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5.1 Abstract 

A mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model was used for preclinical 
to clinical translation of inotuzumab ozogamicin, a CD22-targeting antibody-drug conjugate 
(ADC) for B-cell malignancies including non-Hodgkin’s lymphoma (NHL) and acute lymphocytic 
leukemia (ALL). Preclinical data was integrated in a PK/PD model which included:  (1) a plasma 
PK model characterizing disposition and clearance of inotuzumab ozogamicin and its released 
payload N-Ac-γ-calicheamicin DMH, (2) a tumor disposition model describing ADC diffusion into 
the tumor extracellular environment, (3) a cellular model describing inotuzumab ozogamicin 
binding to CD22, internalization, intracellular N-Ac-γ-calicheamicin DMH release, binding to DNA 
or efflux from the tumor cell (4) tumor growth and inhibition in mouse xenograft models. The 
preclinical model was translated to the clinic by incorporating human PK for inotuzumab 
ozogamicin and clinically relevant tumor volumes, tumor growth rates and values for CD22 
expression in the relevant patient populations.  The resulting stochastic models predicted 
progression free survival (PFS) rates for inotuzumab ozogamicin in patients comparable to the 
observed clinical results. The model suggested that a fractionated dosing regimen is superior to 
a conventional dosing regimen for ALL, but not for NHL.  Simulations indicated that tumor growth 
is a highly sensitive parameter and predictive of successful outcome.  Inotuzumab ozogamicin PK 
and N-Ac-γ-calicheamicin DMH efflux are also sensitive parameters and would be considered 
more useful predictors of outcome than CD22 receptor expression.  In summary, a multi-scale, 
mechanism-based model has been developed for inotuzumab ozogamicin, which can integrate 
preclinical biomeasures and PK/PD data to predict clinical response. 
 
5.2 Introduction 

Antibody-drug conjugates (ADCs) represent a promising therapeutic modality for clinical 
management of cancer (1, 2).  There are more than 40 ADCs currently in different stages of clinical 
development for the treatment of various malignant diseases (3). In addition, brentuximab 
vedotin (Adcetris; Seattle Genetics) and ado-trastuzumab emtansine (T-DM1, Kadcyla; Roche-
Genentech) are examples of recently approved ADCs on the market for oncology indications (2).  
ADCs currently in clinical development offer substantial improvements over first generation ADCs 
with more potent cytotoxins and superior conjugation stability (4). However, some ADCs are 
failing in the clinic due to insufficient efficacy (relative to standard of care) and off-target toxicity.  
For example, IMGN-901 is a CD-56-targeting ADC which failed to demonstrate sufficient 
improvement in efficacy over standard of care (etoposide/ carboplatin) in a Ph2 SCLC trial (5). 
Seattle Genetics discontinued the clinical development of vorsetuzumab mafodotin (SGN-75), an 
ADC for the treatment of solid tumors and hematological malignancies in favor of SGN-CD70A, 
an ADC against the same target but with a more potent payload (6). The timing is right to learn 
from these ADCs and to use the latest technology advancements to understand how they can be 
improved upon.  Refinements in next generation ADCs are already being seen with advances in 
antibody engineering, improvements in linker-payload conjugation strategies (7) and the 
generation of novel highly potent payloads with different mechanisms of action (4, 8). 
Mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling is an example of an applied 
quantitative tool which can be used to provide understanding of the mechanistic processes of 



100 
 

drug action (9).  The complex, non-linear processes involved in the physiological and cellular 
disposition of ADCs and their component parts make them ideal candidates for mechanistic 
modeling to enable integration and understanding of these multiple processes (10).  The result is 
not only comprehension of the underlying system and mechanism of action, but also more 
tractable applications, including target feasibility, optimal ADC selection, preclinical to clinical 
translation and guidance on dose regimen optimization. 
Quantitative modeling of ADCs in the literature to date has focused on empirical, data-driven 
PK/PD models (11, 12).  These models are relatively easy to develop and apply and can be used 
for some level of extrapolation, e.g., across species (with some assumptions), to enable 
quantitative decision making.  However, ADCs have intricate mechanisms of action, and the 
quantitative questions asked often require the use of more complex mechanistic models.  For 
example, to optimize an ADC, properties of the target, including receptor expression, 
internalization rate and intracellular processing/recycling rate, need to be balanced (13).  
Properties of the ADC and its payload, including affinity for their targets and pharmacokinetics, 
also need to be included.  While such models are an investment in terms of data requirements, 
they offer a high return of investment with respect to the granularity of the questions answered. 
Such a mechanistic PK/PD model for ADCs, capable of integrating preclinical biomeasures and 
PK/PD data to predict clinical response, was proposed by Shah, et al. (10).  The authors used this 
model to quantitatively understand and characterize the disposition of brentuximab vedotin and 
its payload MMAE at the cellular and physiological level.  A novel tumor penetration model was 
developed to predict intracellular tumor payload concentration, which was then linked to an 
optimized tumor growth inhibition model to characterize ADC efficacy in mouse xenograft 
models.  The integrated mechanism-based PK/PD model was translated to the clinic and used to 
perform clinical trial simulation for brentuximab vedotin.  The resulting multi-scale mechanistic 
modeling approach predicted progression free survival (PFS) rates and complete response rates 
for brentuximab vedotin in patients that were comparable to the observed clinical results.  A 
different application of this model was described in a subsequent publication by Shah, et al. 
where it was used for a priori prediction of tumor concentrations of ADC and payload for an anti-
5T4 ADC, A1mcMMAF (14).  The model was also used to investigate sensitivity of model 
parameters.  For example, payload dissociation from ADC and tumor size were found to be the 
most important determinants of plasma and tumor payload exposure. 
In the analysis described herein, a mechanistic modeling approach was used to gain quantitative 
insight into the system dynamics of an anti-CD22 ADC in late stage clinical development for B-cell 
malignancies.  Inotuzumab ozogamicin (CMC-544, PF-05208773) is an ADC composed of an IgG4 
anti-CD22 monoclonal antibody conjugated to the enediyne DNA damaging agent N-Ac-γ-
calicheamicin DMH via an acid-labile 4-(4’-acetylphenoxy)butanoic acid (Acbut) linker (15, 16).  
Inotuzumab ozogamicin is currently being evaluated in Phase 2/3 clinical trials for treatment of 
acute lymphoblastic leukemia (ALL).  A Phase 3 study of inotuzumab ozogamicin in relapsed or 
refractory aggressive non-Hodgkin lymphoma (NHL) was discontinued due to lack of superiority 
relative to an active comparator arm (investigator’s choice of bendamustine + rituximab or 
gemcitabine + rituximab) (17). Preclinically, inotuzumab ozogamicin inhibited the growth and 
establishment of B-cell lymphomas and induced the regression of disseminated B-cell lymphomas 
(Ramos, RL) and acute lymphoblastic leukemia (REH) in mouse xenograft models (15, 16).  Mouse 
tumor growth inhibition data, along with inotuzumab ozogamicin plasma PK and target/system 
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parameters were used to perform mechanistic PK/PD modeling for inotuzumab ozogamicin and 
to predict intracellular tumor concentrations of N-Ac-γ-calicheamicin DMH.  The model was 
translated to the clinic, and the results from simulated clinical trials were compared with 
observed clinical trial data to validate the translation process.  The  human model has 
subsequently been utilized for hypothesis generation and as a tool to answer mechanistic 
questions, including the effect of changes in antigen expression or efflux transporter 
capacity/status in patient tumors and the effect of changes in dose and/or regimen (in particular 
for ALL vs. NHL). This application of mechanistic PK/PD modeling demonstrates how preclinical 
data can be translated to the clinic to help scrutinize the mechanism of action of an ADC and 
predict outcome.  Learnings can be applied to earlier stage programs as a quantitative tool to 
help guide their development. 
 
