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ABSTRACT

Background: Human papilloma virus-positive (HPV) oropharyngeal squamous cell carcinoma
(OPSCCQ) is a highly immunogenic tumor and differences in tumor microenvironment might
contribute to the improved survival of HPV-positive OPSCC patient. A comprehensive
multivariate analyses with clinical and immune variables (HLAI/II, PD-L1, PD1, T cells
and macrophages) was performed in 142 OPSCC patients. We found an inverse correlation
between the expression of HLA class II molecules on tumor cells and CD68+CD163+ tumor-
associated macrophages (TAMs). High HLA-DP/DQ/DR expression and low number of TAMs
were associated with longer disease-specific survival (DSS) and disease-free survival (DFS).
Furthermore, a new population of CD8+FoxP3+ T cells was correlated with shorter DFS in
multivariate analysis.

In conclusion, in this study we identified new prognostic markers for oropharyngeal cancer

patients, which can be used for selecting patients that can benefit from immunotherapy.

THE ROLE OF THE MICROENVIRONMENT IN OROPHARYNGEAL CANCER

INTRODUCTION

Head and neck cancer is the 6™ most common cancer worldwide and about 90% of the head and
neck cancers are squamous cell carcinomas (HNSCC)[1]. The most important etiological factors
of HNSCC:s are the genetic predisposition, the use of tobacco and/or alcohol and the infection
with high-risk Human Papilloma Virus subtypes, most notably HPV16 [2]. HPV-positivity is
predominantly associated with Oropharyngeal Squamous Cell Carcinoma (OPSCC). In these
patients, HPV status, smoking history, tumor (T) and lymph node (N) stage represent strong
prognostic markers for treatment outcome [3].

HPV-positive OPSCCs have longer disease-free survival (DFS) and disease-specific survival
(DSS) compared to HPV-negative OPSCCs [4]. There is strong indication that the tumor
microenvironment plays a pivotal role in the pathogenesis and clinical behavior of various
malignancies [5] and that the increased immune reactivity of HPV-positive OPSCCs might
contribute to a favorable clinical outcome [6-8]. While several studies previously addressed
the role of specific subsets of immune cells in OPSCC development and progression [9-12],
there is still a need for comprehensive analyses of the heterogeneity and complexity of
the tumor microenvironment.

In the tumor microenvironment, various subsets of immune cells interact together to either
promote or suppress tumor cells growth [13]. Tumor cells expressing the human leukocyte
antigen I complex (HLA-I) are recognized by CD8+ T cells promoting T-cell specific tumor
cytotoxicity [14]. Furthermore, expression of HLA-II on antigen-presenting cells (APCs)
promotes the CD4+ T-helper-mediated activation of B cells as well as cytotoxic CD8+ T cells
[15]. Importantly, numbers of CD8+ tumor-infiltrating T cells have been recently described as
markers for improved prognosis in oropharyngeal cancer [16].

In contrast, several mechanisms were proposed to promote tumor growth. Tumor cells,
indeed, can escape killing by expressing the programmed death ligand 1 (PD-L1), which, upon
binding to the PD1 receptor on T-cells, leads to suppression of T-cell activation and cytotoxicity
[17, 18]. However, PD-L1 expression is not only limited to tumor cell as the presence of PD-L1+
tumor-associated macrophages (TAMs) was shown to be associated to functionally anergic
CD4+ T cells in HNSCC.

Furthermore, increased numbers of CD4+FoxP3+ regulatory T-cells were associated with
an unfavorable prognosis [19-21], however, results were controversial as other studies observed
opposite results [22, 23]. The complexity of the CD4+FoxP3+ population was also elucidated
in colorectal cancer, where instability of FoxP3 was associated with less immunosuppressive
T-cell phenotypes [24].

In addition, CD68+ tumor-associated macrophages (TAMs), commonly identified by
the expression of CD163, CD206 or CD204 [25], also sustain the development and progression
of many tumors including oropharyngeal cancer, by suppressing the cytotoxic activity of CD8+
T-cells, and promoting angiogenesis and tumor cell migration [26-28].

In this retrospective study, we aim to obtain a comprehensive ‘immune signature’ of
the HPV-negative and HPV-positive OPSCCs using immunohistochemistry (IHC) and
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immunofluorescence (IF) techniques for HLA expression, the presence of innate- and
adaptive immune cells and explore their correlation with clinical outcome. Ultimately, with
the implementation of univariate and multivariate analysis, we aim to find independent
prognostic factors for DFS and DSS of OPSCC patients.

MATERIALS AND METHODS
Patient and tumor characteristics

This study was undertaken with the written consent of all patients. The study was performed
in accordance with the Code of Conduct of the Federation of Medical Scientific Societies in
the Netherlands. 142 patients diagnosed with OPSCC treated at the Dutch Cancer Institute
Antoni van Leeuwenhoek hospital in Amsterdam, the Netherlands, between 1998 and 2007 were
included in this study. Two hundred patients were initially included in our cohort. Selection was
based on treatment (RT or ChemoRadioTherapy). Out of 200 patients, 30 could not be included
in the study due to the limitation of the material and 28 samples could not be used for automatic
scoring of immunofluorescence staining due to the low quality of the tissue. Included were
patients diagnosed with a T1-4N1-3M0 OPSCC (7% AJCC edition) treated with RT or CRT in
a curative setting. Archival diagnostic FFPE tumor specimens taken at the time of diagnosis
were retrieved from the Core Facility Molecular Pathology (CEMP).

