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ABSTRACT
Macrophages in the tumor microenvironment are causally linked with prostate cancer 
development and progression, yet little is known about their composition in neoplastic human 
tissue.  By performing single cell transcriptomic analysis of human prostate cancer resident 
macrophages, three distinct populations were identified in the diseased prostate. Unexpectedly, 
macrophages isolated from the tumor-adjacent site of the prostatectomy specimen were 
identical to those from the tumorous site. Markers associated with the canonical M1 and M2 
macrophage phenotypes were identifiable in the populations, however these were not the main 
factors defining unique subtypes. The genes selectively associated with each macrophage cluster 
were used to develop a gene signature which was highly associated with both recurrence-free 
and metastasis-free survival. These results highlight the relevance of tissue-specific macrophage 
subtypes in the tumour microenvironment for prostate cancer progression and demonstrates 
the utility of profiling single-cell transcriptomics in human tumor samples as a strategy to 
design gene classifiers for patient prognostication.

INTRODUCTION
Blood-derived monocytes reach the majority of the tissues in the body, both cancer affected 
and normal, where they become tissue-resident macrophages [1]. These are extremely plastic 
and phenotypically heterogeneous immune cells, whose diversity is largely influenced by 
the microenvironment in which they reside [2]. Several studies showed that in vitro blood 
monocyte-derived macrophages can acquire a large spectrum of phenotypes depending 
on different stimuli present in the cell culture [3, 4]. However, these models do not capture 
the dynamic nature of macrophages in their native microenvironment. Human tissue-specific 
characterization of tumor associated macrophages (TAMs) is limited to glioma, skin and 
hepatocellular carcinoma [5-7], and there are no studies addressing prostate cancer (PCa)-
specific macrophage phenotypic diversity.

The PCa tumor microenvironment (TME) is composed of various cells, including stromal, 
endothelial and immune cells, with tissue-resident macrophages representing one of the most 
predominant immune cell populations [8, 9]. Macrophages are critical mediators of tissue 
homeostasis and have the capacity to suppress cancer-associated processes, including tumor 
cell proliferation, angiogenesis and metastasis [10]. Multiple studies have shown a correlation 
between high infiltration of TAMs in the PCa microenvironment and poor prognosis, which 
suggests a role of these cells in cancer progression [11-15]. Given the prognostic significance 
of macrophages in the TME, strategies aiming to target these cells have emerged as strong 
candidates for cancer treatment [16-19].

It is also thought that immune cell type rather than sheer numbers of immune cells present 
in the TME relates to efficacy [20]. Various macrophage phenotypes have been described, 
including the pro-inflammatory/anti-tumor M1 state, and the anti-inflammatory/pro-tumor 
M2 state, both characterized by expression of specific markers [21]. However, macrophage 
diversity is likely not a binary division, but rather a continuum of phenotypes between M1 and 
M2 extremes [3, 4]. However, the diversity of human macrophage populations in PCa is not yet 
explored and, therefore, tissue specific markers of macrophage populations in prostate cancer 
are not yet defined. 

To address this, we applied single-cell mRNA sequencing on myeloid cells isolated from 
prostatectomy specimens. Here we describe novel phenotypes of PCa associated macrophages 
and their distinct prognostic potential. Moreover, we propose new molecular markers for 
identification of these phenotypes in patients with localized disease. Understanding the unique 
macrophage populations in individual PCa and their effect on outcome will not only enhance 
our knowledge of prostate cancer biology and progression, but can better inform clinicians 
regarding a patients’ prognosis and treatment options.

MATERIALS AND METHODS
Patients, tumor specimens and Ethics Statement
Prostate biopsies were collected from post robotic-assisted laparoscopic prostatectomy (RALP) 
surgical specimen of PCa patients who did not receive any prior therapy (Gleason score 3+4 and 
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3+3). An average of three 18G biopsies were collected from both the tumorous and the adjacent 
non-tumorous site of the prostate, which were estimated by a pre-surgery multi parametric 
magnetic resonance imaging scan of the pelvis and palpation by the surgeon of the prostatectomy 
specimen. Fresh biopsies from the tumorous site and non-tumorous site of the prostatectomy 
specimen from 4 patients were processed separately for cell-surface markers CD14+ and/or 
CD11b+ myeloid cell isolation and submitted for single-cell RNA sequencing. 

The use of patient data and biopsies from fresh prostatectomy specimens for research 
purposes at the Netherlands Cancer Institute have been executed pursuant to Dutch legislation 
and international standards. Prior to 25 May 2018, national legislation on data protection 
applied, as well as the International Guideline on Good Clinical Practice. From 25 May 2018 
on, we also adhere to the GDPR.    Within this framework, patients are informed and have 
always had the opportunity to object or actively consent to the (continued) use of their personal 
data & biospecimens in research. For the current study, informed consent was obtained 
from all patients. Hence, the procedures comply both with (inter-) national legislative and  
ethical standards.

