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General introduction

GENERAL INTRODUCTION

Cardiovascular disease

Cardiovascular disease (CVD) remains the number one cause of death worldwide responsible for
an estimated 17.8 million people annually representing 31% of global deaths'. Only in Europe
it accounts for more than 4.1 million deaths a year representing 45% of total mortality and new
cases of CVD are estimated around 19.9 million on a yearly basis. Of these deaths, an estimated
1.7 million are due to ischemic heart or coronary artery disease”. Last decades, treatment options
for acute myocardial infarction have been drastically improved’ with the advent of percutaneous
coronary intervention (PCI)*’, coronary artery bypass grafting (CABG)®’, and the golden five

medical treatment® "

. More recently, anti-inflammatory therapies showed interesting therapeutic
effects in atherosclerotic disease'* . All together, this resulted in a steady decline of mortality in
The Netherlands since 1980 with a fourfold lower chance to die from acute myocardial infarc-
tion'”. Nevertheless, worldwide current incidence rates and increasing morbidity emphasize the
importance of ongoing research to improve prevention and treatment.

Atherosclerosis is the main cause of ischemic heart disease and has been shown to be a
complex chronic inflammatory disease, encompassing both innate and adaptive immunity'>".
Immune mechanisms interact with metabolic risk factors to initiate, disseminate, and activate
atherosclerotic lesions in the arterial wall during years or even decades, a process called athero-
genesis'’. Despite this chronicity, acute thrombosis, the most feared complication with clinical
consequences, occurs suddenly. Progressive atherosclerosis narrows the lumen of a coronary ar-
tery resulting in a vulnerable plaque, which finally could cause a complete occlusion after plaque
rupture of the culprit artery leading to a ST-segment elevation myocardial infarction, or non

ST-segment elevation myocardial infarction in case of an incomplete or transient obstruction™.

Atherogenesis

Over the last quarter century inflammation and immunity has shown to play a key role in the
pathogenesis of atherosclerosis®** (Figure 1). The development of atheromatous plaques is
initiated by endothelial dysfunction caused by irritative stimuli such as dyslipidemia, hyper-

tension or pro-inflammatory mediators™*®

. This increases the adhesiveness and permeability
of the endothelium with respect to inflammatory cells, by expression of adhesion molecules,
chemoattractants, and growth factors, provoking an inflammatory process and procoagulant
properties. The formation of a fatty streak, a most premature type of lesion with lipoproteins,
consisting of mainly monocyte-derived macrophages and T lymphocytes is a fact”, and already
appears in adolescents™. Incessant inflammation, mediated by monocyte-derived macrophages
and specific subtypes of T lymphocytes, stimulates progression to an intermediate lesion with a
core region of foam cells and extracellular lipid accumulation in the intima surrounded by a cap
of smooth-muscle cells and a collagen-rich matrix”. Finally due to efferocytosis, an advanced,

complicated lesion originates by the formation of a necrotic core with a fibrous cap covering a
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Figure 1: Pathogenesis and development of atherosclerotic lesions. Normal coronary artery with intima, me-
dia and adventitia layers (a). During atherosclerosis, blood leukocytes adhere to the activated endothelial layer
and directly migrate into the intima, followed by maturation of monocytes into macrophages yielding foam cells
upon lipid uptake (b). Migration and proliferation of smooth muscle cells and synthesis of extracellular matrix
macromolecules result in lesion progression. A necrotic core is formed from lipid-derived dead and dying cells
in the central region of a plaque (c). The ultimate complication of atherosclerosis, known as thrombosis and
impeding blood flow, follows a physical disruption of the atherosclerotic plaque (d). Adapted from Libby et al”*
Nature 2011;473:317-25.

mixture of leukocytes, extracellular lipids, and cellular debris®. As a result of progressive disease
and production of inflammatory cytokines, advanced lesions may become unstable and eventu-

ally plaque rupture or endothelial erosion induces acute thrombosis®.