Clinical data were collected retrospectively by reviewing patients’ medical files. Disease-
free survival (DFS) was calculated as time from date of diagnosis and time to local or regional
recurrence, distant metastasis or death. Disease-specific survival (DSS) was calculated as time
from date of diagnosis and time of death due to the disease (e.g. evidence of recurrence, metastasis,
patient refused treatment, no more treatments available or compliance of the disease). Overall
survival (OS) included any cause of death. Death due to other causes included: no evidence of

disease, failures, other disease or unknown reasons. Minimal follow up time was 3 years.

Treatment

Prior to definitive radiotherapy, an excision biopsy was performed in 13 patients by tonsillectomy
(n=11), uvula resection (n=1) and anterior pharyngeal wall excision (n=1). Three patients
received a selective- and 27 patients a (modified) radical neck dissection. Consecutively, 51
(36%) patients were treated with radiotherapy alone, 1 patient was treated with concurrent
cetuximab (400 mg/m?loading dose, 250 mg/m? weekly). All other patients were treated with
platinum-based concurrent chemoradiotherapy. Multiple dose regimens have been administered
both intravenous and intra-arterial, e.g. low dose (6 mg/m? daily or 40mg/m?* weekly, n=26),
high dose cisplatin i.v. 100mg/m? on day 1, 21 and 43 (n=43) and 150 mg/m* i.a. weekly in
the first 4 weeks of treatment (n=21). Patients were treated with 3D conformal radiotherapy
between 1998 and 2005. Intensity modulated radiotherapy (IMRT) was gradually introduced
in 2006. Radiation treatment consisted of an elective irradiation dose of 46 Gy in 23 fractions
(sequential) or 54.25 Gy in 35 fractions (concomitant) followed by a boost to the primary tumor

and the involved nodes resulting in a total dose of 70 Gy.

THE ROLE OF THE MICROENVIRONMENT IN OROPHARYNGEAL CANCER

Immunohistochemical staining

Standard immunohistochemistry (IHC) was applied on whole slide tissue sections taken from
archival formalin-fixed, paraffin embedded (FFPE) tumor samples. IHC was performed on
a BenchMark Ultra autostainer (Ventana Medical Systems, Mountain View, CA, US). FFPE
sections were cut at 3 mm, heated at 75°C for 28 minutes and deparaffinized in the instrument
with EZ prep solution. Heat-induced antigen retrieval was carried out using Cell Conditioning
1 for 32 minutes at 95°C or 64 minutes at 95°C.

The antibodies used for staining are shown in Table S1. Incubation was performed at 37°C
for 32 minutes for all the antibodies except PD-L1, which was incubated for 64 minutes at room
temperature. Bound antibodies were detected using the Omap anti-Rb HRP or Omap anti-Ms
HRP for 12 minutes at 37°C, after which the ChromoMap DAB Kit was applied. Slides were
counterstained with Hematoxylin and Bluing Reagent. For p16, signal amplification was applied
using the Optiview Amplification Kit. Bound antibody was detected using the OptiView DAB
Detection Kit. Slides were counterstained with Hematoxylin II and Bluing Reagent. All reagents
were purchased from Ventana Medical Systems. Antibodies used for IHC were: HLA-HCA2,
HLA-HC10, b2-microglobulin, HLA-DRA, HLA-DP/DQ/DR, PD1, PD-L1, P53 and P16.
Antibodies used immunofluorescence were CD4, CD8, CD68, FoxP3, CD163 and panCK.
Details can be found in Supplementary Table S1.

Multiplex immunofluorescence staining

Paraffin sections were cut at 3 mm and heated for 30 minutes at 69°C and subsequently
deparaffinized and rehydrated using a Multistainer (Leica, ST5020). Afterwards, slides were
fixed using Neutrally Buffered Formalin (NBF) for 20 minutes. After rinsing in distilled water,
antigen retrieval was performed using AR solution (Perkin Elmer, AR900). Antibodies used
for the multiplex immunofluorescence (IF) are listed in Table S1. All antibodies were incubated
for 30 minutes at room temperature except CD4 and CD8, which were incubated for 2 hours
and 1 hours respectively. Opal Polymer HRP Ms+Rb (Perkin Elmer, ARH1001EA, 10 min. at
RT) was used as secondary antibody. Visualization of antibody binding was performed using
Opal520, Opal540, Opal570, Opal620, Opal650 or Opal690. Stripping of the antibody complex
in between staining cycles was performed using microwave treatment for 15 minutes at 100°C
in AR6 (Perkin Elmer, AR600) or AR9 buffer solution as appropriate. Slides were counterstained
with DAPI (Perkin Elmer, FP1490) and rinsed with distilled water and mounted with ProLong
Diamond Antifade Mounting Medium (Molecular Probes, P36970). The antibodies used for
staining are listed in Supplementary Table S1.

Human Papilloma Virus detection

IHC detection of p16™* and p53 was used for HPV status assessment as proposed previously
[29], P16 was scored as positive or negative with a cut-off of intense diffuse nuclear or cytoplasmic
staining of > 70%, while p53 staining was scored as “wild-type” expression or “mutation pattern”
[30]. As FFPE material was old, no further HPV16 molecular testing could be performed due
to the low quality of DNA.
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Scoring system for immunohistochemical staining

HLA-I (HCA2, HC10, b2-microglobulin), HLA-II (DRA, DP/DP/DR) and PD-L1 expression
were scored manually by two researchers (B.C. and K.T.) together with a dedicated head and
neck pathologist (S.W.). All were blinded to patient clinical status and treatment outcome. For
PD-1 scoring an automated scoring was performed (see below).