Tissue dissociation and CD11b+ and/or CD14+ cells sorting
Single-cell suspension was prepared from fresh PCa biopsies by mechanical dissociation 
within two hours after surgery. Biopsies were transported from the operation room on ice and 
minced with a scalpel in cold PBS + 0.5% BSA. Tissue was then mechanically dissociated using 
a gentleMACSTM Dissociator (MACS Milteny Biotec) using C-tubes (MACS Milteny Biotec) for 
2 minutes as previously described [22]. Subsequently, the samples were filtered through a 70 μm 
strainer (BD Falcon) and spun down for 5 min at 300 g at 4°C. Cells were re-filtered through 
a 40 μm strainer (BD Falcon), spun down for 5 min at 300 g at 4°C and re-suspended in cold 
PBS + 0.5% BSA.

Cells of the dissociated biopsies were incubated with APC-CD45, PE-CD14, PE-CD11b and 
FITC-CD3 (all Ebioscience) for 20 minutes and washed before sorting using a Moflo Astrios 
(Beckman Coulter) or FACSAria Iiu (BD BioSciences). As a first step, CD45+ leukocytes 
were selected, while small CD45+ cells (low SSC) were discarded as possible lymphocytes. 
Subsequently, CD14+ and/or CD11b+ single cells lacking CD3 expression were selected. Living 
single CD45+CD3-CD14+ and/or CD11b+ macrophages (based on DAPI and scatter properties) 
were sorted into eight 384 wells plates (Biorad) where cDNA synthesis was performed as 
previously described [23].

Single-cell sequencing with SORT-seq 
Single-cell mRNA sequencing was performed according to an adapted version of the SORT-seq 
protocol [23], using primers described by van den Brink et al [24]. In short, single cells were 
FACS sorted into 384-well plates containing 384 primers and Mineral oil (Sigma). After sorting, 
plates were snap-frozen on dry ice and stored at -80°C. Subsequently, cells were heat-lysed at 65° 
C followed by cDNA synthesis using the CEL-Seq2 protocol [25] using robotic liquid handling 

platforms Nanodrop II (GC Biotech) and Mosquito (TTP Labtech). After second strand cDNA 
synthesis, the barcoded material was pooled into libraries of 384 cells and amplified using in 
vitro transcription [25]. Following amplification, the rest of the CEL-seq2 protocol was followed 
for preparation of the amplified cDNA library, using TruSeq small RNA primers (Illumina) 
as previously described [23]. The DNA library was paired-end sequenced on an Illumina 
Nextseq™500, high output, 1x75 bp. 

Single-cell sequencing data analysis
After Illumina sequencing, read 1 was assigned 26 base pairs and was used for identification of 
the Illumina library barcode and cell barcode. Unique molecular identifiers (UMI) tags were 
added to each read. These are molecular tags used in order to detect and quantify unique mRNA 
transcripts. More specifically, mRNA libraries were generated by fragmentation and reverse 
transcribed to cDNA with tag-specific primers. Read 2 was assigned 60 base pairs and used to 
map to the reference transcriptome of Hg19. Data was demultiplexed as described previously 
[26]. The Seurat v3.1 package was used in R v3.6 for processing the data [27]. Cells with less 
than 1000 features, greater than 6000 features, and greater than 1% mitochondrial reads were 
removed from analysis. The data were log-normalized with a scale factor of 10,000, and the 2000 
most variable features were identified using a variance stabilizing transformation. The data 
was scaled according to all detected genes and principal component analysis was performed 
on the most variable genes. For linear dimensionality reduction, the number of principal 
components was selected based on combined Jackstraw analysis, examination of elbow plots, 
difference in variation between subsequent principle components, and cumulative percent 
variation explained [28]. To identify clusters, a K-nearest neighbors graph was constructed 
from the selected principal components and clusters were identified from this using the Louvain 
algorithm at a resolution of 0.5 in Seurat. These were then projected with Uniform Manifold 
Approximation and Projection (UMAP). The reciprocal PCA method from Seurat v3 was used 
for data integration. In this procedure, the data from each patient was normalized, variable 
features were selected, the data was scaled, and principal component analysis was performed 
independently. The PCA space of each patient was then projected into each other patient to 
identify anchor points and integrate the datasets. The integrated data was then scaled and 
principal component analysis was performed as before.

Differential expression and Gene Set Enrichment Analysis
Differential expression analysis was performed on normalized RNA values with minimum 
percentage (min.pct) and log fold-change (logfc) thresholds of 0.25 to identify only positive 
(upregulated) genes in each cluster. Significant differentially expressed genes were defined 
by Bonferroni adjusted p-value <0.05. Gene set enrichment analysis was performed using 
clusterProfiler v3.12.0 with msigdbr v7.1.1 database in R [29]. Hallmark gene set enrichment 
was performed by calculating logfc for all genes in each cluster as compared to the other two 
clusters, without any thresholds for min.pct or logfc, and ranking genes based on logfc. 



