN-γ, which results in an arrest of the cell cycle in the G1 phase. To include this effect in our 

model we reduce the transition of cells out of the G1 phase by scaling with the term  (1 + 𝑘𝑖𝐼/𝑉)−1. 

Here, the variable I represents the total quantity of IFN-γ inside the tumour and 𝑉 is the variable 

representing tumour volume. Thus, the term I / V represents the concentration of IFN-γ inside the 

tumours, and 𝑘𝑖 determines the concentration dependence of the IFN-γ dependent reduction in 

the rate at which tumour cells can leave the G1 phase. The equations to describe the evolution of 

the number of tumour cells in G1 or S-G2-M phases become: 

 𝑑𝑆

𝑑𝑡
= 𝑘𝑔𝑠𝐺 (1 + 𝑘𝑖𝐼/𝑉)−1 − 𝑘𝑠𝑔𝑆 − 𝛼𝑘𝑒  𝐸 𝑆 (𝑆 + 𝐺)−1, Eq 3 

 𝑑𝐺

𝑑𝑡
= −𝑘𝑔𝑠𝐺 (1 + 𝑘𝑖𝐼/𝑉)−1 + 2𝑘𝑠𝑔 ⋅ 𝑆 − 𝛼𝑘𝑒 𝐸 𝐺 (𝑆 + 𝐺)−1. Eq 4 

To test the compatibility of IFN-γ transcription dynamics with G1 tumour cell cycle arrest Eq’s 3-4 

were used directly. I and E were estimated by linearly interpolating between the mean of the 

experimental data at each available time point, and these linear interpolations were used as inputs 

to the model. 

ODE Model with CTL dynamics 

To describe the dynamics of the CTL population and their production of IFN-γ, we extended our 

basic ODE model with further equations. We consider that after transfer, CTLs would begin to 

arrive in any given region of the tumour at a constant rate 𝑠0. We take a constant rate of CTL 

arrival per unit volume of tumour, hence the rate at which CTLs can find the tumour scales with 

tumour volume. Moreover, we consider that CTLs expand within the tumour at rate 𝑠𝑒, and die at 

a constant rate, 𝑑𝐸. CTL expansion inside the tumour is also reduced according to the level of 

CTL exhaustion (𝛼). Thus, CTL dynamics is described by the following equation:   

 𝑑𝐸

𝑑𝑡
= 𝑠0𝑉 + 𝛼𝑠𝑒𝐸 − 𝑑𝐸𝐸. Eq 5 

https://paperpile.com/c/mOZoiQ/JQobO+TcdcS
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We consider CTLs to be the major source of IFN-γ inside the tumours, therefore IFN-γ production 

is proportional to the number of CTLs, but is reduced according to their level of exhaustion (𝛼), 

and IFN-γ disappears from the system with a rate 𝑑𝑖: 

 𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − 𝑑𝑖𝐼. Eq 6 

Finally, we include a mechanism whereby CTLs become exhausted inside the tumour. T cell 

exhaustion is characterised by a loss of effector functions along with a progressive increase in 

the amount and diversity of inhibitory receptors expressed by T cells[23,26,27]. We used the well 

described PD1, PD-L1, LAG-3 & TIM-3 inhibitory molecules as indicators of exhausted T cells[24], 

which in our model appear with variable names P, PL, L, and H (respectively):  

 𝑑𝑃

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑝𝑃, Eq 7 

 𝑑𝑃𝐿

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑝𝑙𝑃𝐿, Eq 8 

 𝑑𝐿

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑙𝐿, Eq 9 

 𝑑𝐻

𝑑𝑡
= 𝐸(1 + 𝑘𝐴𝐼/𝑉)  − 𝑑𝑡𝐻. Eq 10 

We tested several model variants, one with no immune checkpoints, three in which we consider 

one checkpoint at a time, and one considering all checkpoints simultaneously. All inhibitory 

molecules follow similar dynamics, increasing in proportion to the number of CTLs inside the 

tumour and disappearing from the system with different rate constants dp,dpl,dl, and dt 

(respectively). Production is increased proportional to the term(1 + 𝑘𝐴𝐼/𝑉) , which allows for a 

contribution of IFN-γ to the exhausted state. Note that the IFN-γ induction of exhaustion may be 

direct or indirect, e.g. by increasing antigenicity of tumour cells and thereby increasing stimulation 

of T cells via the T cell receptor. In our model, we consider PD1, LAG-3, and HAVCR2 as 

expressed on the membrane of CTLs, so the ratio of each of these checkpoint molecules to the 

number of CTLs determines the overall level of exhaustion of the CTLs in our model. PDL1 is 

modelled differently, being a ligand for the PD1 receptor, and the concentration of PDL1 in our 

model is multiplied together with the membrane density of PD1 expressed on CTLs to determine 

https://paperpile.com/c/mOZoiQ/HnvLZ+lc9DS+YlJAy
https://paperpile.com/c/mOZoiQ/lqEiB
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the contribution from PD1-PDL1 signalling (see Eq. 11 in ref: [37]). To describe the joint effect of 

these inhibitory molecules on the CTLs, we consider a weighted sum R:  

 𝑅 = 𝑘𝑙𝐿/𝐸 + 𝑘𝑡𝐻/𝐸 + 𝑘𝑝(𝑃/𝐸)(𝑃𝐿/𝑉). Eq 11 

R represents the total “exhaustedness” of the CTL population inside the tumour. The parameters 

kl, kt, and kp represent the individual contribution of (respectively) LAG-3, TIM-3, and PD-1/PD-L1 

signalling towards the level of exhaustion of CTLs. In absence of detailed information about the 

impact of exhaustion level on CTL functions (killing, IFN-γ production, expansion), we take all 

these functions to be equally reduced with the level of CTL exhaustion: 

 𝛼 = 1 − (1 + 𝑘𝑒𝑥/𝑅)−1. Eq 12 

Here, 𝑘𝑒𝑥 is the level of exhaustion at which all effector functions are half of their maximum value. 

Thus, Equation 12 scales the exhaustion level to a scaled term 𝛼 which can range from 0 to 1 and 

is applied to the relevant rate constants in Equations 3-6.  