5.3 Materials and Methods 

CD22 Receptor Numbers 

A quantitative flow cytometry method was developed to determine surface antibody binding 
capacity (ABC) per cell as a measure of receptor numbers using the parent antibody (G544) of 
inotuzumab ozogamicin conjugated 1:1 with phycoerythrin (PE) (18).  Ramos and REH cell lines 
were cultured under standard culture conditions. A full binding curve was generated at 4°C under 
conditions that approached equilibrium to prevent internalization and samples were analyzed by 
FACS. The maximum specific binding fluorescent intensity derived from this data analysis was 
interpolated off a BD QuantiBRITE PE calibration curve to calculate the maximum ABC per cell as 
a measure of receptor numbers. 

G544 Internalization  

An imaging flow cytometry-based method was developed to measure internalization of G544, 
conjugated with PE or Alexa Fluor 647, under constant exposure condition.  For each sample 
membrane and cytosolic intensity from CD22+ single cells were determined using area masks 
defined from the brightfield image of each cell.  The extent of internalization at each time point 
was determined using IDEAS software internalization wizard which calculated an internalization 
score (IS) (19) based on the ratio of cytosolic intensity to total cell intensity using the upper 
quartile of pixel intensities.  A plot of the IS vs. time was used to determine the initial half-life of 
internalization.  

Binding Affinities 

The binding of inotuzumab ozogamicin to CD22 receptors was evaluated using surface plasma 
resonance analysis, using the method of DiJoseph et al. (15), and the resulting Kd was determined 
to be 200 pM.  The association rate constant (kon) was assumed to be typical of monoclonal 
antibodies at approximately 5 x 105 M-1s-1 (20).  The dissociation rate constant (koff) was 
interpolated from the Kd and kon using the relationship Kd  = koff / kon and was calculated to be 7.5 
x 10-5 s-1.  As previously reported by Tianhu, et al., N-Ac-γ-calicheamicin DMH binds to DNA with 
an estimated Kd of 135 nM (21). 
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Materials for Mouse Pharmacokinetic Study 

Humanized IgG4 anti-CD22 antibody (G544) was provided by Celltech Chiroscience, plc, Wayne, 
PA. It was linked to calicheamicin with an acid labile AcBut (4-(4_acetylphenoxyl) butanoic acid) 
linker at Wyeth Research. Loading of calicheamicin onto the CD22 antibody was 50 µg of 
calicheamicin per mg of antibody and the average DAR was 3.5. The NHL B cell line RL (CRL-2261) 
was obtained from the American Type Culture Collection (ATCC, Manassas, VA). The cell line was 
determined to be mycoplasma free by a polymerase chain reaction mycoplasma detection assay. 
The cells were maintained as suspension cultures in RPMI medium plus 10% FCS, 10 mM HEPES, 
1 mM sodium pyruvate, 0.2% glucose, Penicillin G sodium 100 U/mL, and streptomycin sulfate 
100 µg/mL. 

Mouse Pharmacokinetics 

The PK of inotuzumab ozogamicin were determined following single intraperitoneal (IP) dose 
administration to non-tumor bearing female nude mice at 20 µg calicheamicin/kg (0.27 mg/kg 
inotuzumab) and 160 µg calicheamicin/kg (3.2 mg/kg inotuzumab), or to tumor (RL) bearing mice 
at 160 µg calicheamicin/kg (3.2 mg/kg inotuzumab) (Monolix software v3.2 (Lixoft, Antony, 
France)). Non-serial, terminal blood samples were collected by cardiac puncture under CO2 
anesthesia from 4 animals/group/time point at 0.1, 0.5, 1, 4, 8, 24, 48, 72, 96, 120, 168, 240 and 
336 h post-dose. All blood samples were collected into tubes and stored on wet ice until the 
serum was separated by centrifugation at approximately 4°C for 15 min. 