Acute coronary syndrome

A sudden and sustained atherothrombotic coronary artery occlusion causes an acute coronary
syndrome (ACS) or type 1 myocardial infarction inducing myocardial cell death due to pro-
longed ischemia after disruption of myocardial blood flow™. Therefore, current medical therapy
is based on timely reperfusion or revascularization. The preferred strategy in the setting of an
acute myocardial infarction with ST-segment elevation is primary PCI as soon as possible in all
patients with symptoms of ischemia of <12 hours and persistent ST-segment elevation, under the

cloak of ‘time is muscle’®

. Primary PCI has been shown for decades to result in reduced infarct
size and better clinical outcome in order of death and reinfarction®. Reduced infarct size in its

turn, appears to be correlated with a better preserved left ventricular (LV) ejection fraction and
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General introduction

smaller end systolic volume index associated with less major adverse cardiac events and lower
mortality’>*.

In case of ischemia, early reperfusion salvages myocardium from irreversible damage,
which may end up mostly functional. However, reperfusion itself has been shown to cause a
pathophysiological process with detrimental effects known as lethal reperfusion injury. It may be
responsible for up to 50% of the final infarct size. Following ischemia-reperfusion injury many
different mechanisms, such as cell death, inflammation, fibroblast proliferation and degradation,
and de novo synthesis of extracellular matrix take place as a result of numerous local and systemic
signals, which ultimately may provoke heart failure due to loss of cardiomyocyte contractile

function®.

Taken together, there is a complex inflammatory interplay between atherosclerosis and myocar-
dial infarction, and vice versa. In most cases, a complex atherosclerotic inflammatory process
finally provokes myocardial infarction, its clinical consequence®. This initiates an inflammatory
reaction activated by the innate immune system®. Subsequent reperfusion induces pathophysi-
ologic reperfusion injury, and thereby an additional inflammatory process”. To complete this
circle, myocardial infarction in its turn has been shown to accelerate atherosclerosis®.

Current research clarified the importance of both addressing the culprit lesion and also
tackle the atherosclerotic process by aiming for rapid stabilization of other plaques to prevent
recurrent events'’. Furthermore, opportunities to reduce the extent of cardiomyocyte necrosis
and apoptosis are studied by investigation of immunomodulatory therapies, cell therapy, and
other approaches. All this in order to ameliorate post-ischemic inflammation, stimulate cardiac
regeneration, and repair large fibrotic scars to ultimately banish ischemic heart disease from
the top ranking of diseases with the highest mortality and morbidity. Future targeted thera-
pies should therefore be guided by a more precise pathophysiologic classification of ACS and
based on greater mechanistic understanding of its diverse underlying causes*. In the following
paragraphs, first the atherosclerotic inflammatory process and second, myocardial ischemia
and pathophysiological ischemia-reperfusion injury (extensively reviewed in chapter 2) will be

described into more detail.

Unraveling the atherosclerotic inflammatory process

Accelerated atherosclerosis development concerns a lipid-driven inflammatory process in which
immune responses of the innate and adaptive immune system against circulating and local
immunogenic antigens in the arterial wall play a crucial role (Figure 2). Clinical outcome is
determined by the balance of pro-inflammatory and inflammation-resolving mechanisms. In
experimental atherosclerosis, increased amounts of circulating neutrophils enable monocyte ad-
hesion and transmigration, and contribute to oxidative stress, a major determinant of endothelial
cell dysfunction, lesion growth and plaque instability. The monocyte/macrophage subtype is the

main cellular contributor to atherosclerotic lesion formation. Generation of oxidation-specific
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Chapter 1

epitopes (OSEs) as a result of oxidative stress represents a major pathogenic burden that resulted
in the conservation of a variety of innate immune responses. OSEs can act as endogenous danger-
associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors
(PRRs) and the proteins of the innate immune system. Examples of primitive innate immune
PRRs include various Toll-like (TLRs), nucleotide-binding oligomerization domain (NOD)-like
(NLRs) and scavenger receptors (SRs), natural antibodies, and the complement system*. When
the innate immune system is dysfunctional or overwhelmed, activation elicits a chronic inflam-
matory process as atherosclerosis® appealing the adaptive immune system™.