Molecules of the HLA-I complex were scored on tumor cells only, while HLA-DRA and
HLA-DP/DQ/DR were scored on tumor cells and stromal cells surrounding the tumor (further
referred as ‘tumor’ and ‘stroma’). PD-L1 was scored on tumor cells in the center of the tumor
(PD-L1 tumor), at the invasive margins of the tumor (PD-L1 margins) and in the tumor
surrounding stromal cells (PD-L1 stroma). PD1 was scored on tumor surrounding stromal cells

(PD1 stroma). The format of the output results was expressed as categorical data.

HLA-I and Il

HLA-T and II scoring was performed as previously described !l. Briefly, HLA status was scored
in two ways: 1. The number of positive cells (%) and 2. The staining intensity. The number of
positive cells was categorized as: 0 = <1%, 1 = 1-5%, 2 = 6-25%, 3 = 26-50%, 4 = 51-75% and 5
= >75%. The intensity of the staining was categorized as 1 = absent, 2 = weak and 3 = strong.
The two scores of the number of positive cells and intensity of the staining were summed up
and integrated into four categories: 1. Negative (1), 2. “weak expression” (2-4), 3. “moderate
expression” (5-6) and 4. “high expression” (7-8). Of note: For HLA-I, weak and moderate
expression were combined and further defined as ‘downregulated’ In addition, a “negative”
HLA-I staining is further referred to as “loss” *2. For HLA-II and b2-microglobulin (b2M)

scoring was divided in “negative” (negative and weak) and “positive” (moderate and high).

PD-L1 and PD1

PD-L1 expression was scored as number of positive cells in either tumor, margins or tumor-
associated stroma (with a cut off value of 5%) [17]. PD1 staining was used for optimization of
the scoring system using the Vectra® 3.0 automated imaging system (PerkinElmer, Hopkinton,
MA), and InForm® software version 2.2 (PerkinElmer, Hopkinton, MA). Representative analysis
was performed on 11% of the total stromal area in 20x magnification. Regions of interest were
selected by an experienced pathologist (S.W.) and an algorithm was created to identify nuclei in
the tumor or in the surrounding stroma separately. Results obtained were percentage of positive
cells in the tumor-associated stroma compared to the total area. The median value was used as
a cut off for positive or negative cases. For 15 random sections, the data obtained from the score
of 11% of the tissue was compared with the data obtained from the score of the entire tissue and

no differences were observed in terms of percentage of positive cells (data not shown).

Quantification of the multiplex staining
Whole slide scans were taken at 4x magnification using Vectra® 3.0 automated imaging system

(PerkinElmer, Hopkinton, MA). Afterwards, stromal or tumorous regions were selected by
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an experienced pathologist (S.W.). Selected regions were scanned at 20x magnification and
analyzed using InForm® software version 2.2 (PerkinElmer, Hopkinton, MA). An algorithm was
created to allow batch analysis of all distinct phenotypes. Obtained results were verified (S.W.).
Data are expressed as number of positive cells per surface area (mm?) in the tumor area or in
the tumor-associated stromal area. Results were represented as continuous data. Tumor area
was identified with the help of the pathologist and segmented in tails (containing tumor or in
proximity of the tumor). Segmentation of the tissue in ‘tumor’ and ‘tumor-associated stroma’

was performed in each tail and markers were scored in both regions (data not shown).

Statistical analysis
Patients and tumor characteristics were compared between HPV groups using Wilcoxon
matched-pairs test or Chi-square test. To evaluate the impact of clinical, immunohistochemical
and immunofluorescence measurements on progression, univariate analysis and two types of
multivariate analyses were used: Cox proportional hazards regression model (with pre-selected
variables with p<0.1 from univariate analysis),as well as competing risks models based upon
subdistribution functions [33]. In order to correct for differences between treatment arms,
models were fitted using treatment stratification. Analyses were run in R using the packages
‘survival’ and ‘cmprsK. In all cases, a significance level of 5% was used to consider tests
as statistically significant. Multivariate analysis with clinical and immunohistochemistry
variables, included: HPV status, gender, smoking, T classification, HLA-HC10, HLA-HCA2,
B2-microglobulin, HLA-DRA (Stroma and Tumor), HLA-DR/DP/DQ (Stroma and Tumor),
PD-L1 (stroma, tumor and margins), PD1 (Stroma and Tumor). Multivariate analysis with
clinical and immunofluorescence variables included: HPV, gender, smoking, T classification,
CD163 (Stroma and Tumor), CD4 (Stroma and Tumor), CD4+FoxP3+ (Stroma and Tumor),
CD68 (Stroma and Tumor), CD68+CD163+ (Stroma and Tumor), CD8 (Stroma and Tumor),
CD8+FoxP3+ (Stroma and Tumor).

Spearman test was used for correlation analysis (competing risks model). Interaction terms

were added to the regression model to understand the relationships among selected variables.