Parameter estimation 

Parameter estimation for the two parameters in the basal tumour growth model was performed 

separately from the other parameters. We consider that the density of the tumour cells remained 

constant over time, so that volumetric tumour growth rate could be taken as a proxy for the 

expansion rate of the tumour cell population. We obtained an estimate for the untreated tumour 

growth rate (g) from fitting an exponential model of tumour growth to the volumetric growth data 

for the untreated tumours. Moreover, estimates of the ratio of tumour cells in the S-G2-M : G1 

phase gave a second measurement allowing the two parameter (kgs, ksg) basal model of tumour 

growth to be completely defined, considering that the ratio of S-G2-M : G1 phase tumour cells has 

reached a steady state (which is reasonable since we deal with data two weeks after tumour 

inoculation). Then, using the equation for exponential growth:  

 𝑑(𝑆+𝐺)

𝑑𝑡
= 𝑔 (𝑆 + 𝐺), Eq 13 

where g is the tumour growth rate, one can substitute the left hand side of Eq.13 with 𝑘𝑠𝑔𝑆, noting 

that 𝑘𝑠𝑔𝑆is the total rate of new tumour cell production obtained from summing Eq’s. 1-2.  

Following the substitution, an expression for g can be found in terms of S and G:  

https://paperpile.com/c/mOZoiQ/1OUbv
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 𝑔 = 𝑘𝑠𝑔𝑆 / (𝑆 + 𝐺). Eq 14 

Since our model results in an exponentially growing tumour with a constant ratio of cells in S:G 

states, explicit equations for the growth of the populations in each state can be written separately:  

 𝑆(𝑡) = 𝑆𝑠𝑠𝑒𝑔𝑡, Eq 15 

 𝐺(𝑡) = 𝐺𝑠𝑠𝑒𝑔𝑡, Eq 16 

with the subscript (SS) indicating validity of these equations when the initial populations are at 

their steady state ratio. Following differentiation of each equation:   

 𝑑𝑆

𝑑𝑡
= 𝑔𝑆𝑠𝑠𝑒𝑔𝑡, Eq 17 

 𝑑𝐺

𝑑𝑡
= 𝑔𝐺𝑠𝑠𝑒𝑔𝑡, Eq 18 

the resulting equations (17-18) can be combined to remove the common terms (𝑔𝑒𝑔𝑡). This leads 

to the following:  

 1

𝑆

𝑑𝑆

𝑑𝑡
=

1

𝐺

𝑑𝐺

𝑑𝑡
, Eq 19 

where we have omitted the subscript with the understanding that Eq. 19 is valid only when the 

tumour is growing exponentially with the ratio S/G at a steady state value. Therefore, by 

substituting the expressions for 
𝑑𝐺

𝑑𝑡
 and 

𝑑𝑆

𝑑𝑡
 given in Eq’s 1-2, the Eq’s 14 & 19 can be rearranged 

to express the 𝑘𝑠𝑔 and 𝑘𝑔𝑠 parameters for the basal tumour growth model as a function of tumour 

growth rate (g) and the ratio of S-G2-M : G1 phase tumour cells at steady state: 

 𝑘𝑠𝑔 = 𝑔 (1 + 𝑆/𝐺)(𝑆/𝐺)−1, Eq 20 
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 𝑘𝑔𝑠 = 𝑔 (1 + 2𝑆/𝐺). Eq 21 

The remaining model parameters which relate to the dynamics of the CTLs and their effects on 

the tumours were obtained together, by fitting to all available data over time simultaneously (i.e. 

the CTL counts; the S/G ratios; the volumetric growth data; the IFN-γ expression data; the immune 

checkpoint expression data). The measurements derived from the experimental data are 

multivariate and do not have the same dimension or scale. To avoid the set of measurements 

with the largest numerical values from dominating the fit, we could not easily use studentized 

residuals (i.e. dividing residuals by the estimated standard deviation of the measurements) to 

remove the dimensionality of each measurement, because for a number of experimental 

observations (CTLs on day 1, all immune checkpoints) the estimated standard deviation would 

be zero. Instead, we opted to apply Min-Max feature scaling. For a given set of experimental 

measurements of the same type denoted X (where X could be, for example, the number of CTLs 

counted on each different day of measurement),  the equation for the transform is given by the 

following: 

 𝑋𝑠 =  (𝑋 − 𝑚𝑖𝑛(𝑋))/(𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)), Eq 22 

where 𝑋𝑠 is the set of Min-Max rescaled measurements and min(X) and max(X) are the smallest 

and largest values for the subset of experimental data under consideration. Thus, all experimental 

data is linearly rescaled to the range between 0-1. The same transformation is applied to the 

measurements sampled from the model,   

 𝑌𝑠 =  (𝑌 − 𝑚𝑖𝑛(𝑋))/(𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)). Eq 23 

Note that the model output is scaled relative to the experimental data, thus rescaled values for 

modelled variables are allowed to take values outside the range 0-1. Finally, the root-mean-

square error (RMSE) is calculated: 

 
𝑅𝑀𝑆𝐸 = √

∑𝑛 (𝑥𝑛−𝑦𝑛)2

𝑛
, 

Eq 24 

where n is the total number of measurement points used in the fitting and xn and yn are the 

individual measurements taken from the experimental data and the model output, respectively. 

After fitting the reverse calculation is applied to convert back to the original scaling for the 
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experimental data. For the basic model with I and E used as inputs, there were only two 

parameters (ki and ke) to be estimated, therefore we tested all combinations of the parameters in 

the range 0-20 at intervals of 0.1 and selected the combination with the lowest RMSE. For the 

model including CTL dynamics we used an evolutionary algorithm[38] to minimise the RMSE, 

following the local-to-best strategy, with a population size of 500 and lasting for 1500 generations. 

Best-fitting parameter sets are provided in Table 1. 

  

https://paperpile.com/c/mOZoiQ/q6ESH
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Table 1. Description of model parameters, with best fitting parameter values. Columns 2-4 give 

values for ICs fit individually, columns 5-7 give values for fits with all ICs included. 

symbol Best 

(LAG) 

Best 

(TIM) 

Best 

(PD) 

Best (all) Best (all- 

high kt) 

Best(all- 

high kp) 

Units Description 

s0 0.011 0.087 0.007 0.032 0.04 0.008 ( mm-3 day-1) Infiltration rate of CTLs into tumour 

se 8.39 9.10 13.56 14.97 116 17.97 (day-1) Expansion rate of CTL population within 
tumour 

de 0.91 0.89 0.47 1.19 0.4 1.23 (day-1) Death rate of CTLs inside tumour 

di 4.74 3.87 0.80 25.1 1.06 10.1 (day-1) Rate at which IFN-γ disappears from the 
system. 

kgs 1.64 (day-1) Basal tumour cell transition rate from G1 
to S-G2-M cell cycle phases 

ksg 0.66 (day-1) Basal tumour cell transition rate from S-
G2-M to G1 cell cycle phase 

ki 0.011 0.035 0.063 0.038 0.18 0.35 (IFN-1 mm3) Determines the concentration of IFN-γ 
required to prevent transfer of tumour 
cells from G1 to S-G2-M cell cycle 
phases. ki