Adaptive immunity is predominant in the chronic inflammatory atherosclerotic process and
driven by dendritic cell-mediated antigen capture and presentation to naive T cells. During a
steady state, dendritic cells reside in the aortic wall and affect progression to atherosclerosis®,
possibly by interacting with local T cells resulting in maintained chronic inflammation and in-
duced foam cell formation®. T cells, predominantly CD4", account for approximately 10% of all
cells in human plaques, and are divided into proatherogenic T helper (Ty)1 cells, atheroprotective
(currently debated) Ty2 cells, regulatory T (T.) cells, and T17 cells and natural killer T cells
with both proatherogenic as atheroprotective properties. For example, Ty1-generated interferon
(IFN)-y and tumor necrosis factor (TNF) activate macrophages and propagate inflammation,
whereas T.,-generated interleukin (IL)-10 and transforming growth factor (TGF)-B restrict

47,48

inflammation®”*". The role of B cells in atherosclerosis remains controversial, but current litera-

ture predominantly indicated atheroprotective effects. For instance, the immunoglobulin (Ig)M
responses to OSEs from Bla and B1b cells have been shown protective®. However, proathero-
genic effects of B2 cells have also been described®. In addition, active and passive immunization

generally have atheroprotective effects in animals™’".
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Figure 2: Modulation of atherosclerosis by inflammation and lipid metabolism. Atherogenesis starts with
the recruitment of inflammatory cells to the intima. The pro-inflammatory subset of Ly-6C™ monocytes are
predominantly captured by activated endothelial cells. Uptake of oxLDL is allowed following inflammatory
activation. As a result, foam cells and mature lipid-laden macrophages produce pro-inflammatory mediators,
ROS, and tissue factor pro-coagulants. Although fewer in number, T cells, T, cells, and B cells affect the inflam-
matory process as well. Adapted from Libby et al*’ Nature 2011;473:317-25.
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Post-ischemic myocardial inflammatory response

Ischemic myocardial injury causes cellular degradation and loss of oxidative phosphorylation
resulting in loss of membrane integrity”’. The dominant mechanism of cardiomyocyte death is
coagulation necrosis, peaking after 12 hours up to 4 days™. In addition, apoptosis, peaking after
6 to 8 hours, concerns programmed cell death, in particular induced by reperfusion and also
affecting non-infarcted areas™. The entire post-ischemic myocardial inflammatory response,
especially following reperfusion, is extensively described in the next chapter 2, a state-of-the-
art review article. All three overlapping stages in myocardial infarct repair, the inflammatory,
reparative, and maturation phases, are thoroughly discussed, including the roles of innate immu-
nity, chemokines, cytokines and inflammatory cells (Figure 3). Since monocytes are key players
involved in both the etiology of cardiovascular disease as the disease itself, they are subsequently

described into more detail below. In addition, the current status of immunomodulatory therapies

o
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in clinical practice is discussed at the end of chapter 2.

E s
1
1
1
19
13
3
)
(FJ
Ifb
3
o
(55
12
13
.N
1
1
1
v
e

\
\
\
\
Injured CMs & l!Cs

Inflammation

Neutrophils \ I
Ly6Ch monocyte\ y 1
M1 Mo Ly6C monocytes I
ells
T-cells M2 macrophages I
B-cells ndritic cells ] Ly6C"' monocytes

M1 macrophages
Dendritic cells
T-cells
Weeks to Months

-\’
A\

0-4d 4-14d
Temporal Phases After Myocardial Infarction

Figure 3: Post-ischemic myocardial inflammatory response. Myocardial ischemia induces an acute pro-
inflammatory response through production of DAMPs, ROS, and complement cascade, which mediates ac-
cumulation of inflammatory cells through the release of chemokines and cytokines. Subsequently, the anti-
inflammatory reparative phase mediates the resolution of the inflammatory response and precedes the final
maturation phase. Adapted from Prabhu et al*® Circ Res 2016;119:91-112.