RESULTS

Patients and tumor characteristics

A total of 142 oropharyngeal cancer patients were included in this study (Table 1), of whom 82
(57.7%) had HPV-negative tumors and 60 (42.3%) had HPV-positive tumors. For both groups,
the tumor was predominantly found at the base of the tongue and tonsil (combined: 67.1%
for HPV-negative tumors and 96.7% for HPV-positive tumors). The proportion of men was
significantly higher in the HPV-positive group compared to HPV-negative, 85% and 68.3%
respectively (p=0.02). T classification at time of diagnosis was higher in patients with HPV-
negative tumors (p<0.01) as T3-4 stage tumor was determined in 64.6% of the HPV-negative
and in 31.7% of the HPV-positive tumors. Tumors were differently distributed in the 5 different

locations (base of the tongue, vallecular, tonsil, posterior wall and soft palate) (p<0.01) in
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HPV-negative and HPV-positive tumors, however, none of the different tumor locations were
significantly correlated with survival (data not shown).

For both groups, the majority of the patients were still smoking at time of diagnosis (85.4% for
HPV-negative and 55% for HPV-positive). Both groups were treated similarly with radiotherapy
alone or chemo-radiotherapy (p=0.22). HPV-negative tumors were more frequently associated
with metastases to distant organs than HPV-positive tumors (p = 0.01).As expected, number of
disease-related deaths were significantly higher in HPV-negative OSPCC patients compared to
HPV-positive (p<0.01).

Median follow up time for alive patients in the entire cohort (No. patients 44) was 82.0
months (standard deviation ‘SD’ =29.9 months) and 81.9 months (SD=26.4) for patients with
HPV-positive tumors (No. patients 32) and 96.7 months (SD=38.2) for patients with HPV-

negative tumors (No. patients 12) . Two patients were lost due to follow up.

Distribution of HLA-I, HLA-Il, PD-L1 and PD1 in view of Human Papilloma
Virus status

IHC staining for p53, p16, HLA-I, HLA-II, PD-L1 and PDI1 was successfully performed in
99-100% of all tumor specimens. Representative figures of IHC staining are shown in Figure 1A
and B. Table 2 summarizes tumor- and stroma cells expression per marker in the whole group
and in the HPV-positive and HPV-negative subgroups.

Downregulation or complete loss of the two HLA-I molecules, i.e. HLA-B/C and HLA-A,
was seen in the vast majority of the tumors (combined loss or downregulation was 75.9% and
71.7%, respectively), while b2M expression was completely absent in 16.7% of the tumors. No
significant differences in expression of HLA-A, B/C molecules were observed between the HPV-
negative and positive tumors. Expression of HLA-DRA or HLA-DP/DQ/DR on tumor cells was
found in a minority of the patients (14.1 and 31.9% respectively), while expression of HLA-DRA
or HLA- DP/DQ/DR on stromal cells was found in the majority of stromal cells (57.4 and 78.7%
respectively). HLA-DRA expression on tumor cells was significantly higher in the HPV-positive
tumors compared to HPV-negative tumors (p=0.03), and a trend was observed for HLA- DP/
DQ/DR (p=0.06). On stromal cells, HLA-DRA or HLA-DP/DQ/DR expression did not differ in
the HPV-positive and HPV-negative group (p=0.12 and p=0.29, respectively).

PD-L1 expression on tumor cells, at the tumor margins or in the tumor-surrounding
stroma was found in 24.8%, 17.6% and 28.4% of the tumors, respectively. PD-L1 expression
at the invasive tumor margins or in the tumor-surrounding stroma was found to be
significantly higher in HPV-positive compared to HPV-negative tumors (p=0.05 and p=0.02
respectively). Expression of PD-1 was not significantly different between HPV-positive and
HPV-negative tumors (p=0.09). Altogether, these data suggest that HPV-positive OPSCC is
characterized by higher expression of HLA-II in tumor cells and higher expression of PD-LI in

the surrounding stroma.

THE ROLE OF THE MICROENVIRONMENT IN OROPHARYNGEAL CANCER

Table 1. Patient, tumor and treatment characteristics. Clinico-pathological characteristics of the entire
cohort of patients and patients with HPV-positive and HPV-negative tumor separately.

Entire OPSCCs  HPV negative HPYV positive

cohort OPSCCs OPSCCs
No. of No. of No. of
patients % patients % patients % P-value'

Patients Number 142 82 57.7 60 42.3
Age Median 58.5 60 55.5

Mean 58.4 (10.3) 59.57 (9.5)) 56.8 (11.2¢) 0.26
Gender 1: Male 107 75.4 56 68.3 51 85

2: Female 35 24.6 26 317 9 15 0.02
Site Base of tongue 46 324 19 232 27 45

Vallecula 5 3.5 3 3.7 2 3.3

Tonsil 67 47.2 36 43.9 31 51.7 <0.01

Posterior wall 9 6.3 9 11 0

Soft palate 15 106 15 183 0
T classification 1 29 204 9 11 20 33.3

2 41 28.9 20 24.4 21 35 <0.01

3 34 23.9 25 30.5 9 15

4 38 26.8 28 34.1 10 16.7
N classification 0 27 19 18 22 9 15

1 23 16.2 15 18.3 8 13.3  0.46

2 79 55.6 41 50 38 63.3

3 13 9.2 8 9.8 5 8.3
Smoking status 1: Currently smoking 103 725 70 854 33 55

2: Quit < 5 years 9 6.3 7 8.5 2 3.3 <0.01

3: Quit > 5 years 17 12 4 4.9 13 21.7

4: Never smoked 13 9.2 1 1.2 12 20
Treatment 1: Radiotherapy 51 359 26 317 25 41.7

2: Chemoradiotherapy 91 64.1 56 683 35 583 0.22
Loco/regional  Yes 18 126 13 158 5 8.3
Recurrence No 124 873 69 84.1 55 91.6 0.18
Distant Yes 31 21.8 24 29.3 7 11.7
metastasis No 111 78.2 58 70.7 53 88.3 0.01
Follow-up Median 82.0 (29.99) 96.7 (38.29) 81.9 (26.4°)
(alive) Range 38.8-150.2 45.4-150.2 38.8-139.0

Distribution of myeloid cells and lymphocytes in view of Human Papilloma
Virus status

Multiplex immunofluorescence staining was successfully performed in 89-94% of all tumor
specimens. Representative figures of IF stainings and phenotypic annotation are shown in
Figure 1C and 1D. Distribution of myeloid cells and lymphocytes markers is shown in Figure 2.