CHAPTER 5 SINGLE CELL TRANSCRIPTOMICS OF PROSTATE CANCER ASSOCIATED MACROPHAGES

136 137

55

Generation and evaluation of gene signatures
Differentially expressed genes between macrophage clusters identified in the integrated dataset 
were used to construct prognostic signatures for biochemical relapse-free survival of PCa 
patients in a published MKSCC PCa dataset (GSE 21032) [30]. This dataset, comprised of 131 
primary PCa patients with RNA expression and biochemical recurrence (BCR) as determined 
by serum prostate specific antigen (PSA) levels, was used to assess relapse-free survival (RFS). 
RFS was defined as time from prostatectomy to BCR (rise of PSA ≥0.2 ng/ml on two occasions). 
The gene signature (classifier) was generated with a Cox regression model regularized by 
elasticnet penalty using glmnet v4.0 in R [31]. The prognostic performance of the selected gene 
set was assessed in the MSKCC data by performing a nested 10-fold cross-validation (CV). 
The hyperparameters were optimized by testing the procedure at a range of alphas and selecting 
the alpha value that gave the minimum mean-squared error (MSE) and the median lambda 
value across all folds of the CV at the given alpha. Hazard ratios (HR), confidence intervals (CI), 
p-values, and Harrel’s C-index (concordance index) for the MSKCC evaluation were generated 
using the coxph  function in the survival v3.1-12 package in R [32]. Survival plots were made by 
selecting the high (top 25%), low (bottom 25%) and intermediate (middle 50%) risk of relapse 
from the CV predictions, fit with event censoring and BCR-free time from MSKCC dataset using 
the survfit function in the survival package. Receiver operating characteristic (ROC) curves and 
AUC were calculated using predictions from the CV with ROCR v1.0-7 in R [33]. The final 
macrophage gene signature used for validation was generated by fitting the full MSKCC dataset 
with the optimized hyperparameter values. 

Validation of gene signatures in independent cohorts
Gene signatures were tested in three independent cohorts by first extracting the coefficients 
(betas) for the selected genes from the model fit, then multiplying the scaled gene expression 
data in the independent datasets by these coefficients. The prospective Decipher cohort contains 
anonymized genome-wide expression profiles from clinical use of the Decipher test in the radical 
prostatectomy (RP) setting, between February 2014 to August 2017, retrieved from the Decipher 
GRID™ (NCT02609269). The retrospective natural history cohort from Johns Hopkins Medical 
Institute is comprised of men treated with RP after onset of metastasis, with a median follow up 
time of 108 months [34]. The Mayo clinic cohort is a retrospective cohort of men treated with 
RP, with a median follow-up time of 156 months [35, 36]. Model discriminatory capability was 
assessed based on the AUC. Cox proportional hazards modeling was used to estimate the Hazard 
Ratio of metastasis-free survival for patients with high signature (top25%).

Public availability of data
Limited and specific single cell RNA sequencing data of macrophages of the 3 patients can be 
found at GSE133094.

RESULTS
Single-cell analysis of myeloid cells isolated from PCa biopsies
To identify the macrophage populations present in diseased human prostates, fresh biopsies 
were collected from ‘tumorous’ and ‘tumor-adjacent’ areas of post radical prostatectomy (RP) 
specimens. Four previously untreated PCa patients, aged 50-74 years, with an initial serum 
PSA between 7.6 and 9.3 ng/ml and diagnosed with a Gleason score 6-7 and a clinical stage 
pT2-3 adenocarcinoma of the prostate were included in this study (Supplementary Table 1). 
The procedure for obtaining native PCa associated myeloid cells is depicted in Figure 1A. Tissue 
resident macrophages were isolated from the biopsies by successively FACS sorting a single-cell 
suspension of the biopsies for CD45+ leukocytes, followed by isolation of CD3-CD14+ and/or 
CD11b+ myeloid cells [37-39]. In total, 1920 cells, including 911 cells isolated from the tumorous 
and 1009 cells isolated from the tumor-adjacent areas of the prostates were sequenced on 8 
plates (Supplementary Table 1). Cells with less than 2000 UMIs were not considered, while only 
genes that were detected with at least 4 UMIs in at least 3 cells, were used for further analysis. In 
plates 4 and 7, very few cells above the 2000 UMI cut-off were found. Furthermore, high levels 
of technical artefact genes like KCNQ1OT1, which is a non-coding region rich in poly-A repeats 
and often found in cell transcripts of poor quality were also detected [40]. For these reasons, 
plates 4 and 7 were excluded from further analysis. After additional quality control filtering to 
remove low-quality cells and doublets/multiplets, plate 8 was found to contain very few cells and 
was also removed from analysis. The distributions of the remaining cells were normal and 751 
cells were retained for subsequent analysis (Supplementary Figure 1).

