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Figure 2.1 Three dimensional structure of Cc. a) Structure of Cc with the haem in sticks. “N” and 

“C” indicate the two termini of the polypeptide chain. b) Representation of the haem (iron ion in 

orange) covalently bound to the residues C14 and C17, and axially coordinated to M80 and H18. 

The molecular coordinates were taken from the crystal structure of the oxidized Cc (PDB entry 

2YCC)6. 

An electron transfer complex 

The aim of the research reported in this thesis is to test how critical the charge distribution 

on protein surfaces is for the protein complex formation. Redox proteins are evolutionary 

optimized to perform efficient electron transfer, forming transient complexes with a high 

population of encounter complex. The subject of this thesis is the well characterized 

complex formed by cytochrome c (Cc) and cytochrome c peroxidase (CcP) from baker’s 

yeast (Saccharomyces cerevisiae). Electrostatic interactions drive the formation to the 

Cc:CcP complex.1–5 In this work we modified the charge distribution of CcP and studied 

how the disturbance of the electrostatic surface impacted on the encounter complex with Cc 

and on the formation of the active complex. The complex was mentioned in Chapter 1 and 

the proteins are further introduced here. 

Cytochrome c 

Cytochrome c (Cc) was discovered in 1925 by David Keilin.8 More than one hundred 

variants are known today and they show a highly conserved sequence among eukaryotes.9 

Cc is one of the main electron transfer (ET) proteins in the eukaryotic respiratory chain, 

where it functions in the energy production. In this role, it accepts a single electron at a time 

from cytochrome c reductase (cytochrome bc1, Complex III) to reduce cytochrome c 

oxidase (Complex IV).10 Cc has additional roles in the regulation of apoptosis as defense 

mechanism against DNA damage11 and in baker’s yeast (Saccharomyces cerevisiae) in the 

neutralization of oxidative stress caused by hydrogen peroxide, with the aid of cytochrome 

c peroxidase (CcP).9 The interaction with this enzyme will be discussed further in this 

thesis.  
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In this work the native iso-1 isoform of S. cerevisiae Cc was used, the most studied so far.12 

The yeast iso-1 form of Cc is a small, positively charged protein (+6 at pH 6)13 with 108 

amino acids and a haem prosthetic group resulting in a total molecular weight of 12.1 kDa.4 

The native yeast iso-1 Cc harbours a post-translational modification of the residue Lys 72, 

the N-ɛ-trimethylation, which blocks the apoptotic activity of the protein.14 The protein can 

easily be purified from S. cerevisiae15–17 or from Escherichia coli18,19. Protein produced in 

bacteria generally do not have post-translational modifications, thus Cc is not trimethylated 

in E. coli. To obtain a high yield in E.coli, Cc is produced in the cytoplasm of the cell along 

with the haem lyase for the insertion of the haem group into the protein.20 Cc consists of 

five α-helices and a small β-strand, folded nearly into a sphere (Figure 2.1a). Its c-type 

haem group is connected to two cysteine residues (14 and 17) by thioether bonds, as part of 

the conserved with the C-X-Y-C-H sequence.4 The low-spin iron ion of the haem group is 

hexacoordinated, equatorially to the four pyrrole nitrogens of the haem and axially to the 

residue H18 and M80 (Figure 2.1b). The iron ion, which can be reduced Fe(II) or oxidized 

Fe(III), has magnetic properties that depend on the oxidation state. In the reduced state it is 

diamagnetic and when oxidized it is paramagnetic.9 Various high resolution X-ray 

crystallography and solution NMR structures were published for both the ferrous21,22 and 

ferric form.4,23,24  

Cytochrome c peroxidase 

Cytochrome c peroxidase (CcP) was discovered in the mitochondrial intermembrane space 

of S. cerevisiae by Altschul, Abrams and Hogness in 1940.25 As previously mentioned, CcP 

inactivates hydrogen peroxide, reducing it to water, by transferring the electrons accepted 

from two molecules of Cc. Yeast CcP is a negatively charged protein (-4 at pH 6)26 with 

294 amino acids and a molecular weight of 34.2 kDa. The crystal structure of CcP27 shows 

a secondary structure predominantly composed of α-helices and a b-type haem at the center, 

enclosed in a hydrophobic pocket (Figure 2.2a). Contrary to the c-type, the b-type haems 

are not covalently bound to the polypeptide chain. The iron of the haem is axially 

coordinated to the Nɛ2 atom of H175 and equatorially to the four pyrrole nitrogens of the 

haem group. The last coordination position is occupied by a water molecule in the resting 

state of CcP and available to bind the substrate (Figure 2.2b).27 During the reaction, CcP 

goes through several states. In the resting state (RS), the high-spin iron ion Fe3+ is 

pentacoordinated and paramagnetic. When binding hydrogen peroxide, CcP forms the 

oxyferryl intermediate, called compound I (CpdI),28,29 in which the iron ion is oxidized to 

Fe4+ and the side chain of Trp191 is oxidized to a cation indole radical.30–32 One water 

molecule is released. Each of two molecules of Cc transfer an electron to CcP. The first 

electron reduces CpdI to form compound II (CpdII) while the second electron restores the 

RS CcP and releases the second water molecule.33 For more details on the mechanism of 

the reaction see chapter III. Similar to Cc, CcP can be purified from S. cerevisiae34–36 or 

recombinantly overproduced in E. coli,37–42 which yields apo-protein. The haem group can 

be incorporated during the purification process.  
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Cc-CcP complex 

The complex formed by Cc and CcP is one of the best characterized ET complexes and 

extensive literature is available on the subject.12,43–45 To perform an efficient reaction, the 