Assays to Quantify G544 (Total mAb) and Inotuzumab Ozogamicin (ADC)  

Total mAb and ADC concentrations in mouse plasma were determined using a validated enzyme-
linked immunosorbent assay (ELISA) with colorimetric detection. For the total mAb assay, the 
capture protein was a soluble form of recombinant CD22 protein (CD22:Fc fusion protein) and a 
monoclonal murine anti-human IgG4 conjugated to horseradish peroxidase (HRP) was used to 
detect bound G544, using 3,3’,5,5’-tetramethylbenzidine (TMB) as the substrate for a 
colorimetric readout . For the ADC assay, CD22: Fc fusion protein was used to capture the G544 
antibody portion of the ADC molecule.  The calicheamicin portion of the molecule was then 
recognized with a rabbit anti-calicheamicin antibody.  A goat anti-rabbit antibody conjugated to 
HRP was used to detect the bound rabbit antibody with TMB as the substrate for colorimetric 
readout. 

Estimating Preclinical Pharmacokinetic Parameters for Total mAb, ADC and Payload 
Dissociation Rate  

PK parameters for the mouse mAb were determined by fitting a 2-compartment PK model to the 
total mAb concentrations. It was assumed that the difference in clearance between the total mAb 
and ADC profiles was due to the dissociation of the calicheamicin payload (PL) from the mAb.  
The total mAb model with an additional clearance term describing dissociation of the PL was then 
fitted to the ADC concentration profile to estimate the dissociation rate constant, kdis, as 
described previously (14).  
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Mouse Tumor Xenograft Studies  

Tumor growth inhibition studies were completed in three different xenograft bearing mouse 
models: Ramos (Burkitt lymphoma), RL (non-Hodgkin’s lymphoma) and REH (acute lymphoblastic 
leukemia), as reported in (15, 16).  Briefly, female athymic nude mice were exposed to total body 
irradiation (400 rad) to suppress their residual immune system and facilitate the establishment 
of xenografts.  Three days later, mice were injected subcutaneously with 5 x 106 REH ALL cells (6-
8 mice/group) or 1 x 107 Ramos or RL cells (7-9 mice/group) suspended in Matrigel (Collaborative 
Biomedical Products, Belford, MA, USA, diluted 1:1 in RPMI-1640 medium) in the right flank for 
REH and left flank for RL and Ramos.  Mice with staged tumors were administered normal saline 
(vehicle) or inotuzumab ozogamicin at Q4D x 3 regimen IP.  Doses of inotuzumab ozogamicin 
were calculated based on quantity of N-Ac-γ-calicheamicin DMH AcBut and were 10, 40 and 160 
µg calicheamicin/kg (0.14, 0.56, 2.22 mg/kg inotuzumab) for REH and Ramos or 20, 80 and 320 
µg calicheamicin/kg (0.28, 1.11, 4.44 mg/kg inotuzumab) for RL.  Tumors were measured at least 
once a week and their mass was defined as tumor volume (mm3) = 0.5 × (tumor width2) x (tumor 
length).  

PK/PD Modeling  

The mechanistic PK/PD model developed in this work and calibrated with the mouse xenograft 
data involved four major parts: 1) PK model describing time evolution of ADC and unconjugated 
payload in plasma, 2) tumor disposition model relating exposure between plasma and tumor, 3) 
cellular model describing intracellular payload at site of action, and 4) tumor growth and 
inhibition.  This model is similar to the model developed and described previously (10), with main 
differences being a CD22 target in contrast to CD30 and calicheamicin payload (DNA toxin) in 
contrast to MMAE payload (tubulin inhibitor). 

ADC and Unconjugated Payload PK 

Plasma PK of inotuzumab ozogamicin and unconjugated payload (calicheamicin) after dose 
administration was modeled with a two-compartment IP model with additional terms 
characterizing the specific clearance into the tumor (JACOBIAN Modeling and Optimization 
Software, RES Group Inc., Needham, MA). The tumor disposition model is described in the 
subsequent section.  The model equations are:   
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Parameter and variables for these equations are described in Tables 1 and 2.   

Tumor Disposition Model 

The tumor PK of ADC and unconjugated payload is described by a tumor disposition model (10, 
22-24). Expressions describing transport into the tumor appear in the PK equations above and 
tumor compartment expression below as additional source and sink terms involving a number of 
additional parameters (e.g., 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐, 𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘ℎ, 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴, etc).  Rather than estimating these parameters 
from the mouse xenograft data, values for permeability and diffusivity of the ADC and payload 
are determined from established correlations with molecular weight and known tumor size 
parameters (22-24).  Values and references are provided in Table 2.  

Tumor and Intracellular Concentrations and Dynamics 

Concentrations of ADC and unconjugated payload in the tumor compartment and intracellular 
space are described by the equations below.  The equations account for transport into the tumor 
compartment from plasma, binding and internalization into cell and binding of payload to the 
DNA target of calicheamicin. 
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𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑇𝑇 − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑘𝑘𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑃𝑃𝑃𝑃𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑃𝑃 𝑃𝑃𝐿𝐿𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑑𝑑𝑃𝑃𝑃𝑃𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑜𝑜𝑜𝑜

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑃𝑃𝑃𝑃𝑏𝑏

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑏𝑏

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

ADC and unconjugated payload enter the tumor compartment as described by the tumor 
disposition model.  ADC binds with CD22 on the cell surface followed by internalization and 
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release of payload.  Payload enters the cell via the ADC and also by non-specific internalization 
of unconjugated payload in the tumor compartment.  Once inside the cell, payload can exit by 
exocytosis or remain in the cell and bind to the DNA target. 

Tumor Growth and Inhibition 

Tumor growth and inhibition is described using the Haddish-Berhane model (12), with equations 
shown below. Model variables are defined in Table 1. 