Monocytes - an indispensable immunological link

Besides their contribution to the post-ischemic inflammatory process, monocytes also contribute
to the originating process of atherosclerosis, the main contributor of acute MI. Monocytes have
been shown to play a role in both the initiation and formation of an atherosclerotic plaque, the
acute inflammatory phase in ACS following plaque destabilization, rupture, and acute thrombus
formation, as well as the reparative process, either as pro- or antagonist, when they migrate to-

wards the ischemic myocardium in response to an acute ischemic event®. Where atherosclerosis
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Chapter 1

is considered a chronic inflammatory disease with mobilization of leukocytes to the vessel wall
due to a chronic low-grade stimulation by native and oxidized lipoproteins, MI triggers an acute
inflammatory response following plaque rupture and elicits different triggers that nevertheless
recruit similar (sub)types of leukocytes”. Despite their frequent concurrence, the interconnec-
tion between the chronic and acute inflammatory conditions is mostly neglected.

Atherosclerosis is accompanied by hypercholesterolemia-associated monocytosis dominated
by pro-inflammatory Ly-6C™ monocytes in mice. This is explained by increased survival of
Ly-6C™ monocytes, continued cell proliferation, and impaired Ly-6C" to Ly-6C" conversion™.
Ly-6C" monocytes express TNF-a, IL-1pB, myeloperoxidase, matrix metalloproteinases (MMPs),
cathepsins, and plasminogen activator urokinase and are therefore potentially inflammatory
and precursors of M1 macrophages. Whereas Ly-6C" monocytes express IL-10, TGF-, and the
pro-angiogenic vascular endothelial growth factor (VEGF) and therefore exhibit a reparative
phenotype and are precursors of M2 macrophages™. Eventually, effects of hypercholesterolemia-
associated monocytosis may be subsided upon statin-induced cholesterol reduction®.

In human, peripheral monocytosis two to three days following reperfused acute MI was
associated with LV dysfunction and LV aneurysm. Patients with LV failure or aneurysm had
higher peak monocyte counts. More specific, peak monocyte counts were positively correlated
with LV end-diastolic volume (EDV) and negatively correlated with ejection fraction®. In addi-
tion, low monocyte counts were related to markers of effective reperfusion and they were both
independently associated with LV functional recovery at 6 months after primary PCI in patients
following acute MI®'. Sequential mobilization of CD14"CD16 (similar to Ly-6C" in mice), and
CD14"CD16" (similar to Ly-6C" in mice) monocytes was shown after acute MI in patients treated
with PCI. Only peak levels of CD14"CD16 monocytes were significantly negatively associated
with the extent of myocardial salvage after seven days and recovery of LV ejection fraction after
six months®.

Unreperfused MI in hypercholesterolemic mice resulted in sequential and active recruitment
of Ly-6C™ (via CCR2) and Ly-6C" (via CX3CR1) monocytes. Monocyte/macrophage recruitment
is not only restricted to the infarcted area but also substantially affects the non-infarcted remote
myocardium, a finding mirrored in patients with acute MI®. Pro-inflammatory Ly-6C" mono-
cytes dominate the early inflammatory phase (day 1 to 4) and exhibit phagocytic, proteolytic, and
inflammatory functions and thus digest damaged tissue. Reparative Ly-6C" monocytes dominate
the later reparative phase (day 4 to 8) with attenuated inflammatory properties, wound healing,
angiogenesis, and collagen deposition®. Moreover, unreperfused MI in hypercholesterolemic
mice showed a more pronounced post-ischemic inflammatory gene expression profile associated
with the activity of Ly-6C™ monocytes. This consequently resulted in impaired infarct healing
and accelerated deterioration of ejection fraction after three weeks®.