-1 is the concentration of IFN-γ 

required to reduce the transition rate by 
50%. 

ke 3.57 4.20 0.007 2.72 1.44 0.007 (CTL-1 day-1) Rate at which CTLs kill tumour cells 

kA 0.69 0.013 0.011 0.025 0.016 0.012 (IFN-1 mm3) Relative contribution of IFN-γ to immune 
checkpoint expression 

kex  22.4 28.9 13.6 7.92 0.9 0.067 CTL-1 Determines level of immune checkpoint 
expression required to decrease CTL 
function 

kl 0.78 NA NA 52.5 0.02 0.13 (LAG-1) Contribution of LAG3 towards CTL 
exhaustion 

kt NA 48.6 NA 0.043 104 0.21 (TIM-1) Contribution of TIM3 towards CTL 

exhaustion 

kp NA NA 0.007 0.10 0.009 0.01 (PD1-1
 PDL1-1 

mm3) 
Contribution of PD-1/PD-L1  towards 
CTL exhaustion 

dl  0.41 NA NA 0.74 0.053 0.37 (day-1) Disappearance rate of LAG3 inside the 
system 

dt  NA 0.51 NA 1.18 0.3 0.57 (day-1) Disappearance rate of TIM3 inside the 
system 

dp  NA NA 0.22 67.3 13.7 125 (day-1) Disappearance rate of PD-1 inside the 
system 

dpl  NA NA 0.26 15.1 116 20.4 (day-1) Disappearance rate of PD-L1 inside the 
system 
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Supplementary Data 

 

Figure S1. Relative effects of killing and IFN-γ in the fitted models. A) Different CTL killing rates predicted 

using the best fits for three IC combination models (only LAG-3, only TIM-3, or the combination of LAG-3, 

TIM-3 and PD-1/PD-L1), each of which resulted in a good fit to the experimental data. Each fitted 

combination is represented by a different color. B) Comparison of the number of tumour cells, predicted 

over time for each of the three selected IC combinations (along rows). Total cells (blue), G1 phase cells 

(red), or S-G2-M phases (green) are shown separately for each condition. Along columns are simulations 

with either all parameters as fitted (left), with killing disabled (middle), or with the antiproliferative effect 

disabled (right). C) Comparison of total number of tumour cells in the model for the 9 conditions simulated 

in B. An additional line (“untreated”, purple) shows the growth of the tumour simulated without any CTLs. 
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Figure S2. Parameter variability amongst the final generation of the evolutionary algorithm, when all ICs 

were used to fit the model. A) Model fits to CTL density (top row), IFN-γ mRNA expression (2nd row), ratio 

of S-G2-M:G1 nuclei (3rd row), or volumetric tumour growth (bottom row). B) Model fit to each IC as indicated 

by facet labels per row. Symbols and error bars in A-B represent experimental measurements and SD, 

whereas lines represent model output, and are coloured according to whether they were in the top 20% of 

the best fitting parameter sets. C) Distribution of root-mean-square-error (RMSE) for parameter sets in the 

final generation. Red line indicates the cutoff for the top 20% of parameter sets. D) Parameter values for 

the top 20% of parameter sets in the final generation of the evolutionary algorithm. Coloured dots indicate 

parameter sets for best fit (red) and for high relative values of kt (green) and of kp (blue) compared to other 

exhaustion parameters (these sets are used in Fig. 5E-F in main text). 
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Chapter 6 

Discussion 

Summarizing discussion 

In this thesis we have studied the effector functions of cytotoxic T lymphocytes in various in vitro 

and in vivo experiments, with emphasis on the role of CTLs as mediators of immunotherapies for 

cancer. To study CTL effector functions, we analysed experimental data in order to derive 

statistics and parameters informative about CTL function. Moreover, using these parameters, we 

developed mechanistic models and studied them in order to obtain insights about the behaviour 

of CTLs. In the following sections, we revisit the questions originally posed in the introduction to 

this thesis. 

How can the rate at which CTLs kill target cells be quantified and what is the rate 

at which CTLs kill tumour cells? 

In chapter 2, we used stochastic models and bayesian inference to study the expected kinetics of 

CTL killing when observed under the microscope. In particular, we sought to define the 

measurements required in order to accurately determine the killing rate of cells based on imaging 

data. Early models treated CTL cytotoxicity as a Poisson process1, but others have suggested 

that multiple hits from CTLs may be required in order to effectively lyse target cells (i.e., the 

multiple-hitting hypothesis)2–4. We found that the multiple hitting hypothesis was compatible with 

recent unexplained observations of non-Poisson killing dynamics for CTLs in vitro5, and 

established a bayesian inference procedure which could be applied to test the multiple-hitting 

hypothesis. We also determined that the ability to track the contact history of CTLs with individual 

target cells was a requirement for accurate assessment of multiple hitting based on imaging data.  

We had data available from three different cell lines with which we could address the question of 

CTL killing rate. In an in vitro assay in which CTLs killed Epstein-Barr virus transformed B cells  

presenting the pp65 peptide5 (chapter 2), CTLs killed with an average rate of k=8 (kills CTL-1 day-

1). In an in vivo setup employing EL4 lymphoma6 (chapter 3), CTLs killed with an average rate of 

k=4 (kills CTL-1 day-1). In in vivo experiments using the B16F10 melanoma cell line7 (chapter 4), 

CTLs killed with an average rate of k=0.75 (kills CTL-1 day-1). These estimates for CTL killing rates 

towards tumour cells are comparable to other reports in the literature. In another murine 

experiment we have analysed8 (not included in this thesis), CTLs were estimated to kill B cell 

lymphoma cells in the bone marrow at a rate of k=4.8 (kills CTL-1 day-1). Another study using the 

B16F10 melanoma cell line reported different rates of killing depending on the site of injection9, 

with k=1.24 (kills CTL-1 day-1) when melanoma cells were injected into the liver, but k=3.18 (kills 

CTL-1 day-1) when cells were injected into the spleen. Overall, in this thesis we have studied the 

killing rate of CTLs in two tumour cell lines in vivo, as well as one cell line in an vitro setting. 

Moreover, we have laid out a framework for analysing the killing kinetics of CTLs in imaging data 

in future.  

https://paperpile.com/c/bFxHv6/bQqk
https://paperpile.com/c/bFxHv6/Kf9V+AJ4Z+VisZ
https://paperpile.com/c/bFxHv6/5THG
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/epstein-barr-virus
https://paperpile.com/c/bFxHv6/5THG
https://paperpile.com/c/bFxHv6/qDyl
https://paperpile.com/c/bFxHv6/4k8h
https://paperpile.com/c/bFxHv6/Jr4G
https://paperpile.com/c/bFxHv6/mbSh


130 
 

How important is the contribution of CTL mediated killing towards control of 

tumours? 