𝑑𝑑𝑀𝑀1

𝑑𝑑𝑑𝑑
=

𝑘𝑘𝑔𝑔0 �1 − 𝑤𝑤
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑀𝑀1

�1 + �
𝑘𝑘𝑔𝑔0
𝑘𝑘𝑔𝑔

𝑤𝑤�
𝜓𝜓

�
1/𝜓𝜓 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝛾𝛾

𝐼𝐼𝐼𝐼50
𝛾𝛾 + 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛾𝛾 𝑀𝑀1 

𝑑𝑑𝑀𝑀2

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝛾𝛾

𝐼𝐼𝐼𝐼50
𝛾𝛾 + 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛾𝛾 𝑀𝑀1 −
𝑀𝑀2

𝜏𝜏
 

𝑑𝑑𝑀𝑀3

𝑑𝑑𝑑𝑑
=

𝑀𝑀2 − 𝑀𝑀3

𝜏𝜏
 

𝑑𝑑𝑀𝑀4

𝑑𝑑𝑑𝑑
=

𝑀𝑀3 − 𝑀𝑀4

𝜏𝜏
 

The tumor growth portion of this model accounts for a preliminary exponential phase growth, 
followed by linear phase growth and a maximum tumor volume possible in the xenograft.  
Growth inhibition is modeled by a Hill equation as a function of intracellular payload 
concentration and several transduction compartments as cells are killed.  The growth parameters 
are calibrated with data from the control arm of the mouse xenograft experiments and the drug-
related death parameters are calibrated from the various dose arms. 

 

Table 1: Model variables and terms used in equations 

Variable Definition Unit 

𝐴𝐴𝐴𝐴𝑓𝑓 , 𝐴𝐴𝐴𝐴𝑏𝑏 ADC concentration in tumor compartment, free and bound nM 

𝑃𝑃𝑃𝑃𝑇𝑇  Total free payload in cell nM 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑃𝑃𝑃𝑃𝑏𝑏

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  Intracellular concentration of free and DNA-bound payload nM 

𝐴𝐴0, 𝐴𝐴1, 𝐴𝐴2 ADC dosed, central and peripheral compartments, respectively nmol/kg 

𝑃𝑃𝑃𝑃1, 𝑃𝑃𝑃𝑃2 Concentration of free payload in central and peripheral compartments nM 

𝑤𝑤 Tumor volume mm3 

𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4 Tumor volume in growth and three transduction compartments mm3 
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Additional Equations 

Several additional equations appear in the model, including tumor volume as a function of the 
transduction compartments, tumor mass radius (assuming spherical tumor), total intracellular 
payload and 𝐷𝐷𝐷𝐷𝐷𝐷 as a function of dissociation rate.  

𝑤𝑤 = 𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 + 𝑀𝑀4 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
3𝑤𝑤
4𝜋𝜋

�
1/3 1

10
 

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑇𝑇 + 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃𝑃𝑃𝑃𝑏𝑏

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 

Calicheamicin Pharmacokinetics 

Parameters for the plasma PK model of unconjugated calicheamicin are required for mouse to fit 
the xenograft tumor growth inhibition (TGI) data and for human for the subsequent clinical 
predictions. However, single dose IV data for calicheamicin was only available for rat and dog.  A 
two compartment PK model was fit to this data to obtain values for 𝑉𝑉𝑃𝑃𝑃𝑃,1, 𝑉𝑉𝑃𝑃𝑃𝑃,2, 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 
for both available species.  PK parameter values for mouse and human were then obtained by 
allometric scaling the fitted rat and dog values. Note that the PK assay for unconjugated 
calicheamicin used a non-specific ELISA assay, which detects multiple forms of calicheamicin (i.e., 
N-Ac-γ-calicheamicin DMH + metabolites).  

Clinical Pharmacokinetics of Inotuzumab ozogamicin 

Clinical PK of inotuzumab ozogamicin is reported in two different Phase 1 studies in the literature 
(25, 26). Advani et al. describe a Phase 1 study of inotuzumab ozogamicin in an expanded MTD 
cohort of patients with relapsed or refractory CD22+ B-cell NHL (25). Ogura, et al. report a Phase 
1 study of inotuzumab ozogamicin in Japanese patients with follicular lymphoma (FL) pre-treated 
with rituximab-based therapy (26).  The PK was similar across both studies.  For the modeling 
analysis herein, a simple 2-compartment model with linear elimination from the central 
compartment was used to characterize the PK of inotuzumab ozogamicin from Ogaru, et al. (26).   

Preclinical to Clinical Translation  

The integrated preclinical PK/PD model describing inotuzumab ozogamicin concentration-
response relationship in REH, RL and Ramos xenograft bearing mice was translated to the clinic 
and used to perform clinical trial simulations.  Three different types of CD22+ B-cell malignancies 
were considered in clinical trial simulations:  follicular lymphoma (FL) and diffuse large B cell 
(DLBCL) subtypes of NHL and ALL. To enable preclinical to clinical translation the following 
changes were made to the model parameters:  (a) relevant CD22 receptor expression levels for 
FL, DLBCL and ALL were included in the model (27), (b) initial tumor volumes and maximal 
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possible tumor volumes were changed to clinically observed/ plausible values (28, 29), and (c) 
growth rates for FL, DLBCL and ALL were set to clinically observed values (30-34). Clinical PK 
parameters for inotuzumab ozogamicin and calicheamicin were incorporated into the model as 
described above. The rest of the parameter values, including the inter-individual variability in PD 
parameters, were kept the same as the preclinical case. Preclinical PK/PD parameter estimates 
from RL/ Ramos cell lines were used to inform NHL clinical trial simulations, and REH cell line data 
was used for ALL clinical trial simulations. Please refer to Table 2 for the specific parameter 
values. 

Clinical Trial Simulations  

Clinical trial simulations for inotuzumab ozogamicin were performed using the parametric 
simulation method (JACOBIAN Modeling and Optimization Software, RES Group Inc., Needham, 
MA) (35). In each trial, 1,000 patients were simulated for each dose. For the NHL clinical trial 
simulations, the full PK/PD model was used including the parameters describing penetration of 
ADC into solid tumors (see Figure 1 and Table 2). Three different trials were simulated for NHL: 
patients with follicular lymphoma (FL), DLBCL patients (slow growth) and DLBCL patients (rapid 
growth). Two different tumor growth rates were considered for DLBCL to account for the large 
range in growth rates reported in the literature encompassing low-grade through to refractory 
aggressive B-cell NHL (30, 33)). 