Quantification of the multiplex staining is shown in supplementary Table S2. Interestingly,
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{ Figure 1. Tllustration of immunohistochemical staining in OPSCC specimens. 1A) HLA-DP/DQ/DR was

manually scored in the tumor and in the tumor-surrounding stroma. 1B) PD-L1 expression was manually
scored in the tumor, on the margins of the tumor and in the tumor-surrounding stroma. 1C) Multiplex
immunofluorescence staining of CD4, CD8, FoxP3, CD163, CD68 and pan-CK in in OPSCC specimens.
1D) An algorithm was developed for automatic recognition of tumoral and stromal tissue. Empty spaces
or artefacts were defined as ‘other. 1E) Identification of double positive CD8+FoxP3+ cells in tumor-
associated stroma.

we found a considerably higher number of single positive CD163+ cells compared to double
positive CD68+CD163+ TAMs or single positive CD68+ cells in the stroma (median of cells/
mm?20.7, 4.6 and 2.9, respectively), while numbers in the tumor compartment were comparable
(median of cells/mm?* 4.1, 3.1 and 2.2, respectively). No significant differences were observed in
the numbers of any of the macrophage cell sub-populations between HPV-negative and HPV-
positive tumors, neither in the tumor nor in the stroma.

The number of CD4+ cells and CD8+ cells was much higher In the HPV-positive tumors
compared to HPV-negative tumors, both in the tumor and stromal compartment (p<0.001 in
the tumor and p<0.01 in the surrounding stroma for CD4 and p<0.01, for both CD8 in the tumor
and in the surrounding stroma), while very low numbers of CD4+ and CD8+ T cells were found
in HPV negative tumors. As well known, lymphatic tissue contains large number of lymphocytes
that could bias the quantification of tumor-associated T lymphocytes, however, evaluation of
tumor-associated T lymphocytes could be performed as tumor cells were clearly distinguishable
from other cells (Supplementary Figure S1A) 4A. As shown in Supplementary Figure S1B,
segmentation of the tissue was performed in tails that either contained or were in proximity
of the tumor. Tumorous and non-tumorous areas were than identified (Supplementary Figure
S1C). Thus, only infiltrating immune cells found either inside or in proximity of the tumor and
not far from the tumor were scored (‘tumor’ and ‘stroma’) (Supplementary Figure S1D).

Also, the number of CD4+Foxp3+ cells was significantly higher in the tumor compartment
of HPV-positive compared HPV-negative tumors (p=0.03). Interestingly, we also found low
numbers of CD8+Foxp3+ cells both in the stromal and tumor compartment (median of cells/
mm?1.1 and 1.2, respectively) (representative figure of the staining is shown in Figure 1E). Also,

their numbers did not differ between HPV-negative and HPV-positive tumors.

Correlation between immune and clinical variables
In order to explore associations between all variables included in this study and their correlation
with clinical outcome, we computed Spearman correlations between clinical variables (HPV
status, T classification, gender, smoking history and treatment) and immune variables (all
the staining performed in this study), displaying results as a heat map in Figure 3A. As expected,
the number of CD4+ and CD8+ T cells were correlated with each other both in the stroma and
in the tumor (r: 0.70 in the stroma and r: 0.61 in the tumor).

Interestingly, we also found that the number of double positive in the stroma CD68+CD163+,

commonly identified as pro-tumor macrophages [34], was negatively correlated with expression
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Table 2. Expression of HLA-I, HLA-II, PD-L1 and PD1 in tumor, tumor margins and stroma in view of

HPV status. Quantification of immunohistochemical staining scored in the tumor, on the margins and

in the surrounding stroma. Tot: total number of patients, Loss: loss of expression, Down: downregulation

of expression, Pos: positive expression, Neg: negative expression, T: tumor, S: stroma, M: tumor margins.

Entire OPSCCs HPYV negative HPYV positive
cohort OPSCCs OPSCCs
No. of No. of No. of

Staining Scoring  patients % patients % patients % p value*
HLA-HC10 T Tot 141 82 59 0.19