Inflammatory monocytes trigger an autoimmune T cell response following acute MI. Selec-
tive inhibition of monocyte recruitment to the injured myocardium limited the autoimmune

response, which was associated with improved tissue repair and cardiac function®. Furthermore,
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General introduction

the positive correlation between enzyme activity and LV dilation suggests that a prolonged in-
flammatory phase or compromised reparative phase predisposes to heart failure®®. Altogether,
experimental data regarding both unreperfused as reperfused MI reported predominantly
negative correlations®*”’ between monocyte/macrophage numbers versus LV remodeling and
function but positive correlations’"”> have been reported as well. To conciliate these apparently
conflicting results, wound healing of ischemic myocardium presumably requires a monocyte/
macrophage response that balances and coordinates inflammatory and reparative functions
(Figure 4). Either unrestrained inflammatory activity or extensive suppression of inflammation

may counteract or disable the reparative capacity of monocytes.
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Figure 4: Recruitment of monocytes following myocardial ischemia. Time course of monocyte recruitment
following murine MI concerning inflammatory Ly-6C" and reparative Ly-6C" subsets. Adapted from Nahren-
dorf et al”” Circulation 2010;121:2437-45.

LV remodeling

The heart itself has negligible regenerative capacity”” and therefore cardiomyocyte death triggers a
reparative response that ultimately results in scar tissue formation and is associated with adverse
dilative ventricular remodeling (Figure 5). Moreover, the uninjured myocardium consists of a
3D myocardial structure of which the specific architectural characteristics enable efficient elec-
trical conduction and mechanical contraction’ compromised following myocardial ischemia.
Myocardial wound healing and scar tissue formation occurs under continuous rhythmic con-
traction of the non-infarcted myocardium resulting in continuous cyclic stretch on the healing

wound. Myocardial scar formation and remodeling impair the functional syncytium, in which
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Chapter 1

myocardial or LV remodeling affects even both the infarcted and non-infarcted residual viable
myocardium’. Remodeling regards an adaptive process in which the LV is reshaped by structural
changes of the myocardium induced by the increased loading conditions of the heart after MI, due
to loss of myocardium. Besides mechanical stress, also cytokines, neurohormonal factors, growth

factors and enzymes are involved in the myocardial remodeling process’”

, ultimately resulting
in infarct expansion with concomitant increase of LV wall stress and resultant global LV dilation
and wall thinning’®. Following acute MI, reperfusion therapy cannot be applied soon enough in
many cases to reverse pathological processes and prevent extensive myocardial damage. Absence
of reperfusion undoubtedly results in adverse myocardial remodeling and progression to heart
failure with a poor prognosis”. Eventually myocardial remodeling becomes maladaptive as it
can no longer compensate for the increased work load, resulting in ventricular arrhythmias,
aneurysm formation, global LV dysfunction, and sudden cardiac death®. Since the extent of LV
remodeling is a major predictor of prognosis in patients with MI, therapeutic approaches to at-
tenuate LV remodeling are critically important, where the modulation of non-infarcted residual

viable myocardium provides therapeutic potential.

Infarct extension Infarct wound healing/ Progressive cardiac
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Figure 5: Post-ischemic LV remodeling process. Post-ischemic phases of infarct extension (after hours),
wound healing or expansion (hours-days), and final progressive cardiac remodeling (weeks-months). Adapted
from Fraccarollo et al*' Cardiovasc Res 2012;94:293-303.