For the ALL clinical trial simulations the PK model was simplified by eliminating the parameters 
describing penetration into the solid tumor (Figure 1, red box). Instead rapid equilibrium between 
ADC in plasma and tumor interstitium was assumed, consistent with a liquid tumor. For both the 
NHL and ALL clinical trial simulations, two different dosing regimens were considered: 1.8 mg/m2 

(0.05mg/kg) Q4w x 3 and a fractionated regimen of 0.8, 0.5 and 0.5 mg/m2 on day 1, 8 and 15 of 
a 28 day cycle, consistent with regimens explored in actual clinical trials for inotuzumab 
ozogamicin (25, 26, 36). In each case, the total dose administered was 1.8 mg/m2.  

For each simulated clinical trial, predicted tumor volumes were determined over time and PFS 
rates were calculated. For the NHL trials, these were compared to clinical trial data for 
inotuzumab ozogamicin (25).  The criteria to categorize response rates for progressive disease, 
stable disease (SD), partial regression (PR), and complete regression (CR) for NHL were: more 
than 20% increase in tumor diameter, less than 30% reduction in tumor diameter, more than 
30% decrease in tumor diameter but still detectable, and below the detection limit of 0.5 cm 
tumor diameter, respectively, according to the methods of Cheson, et al.(37). For hematological 
tumors like ALL, the criteria for SD, PR and CR were bone marrow blast cells >25%, 6-25% and < 
5% respectively. CR with incomplete recovery (CRi) was defined as CR but without recovery of 
platelets to ≥ 100 × 109 / L or neutrophil counts to ≥ 109/L (36).  
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Table 2: Model parameters used in equations 

  

 Parameter Definition Unit Value (CV%) Source 

Pr
ec

lin
ic

al
 C

el
lu

la
r 

 P
ar

am
et

er
s 

𝐴𝐴𝐴𝐴 CD22 (antigen) 
concentration 

nM 17.9(Ramos)  

4.0(RL) 
3.4(REH) 

Ramos/ REH: 
experimentally derived. 
RL from (27) 

𝑘𝑘𝑜𝑜𝑜𝑜 
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 

Binding of antibody to 
CD22 

1/nM/day, 
1/day 

43.2 

6.48 
Derived (20) 
(15) 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 Internalization rate of 
bound antibody 

1/day 199.6(Ramos) 

199.6(RL) 
199.6(REH) 

(38) 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃  Internalization rate of free 

payload 
1/day 9.66 Assumed same as 

MMAE  

Pr
ec

lin
ic

al
 P

la
sm

a 
PK

 
 P

ar
am

et
er

s 

𝑉𝑉1 Volume of distribution in 
central compartment for 
ADC 

L/kg 0.0478 (11) Estimated 
from in-house mouse PK 
data 

𝑉𝑉2 Volume of distribution in 
peripheral compartment 
for ADC 

L/kg 0.0214 (16) 

𝐶𝐶𝐶𝐶 Plasma clearance of ADC L/day/kg 0.039 (16) 
𝐶𝐶𝐶𝐶𝐶𝐶 Distribution clearance of 

ADC 
L/day/kg 0.024 (-) 

𝑘𝑘𝑎𝑎 Absorption rate of ADC 
into central compartment 

1/day 5.8 (37) 

𝑉𝑉𝑃𝑃𝑃𝑃,1 Volume of distribution in 
central compartment for 
payload 

L/kg 4.74  Extrapolated 
from in-house data 

𝑉𝑉𝑃𝑃𝑃𝑃,2 Volume of distribution in 
peripheral compartment 
for payload 

L/kg 37.4  

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 Plasma clearance of 
payload 

L/day/kg 53.9  

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 Distribution clearance of 
payload 

L/day/kg 31.8  

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 Dissociation rate of 
payload from ADC  

1/day 0.24 (12) Estimated from in-house 
data 

𝐷𝐷𝐷𝐷𝐷𝐷 Drug-to-Antibody ratio Unitless 3.5 Measured  

Tu
m

or
 P

en
et

ra
tio

n 
 

Pa
ra

m
et

er
s 

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 , 𝑃𝑃𝑃𝑃𝑃𝑃 Permeability of ADC and 
payload into tumor 

µm/day 334,  
18144  

(22) 
 

𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 , 𝐷𝐷𝑃𝑃𝑃𝑃 Diffusivity of ADC and 
payload into tumor 

cm2/day 0.022 
0.125 

(22) 

𝜖𝜖, 𝜖𝜖𝑃𝑃𝑃𝑃 Void fraction in tumor for 
ADC and payload 

Unitless 0.24  
0.44 

(22) 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 Capillary radius µm 8 (22) 
𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘ℎ Average distance 

between 2 capillaries 
µm 75 (22) 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Tumor radius 
 

cm Calculated Assume spherical tumor 
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Pr
ec

lin
ic

al
 P

D 
 P

ar
am

et
er

s 
𝑘𝑘𝑔𝑔0  Exponential tumor growth 

rate  
1/day 0.08 (37)(REH)  

0.122 (9)(RL)  
0.211(16)(Ramos) 

Estimated 

𝑘𝑘𝑔𝑔 Linear tumor growth rate mm3/day 225 (43)(REH) 
220 (-)(RL)  
274 (27)(Ramos) 

Estimated 

𝜓𝜓 Switch between 
exponential and linear 
growth phases 

Unitless 20 Fixed based on (39) 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 Maximum tumor volume mm3 5000 (-)(REH), 
6120 (82)(RL),  

6160 (45)(Ramos) 

Estimated 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑃𝑃  Exocytosis rate of 

intracellular payload 
1/day 1.1 (57) Estimated across models 

𝐷𝐷𝐷𝐷𝐷𝐷 Concentration of DNA 
target in cell 

nM 196 (60) Estimated across models 

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 Maximum killing rate 
constant 