An important focus of this thesis was to assess the sufficiency of CTL killing to account for tumour 

control. In chapter 3, we investigated in vivo experiments employing the EL4 lymphoma  cell line 

which underwent rapid regression following adoptive transfer of CTLs6. For these EL4 tumours, 

conflicting reports existed in the literature regarding the mechanisms used by adoptively 

transferred CTLs to eliminate the tumours. Imaging of mixed tumours, containing both patches of 

antigen-positive and antigen-negative tumour, showed selective elimination of antigen-positive 

regions after CTL transfer6. This result from mixed tumours suggested an important role for 

contact dependent, antigen specific recognition and destruction of tumour cells by the transferred 

CTLs. However, another study using the same EL4 tumour cell line showed that perforin and 

FAS-L doubly deficient T cells were not significantly compromised in their ability to control the 

same tumours10. Since either perforin or FAS-L are expected to be required for contact dependent 

killing, effective tumour control in the absence of both mechanisms seemed incompatible with the 

imaging study using mixed tumours.  

Estimates for the killing rate of CTLs were available from two photon imaging of the regressing 

EL4 tumours, with a value for the killing rate of k=4 (kills CTL-1 day-1). Thus, we asked whether 

the observed CTL killing rate was sufficient to explain the rapid tumour regression which was also 

reported. To address this question we developed both an ordinary differential equation model and 

a spatially explicit agent based model, to describe CTL killing inside the tumours. We found that 

the observed rates of CTL killing were well below those required to explain the rapid tumour 

regression evident in the data. This was true even when we simulated multiple-hitting CTLs, for 

which the associated variable killing rate over time11 (chapter 2) could have implied that the 

reported killing rate (k=4 kills CTL-1 day-1) was an underestimate due to imaging being performed 

at an early time point. However, the discrepancy between the measured killing rate and the killing 

rate we predicted necessary to result in tumour regression was too large to be accounted for by 

multiple-hitting.  

In chapters 4-5, we studied two datasets derived from the B16F10 melanoma model after adoptive 

CTL transfer. The different datasets were generated by two different experimental groups, with 

each group having adopted a slightly different experimental setup. In one series of experiments7 

(used in chapter 4) tumours were injected and then observed by means of long (1-4 hours) three-

dimensional two-photon microscopy imaging through dorsal skinfold windows implanted into the 

mice. CTLs recognised ovalbumin (OVA) expressed by the B16F10 melanoma cells. Data from 

this series of experiments had the advantage that direct measurements of the killing rate of tumour 

cells by CTLs could be made (k=0.75 kills CTL-1 day-1), along with measurements of the mitosis 

rate of tumour cells. However, the presence of the imaging windows limited the size of tumours 

that could be studied and it was unclear whether the presence of the windows influenced the 

growth of the tumours or the response of the CTLs.  

Complementing these data were data from other experiments12 (used in chapter 5) using the 

B16F10 melanoma cell line, except with pmel-1 transgenic T cells recognising the gp100 peptide 

expressed on the tumour cells. In this series of experiments, ex vivo cryosections rather than an 
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imaging window was used, permitting study of larger tumours but having the disadvantage that 

no direct measurements of CTL killing rate or tumour mitosis rate were available. Nevertheless, 

using model fitting we were able to infer values for these parameters from the available data. In 

these data, immunofluorescence imaging of the cryosections was used to quantify the number of 

tumour infiltrating CTLs. Moreover, in combination with the Fucci cell cycle reporter, the ex vivo 

sections allowed discrimination between tumour cells in the G1 phase of the cell cycle and tumour 

cells in other (S-G2-M) phases, which made it possible to estimate the rate of tumour cell mitosis. 

Since we could infer the tumour mitosis rate from the ratio of tumour cells in G1:S-G2-M phases, 

we were able to make an estimate of the CTL killing rate: we did this by asking how much 

additional CTL killing, in addition to the reduced mitosis, would be needed in order to explain the 

volumetric progression of the tumours. By comparing the estimate of tumour cell mitosis to the 

volumetric progression of the tumours, we inferred a value for the killing rate of the CTLs, i.e., k=1 

kill CTL-1 day-1. Interestingly, in spite of the different antigen (gp100) recognised by CTLs in these 

experiments, this killing rate estimate was consistent with the experiments where CTLs 

recognised the OVA antigen (chapter 4), suggesting that the exact antigen recognised by CTLs 

does not have a major impact on the rate at which they can kill target cells. 

We developed ODE models to describe the data generated by each set of B16F10 experiments. 

Despite the differences in experimental settings, our analysis and modelling of each set of data 

gave consistent conclusions: in each case the cytotoxic function of CTLs had only a small effect 

on tumour progression. Thus our results from studying the B16F10 melanoma cell line (chapters 

4-5) were consistent with those obtained in our study of the EL4 lymphoma cell line (chapter 3), 

i.e. CTL killing was insufficient to account for the majority of the reduction in tumour size or 

progression concomitant with the adoptive transfer of CTLs.  

How important are the antiproliferative effects that CTLs exert upon tumour cells? 

Since in each of the in vivo experiments studied (chapters 3-5) we found that CTL mediated killing 

at the reported or inferred rates was insufficient to explain the extent of the tumour regression 

reported, we asked in each case to what extent an antiproliferative effect of the transferred CTLs 

could explain the data. In chapter 3, we used our spatial agent based model, but applied a 

constraint that our model should also be able to describe the results from mixed EL4 tumours 

where selective destruction of antigen expressing cells was observed. We found that including a 

mechanism whereby CTLs secrete a soluble cytokine with antiproliferative effects on tumour cells 

would allow us to simultaneously describe all the available data. Our model suggested that the 

antiproliferative effect of the cytokine was quantitatively more important, due to the ability of CTLs 

to control the proliferation of many tumour cells, given that the antiproliferative effect is mediated 

by a soluble molecule which can diffuse away from CTLs. This would explain how double knockout 

of perforin and FAS-L had little impact on tumour control, as shown experimentally in an earlier 

study10. Nevertheless, our model also explained the selective destruction of antigen expressing 

cells in mixed tumours, which occurred for two reasons. Firstly, the antiproliferative effect would 

affect the OVA-expressing cells more strongly than non-OVA-expressing bystander cells, due to 

the selective localisation of CTLs leading to high concentrations of cytokine in areas inhabited by 

antigen expressing tumour cells. Second, although the reported CTL killing rates were quite low, 

they eventually led to appreciable reduction in the number of tumour cells, provided the tumour 

https://paperpile.com/c/bFxHv6/Yky5


132 
 

cells could not proliferate. Together these two effects impose a strong selection pressure on the 

tumour cells, explaining the selective elimination of antigen expressing cells.  