Loss 12 8.5 4 49 8 13.6

Down 95 67.4 57 69.5 38 64.4

Pos 34 24.1 21 25.6 13 22.0
HLA-HCA2T Tot 138 0.16

Loss 24 17.4 9 11.5 15 25.0

Down 75 54.4 46 59.0 29 48.3

Pos 39 28.3 23 29.5 16 26.7
B2MT Tot 143 82 60 0.08

Neg 24 16.8 10 12.2 14 23.3

Pos 119 83.2 72 87.8 46 76.7
HLA-DRAT Tot 142 82 60 0.03

Neg 122 85.9 75 91.5 47 78.3

Pos 20 14.1 7 8.5 13 21.7
HLA-DR/DP/DQ T Tot 141 82 59 0.06

Neg 96 68.1 61 74.4 35 59.3

Pos 45 31.9 21 25.6 24 40.7
HLA-DRA S Tot 141 81 60 0.12

Neg 60 42.6 39 48.2 21 35.0

Pos 81 57.5 42 51.9 39 65.0
HLA-DR/DP/DQ S  Tot 141 82 59 0.29

Neg 30 21.3 20 24.4 10 17.0

Pos 111 78.7 62 75.6 49 83.1
PD-L1T Tot 141 81 60 0.22

Neg 106 75.2 64 79.0 42 70.0

Pos 35 24.8 17 21.0 18 30.0
PD-L1 M Tot 142 82 60 0.05

Neg 117 82.4 72 87.8 45 75.0

Pos 25 17.6 10 12.2 15 25.0
PD-L1S Tot 141 82 59 0.02

Neg 101 71.6 65 79.3 36 61.0

Pos 40 28.4 17 20.7 23 39.0
PD1S Tot 142 82 60 0.09

Neg 64 45.1 42 51.2 22 36.7

Pos 78 54.9 40 48.8 38 63.3

THE ROLE OF THE MICROENVIRO
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Figure 2. Distribution of myeloid cells and lymphocytes in view of HPV status. Quantification of
the multiplex immunofluorescence staining scored in the tumor and in the surrounding stroma in the entire
cohort (A-B) and in HPV- negative (C-D) and positive (E-F) tumors separately.
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Figure 3. HLA-DP/DQ/DR expression in inversely correlated with CD68+CD163 numbers and
the interaction is a strong predictor of survival. A) Heat map shows the degree of correlation (Spearman)
between the clinical and immunological variables included in the study. B) Cumulative incidence analysis
for DFS and DSS of patients with high HLA-DP/DQ/DR expression on tumor cells and low numbers
of CD68+CD163+ TAMs in the surrounding stroma (red) or the other way around (blue). *P value is
calculated between straight lines. Segmented lines represent competing risks. "(n) represents the number
of patients. C) Multivariate analyses show the predictive power of the interaction variable for DFS and
DSS. *Interaction between the HLA-DP/DQ/DR and CD68+CD163+ variables. *HLA-II = HLA-DP/
DQ/DR on tumor cells, *“TAMs = CD68+CD163+ numbers in tumor-associated stroma, Interaction =
interaction variable between HLA-II and TAMs. Competing risks and treatment stratification are included
in the analysis.
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of HLA-DP/DQ/DR on tumor cells (Spearman r: -0.45 and p<0.0001). The median value of
the number of CD68+CD163+ cells was used to identify samples with high or low number
of CD68+CD163+ cells in the stromal compartment. As shown in Figure 3B, patients with
high HLA-DP/DQ/DR expression on tumor cells and low numbers of CD68+CD163+
TAMs in the surrounding stroma were strongly associated with a significant decreased in
cumulative incidence for DES and DSS (p= 0.003 and p=0.006, respectively). Importantly,
equal expression of both markers (low-low or high-high) did not significantly improved DFS
(Supplementary Figure S2).

We then performed a number of multivariate analyses using four of the most important
clinical prognostic factors for OPSCC, HPV status, tumor and lymph node status, together with
the HLA-DP/DQ/DR, TAMs and the new variable generated by their interaction (Figure 3C).
Interestingly, we found that the interaction between these two immunological variables was
stronger than T status and N status in predicting DFS and DSS, however, HPV status remained
the most significant predictive factor.

Indeed, in multivariate regression model including clinical variables (HPV status, gender, T
classification, smoking history and treatment) only, HPV status showed the strongest effect on
DEFS and DSS (p<0.001 for both) (Supplementary Table S4). Patients with HPV-positive tumors
were associated with significantly less disease-specific deaths, loco-regional recurrence or
distant metastasis compared to HPV-negative tumors (Supplementary Figure S3). Importantly,
we also found that treatment (radiotherapy alone or chemo-radiotherapy), which did not differ
between HPV-negative and positive tumors, significantly affected both DFS and DSS (p=0.01
and p=0.04 respectively). Patients receiving chemo-radiotherapy performed better compared
to patients receiving radiotherapy alone (Supplementary Figure S2). Therefore, here we used
a treatment-based stratification model for multivariate COX regression analysis in order include

treatment variable in our analysis but preventing it to bias the results.

Prognostic Importance of Clinical and Immunological Variables

Univariate analysis of all the variables included in this study was performed to find indicative
biomarkers with an effect on OS, DFS and DSS and subsequently tested for statistical power
in multivariate analyses. As expected patients with HPV-positive tumor were associated with
significantly longer OS, DFS and DSS (Table 3). Also, female patients were associated with
longer OS, and DFS survival. Patients with higher N status classification were associated with
significantly shorter OS, DFS and DSS (p=0.012, HR=3.27, p= 0.023, HR=4.61 and p=0.020,
HR=3.15, respectively).

High expression of HLA-DP/DQ/DR and HLA-DRA in tumor cells was correlated with
significantly longer OS (p=0.026, HR= 0.58 and p<0.01, HR=0.45, respectively) and DFS
(p=0.009, HR= 0.33 and p=0.05, HR=0.55, respectively). Furthermore, HLA-DP/DQ/DR
expression in tumor cells was also correlated with significantly longer DFS (p=0.021, HR=0.37).
Surprisingly, none of the molecules of the HLA-I complex were associated with OS, DES or DSS.