1/day 17.6 (57)(REH), 
14.0 (59)(RL),  

15.6 (63)(Ramos) 

Estimated 

𝐼𝐼𝐼𝐼50 Concentration of payload 
corresponding to a killing 
rate constant of half 
maximum value 

nM 399 (15)(REH), 
237 (9)(RL),  

227 (8)(Ramos) 

Estimated 

𝛾𝛾 Hill coefficient of tumor 
killing function 

Unitless 1 Fixed 

𝜏𝜏 Transduction time 
between tumor 
compartments 

day 1.21 (14)(REH), 
4.06 (52)(RL),  

3.11 (75)(Ramos) 

Estimated 

Cl
in

ic
al

 P
K 

 P
ar

am
et

er
s 

𝑉𝑉1  Volume of distribution in 
central compartment for 
ADC 

L/kg 0.058 (11) Derived from (26) 

𝑉𝑉2 Volume of distribution in 
peripheral compartment 
for ADC 

L/kg 0.0124 (56) 

𝐶𝐶𝐶𝐶 Plasma clearance of ADC L/day/kg 0.029 (9) 
𝐶𝐶𝐶𝐶𝐶𝐶, Distribution clearance of 

ADC 
L/ day/kg 0.071 (135) 

𝑉𝑉𝑃𝑃𝑃𝑃,1  Volume of distribution in 
central compartment for 
payload 

L/kg 5.54 Extrapolated from in-
house data 

𝑉𝑉𝑃𝑃𝑃𝑃,2 Volume of distribution in 
peripheral compartment 
for payload 

L/kg 8.48 

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 Plasma clearance of 
payload 

L/day/kg 19.8 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 Distribution clearance of 
payload 

L/day/kg 114 

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 Dissociation rate of 
payload from ADC  

1/day 0.47 (31) Estimated from in-house 
data 
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Sensitivity Analysis  

A local sensitivity analysis was performed using the NHL clinical model to determine sensitivity 
of outcome (ORR) to variation in key model parameters. The parameters chosen were: 
exponential tumor growth rate (kg0), CD22 receptor expression (Ag), calicheamicin efflux out of 
tumor cells (kout,PL) and inotuzumab ozogamicin plasma clearance (CL). Nominal parameter values 
were kg0 = 0.012 day-1, Ag = 8000 receptors/cell, kout,PL = 1.1 day-1, CL = 29 mL/kg and initial tumor 
volume of 100 cm3. Each parameter value was varied 10 fold in the sensitivity analysis, and model 
simulations used to calculate ORR according to the method of Cheson, et al. (37).    

 

Figure 1: The PK/PD model for solid tumors (10). Note the model for liquid tumors (ALL) was approximated by 
eliminating transport to the solid tumor (shown in the red box). Please refer to the methods section and Tables 1 
and 2 for detailed description of the symbols used in schematics. 

Cl
in

ic
al

 P
D 

Pa
ra

m
et

er
s 

𝐴𝐴𝐴𝐴 CD22 (antigen) 
concentration 

nM 4.0(NHL:FL) 

4.0(NHL:DLBCL) 
0.09(ALL) 

(27) 
 
Experimentally derived 

𝑘𝑘𝑔𝑔0  Exponential tumor growth 
rate 

1/day  0.012(FL) 
0.02-0.05(DLBCL) 
0.347(ALL, fast) 

0.173(ALL,med) 

0.120(ALL,slow) 

(27-30) 
 

𝑘𝑘𝑔𝑔 Linear tumor growth rate mm3/day 13,397 (34) 
𝑤𝑤0 Initial tumor volume* mm3 >64cm3 (76) 

>500cm3 (30)(DLBCL) 

1995 (1e9 cells) (ALL) 

(32,33) 
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5.4 Results 

CD22 Receptor Expression and G544 Internalization  

Anti-CD22 mAb (G544) binding capacity per cell was used as a measure of receptor number. G544 
binding was saturable and minimal non-specific binding was observed for the cell lines tested. 
The receptor numbers for each cell line were determined from 3 separate independent 
experiments. On the Ramos NHL cell line there were 36,029 ± 5,004 CD22 receptors/cell, and on 
the ALL REH cells there were 5,037 ± 287 CD22 receptors/cell.  These values were converted to 
nM for modeling purposes and are reported in Table 2. The internalization rate constant for G544 
was found to be 199.6 day-1, which corresponds to a half-life of internalization of 5 min (Table 2).  

Mouse Pharmacokinetics  

Determination of ADC PK Parameters 

The plasma concentration-time profiles for inotuzumab ozogamicin obtained following single 
dose IP administration to non-tumor bearing mice at 20 µg calicheamicin/kg (0.27 mg/kg 
inotuzumab) and 160 µg calicheamicin/kg (3.2 mg/kg inotuzumab), or to tumor (RL) bearing mice 
at 160 µg calicheamicin/kg (3.2 mg /kg inotuzumab) are shown in Figure 2a.  The data was dose 
proportional and concentrations were similar in both tumor bearing and non-tumor bearing 
mice. As a result, the data were pooled for parameter estimation. The estimated 2-compartment 
model parameters are provided in Table 2.  

PK/PD Modeling of Mouse Xenograft Data 

The characterization of mouse tumor growth inhibition data using the PK/PD model for Ramos, 
RL and REH bearing xenografts are shown in Figure 2b. The model was able to describe the 
observed data well and provided a set of PD parameters for preclinical to clinical translation of 
inotuzumab ozogamicin efficacy. Parameter estimates are provided in Table 2.  

Determination of Calicheamicin PK Parameters  

The pharmacokinetics of calicheamicin in mouse and human were obtained by allometric scaling 
of rat and dog data, available from in-house reports. The rat and dog PK parameters were 
estimated using a 2-compartment linear PK model. The calicheamicin mouse PK parameters were 
estimated by back extrapolation, and the human PK by forward extrapolation utilizing allometric 
principles (see Table 2 and Figure 3). 