Clustering of myeloid cells to identify PCa macrophage subtypes
To surmount the implicit noise of individual features in scRNA data, Seurat uses principal 
component (PC) analysis to assess the dimensionality, followed by graph-based clustering to 
identify populations of highly-interconnected cells [27]. Initial clustering of the data yielded 
6 independent clusters, with cluster 3 being substantially divergent from the remaining 
clusters (Supplementary Figure 2A). This was also evident in the first principal component 
(Supplementary Figure 2B). Examination of the genes within PC1, as well as markers for 
various cell types across all clusters revealed that cells in cluster 3 expressed the well-known 
natural killer (NK) cell markers  NKG7 and GNLY (Figure 1B, Supplementary Figures 2C-D) 
[41]. The presence of these cells after FACS sorting is likely residual from the CD11b (ITGAM) 
selection (Figure 1B). Since the focus of this study is macrophages, these NK cells were removed 
from further analysis. The 641 cells in the remaining clusters are considered macrophages as 
they all express various pan-macrophage markers (CD68, CD86), while lacking expression of 
established markers for other immune cell types (T-cell, B-cell, NK-cell), prostate epithelium 
(FOLH1, KLK3), and mesenchymal cells (PDGFRB, FAP) (Figure 1B) [42, 43].

 After removal of NK cells, the remaining macrophages were reanalyzed as above. This resulted 
in 5 clusters, however the clustering was highly patient specific (Figures 2A-B). To remove 
these patient-specific batch effects, a reciprocal PCA method was employed [27]. The optimal 
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Figure 1. Single cell sequencing of myeloid cells from prostate cancer patients. (A) Experimental 
procedure: single cell suspensions of multiple biopsies from the tumor and tumor-adjacent portions of 
radical prostatectomy specimens were sequentially FACS sorted

dimensionality of the integrated dataset was determined to be 20 PCs, and these were used for 
all downstream analysis (Supplementary Figure 3). Clustering of the final integrated dataset 
revealed 3 distinct macrophage subtypes (Figure 2C). The cells from each patient were no longer 
forming isolated or dominant clusters, but were instead distributed across all three clusters, 
indicating that the reciprocal PCA method was effective at removing the patient-specific batch 
effects (Figures 2D-E). Unexpectedly, the macrophages from the tumor and tumor-adjacent 
biopsies showed identical distributions between the clusters, suggesting that there are no 
differences between the macrophages present in the tumorous and tumor-adjacent prostate 
tissue (Figures 2E-F). Cumulatively these results indicate that there are three biologically 
distinct macrophage subpopulations present throughout the diseased human prostate.

Evaluation of M1 and M2 macrophage phenotypes in PCa clusters
As a first step to examine the identity of these macrophage clusters, previously established 
markers associated with M1-like and M2-like phenotypes were investigated [21]. Plotting all 
detectable M1 and M2 marker genes for each cell in a heatmap revealed that many markers 

Figure 2. Identification of prostate cancer-associated macrophage subtypes. (A) UMAP projections of 
macrophage clustering after NK cell removal. Colors indicate five distinct clusters. (B) UMAP projections 
of cells from each patient reveals strong patient-specific batch effects. Each color represents cells from 
a different patient. (C) UMAP projections after reciprocal-PCA integration remove batch effects. Colors 
indicate three distinct clusters. (D) UMAP projection of integrated data shows all patient samples 
are comparable and do not cluster separately. Each color represents cells from a different patient.  (E) 
Distributions of cells within each cluster, with percentage of cells from each cluster show on the y-axis. 
(F) UMAP projection of macrophages isolated from tumor (pink) and tumor adjacent (green) biopsies are 
comparable and do not cluster separately. 
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are not readily detectable in all cells and there is no clear M1/M2 separation between these 
clusters (Figure 3A). Given the varying expression levels and the sparsity of marker expression, 
averaging individual markers within each cluster was not useful in evaluating M1/M2 identity 
within the clusters (Supplementary Figures 4A-B). For these reasons, all M1 and M2 markers 
were separately combined by averaging the RNA expression of all M1 or M2 markers within each 
cell. From this analysis it is evident that the mean expression level of all combined M2 markers 
per cell are higher than the mean M1 marker expression levels (Figure 3B, Supplementary 
Figure 4C). Furthermore, the mean M1 expression levels were slightly but significantly higher 
in cluster 2, while the mean M2 expression levels were significantly elevated in cluster 0 (Figures 
3C-D). These results demonstrate that while a slightly elevated expression of the averaged M1 
and M2 markers can be detected in certain clusters, these are not the main factors contributing 
to the variation that separates these macrophage populations.

Identification of differentially expressed genes and biological pathways
To determine the biological differences between these three macrophage clusters, differential 
expression analysis was performed to detect marker genes in each cluster. This analysis 
identified 468 significantly differentially expressed genes, with 164 genes identified as markers 
in cluster 0, 199 genes in cluster 1, and 105 genes in cluster 2 (Figure 4A). The most differentially 
expressed genes from each cluster show either expression only in their cluster, or elevated 
expression as compared to the other clusters (Supplementary Figure 5A-B).  Examining this 
list of genes showed only 11/68 M1/M2 markers to be differentially expressed, with 3/33 M1 
markers upregulated in cluster 2 and 6/35 M2 markers upregulated in cluster 0 (Supplementary 
Table 2). These results agree with the slight enrichments observed in Figures 3C-D, however 
there are also two M2 markers upregulated in cluster 2, further exemplifying the need for  
better stratification.