A limitation of our study in EL4 tumours (chapter 3) was lack of any direct data concerning the 

proliferation rate of tumour cells. This limitation was addressed in chapters 4-5, since in both 

datasets estimates of tumour cell mitosis were available. By examining hypothetical deviations in 

the estimated rates of tumour cell mitosis after adoptive transfer of CTLs, we were able to make 

inferences about the impact of CTL transfer on the proliferation rate of the tumour cells. After 

incorporating these data into our ODE models, we saw in each case the mitosis rate of tumour 

cells was substantially diminished concomitant with the presence of the CTLs. Indeed, we found 

that the reduced mitosis rates after CTL transfer were quantitatively sufficient to account for the 

majority of reduced volume progression. Overall, we again found that the cytotoxic function of 

CTLs had a negligible effect on tumour progression when quantitatively compared with the 

antiproliferative effect. Thus in all the in vivo data we studied, we reached the conclusion that an 

antiproliferative effect associated with transferred CTLs is more important than any direct killing 

of tumour cells by CTLs.  

Since we identified a potential antiproliferative effect of CTLs as having a large effect on tumour 

progression, it is important to understand the mechanisms through which such an effect occurs. 

Based on reports that the CTL secreted cytokine interferon-γ (IFN-γ) can cause cell cycle arrest12–

14, and also because the antiproliferative effect of IFN-γ was explicitly explored and  confirmed in 

one of the studies we used to develop our models12 (chapter 5), it seems that the cytokine IFN-γ 

is an important mediator of the antiproliferative effect in the B16F10 cell line. Although IFN-γ was 

shown to have no effect on the proliferation of EL4 cells in vitro12, when we simulated a similar 

antiproliferative effect from IFN-γ in our spatial ABM (chapter 3) we were able to describe the time 

course of the EL4 lymphoma tumour size. This result suggests that there may be other means, in 

addition to IFN-γ mediated cell cycle arrest, by which transferred CTLs can reduce the 

proliferation of tumour cells. There are plausible mechanisms by which this could occur - for 

example IFN-γ promotes expression of the chemokines CXCL9, CXCL10, and CXCL11, which all 

have angiostatic effects15. As another example, nitric oxide is secreted by stromal cells after 

exposure to IFN-γ16 and can reduce proliferation of EL4 cells in vitro. Due to the importance of 

antiproliferative effects of CTLs suggested and highlighted by our models, an important focus of 

future work should be to clarify and quantify these effects. 

What is the effect of CTL stimulation on their in vivo functionality? 

In addition to quantifying the relative importance of killing and antiproliferative effects of CTLs 

towards tumour regression in the B16F10 tumours, additional data available from the studies used 

in chapters 4-5 allowed us to further investigate other aspects of CTL function. In the series of 

experiments where CTLs were observed through dorsal imaging windows using two photon 

microscopy (chapter 4), an additional experimental condition was studied in which CTLs were 

adoptively transferred in the presence of an agonist antibody targeting the costimulatory CD137 

receptor7. CD137 is expressed on both innate and adaptive immune cells and stimulation of CD8+ 

T cells via the CD137 receptor may improve their proliferation and resistance to apoptosis7,17,18. 

In the data we studied7, several differences had already been observed in the CD137 stimulated 
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condition compared to the unstimulated condition: increased tumour cell apoptosis and reduced 

tumour cell mitosis after CD137 stimulation, alterations in the apoptosis and mitosis kinetics of 

the CTLs, and improved tumour control in the CD137 stimulated case. Moreover, CD137 

stimulation led to increases in expression of molecules related to enhanced CTL cytolytic function, 

such as the transcription factors T-bet and eomesodermin7. It was therefore suggested that 

CD137 improved the in vivo killing capacity of the transferred CTLs. However, there had been no 

attempt to integrate these differences into a coherent model and thus it was not clear which of the 

differences in dynamics at the cellular level accounted for enhanced tumour control. Thus, we 

utilised our ODE model describing the behaviour of the CTLs inside the tumour, and fit our model 

separately to each condition in order to explore differences in the fitted model parameters and 

resulting dynamics between the CD137-stimulated and non-CD137-stimulated CTLs. With our 

modelling approach we found that enhanced antiproliferative effects of the CTLs at the site of the 

tumour were likely to account for the majority of the improvement in tumour control after 

stimulation with the CD137 targeted agonist antibody. Thus our overall conclusion was that 

stimulation of T cells via the CD137 axis did not have an appreciable impact on their cytolytic 

function in vivo. Rather, the most important impact of stimulation upon CTL function was an 

improvement in their ability to prevent tumour cells from proliferating.  

What is the contribution of immune checkpoint molecules towards CTL 

exhaustion?  

In chapter 5, we exploited the availability of gene expression data at multiple time points for the 

B16F10 melanoma tumours to derive further insights about the behaviours of the tumour 

infiltrating CTLs12. Interestingly, according to the expression data, IFN-γ signalling decreased 

whilst CTLs were still present in the tumour, indicating a loss of function for the CTLs. By 

examining the gene expression data for candidate explanations for these dynamics, we found 

upregulation of several immune checkpoint molecules which suggested the development of an 

exhausted CTL phenotype19–21 as a potential explanation for the loss of effector function. Thus 

we included CTL exhaustion in our model, in which the effector functions of the CTLs were 

reduced as the levels of the immune checkpoint transcripts increased. Our model showed that 

such a mechanism of CTL exhaustion was indeed able to account for the observed CTL and 

tumour dynamics. We also used our model to compare between different checkpoint molecules 

to identify which might be the most important determinants of the exhausted CTL state in the 

setting with B16F10 tumours. Interestingly, we found that the PD-1/PD-L1 axis alone was not 

compatible with the exhausted state, since according to the transcript data these molecules were 

only transiently expressed and therefore not able to explain the progressive deterioration in CTL 

production of IFN-γ and the progressive reduction of CTLs inside the tumour. Instead, we found 

that LAG3 and TIM3 were most consistent with being determinants of CTL exhaustion in B16F10 

tumours. Taken together these results suggest that immune checkpoint molecules do contribute 

towards CTL exhaustion, however expression of PD-1 and its ligand PD-L1 do not appear to be 

sufficient to explain the exhausted state. Other molecules such as TIM3 and LAG3 likely also play 

a role and are candidates for further study.  
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Perspectives 

In the following sections, some limitations of the work presented in this thesis are discussed. 