Clinical PK 

A 2-compartmental linear PK model was used to characterize inotuzumab ozogamicin PK in 
clinical patients from Ogaru, et al. (26).  The dissociation rate of calicheamicin in patients (kdis) 
was determined by simultaneous fitting of the total Ab and ADC data, as described previously 
(vide supra).  The estimated kdis was 0.47 day-1 in patients.  The estimated inotuzumab ozogamicin 
PK parameters utilized in the clinical trial simulations are presented in Table 2.   
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b. 

 

Figure 2a: Observed (symbols) and model fitted (lines) pharmacokinetics of inotuzumab ozogamicin in mouse 
plasma following single IP dose administration to non-tumor-bearing mice at 20 and 160 μg calicheamicin/kg (0.27 
and 3.2 mg/kg inotuzumab, respectively) or to tumor (RL)-bearing mice at 160 μg calicheamicin/kg (3.2 mg/kg 
inotuzumab). 2b: Observed (symbols) and model fitted (lines) tumor growth inhibition data in REH, Ramos and RL 
xenograft tumor-bearing mice following IP administration of inotuzumab Q4D × 3 
 
Model Predictions of Tumor Calicheamicin Concentrations in NHL and ALL Cancer Patients 

The model was used to simulate intracellular tumor calicheamicin concentrations in NHL (DLBCL) 
and ALL patient populations (see Figure 4). Following a single dose of inotuzumab ozogamicin at 
1.8 mg/m2, the concentrations of calicheamicin in the tumor were predicted to be significantly 
greater in ALL patients compared with NHL patients. This is consistent with greater diffusion/ 
accessibility of ADCs into liquid tumors (such as ALL) compared to solid tumors (such as NHL). 

Use of the Model to Compare Tumor Volume Reductions in ALL Patients Following Different 
Dosing Regimens 

The model was used to simulate reduction in tumor volume following different dosing regimens 
of inotuzumab ozogamicin. In Figure 5, four weekly administration of inotuzumab ozogamicin at 
1.8 mg/m2 and a weekly fractionated regimen of 0.8, 0.5 and 0.5 mg/m2 are compared for ALL 
patients. The fractionated dosing regimen was predicted to be more efficacious than the Q4w 
regimen, sustaining tumor volume reduction for longer time periods. 

a. 
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Model Predictions of Clinical Outcome in NHL and ALL Cancer Patients 

The model was used to simulate PFS times in NHL and ALL patient populations. The NHL clinical 
trial simulation was completed for FL and both slow and fast growing DLBCL patient populations 
using a regimen of inotuzumab ozogamicin given every 4 weeks, to mimic treatment in the Advani 
clinical trial (25). Figure 6 compares the model simulated and observed PFS data, which were 
found to correlate well. PFS rates were also predicted for ALL following a fractionated regimen 
(0.8, 0.5 and 0.5 mg/m2 on days 1, 8 and 15 of a 28 day cycle), but could not be compared with 
clinical observations as studies are still under completion and PFS data is not available yet. 
However, the model predictions for complete response (CR) of 60-79% using two different 
growth rates for ALL, compare favorably with CR/CRi of 80.7% (72-88) demonstrated by 
inotuzumab ozogamicin in an ongoing phase 3 study in patients with ALL (40). 

Sensitivity Analysis 

Sensitivity of variation in exponential tumor growth rate (kg0), CD22 receptor expression (Ag), 
calicheamicin efflux out of tumor cells (kout,PL) and inotuzumab plasma clearance (CL) on 
inotuzumab ORR was examined in the NHL (FL) model. The plots in Figure 7 show how ORR varies 
over a dose range from 0 to 0.06mg/kg (2.16mg/m2) with a 10- fold change in each parameter 
from its nominal value. The cross hairs on the plots represent the nominal case for Inotuzumab 
given at its recommended dose of 0.05mg/kg (1.8mg/m2). The most sensitive parameter was 
tumor growth rate, followed by PL efflux and then Inotuzumab clearance. CD22 expression was 
the least sensitive parameter. 

 

 
Figure 3: Allometric scaling of calicheamicin PK from rat and dog to human and 
mouse. In this context, W refers to body weight. 
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Figure 4: Model predicted intracellular calicheamicin 
PK for ALL (liquid tumor) and NHL (solid tumor). 

 
Figure 5: Simulated tumor volume profiles over time 
for a Q4 weekly dosing regimen and a fractionated Q1 
weekly regimen for ALL patients receiving a total dose 
of inotuzumab ozogamicin of 1.8 mg/m2 

 

5.5 Discussion 

Challenges in Predicting Clinical Efficacy of Anti-Cancer Agents from Preclinical Data 

Prior knowledge of the expected efficacious dose of an oncology drug in the clinic is desirable for 
optimal design of clinical trials to ensure that an efficacious dose can be reached with acceptable 
toxicity profile. However, predicting efficacy of anti-cancer agents in the clinic remains a 
challenge.  A problematic issue is that the preclinical tools used for identification of clinical drug 
candidates, such as mouse xenograft models, are thought to be poorly predictive of the clinical 
outcome (41-44). At a minimum, differences between preclinical and clinical drug exposures 
should be factored into clinical predictions. Indeed analyses by Rochetti et al. and Wong et al. 
showed that incorporation of human PK into xenograft data significantly improved quantitative 
prediction (43, 45).  