To explore the functional pathways that genes associated with each cluster are involved 
in, gene set enrichment analysis (GSEA) was performed (Supplementary Figure 6). Cluster 0 
genes showed activation of the hallmark TNFa signalling via NFKB as well as WNT b-catenin 
signalling, and suppression of interferon pathways (IFN-a and IFN-g), MTORC1 signalling, and 
complement pathways, among others (Supplemental Figure 6A). Conversely, cluster 2 showed 
activation of multiple inflammatory pathways including IFN-a, IFN-g, TNFa, and complement, 
while showing suppression of WNT b-catenin signalling and cell cycle pathways (Supplemental 
Figure 6B). Cluster 1, however, showed suppression of multiple immune pathways (IFN-a, 
IFN-g, TNFa, among others), and activation of cell cycle pathways (E2F targets, MYC targets, 
G2M checkpoint) as well as MTORC1 signalling (Supplementary Figure 6C). To explore 
the possibility of PCa TAM regulation of T-cells, known markers of T-cell regulation by 
TAMs were interrogated in the data [44]. Very few of these markers were readily detectable 
and only one, CSF1R, was found to be significantly differentially expressed (Supplementary  
Figure 7). Collectively, these results suggest that each macrophage population is involved in 
unique biological functions.

Generation and evaluation of macrophage gene signature
To develop a prospective gene signature, all genes in the integrated dataset found to be 
significantly differentially expressed between macrophage clusters were included (Figure 4A). 
Using a published PCa dataset from Memorial Sloan Kettering Cancer Center (MSKCC) [27] 
a 217-gene prognostic signature for biochemical relapse-free survival of PCa patients was 
constructed (Figure 4A). The performance of the macrophage gene signature was evaluated 
employing 10-fold nested cross-validation on the MSKCC dataset by receiver-operator 
characteristic (ROC) as performance measure (Figure 4B). As expected, in a Cox regression 

Figure 3. Canonical M1 and M2 macrophage marker expression in prostate cancer associated macrophages. 
(A) Heatmap of all detectable M1 and M2 macrophage markers in relation to the three macrophage clusters. 
Color bar indicates RNA expression level scaled by z-score (B) Average expression of all M1 (orange) or M2 
(purple) markers from (A) within each cell. ***M1 vs M2; p<2e-16 Welch’s t-test. (C) Average normalized 
expression of all M1 markers in (A) per cell within each cluster. ***p<2e-16 One-way ANOVA with 
post-hoc Tukey HSD. (D) Average normalized expression of all M2 markers in (A) per cell within each 
cluster; ***p<2e-16 One-way ANOVA with post-hoc Tukey HSD.
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Figure 4. Gene signature from differentially expressed macrophage genes has significant prognostic value. 
(A) Heatmap of all significant differentially expressed genes present in the integrated assay by macrophage 
cluster (Bonferroni adjusted p-value <0.05). Color bar indicates integrated expression level scaled by 
z-score. (B) Macrophage gene signature outcome predictions from 10-fold cross-validation in MSKCC 
dataset.  Colors indicate patient subpopulations of predicted high (red; 25%), medium (blue; 50%) and low 
(green;25%) risk of recurrence. P-value is from log-rank test. (C) Receiver operating characteristic (ROC) 
curve for 10-fold cross-validation of macrophage signature in MSKCC dataset, colorized by threshold value. 

analysis this classifier showed a significant association with relapse-free survival (hazard 
ratio (HR) = 4.1, p = 1.7e-05) (Figure 4C). Furthermore, in a multi-variate analysis including 
the signature with Gleason score (biopsy and pathological), pre-diagnosis biopsy PSA levels, 
seminal vesicle invasion (SVI), extracapsular extension (ECE), and clinical stage the signature 
was found to be an independent predictor of outcome (Table 1). 

Using the Cox model linear predictor as a prognostic index (PI), the relative prognostic 
value of each macrophage cluster was assessed by summing the product of the model coefficients 
(betas) and the scaled gene expression values in each cell (Supplementary Figure 8). This 
analysis demonstrated that cells from cluster 2 had a low prognostic index, while cells from 
clusters 0 and 1 had a high prognostic index. This result indicates that higher numbers of cells 
from cluster 2 are associated with better outcome, while higher numbers of cells form clusters 
0 and 1 are associated with worse outcome. Taken together with the results of pathway analysis, 
these results indicate that, the pro-inflammatory macrophage subset are associated with better 
outcome, while anti-inflammatory and proliferative macrophage subtypes are associated with 
worse outcome.