Suggestions are made for how some of those limitations might be addressed in future work, and 

possible avenues for extending the work in this thesis are presented. 

Importance of killing in other types of tumour  

Since the ability of CTLs to recognise and kill antigen presenting target cells is their most well 

known function, it was perhaps surprising to discover that our models predicted a negligible 

contribution of CTL mediated killing of tumour cells in two different in vivo tumour cell lines studied 

in this thesis (EL4 lymphoma, B16F10 melanoma). The relative importance of CTL mediated 

killing versus an antiproliferative effect of CTLs upon tumour cells is likely to depend on the 

characteristics of the tumour in question. For example, in slow-growing tumours one might expect 

the killing of CTLs to have a large relative contribution, simply because in such tumours there is 

little mitosis to suppress. This observation highlights one limitation of our studies, which is that 

they were based on extremely rapidly growing experimental tumour models, with growth rates of 

0.4-0.9 day-1 corresponding to tumour cells undergoing mitosis every 1-2 days. These are not 

necessarily reflective of the tumour growth rates found in human cancer patients. A recent study 

comparing growth rates in five cohorts of human cancer patients with different types of cancer22 

found much lower growth rates, with doubling times ranging from 70-3050 days. Therefore, 

although our findings relating to the importance of an antiproliferative effect associated with CTL 

infiltration will certainly help to interpret and contextualise findings based from studies using 

preclinical mouse models, it is unclear whether they will also hold true in human tumours with 

much slower growth. 

Due to the difficulties inherent in obtaining data from human cancer patients, it is important to find 

other ways to address the question on the contribution of killing and antiproliferative effects to 

tumour control, for example by using murine tumours (although it remains important to find ways 

to link data from animal studies to human patients - see section below on extension to human 

studies). A starting point would be to characterise the importance of an antiproliferative effect in 

murine tumours with a broader spectrum of growth rates. In one experiment we have analysed 

(not included in this thesis) where B cell lymphomas grew in the bone marrow of mice, the 

estimated doubling time of the tumour was 14 days8; there we found that tumour eradication was 

entirely consistent with the estimated killing rate of the CTLs, although we could not exclude the 

possibility that cell cycle arrest may have also played a role in the control of those tumours. Future 

work should therefore continue to analyse additional experimental tumours with a broad spectrum 

of growth rates in order to clarify whether the relative importance of an antiproliferative effect 

compared to CTL killing is indeed dependent on tumour growth rate.  

Improved quantification of CTL killing 

Another avenue for future work centres on the quantification of tumour cell death in the presence 

of CTLs. In chapter 2 we addressed how a requirement for multiple hits for CTLs to kill tumour 

cells might confound estimates of the CTL killing rate. This is relevant because  some evidence 
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suggests that melanoma cells require multiple hits for annihilation by CTLs3. Moreover, as has 

been pointed out previously11 and in chapter 2 of this thesis, multiple-hitting should lead to a 

variable observed rate at which CTLs kill target cells, which depends on the number of hits targets 

have already received. Our investigation of the requirements for quantifying the killing rate of 

CTLs based on microscopy data in the presence of multiple-hitting highlighted the importance of 

studying the interaction history of CTLs with tumour cells. By studying the risk of tumour cell death 

as a function of time spent in contact with CTLs, one can very directly assess whether target cells’ 

risk of dying increases after having spent a significant time in contact with the CTL, or whether 

targets instead face a constant risk of death whilst in contact with a CTL. Although in chapter 2 

we focussed on characterising multiple hitting, the principle of studying target cell risk of death in 

the presence of CTLs has more general applications. For example, it has been suggested that 

tumour infiltrating CTLs recruit innate effector immune cells and that these play a significant role 

in killing tumour cells10. In addition, cytokines secreted by CTLs may also increase the risk of 

death experienced by targets not directly contacted by CTLs10,23,24. These questions could be 

addressed directly by looking at the risk of tumour cell death in the absence of CTL transfer, and 

comparing it to the risk of death experienced by uncontacted tumour cells in tumours following 

adoptive CTL transfer. If innate effectors or CTL-secreted cytokines are indeed relevant, one 

should expect an increased risk of death even amongst uncontacted tumour cells following 

adoptive CTL transfer, with risk of death likely varying as a function of distance to the CTLs, since 

uncontacted tumour cells ought to be at enhanced risk of being killed by the innate effectors or 

cytokines. Future work applying similar analysis as presented in chapter 2 of this thesis to a variety 

of imaging datasets will thus be useful to better understand how the presence of CTLs influences 

target cell’s risk of death in various contexts. 

Modulation of CTL effector functions 

The models and approach developed in this thesis establish a quantitative baseline for several 

important aspects of CTL effector function in tumours. We established dynamical equations and 

estimated the rates of several important functions, such as CTL killing of tumour cells, changes 

to the mitosis rate of tumour cells following adoptive CTL transfer, and also the dynamics of the 

CTL populations. Although our modelling approach is clearly a simplification, in which we reduce 

the complex dynamics occurring inside tumours to just a few equations, this is already a 

substantial refinement on existing frequently used methods of quantifying CTL performance, like 

measuring the volume progression of tumours after CTL transfer. As such, our modelling 

approach is highly useful for studying the effect of different modulators of CTL function. We 

studied costimulation of CTLs via the CD137 receptor, however there are a number of other 

modulators which similarly stimulate the priming and activation of CTLs. For example, OX40 

(CD134), CD27, and CD28 are similar to CD137 in that they are all members of the tumour 

necrosis factor family of receptors, they all provide costimulatory signals to T cells, and they are 

all linked to enhanced T cell functions25–27. Thus these molecules are also candidates for future 

study using similar methods as those outlined in this thesis. 
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Extension to human studies 

In a previous section (Importance of killing in other tumour models) we discussed the 

representability of our results based on murine models and in particular whether they might be 

relevant to human cancer patients. The ultimate aim of our research is to provide insights that 

might inform strategies for treating human cancer patients, therefore it is important to explicitly 

seek ways to link research in murine models to the human patient. Recent studies have examined 

biopsies from patients undergoing immunotherapy, to identify mechanisms underlying success or 

failure of treatment28, or identify biomarkers predicting which patients are likely to respond to a 

particular immunotherapy 29,30. Examples of biomarkers which have been repeatedly associated 

with response to immunotherapies are the tumour mutational burden31,32, cytotoxic gene 

signature33,34, or density of infiltrating immune cells35,36. However, the predictive value of such 

biomarkers and their applicability to different types of cancer is debated.  