Animal models in translational research

Until now, animal models are indispensable to investigate the etiology of MI and possibilities to
treat the consequences of myocardial ischemia. At the same time however, relevancy of animal
derived data is questioned whether and to which extent these studies resemble the clinical setting

with their human counterparts. The selection of an appropriate animal model to ensure optimal
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translation of novel cardioprotective therapies from bench to bedside is of the utmost impor-
tance, which has been generally endorsed before®™®. Yet until recently, most data regarding MI
have been generated in animal models lacking human comorbidity, spared of atherosclerosis and
associated heightened inflammatory phenotype®. Briefly, discussions are related to two major
issues to overcome. First, patients suffering a MI are in the vast majority exposed to atheroscle-
rosis, a long-lasting chronic inflammatory process, finally experiencing rupture of an unstable
atherosclerotic plaque with sudden occlusion of a coronary artery as a consequence. However,
most experimental data regarding MI and heart failure have been generated in animals lack-
ing this chronic atherosclerotic inflammatory phenotype and associated chronic monocytosis,
a problem that has been denounced for several years”. Second, current translational research
underestimates effects of clinically applied mechanical reperfusion, since studies concerning MI
with long-lasting follow-up periods of weeks are mainly performed in unreperfused MI models.
However, reperfused MI has been shown to attenuate adverse remodeling accompanied by higher
numbers of involved inflammatory cells and enhanced neovascularization®, and moreover in-
duces reperfusion injury by itself””. Other points of interest are periods of ischemia, in patients
mostly between 2 and 12 hours, infarct size, in patients between 13% to 16%, which may limit
the scope for cardioprotection regarding larger infarct sizes in experimental animal studies, and
timing of intervention relative to the period of ischemia and onset of reperfusion”.

Ideally, translational animal models resemble the clinical setting exhibiting an atherosclerotic
phenotype before they are exposed to temporarily MI-R injury. In addition, parameters should
be studied after weeks instead of hours or days to draw correct conclusions regarding delayed
necrosis or apoptosis in order of therapeutic effects. Although murine atherosclerosis is not as-
sociated with occlusive coronary heart disease or MI, transgenic APOE*3-Leiden mice however
do develop advanced aortic atherosclerotic lesions resembling their human counterparts when
exposed to cholesterol feeding®. Therefore, APOE*3-Leiden mice are suitable to study thera-
peutic effects of MI in case of experimental MI-R injury, providing a clinically more relevant

experimental MI-R model.

Immunomodulatory therapies

Following myocardial ischemia, several immunomodulatory therapies showed promising results
in preclinical research but failed successful translation towards clinical practice for many rea-
sons. Besides selection of appropriate experimental models, mechanisms of action and timing of
interventions regarding modulation of the post-ischemic inflammatory response promoting be-
nign wound healing are of the utmost importance. In this thesis the role of annexin A5 (AnxA5)
and phosphorylcholine monoclonal IgG antibodies (PC-mAb) in post-ischemic myocardial

immunomodulation are profoundly studied.
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Annexin A5

AnxA5 affects apoptosis”’, and has anti-inflammatory™ and anti-thrombotic effects”. As a result
of MI-R injury, phosphatidylserine (PS) for example is externalized during early apoptosis and
inflammatory cell activation where it functions as an “eat me” signal te ensure early recognition
and phagocytosis™. PS-expressing cells are targets for annexins, a family of phospholipid-binding
proteins, and in particular AnxA5, which binds reversibly, specifically, and with high affinity to
PS-expressing cells”. Both endogenous AnxA5 plasma levels™ as wells as uptake in the infarct
area” are increased following myocardial ischemia. Therefore, a therapeutic post-ischemic effect

of AnxAS5 seems likely.

Phosphorylcholine antibodies

Phosphorylcholine (PC) is an example of an OSE, which is expressed by oxidized LDL (ox-
LDL), an important lipoprotein in the development of atherosclerosis, remained hidden until
oxidation®. It is the polar headgroup of a major membrane component, phosphatidylcholine,
and expressed on the outer membrane of apoptotic cells, and known for its immunogenic and
pro-inflammatory properties®. For instance, natural antibodies against phosphorylcholine are
capable to inhibit apoptotic cell uptake by macrophages in vitro”” and in vivo®® and block the
pro-inflammatory effects of PC expressing oxidation-damaged molecules”. Moreover, low con-
centrations of PC IgM antibodies are associated with increased risk for cardiovascular diseases”,
and acute coronary syndrome patients with low PC IgM antibody levels experience a worsened
prognosis'”. Therefore PC seems to be an interesting target for novel immunomodulatory thera-

peutic interventions as PC-mAb.