PD-L1 expression scored in the stromal compartment was associated with significantly longer
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OS, DFS and DSS (p=0.025, HR=0.48; p=0.056, HR=0.46 and p=0.04, HR=0.61, respectively).
Furthermore, PD-1 expression in stromal cells was associated with significantly longer DFS
(p=0.033, HR=0.51). Numbers of CD4+ and CD4+FoxP3+ T lymphocytes in the stromal
compartment were associated with significantly longer OS (p=0.017, HR=0.99 and p=0.016,
HR=0.97, respectively). Also, numbers of CD8+T lymphocytes were associated with significantly
longer OS (p=0.036, HR=0.98).

Interestingly, we found that increased numbers of CD68+CD163+ TAMs in the tumor
compartment was significantly correlated with reduced OS, DFES and DSS (p= 0.036, HR=1.02,
p= 0.009, HR=1.04 and p=0.002, HR=1.03, respectively). Furthermore, high numbers
of CD68+CD163+ TAMs in the stromal compartment was associated with shorter DSS
(p=0.040, HR=1.01).

To test the statistical power of the variables in multivariate analysis we fit a Cox proportional
hazards regression model including variables with p<0.1 from univariate analysis. As shown
in Table 3, statistical power of HLA-DP/DQ/DR expression in tumor cells was validated in
multivariate analysis as it was significantly associated with longer DFS and DSS survival (p=0.029,
HR=0.39 and p=0.015, HR=0.36, respectively), but not for OS. Furthermore, high expression of
HLA-DRA and high numbers of CD4+FoxP3+ T lymphocytes in the stromal compartment was
associated with significantly longer OS (p=0.003, HR=0.48 and p=0.024, HR=0.97). As expected
HPYV status was an independent prognostic factor for OS, DFS and DSS. These data suggest that
expression of HLA-DP/DQ/DR, HLA-DRA and CD4+FoxP+ T lymphocytes are independent
prognostic markers of survival of OPSCC patients.

Ultimately, we performed an additional multivariate regression model using subdistribution
functions in the competing risks and treatment stratified model including immunological and
clinical parameters. This analysis aimed to explore the complex network of interactions among
immune components of the tumor microenvironment of OPSCC. In this model, no pre-selection
based on univariate analysis was performed, instead, allimmunological and clinical variables were
included. However, due to the very large number of clinical- and immune variables and different
methodology of scoring, immunohistochemical data (HLA-HCA2, HLA-HC10, HLA-DRA,
HLA-DP/DQ/DR, PD-L1, PD1) were analyzed separately from the immunofluorescence data
(CD4, CD8, FoxP3, CD68, CD163). As shown in Table 4, we confirmed that high expression
of HLA-DP/DQ/DR in tumor cells was correlated with significantly longer DFS, DSS and OS
(p=0.03, HR=0.39; p=0.02, HR=0.36 and p=0.03, HR=0.59, respectively. Furthermore, higher
PD-L1 expression in the tumor-stroma borders or stromal compartment was associated with
significantly longer OS (p= 0.04, HR=0.55 and p=0.04, HR=0.60, respectively). Additionally,
we showed that high numbers of CD68+CD163+ TAMs in the tumor-surrounding stroma was
significantly associated with shorter DFS, DSS and OS (p=0.04, HR=1.03; p=0.01 HR=1.04 and
p=0.00, HR=1.02, respectively). Finally, we found that numbers of CD8+FoxP3+ T lymphocytes
found in tumor compartment were associated with significantly shorter DFS (p=0.04. HR=1.39).
Importantly, key clinical variables, including HPV status and N classification were significant
only in relation to OS and not in DFS and DSS, suggesting that their statistical power is reduced
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when multiple immune components of the tumor microenvironment are taken in account in
the analysis.

In conclusion, these data suggest that HLA-DP/DQ/DR, CD163+CD68+ TAMs, PD-L1
and CD8+FoxP3+ T lymphocytes are independent prognostic markers of survival of OPSCC

patients in our immunology-based multivariate analysis.

DISCUSSION

The tumor microenvironment is a key contributor to the development and progression of
many tumors [35]. In the last decade, implementation of scoring systems for immunological
biomarkers found in the tumor or in the surrounding stroma has become a key tool to help to
predict prognosis and response to therapy in many cancer types [36]. In OPSCC tumors, HPV
status is one of the key prognostic variable for survival, however, new and stronger predictors of
survival might be identified exploring the interaction between immune cells and tumor cells in
the tumor microenvironment. Previous studies investigated the role of the microenvironment
in head and neck tumors with contradictory results [10]. Here, we obtained a comprehensive
‘immune signature’ of HPV-negative and HPV-positive OPSCCs and we found new potential
prognostic markers for survival of OPSCC patients. More specifically, expression of HLA-DP/
DQ/DR on tumor cells, the numbers of CD68+CD163+ TAMs in the tumor-associated stroma
and the numbers of CD8+FoxP+ cells in the tumor, were established in our multivariate analyses
as independent prognostic markers of survival in oropharyngeal cancer.