Mathematical and computational models such as those developed in this thesis are appropriate 

tools for linking observations in murine models to human data. A prerequisite for making this 

comparison is the development of mathematical and computational models which can be defined 

in terms of measurements which can feasibly be made in human patients. For many of the 

variables used in our models this should be feasible. For example, all our models rely on 

quantification of the frequency of tumour infiltrating CTLs, which can be obtained from tumour 

biopsies using immunofluorescence techniques. Given our findings that tumour infiltrating CTLs 

may have a potent antiproliferative effect on tumour cells (chapters 3-5), it would also be of 

interest to determine whether such antiproliferative effects occur and are important in cancer 

patients receiving immunotherapy. Single cell sequencing of cell populations from human tumours 

is a possible means of testing this finding37, since cell cycle markers might reveal differences in 

the proportion of tumour cells in various cell cycle stages before and after immunotherapy (in case 

longitudinal samples from the same patients were available), or between immunotherapy treated 

and untreated patients (in case longitudinal samples from the same patients were not available). 

Future work should thus aim to validate our findings about the relevance of antiproliferative effects 

of CTLs, by searching for evidence of decreased tumour cell mitosis and arrested cell cycle in 

data from immunotherapy patients. 
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Thesis Summary 

Immunotherapies for cancer are an emerging class of therapeutic strategies which aim to treat 

cancer via augmentation of the immune system. Despite significant success of immunotherapies 

in the past decade, not all patients will respond to these treatments and the reasons why 

immunotherapies are successful in some patients, but not others, remain incompletely 

understood. The immune response to cancer is a complex, multistage process, and mathematical 

and computational models are a useful tool for understanding such complex systems. In this 

thesis, I develop mathematical and computational models of Cytotoxic T Lymphocytes (CTLs), 

who are key players in the immune system due to their ability to recognise, destroy, and provide 

long lasting protection against malignant or virally infected cells.    

Since the rate at which CTLs can kill tumour cells is a crucial parameter determining their efficacy 

in immunotherapies, in chapter 2, I ask how the killing rate of CTLs is best quantified based on 

imaging data. By developing Monte Carlo simulations of CTLs killing target cells, I show that 

population-level killing statistics can give misleading conclusions about the killing behaviour of 

CTLs. Specifically, I show how the results of an in vitro killing assay, purporting to demonstrate 

the existence of a subpopulation of “high rate killer” CTLs, could alternatively be explained by a 

homogeneous population of CTLs which require multiple hits with cumulative damage before 

target cells can be killed. I develop a bayesian inference procedure for estimating CTL killing 

parameters from imaging data, and validate this inference procedure using artificial data created 

with an agent based model.   

In chapter 3, I ask whether the rate at which CTLs kill EL4 lymphoma cells, determined from in 

vivo two photon imaging experiments, is sufficient to explain EL4 tumour regression. To test this, 

I develop both an Ordinary Differential Equation (ODE) model and an Agent Based Model (ABM) 

to describe the interaction of adoptively transferred CTLs with the EL4 tumours. Based on the 

results of both models, I find that the measured killing rate of the CTLs is not compatible with 

tumour regression in the EL4 tumours. Using the ABM, I test alternative hypotheses which might 

explain how transferred CTLs could have led to tumour regression. I conclude that an 

antiproliferative effect associated with the transferred CTLs is compatible with the experimental 

data.  

In chapter 4, I examine an in vivo data set of B16F10 melanoma treated with adoptively 

transferred CTLs that were stimulated with an agonist antibody targeting the CD137 receptor. I 

ask what were the primary mechanisms CTLs used to control the tumours, and also how the 

stimulation via the CD137 receptor altered the functions of the transferred CTLs. To address these 

questions, I developed an ODE model of the interaction between the transferred CTLs and the 

B16F10 tumours. Similarly to the EL4 tumours examined in chapter 3, I find that the killing rate of 

the transferred CTLs is insufficient to account for the reduced tumour progression after CTL 

transfer, and that a substantial antiproliferative effect exerted upon tumour cells is necessary to 

explain the data. Moreover, the results of the modelling study indicate that stimulation of the CTLs 

via their CD137 receptor enhances this antiproliferative effect, explaining the reduced tumour size 

in the CD137 stimulated condition relative to the non-CD137-stimulated control tumours.  
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In chapter 5 I revisit the B16F10 melanoma model using a different set of experimental data. 

Similarly to chapter 4, I develop an ODE model and apply it to the experimental data, confirming 

that the control of these B16F10 melanoma tumours after CTL transfer can largely be explained 

by an antiproliferative effect associated with the transferred CTLs. Accompanying the 

experimental data I employ in chapter 5 are longitudinal measurements of gene expression taken 

from the tumours. By integrating these gene expression data in the ODE model, I ask whether 

the transcriptional dynamics of the cytokine IFN-γ are compatible with the dynamics of the 

antiproliferative effect. This analysis shows that these dynamics are indeed compatible with each 

other, indicating that IFN-γ is plausibly the sole mediator of the antiproliferative effect in this in 

vivo set-up. IFN-γ transcription did not last for more than a few days in the data,  indicating that 

the CTLs had lost their ability to control the tumours. Therefore I also searched within the gene 

expression data for the transcription of molecules that might explain the deactivation of the CTLs. 

I conclude that the dynamics of a number of immune checkpoint molecules are compatible with 

their role in shutting down the antitumour functions of the CTLs.   

Overall, the results in this thesis suggest that computational models are a useful and appropriate 

tool for understanding the immune response to cancer. Moreover, I establish a framework for 

examining the effector functions of CTLs in the context of cancer immunotherapy. Using this 

framework, I identify an important contribution of a CTL mediated antiproliferative effect in two 

different experimental tumour cell lines. In the B16F10 melanoma model, I characterise the 

antiproliferative effect in further detail. I find it is consistent with CTL secretion of the cytokine IFN-

γ, that it is enhanced by stimulation of CTLs via their CD137 receptor, but that it is also short-

lived. Finally, I identify several immune checkpoint molecules associated with the termination of 

IFN-γ production.  
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Nederlandse samenvatting 

 

Immuuntherapie voor kanker is in opkomst als klasse van therapeutische strategieën die gericht 

zijn op de behandeling van kanker via stimulatie van het immuunsysteem. Ondanks het 

beduidende succes van immuuntherapie in het afgelopen decennium reageren niet alle patiënten 

op dit type behandeling en de redenen waarom er wel of geen succes mee wordt geboekt bij 

sommige patiënten blijven onvoldoende begrepen. De immuunrespons op kanker is een complex 

proces dat bestaat uit meerdere fasen, en wiskundige en computermodellen zijn een effectief 

hulpmiddel om dergelijke complexe systemen te begrijpen. In dit proefschrift ontwikkel ik 

wiskundige en computationele modellen van cytotoxische T-lymfocyten (CTL's), hetgeen zeer 

belangrijke componenten zijn in het immuunsysteem vanwege hun vermogen om kwaadaardige 

of viraal geïnfecteerde cellen te herkennen, te vernietigen en er langdurige bescherming tegen te 

bieden. 