Aim and outline of the thesis

Following MI timely reperfusion by primary PCI is the ultimate goal to limit myocardial damage
and reduce infarct size resulting in a better clinical outcome, as endorsed by the guidelines.
Paradoxically, restoration of myocardial blood flow comes at a price, as it initiates myocardial
reperfusion injury by a series of events, which apparently affect post-ischemic infarct healing.
Evidenced by the numerous amount of studies, modulation of the post-ischemic inflammatory
response has been shown to attenuate infarct healing and LV remodeling preserving cardiac
function in translational animal research. Though, promising pre-clinical results are received
with some skepticism nowadays, since most of them have failed successful translation into
clinical trials for several reasons. This research enabled the evaluation of the effectiveness of
specific immunomodulatory therapies and tested their effects in a murine MI model resembling
the clinical setting more accurately, taking into account both a hypercholesterolemic phenotype

as well as MI-R injury.

As an introduction, the post-ischemic myocardial inflammatory response with the inflamma-

tory, reparative, and maturation phases, including the roles of innate immunity, chemokines,
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cytokines and inflammatory cells, is described in detail in chapter 2 as a state-of-the-art review
article. Also the current status of immunomodulatory therapies in clinical practice is discussed.

In chapter 3, to validate the murine MI model, we studied the long-term effects of diet-
induced hypercholesterolemia on MI-R injury in APOE*3-Leiden mice up to 8 weeks follow-
ing MI-R. We focused on cardiac function, infarct size, and the post-ischemic inflammatory
response regarding monocytes in particular. It has become clear that monocytes play a key role in
the etiology of MI since atherosclerosis is associated with chronic monocytosis. Furthermore, MI
itself causes an inflammatory response in which a pro-inflammatory monocyte subtype initially
dominates, which is replaced by a reparative monocyte subtype. This makes monocytes main
contributors of the post-ischemic inflammatory response and an ultimate target for therapeutic
immunomodulation.

In the following chapters different anti-inflammatory and immunomodulatory strategies are
considered as possible therapeutic applications to modulate post-ischemic infarct healing and
preserve cardiac function following MI-R injury. In chapter 4 we investigated the effects of post-
ischemic human recombinant annexin A5 (AnxA5) therapy. By binding phosphatidylserine,
which becomes externalized on the outer cell surface following early apoptosis and inflammatory
cell activation, AnxA5 earlier has been shown to exhibit anti-apoptotic and anti-inflammatory
effects. Focus of chapter 5 is on the therapeutic use of antibodies directed against phosphoryl-
choline. So far, low levels of anti-PC have been associated with development of atherosclerosis,
cardiovascular disease in humans, and worsening of the prognosis following ACS. By binding
of natural IgM anti-PC, uptake of apoptotic cells by macrophages is prevented. We studied
the effects of a clinically applicable new developed human monoclonal IgG; antibody against
phosphorylcholine (PC-mAb) following MI-R injury regarding post-ischemic inflammation and
adverse LV remodeling to ultimately preserve cardiac function. In addition, chapter 6 addresses
therapeutic administration of PC-mAb following unreperfused MI to clarify the influence be-
tween different mechanisms of myocardial ischemic injury.

In chapter 7 we questioned the current use of translational animal models to test potential
novel therapeutic strategies regarding acute MI in a pre-clinical setting. By using a MI-R injury
model in hypercholesterolemic APOE*3-Leiden mice we provided a more clinically relevant
translational MI model. By comparing it with an unreperfused MI model we investigated whether
this is a validated and suitable murine MI model to better predict hypothesized beneficial effects
of newly derived clinical treatment strategies in a pre-clinical setting.

Finally, chapter 8 provides the summary and conclusions, as well as future perspectives

regarding post-ischemic immunomodulatory therapies.
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