To further assess the prognostic value of the macrophage gene signature, it was validated in 
three independent cohorts from the Decipher GRID registry. The first cohort is a prospective 
Decipher GRID cohort containing RNA expression data from >5,000 radical prostatectomy 
(RP) patients and includes basic demographic and pathological data, but not longitudinal 
clinical outcomes. This cohort was used to associate the signature to Decipher risk groups and 
pathological Gleason score (Figure 5A-B). Since this cohort has no metastasis outcome yet, high 
Decipher group was used as a surrogate of metastasis potential since it was heavily validated for 
that endpoint [34, 36, 45].  The second cohort is a retrospective natural history cohort (n=355) 
comprised of men treated with RP at Johns Hopkins Medical Institutions (JHMI) [34]. The third 

Table 1. Multivariate Cox regression analysis for macrophage signature in MSKCC cohort 
 

Hazard	ratio	(95%CI)	

Table 1. Multivariate Cox regression analysis for macrophage signature in MSKCC cohort
Validation of gene signature in independent PCa cohorts
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cohort is a retrospective cohort (n=780) of men treated with RP at Mayo Clinic [36, 45]. All 
three cohorts are described in Supplementary Table 4. 

The ability of the macrophage signature to predict metastasis-free survival was tested 
a Cox regression analysis in the Mayo and JHMI cohorts and showed the significant prognostic 
performance (Mayo: HR = 1.89, p-value = 1.0e-06; JHMI: HR = 2.25, p-value = 3.3e-05)  
(Figure 5). The classifier was also found to be an independent predictor of metastasis in 
a multivariate analysis, and the statistics of all analysis are summarized in Table 2. Taken together, 
these results indicate that profiling single-cell RNA expression in PCa associated macrophages 
and identifying subpopulations present in the diseased prostate can have significant prognostic 
value in predicting patients’ likelihood of biochemical relapse and metastasis. These results lay 
the foundation for profiling macrophage populations in prostate cancer and other cancer types, 
and will inform future studies investigating the immune systems’ role in cancer progression.

DISCUSSION
Macrophages can either promote or suppress cancer development and progression depending 
on their specific phenotype and function. In this study, we defined the degree of human PCa-
specific macrophage diversity through single-cell sequencing with the aim to identify PCa-
specific macrophage populations. Three macrophage subtypes were identified, and while some 
canonical M1 and M2 markers were present, these were not adequate to define the clusters. Using 
the genes differentially expressed in each cluster we were able to develop a gene signature with 
significant prognostic value in multiple PCa cohorts.  Remarkably, no difference was observed 
between macrophages collected from the tumor and the adjacent non-tumor sites, suggesting 
that tumorigenic factors also affect distant non-tumorigenic sites. Furthermore, this suggests 
that these macrophage populations could in theory be detected from a biopsy regardless to 
tumor cell percentage. This is important because the prognostic value of the gene signature 
outweighs the biopsy Gleason score and pre-diagnosis biopsy PSA levels, and is approaching 
the significance of pathological Gleason, suggesting a possible path to identifying high-risk 
patients without necessitating radical prostatectomy. Additionally, the macrophage signature 
and pathological Gleason score were both independent predictors in our multivariate analysis, 
suggesting that the signature can provide additional prognostic information. However, these 
finding will require further experimental validation before such measures could be employed. 

The gene set enrichment analysis performed in this study suggests that each macrophage 
subtypes is involved in unique biological processes. Cluster 1 does not appear to be participating 
in inflammatory pathways and may represent a proliferative feeder cell type, or otherwise less 
differentiated macrophage subtype. Although cluster 0 shows activation of TNFa signalling via 
NFKB, it appears largely anti-inflammatory through suppression of IFNa, IFNg, complement, 
and other inflammatory pathways. Cluster 2 appears primarily pro-inflammatory, as evidenced 
by activation of a wide array of inflammatory pathways. Furthermore, we found WNT 
b-catenin signalling to be suppressed in this cluster, while the same pathway was activated 
in cluster 0. Several studies showed a major role of WNT b-catenin signalling in promoting 
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Figure 5. Validation of the gene signature in independent Prostate cancer cohorts. (A) Macrophage gene 
signature predictions correlate in a prospective cohort of >5000 patients with high Decipher GRID scores 
(blue) vs. low and intermediate scores (grey). (B) Macrophage gene signature predictions correlate with 
pathological Gleason score in Decipher GRID. ****p-value <2e-16 from linear model between Gleason and 
Macrophage signature. (C-D) Gene signature outcome predictions in two independent PCa cohorts from 
JHMI (C) and Mayo Clinic (D), stratifying patients on low (green, bottom 25%), medium (blue; middle 
50%) or high (red; top 25%) risk of metastatic disease. Y-axis shows metastasis-free survival, number of 
patients at risk are indicated, p-values from log-rank test.

M2-differentiation of macrophages in various diseases, including cancer [46-49]. These 
results agree with the notion that macrophages can broadly adopt either a pro-inflammatory 
or anti-inflammatory phenotype, and this could either potentiate or mediate cancer  
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Table 2. Performance statistics of macrophage gene signature

Univariate Analysis

  Hazard Ratio  (95% CI) p-value (logrank)