Aangezien de snelheid waarmee CTL's tumorcellen kunnen doden een cruciale parameter is die 

hun werkzaamheid bij immuuntherapieën bepaalt, onderzoek ik in hoofdstuk 2 hoe de snelheid 

waarmee CTL’s tumorcellen doden het best kan worden gekwantificeerd op basis van gegevens 

van microscopische beelden. Door Monte Carlo-simulaties te ontwikkelen van CTL's die ‘target 

cellen’ doden, laat ik zien dat statistieken over het aantal dode cellen op populatieniveau 

misleidende conclusies kunnen geven over het vernietigingsproces van target cellen door CTL's. 

In het bijzonder laat ik zien hoe de resultaten van in vitro ‘killing assays’, welke lijken te wijzen op 

het bestaan van een subpopulatie van CTL's die extreem snel target cellen doden, kunnen 

worden verklaard door een homogene populatie van CTL's die meerdere treffers nodig hebben 

om voldoende cumulatieve schade aan target cellen aan te richten om deze te doden. Ik ontwikkel 

een Bayesiaanse inferentie procedure voor het schatten van parameters gerelateerd aan het 

vernietigingsproces door de CTL’s op basis van microscopische beelden, en valideer deze 

inferentie procedure met behulp van simulatie data die zijn gemaakt met een ‘agent-based’ model 

(ABM). 

In hoofdstuk 3 onderzoek ik of de snelheid waarmee CTL's EL4 lymfoomcellen doden, bepaald 

met in vivo two-photon microscopie, voldoende is om EL4-tumorregressie te verklaren. Om dit te 

testen, ontwikkel ik zowel een ‘Ordinary Differential Equation’ (ODE) model als een ABM om de 

interactie van in het bloed geïnjecteerde CTL's met de EL4 tumoren te beschrijven. Op basis van 

de resultaten van beide modellen concludeer ik dat de gemeten snelheid waarmee de CTL's 

tumorcellen doden niet overeenstemt met tumorregressie in de EL4 tumoren. Met behulp van het 

ABM test ik alternatieve hypotheses die zouden kunnen verklaren hoe ingebrachte CTL's tot de 

waargenomen tumorregressie kunnen leiden. Ik concludeer dat een antiproliferatief effect 

geassocieerd met de ingebrachte CTL's compatibel is met de experimentele gegevens. 

In hoofdstuk 4 onderzoek ik een in vivo dataset van B16F10 melanoom behandeld met in de 

bloedbaan geïnjecteerde CTL's die gestimuleerd zijn met een agonist antilichaam dat is gericht 

tegen de CD137 receptor. Ik analyseer wat de belangrijkste mechanismen waren die CTL's 
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gebruikten om de tumoren in bedwang te houden, en ook hoe de stimulatie via de CD137 receptor 

de functies van de overgedragen CTL's veranderde. Om deze vragen te beantwoorden, heb ik 

een ODE-model ontwikkeld van de interactie tussen de ingebrachte CTL's en de B16F10 

tumoren. Net als bij de EL4 tumoren die in hoofdstuk 3 zijn onderzocht, concludeer ik dat de 

snelheid waarmee de ingebrachte CTL's tumorcellen doden onvoldoende is om de verminderde 

tumorgroei na overdracht van de CTL’s te verklaren, en dat een substantieel antiproliferatief effect 

op tumorcellen nodig is om de gegevens te verklaren. Bovendien geven de resultaten van het 

model aan dat stimulatie van de CTL's via hun CD137 receptor dit antiproliferatieve effect 

versterkt. Dit verklaart de kleinere tumoren na stimulatie met CD137 ten opzichte van de controle 

situatie waarbij niet via de receptor gestimuleerd werd. 

In hoofdstuk 5 bekijk ik het B16F10 melanoom systeem opnieuw met behulp van een andere set 

experimentele gegevens. Net als in hoofdstuk 4 ontwikkel ik een ODE-model en pas het toe op 

de experimentele data, waarmee ik bevestig dat het in bedwang houden van deze B16F10 

melanomen na CTL overdracht grotendeels verklaard kan worden door een antiproliferatief effect 

geassocieerd met de overgedragen CTL's. Longitudinale metingen van genexpressie van de 

tumoren zijn toegevoegd aan de experimentele gegevens die ik in hoofdstuk 5 gebruik. Door deze 

genexpressie gegevens te integreren in het ODE model onderzoek ik of de transcriptionele 

dynamiek van het cytokine IFN-γ compatibel is met de dynamiek van het antiproliferatieve effect. 

De analyse laat zien dat dit inderdaad het geval is, wat aangeeft dat IFN-γ mogelijk de enige 

mediator is van het antiproliferatieve effect in deze experimentele opzet. IFN-γ transcriptie duurde 

niet langer dan een paar dagen volgens de gegevens, wat aangeeft dat de CTL's hun vermogen 

om de tumoren te beheersen over de tijd verloren. Daarom heb ik binnen de genexpressie data 

ook gezocht naar moleculen die de deactivatie van de CTL's zouden kunnen verklaren. Ik 

concludeer dat de dynamiek van een aantal ‘immuun checkpoint’ moleculen compatibel is met de 

afnemende antitumor functionaliteit van de CTL's. 

Over het algemeen suggereren de resultaten in dit proefschrift dat computationele modellen een 

waardevol en geschikt hulpmiddel zijn om de immuunrespons op kanker te begrijpen. Bovendien 

stel ik een raamwerk op voor het onderzoeken van de effectorfuncties van CTL's in de context 

van kanker immuuntherapie. Met behulp van dit raamwerk identificeer ik een belangrijke bijdrage 

van antiproliferatieve effecten door CTL’s in twee verschillende experimentele tumor cellijnen. In 

het B16F10 melanoommodel verklaar ik het antiproliferatieve effect in meer detail. Ik concludeer 

dat het consistent is met secretie van het cytokine IFN-γ door CTL’s, dat dit effect wordt versterkt 

door stimulatie van CTL's via hun CD137-receptor, maar dat het ook van korte duur is. Ten slotte 

identificeer ik verschillende immuun checkpoint moleculen die geassocieerd zijn met de 

beëindiging van IFN-γ productie. 
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