Cc:CcP complex is highly dynamic (see Chapter 1) and the interactions between the two 

proteins are based on electrostatic interactions between the negatively binding site on CcP 

and the positively one on Cc (Figure 2.3b).2,5–7 Despite being a transient complex, a co-

crystal structure was reported by Pelletier and Kraut in 19921 (Figure 2.3). Although the 

structure appeared initially stabilized by a single hydrogen bond between N70 of Cc and 

E290 of CcP1, other studies suggest the presence of two additional hydrogen bonds: One 

between Q16 of Cc and A193 on CcP, and a second between K87of Cc and E32 of CcP.46 

Site-directed mutagenesis and biophysical techniques were used to investigate the 

importance of several residues for the activity of the complex.43,47–49 Although the crystal 

structure shows one stereospecific binding site, the stoichiometry of the Cc:CcP complex 

has been discussed for decades. The 1:1 stoichiometry model was observed under many 

experimental conditions.12 On the other hand, several kinetic studies suggested the presence 

of a second low-affinity binding site50–52 at which Cc also binds at low salt concentrations 

(less than 100 mM salt).53–56 The possible location of the second binding site was 

investigated by mutagenesis and simulations, suggesting the regions close to the residues 

D1485,57 and between D217 and Y3958,59 as possible interaction sites. A PRE experiment 

confirmed the presence of a second binding site in 2015.56 Isotopically labelled CcP and Cc 

were cross-linked at the crystallographic binding site while free Cc was tagged with a 

paramagnetic tag. Thus, paramagnetic relaxation was observed on the spectrum of CcP 

showing that the low-affinity complex consists of an ensemble of minor states sampling 

two non-overlapping regions of the CcP surface: One between the residues D148, D217, 

 

Figure 2.2 Tree dimensional structure of CcP. a) Structure of CcP with the haem in sticks. “N” 

and “C” indicate the two termini of the polypeptide chain. b) Representation of the haem (iron ion 

in orange) axially coordinated H175 and to water. The catalytically important W191 and the D235 

are also indicated. The molecular coordinated were provided by the crystal structure of resting 

state CcP (PDB entry 1ZBY)20.  
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Figure 2.3 Cc:CcP interactions. a) Three-dimensional structure of the Cc:CcP complex: Cc in 

magenta ribbons and CcP in green ribbons. The haem groups in salmon sticks. The residues N70 

and E290 (in spheres and sticks) stabilize the complex forming a single hydrogen bond (dotted 

line). The residues D217 and D148 (blue sticks) identify the secondary low-affinity binding site 

according to Van de Water et.al. 2015.55 b) Distribution of charged residues in the 

crystallographic binding sites of Cc and CcP. The negatively charged residues are indicated in red 

and the positively charged ones in blue. (PDB entry 2PCC)44. The view shows the interfaces of 

the stereospecific binding site as present in the crystal structure. 

D33 and E35 and a second region in proximity of the residues E167, D261 and E267. The 

residues D148 and D217 play an important role for binding at the low-affinity binding site 

(Figure 2.3).56  

Different models have been used to describe the Cc and CcP interactions. Numerous kinetic 

studies50,52–55,57,60–63 and computer simulations5,58,59 suggest the presence of a high-affinity 

but low-reactivity binding site (the crystallographic one), and a low-affinity but high 

reactivity binding site that only functions at low ionic strengths. In this model the two Cc 

molecules do not interact with each other12 and the low affinity binding site promotes the 

dissociation of Cc from the high affinity binding site (the only ET active site).63–66 Various 

solution NMR studies (at an ionic strength of 120 mM, pH 6) describing the Cc:CcP 

complex as an highly dynamic one,6,67–70 suggest a 1:1 model in which a single Cc molecule 

transiently binds CcP in different areas and orientations (see Chapter 1), one of which is the 

crystallographic structure.5,59 It is assumed that under physiological conditions, the 

crystallographic complex is the active complex.56 More details on the binding mode, ET 

and encounter complex between Cc and CcP are provided in the reviews 12 and 43 and in the 

following chapters.   
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Thesis outline 

The aim of the research presented in this thesis is to test the importance of the charge 

distribution on protein surfaces for the formation protein complexes. The main question to 

be answered is whether optimization of the charge distribution is critical for rapid formation 

of an active complex. This question is addressed by introduction of new charged patches on 

the surface of CcP and studying the effects on complex formation with its partner Cc. It is 

predicted that disturbing the optimized charge distribution that guides Cc to the binding site 

for ET2,5–7 by strong charged patches elsewhere will result in more futile encounters and 

thus a lower rate of active complex formation. The methods to test this hypothesis comprise 

Monte Carlo simulations of the electrostatic interactions during encounter complex 

formation, paramagnetic relaxation enhancement (PRE) experiments to probe the surface of 

CcP sampled by Cc and stopped flow experiments to measure association rates. Chapter I 

gives an introduction to the applications of paramagnetic NMR for the study of protein-

protein interactions supported by several examples. Chapter II provides a brief 

introduction on the proteins used in this work, Cc and CcP. Chapter III describes the 

effect of the addition of a negatively charged patch, located on one side of CcP, on the 

encounter complex with Cc and the association rate of the protein complex. This approach 

is extended in Chapter IV to the kinetic characterization of five variants with different 

charge distributions on the CcP surface. Chapter V describes the effect of an additional 

negative patch on one side of CcP for complex formation with a variant of Cc that is known 

to spend more time in the encounter state with CcP.71 Chapter VI provides a general 

discussion and concluding remarks. In combination, these studies show that additional 

charged patches can, in fact, enhance the formation of the active complex, resulting in 

additional productive encounters. On the other hand, upon disruption of the charged patch 

around the binding site, the additional charged patches lose their role in complex formation. 
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