MSKCC cohort 4.13 (2.18 - 7.83) 1.7e-05****
Mayo cohort 1.89 (1.46 - 2.44) 1.0e-06****
JHMI cohort 2.25 (1.53 - 3.31) 3.3e-05****
Multivariate Analysis  
Mayo Cohort    
Signature (per quartile increase) 1.23 (1.1 - 1.38) 0.0002***
Pathological Gleason (ref <8) 2.44 (1.89 - 3.16) 1.00e-11****
PSA at diagnosis (ref <10) 0.81 (0.63 - 1.05) 0.12
Seminal vesicle invasion (SVI) 1.56 (1.19 - 2.05) 0.001**
Lymph node involvement (LNI) 1.23 (0.9 - 1.68) 0.18
Extraprostatic extension (EPE) 1.22 (0.94 - 1.6) 0.13
Surgical margins (SM) 1.06 (0.83 - 1.35) 0.63
JHMI cohort
Signature (per quartile increase) 1.19 (1.00 - 1.41) 0.05*
Pathological Gleason  (ref <8) 3.04 (2.06 - 4.51) 2.00e-08****
PSA at diagnosis (ref <10) 0.85 (0.59 - 1.22) 0.38
Seminal vesicle invasion (SVI) 2.02 (1.34 - 3.05) 0.0007***
Lymph node involvement (LNI) 2.12 (1.41 - 3.19) 0.0002***
Extraprostatic Extension (EPE) 1.2 (0.72 - 2.00) 0.47
Surgical Margins (SM) 1.07 (0.73 - 1.56) 0.72

progression [3, 4, 21]. It will be important for future studies to explore the role these macrophage 
populations play in prostate cancer, and to investigate targeting these subtypes and their 
associated pathways with immunotherapy.

Cancer immunotherapies, specifically those inhibiting T cell immune checkpoints, have 
generated significant impact in recent years, with established efficacy in advanced melanoma 
[50, 51], non-small cell lung cancer [52, 53] and bladder cancer patients [54, 55]. However, 
in other cancers, including prostate cancer (PCa), immunotherapy efficacy is limited [56, 57]. 
The uncertain therapeutic efficacy of immunotherapy in PCa is partly due to a poor infiltration 
of immune cells in the TME  [13, 58-61].  Moreover, TAMs display an ability to modulate tumor 
immunity by suppression of T cell recruitment and function, though the precise mechanisms 
have yet to be elucidated [44]. Several direct and indirect suppressive actions of macrophages 
on T cell functions have been suggested, including involvement of immune checkpoints ligands 
(e.g.: PDL1, B7-H4), cytokines (e.g.: IL-10, CXCL10, CCL22) and cell surface receptors (e.g.: 
CD206, CSF1R) [44]. However, in this study, only the colony-stimulating factor 1 receptor 
(CSF1R), which is a key regulator of immunosuppressive macrophage expansion, was found 
to be enriched in cluster 0. Expansion of this specific macrophage phenotype might negatively 
affect T cell anti-tumor function [44, 62, 63]. In agreement with this, inhibition of CSF1R was 

shown to result in the re-polarization of macrophages into a pro-inflammatory phenotype 
[64]. Similarly, CSF1R blockade in combination with other immunotherapy strategies has been 
widely explored in pre-clinical studies [63, 65, 66].

Limitations of this study include the small number of patients included in the study and 
the absence of assessment of protein expression of the key selected genes. To this end, future 
studies should include immunohistochemistry analysis to further support our findings.

In conclusion, in this study we demonstrate the relevance of using single-cell transcriptomics 
from PCa-associated macrophages as a prognostication strategy for individual patients. 
We propose that targeting unique tumor-associated macrophage subtypes, as opposed to all 
macrophages, can provide a therapeutic avenue to combat prostate cancer and potentially other 
cancer types.
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SUPPLEMENTARY INFORMATION

B 

A 

Supplementary Figure 1. Quality control metrics of single-cell RNA-seq data. (A) Plot showing the number 
of features (genes), RNA counts, and percentage mitochondrial reads of the data set prior to filtering. (B) 
Quality control metrics as in (A) after filtering.
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Supplementary Figure 2. Identification of contaminating cells. (A) UMAP projection of filtered dataset 
colored by the six identified clusters. (B) First two principal components (PC) showing the difference in 
cluster 3 for PC1. (C-D) UMAP projections showing high expression of the natural killer (NK) cell markers 
GNLY (C) and NKG7 (D) in cluster 3. Color bar indicates normalized expression values.

Cluster Cluster 

A B 

D C 

A B 

C 

Supplementary Figure 3. Principal component selection. (A) Jackstraw plot showing analysis of the first 30 
principal components, indicated by different colors (PC). (B) Elbow plot of the 50 analyzed PCs. (C) Top 
20 genes contributing to the variation observed in each of the 20 selected PCs.
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A B 
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Supplementary Figure 4. Canonical M1 and M2 macrophage markers expression throughout the clusters. 
(A) Mean expression of each individual M1 marker per cluster. (B) Mean expression of each individual 
M2 marker per cluster. (C) Averaged expression of all M1 and M2 markers in each cell colored by cluster, 
plotting mean expression of M1 markers (x-axis) over mean expression of M2 markers (y-axis).