The tumor immune microenvironment can either promote or suppress tumor growth
depending on the number and phenotype of immune cells. Accessibility to tumor antigens also
play a key role in the immune surveillance. Indeed, often, tumor cells downregulate expression of
HLA-I, thus evading CD8+ T-mediated tumor-specific immune response [37]. Nevertheless, in
contrast with previous studies where loss of HLA-I was more frequently found in HPV-negative
OPSCC [38], we did not find differences in expression level of HLA-I between HPV-positive
and HPV-negative tumors. However, the scoring system used in these studies was different from
the one used in this study as ‘fraction’ and ‘intensity’ of the staining of the different HLA-I
markers were not combined and were used as separate variables for univariate and multivariate
analysis [38, 39]. In addition, in one of these studies only two subgroups were generated in
both ‘fraction” and ‘intensity’ of the staining [39]. Therefore, we think that results might be
the consequence of different scoring systems and we believe that a standard method of scoring
should be used.

Importantly, in our study we found an indirect correlation between the expression of
the HLA-II molecule, HLA-DP/DQ/DR on tumor cells and the number of CD68+CD163+
TAMs in the tumor-associated stroma of OPSCC patients. Expression of HLA-II on epithelial
cells has been described for colorectal cancer, ovarian cancer and melanoma, however, the role
in head and neck cancer still needs to be elucidated [40-44]. Interestingly, recent studies in
melanoma suggested that high expression of HLA-DR/DP/DQ in tumor cells is associated
with improved response rates and clinical benefit of PD-1/PD-L1 targeted therapy [41]. We
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CHAPTER 6

therefore think that our study could optimize the selection of patients that would benefit from
immunotherapy treatment. For instance, Nivolumab is an inhibitor of the immunocheckpoint
PD-1 expressed on exhausted T cells and is currently used to treat metastatic OPSCC patients.
Based on our results, we speculate that patients with high HLA-II expression on tumor cells
and low numbers of TAMs would represent a selective population of the patients that would
benefit from Nivolumab treatment. Indeed, we showed that both high HLA-DP/DQ/DR
expression and low numbers of TAMs are required to observe a beneficial effect in survival, as
equal expression of both markers did not significantly affect DFS or DSS. Also, infiltration of
tumor-associated macrophages are known to affect treatment responses in several tumor types
[45] and pre-clinical and clinical studies using anti-CSFR1 Ab (macrophage Colony Stimulating
Factor Receptor 1) have been performed [46-48]. We, therefore, speculate that immunotherapy
treatment targeting tumor-associated macrophages, might be beneficial especially for patients
with high expression of HLA-DP/DQ/DR on tumor cells.

One of the possible reasons why patients with high HLA-DP/DQ/DR and low TAMs
numbers are associated with improved survival is that HLA-DP/DQ/DR expression on tumor
cells leads to recruitment of CD4+ T-cells for Ag recognition, which leads to increased IFN-y
production in the tumor microenvironment. In turn, IFN-y is thought to reduce the generation
of TAMs [49], therefore inhibiting the macrophage-mediated tumor progression. It is known
that expression of HLA-II is increased by CD8- and CD4-mediated IFN-y production [50,
51]. Importantly, in this study, we showed that HPV-positive tumors have higher numbers of
CD4+ and CD8+ cells both in the tumor and in the surrounding stroma, which might explain
the higher expression of HLA-II, both HLA-DRA and HLA-DP/DQ/DR, on tumor cells
compared to HPV-negative tumors. As previously observed [52], a positive correlation between
PD-L1 expression on immune cells and longer OS was found.

Finally, in our study, we identified a relatively new subset of double positive CD8+FoxP3+
cells in OPSCC. Interestingly, recent works identified CD8+FoxP3+ T cells as a potent
immunosuppressive population of T-cells in vitro and in vivo [53-55], however, their role
in cancer is poorly described and nothing is known in relation to OPSCC. For the first time
in oropharyngeal cancer, we showed that despite low in numbers, increased infiltration of
CD8+FoxP3+ T-cells in the tumor compartment is an independent prognostic factor for shorter
DFS in our comprehensive multivariate analysis. As the role of double positive CD8+FoxP3+
T-cells is poorly understood in cancer [55], we think additional functional assays should be
performed in order to elucidate the possible immunosuppressive effect of this specific subset of
cells and find new cell-specific pathways targetable with immunotherapy.

For future studies, we aim to conduct a similar multi-parameters analysis in a bigger cohort
of patients to further support the relevance of our findings. Studying the spatial interaction
between markers as proximity between cells will also be of additional value [56]. In addition,
differences in phenotype and functionality of immune cells found within or in proximity of
the tumor and immune cells found far from the tumor could be explored. Also, functional
and single cell sequencing analysis could be performed in order to explore the potential

immunosuppressive phenotype of the newly described CD8+FoxP3+ T cells.

THE ROLE OF THE MICROENVIRONMENT IN OROPHARYNGEAL CANCER

In conclusion, we think that similar comprehensive multivariate analysis should be
performed in this and other cancer types to assess the potential of survival prediction of various
immunological and non-immunological factors to mimic their 3-dimentional context in

the tumor microenvironment.
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SUPPLEMENTARY INFORMATION

A

HE (Tonsil tumor)

Tails segmentation (50%)

Figure S1. Identification and quantification of tumor-associated T lymphocytes in tonsil. A) Hematoxylin-
eosin (HE) staining staning of tonsillar tumor specimen. Tumor area was delimited by the segmented
line. B) Tails segmentation of tumor-containing area. 50% of random tails were used for the analysis.
C) Pre-selected tails were segmented into ‘tumor’ or ‘stroma’ area. D) CD8+ lymphocytes found within
or in proximity of tumor area were scored as tumor-associated lymphocytes or stroma-associated
lymphocytes, respectively.
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