Supplementary Figure  5. Most differentially expressed genes in each cluster. (A) Heatmap of the top 10 
most differentially expressed genes in each macrophage cluster with expression level scaled to z-score. 
(B) Violin plots for representative differentially expressed genes in each cluster showing normalized RNA 
expression levels. Colors indicate macrophage clusters and each black dot represents a cell.
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A 

B
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Cluster 2 

Cluster 1 

Cluster 0 

Supplementary Figure 6. Gene set enrichment analysis for each cluster. (A) Gene set enrichment analysis 
(GSEA) for hallmark gene sets in cluster 0. (B) GSEA for hallmark gene sets in cluster 2. (C) GSEA for 
hallmark gene sets in cluster 1. Circle size indicates number of genes identified in the gene set, color shows 
Benjamini-Hochberg adjusted p-value.

**** 

Cluster Cluster Cluster Cluster 

Cluster Cluster Cluster Cluster 

Cluster Cluster Cluster Cluster 

Cluster Cluster Cluster Cluster 

Supplementary Figure 7. Expression of markers for TAM regulation of T-cells. RNA expression levels 
for selected markers of tumor-associated macrophage regulation of T-cells. **Bonferroni adjusted  
p-value <0.01.
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Low PI 
(Pro-inflammatory) 

High PI 
(Anti-inflammatory) 

Mid/High PI 
(Anti-inflammatory /  
Proliferative) 

Clusters 

Macrophage Signature Prognostic 
Index 

A B 

C 

Macrophage Signature PI per cell 

Supplementary Figure 8. Macrophage Signature prognostic index (PI) applied to macrophage clusters. (A) 
Prognostic index for for each cell, derived by summing the products of the scaled gene expression values 
and the model coefficients (betas). (B) Boxplot of the prognostic index (PI) values as in (A), demonstrating 
the lower PI in cluster 2. *p<0.05 and ***p<2e-16, One-way ANOVA with post-hoc Tukey HSD. (C) UMAP 
representation of macrophage clusters as in Figure 2C, highlighting the prognostic index (PI) and pathway 
analysis characteristics as in Supplementary Figure 7 for each cluster.
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Supplementary Table 2. Significant differentially expressed canonical M1 and M2 associated genes

  gene p_val avg_logFC pct.1 pct.2 p_val_adj cluster

M1 markers BIRC3 5.09e-13 0.969 0.503 0.253 8.83e-09 2
SLC2A6 3.38e-11 0.547 0.344 0.132 5.86e-07 2
PSME2 2.54e-08 0.521 0.681 0.613 4.41e-04 2

M2 markers MAF 2.08e-43 1.188 0.774 0.302 3.60e-39 0
MSR1 2.80e-17 0.545 0.698 0.425 4.86e-13 0
TGFBR2 2.48e-12 0.498 0.695 0.502 4.31e-08 0
SLC4A7 4.50e-12 0.461 0.666 0.458 7.81e-08 0
IGF1 6.04e-11 0.453 0.269 0.08 1.05e-06 0
MS4A4A 1.51e-10 0.484 0.613 0.409 2.62e-06 0
CD36 1.08e-21 0.974 0.452 0.122 1.88e-17 2
LTA4H 2.06e-21 0.984 0.71 0.411 3.58e-17 2

Supplementary Table 3. Summary of patient cohorts used for gene signature validation

 
 

Prospective GRID 5k
No. (%); Median (IQR)

Mayo Clinic cohort
No. (%); Median 
(IQR)

Johns Hopkins Medical  
Institutions cohort
No. (%); Median (IQR)

Total 5,239 (100%) 780 355
Age (years) (at RP or Bx) 65.5 (60, 69.2) 66(60,70) 59(56,64)
PSA at diagnosis (ng/mL) 6.5 (4.8, 9.7) 9.4(6.1,18) 8.6(5.7,13.3)
<10 ng/mL 1886 (36%) 410 (52.5%) 209 (58.9%)
10-20 ng/mL 441 (8.4%) 179 (22.9 %) 111 (31.2%)
>20 ng/mL 166 (3.1%) 176 (22.5 %) 34 (9.6%)
Gleason Grade group (pathology) 
Group 1 (GS 3+3) 271 (5.1%) 81 (10.4%) 7 (2%)
Group 2 (GS 3+4) 1769 (33.7%) 390 (50%) 150 (42.2%)
Group 3 (GS 4+3) 1209 (23%) NA 66 (18.6%)
Group 4 (GS 8) 396 (7.5%) 107 (13.7%) 35 (9.9%)
Group 5 (GS 9-10) 554 (10.5%) 202 (25.9%) 97 (27.3%)
SM (positive) 2099 (40%) 401 (51.4%) 102 (28.7%)
EPE (present) 2092 (40%) 372 (47.7%) 238 (67%)
SVI (present) 781 (15%) 260 (33.3%) 86 (24.2%)
LNI (positive) 195 (3.7%) 106 (13.6%) 62 (17.5%)
Metastasis outcome NA 288 (36.9%) 127 (35.8%)
High genomic risk (Decipher) 1476 (28%) 194 (24.8%) 46 (12.9%)
Median follow-up (months) 48 [36-54] 156[106-201] 108 [72-144]