ADCs offer an additional level of complexity, as they are composed of multiple entities including 
an antibody, linker, and payload, which could potentially be responsible for driving efficacy and 
toxicity (46). The accuracy of the exposure response characterization and translation to the clinic 
will depend upon the exposure endpoint chosen. Typically, the concentration of drug in the 
plasma or blood is the preferred exposure endpoint to correlate with efficacy, as it is both an 
easily accessible biological sample and for many small molecule drugs it correlates well with drug 
concentration at the site of action.  However, for large molecules such as antibodies and ADCs, 
the concentration in the plasma does not represent concentration in the solid tumor due to a 
complex biodistribution mechanism.  Optimal translation requires use of drug concentration in 
the tumor as the exposure endpoint to accurately determine the exposure response relationship. 
Measurement of drug in the tumor is a costly, labor intensive process which may not be feasible 
and presents another challenge. For ADCs, it is necessary to determine the concentration of the 
released payload following ADC administration, as this concentration is responsible for eliciting 
the pharmacological action.  
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Given the challenges of trying to predict efficacy using mouse xenografts, which are an imperfect 
representation of human tumors, and the complexity of determining the relevant exposure 
endpoint (tumor payload concentration), it is not surprising that predicting efficacy of ADCs in 
the clinic is problematic. When dealing with complex biological systems with multiple variables 
and pathways, it is advisable to build a mathematical model of the system, capable of integrating 
and interpreting preclinical data and providing a quantitative framework for translation to the 
clinic (9, 47). 

 

 
Figure 6: Model predicted PFS rates in NHL patients from Clinical Trial Simulations and Comparison with Clinical 
Trial Results. The solid lines represent model simulated PFS rates after dosing inotuzumab ozogamicin at 1.8 mg/m2 

every 4 weeks to NHL patients. The dashed lines represent observed PFS rates in patients administered the same 
dose and regimen in clinical trials.  Note, clinical trial simulations were completed for FL and both slow and fast 
growing DLBCL patient populations, to be consistent with treatment in clinical trials. 

Tumor Cell Processing of Inotuzumab ozogamicin  

In this work, we have taken inotuzumab ozogamicin (CMC-544), which is an anti-CD22 ADC in the 
clinic for both solid tumor (NHL) and hematological malignancies (ALL) (48), and used a systems 
pharmacology modeling approach to investigate translation from pre-clinical data to the clinic. 
The model used was based on a mechanism-based, multiscale ADC PK/PD model proposed by 
Shah et al., capable of integrating preclinical biomeasures and PK/PD data to predict clinical 
response (10). Shah and colleagues used this model for a ‘bench to bedside’ translation of 
brentuximab vedotin and demonstrated its ability to predict clinical responses for this ADC.  In 
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the analysis herein, we applied the same type of approach for inotuzumab ozogamicin to gain 
quantitative insight into the mechanism of action of this ADC.  

The modeling process starts with a rigorous understanding of the mechanism of action of 
inotuzumab ozogamicin at the cellular level to build a model which represents the disposition of 
the ADC and release of payload in the tumor cell.  Once in the extracellular tumor environment, 
inotuzumab ozogamicin binds to its target CD22 on the surface of tumor cells and is rapidly 
internalized by receptor mediated endocytosis. The ADC is trafficked intracellularly from the 
endosomes to the lysosomes.  The AcBut-hydrazone linker, which tethers the CD22 mAb to the 
payload calicheamicin, is acid labile and is cleaved in the lysosomes to release the payload.  The 
liberated N-Ac-γ-calicheamicin DMH payload is subsequently released into the cytosol where it 
is reduced by glutathione to form the reactive diradical form.  This activated form of 
calicheamicin distributes to the nucleus where it binds to the minor groove in DNA and causes 
double-strand breaks, resulting in cell death (48).  Alternatively, the released payload form, N-
Ac-γ-calicheamicin DMH, can also bind to P-glycoprotein (P-gp) prior to nuclear translocation and 
be effluxed from the cell (49).  

 

 
Figure 7: Local Parameter Sensitivity Analysis. Sensitivity of outcome (ORR) to variation in CD22 antigen 
concentration (Ag), exponential tumor growth rate (kg0), calicheamicin efflux (PL_kout) and inotuzumab ozogamicin 
clearance (CL) was examined in the NHL (FL) model. Nominal parameter values were Ag = 8000 receptors/cell, kg0 = 
0.012 day-1, PL_kout = 1.1 day-1, CL = 29 mL/kg and initial tumor volume of 100 cm3. The cross hairs on the plots 
represent the nominal case for Inotuzumab given at its recommended dose of 0.05mg/kg (1.8mg/m2). 
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In building the tumor cell component of the PK/PD model, the goal was to provide a quantitative 
description of the principal operative intracellular processes. The first step was to determine 
which parameters were available from the literature and which were considered important 
enough to warrant experimental work to inform the model. From previous analyses, key cellular 
parameters governing the success of an ADC include antibody affinity to its receptor, receptor 
expression levels and internalization rate into the tumor cell (13, 14, 50). Payload affinity for its 
target and efflux of payload out of the cell are also key parameters in establishing payload 
concentration and retention in the cell (10). For this analysis, binding affinity data for antibody 
to CD22 (15) and calicheamicin to DNA (21), were available from the literature and could be 
incorporated directly into the model. Internalization rates and CD22 receptor expression were 
not available for all relevant cell lines and were therefore determined in-house.  

The parameter kout describes the exocytosis rate of N-Ac-γ-calicheamicin DMH from the tumor 
cell, incorporating active processes such as efflux by P-glycoprotein (P-gp). This is important as P-
gp is upregulated on many tumor cell types. Data to inform kout was not available in the literature 
and a method was not available to determine this experimentally. Instead kout was estimated 
within the model. The value of kout estimated for calicheamicin in the model (1.1 day-1; Table 2) 
was very similar to values used for monomethylauristatin E (MMAE; 0.68-1.1 day-1) in a similar 
modeling application (10). This makes some sense, as calicheamicin and MMAE are ADC payloads 
which are both reported to be substrates for P-gp (49, 51). Experimental data would have been 
optimal to inform the kout parameter for calicheamicin, but in absence of this data the estimated 
value is in line with a similar ADC payload. 

Tumor Growth Inhibition in Mouse as a Function of Tumor Calicheamicin Concentrations 

The next step was to combine the tumor cell component with a PK model describing the 
disposition/ elimination of ADC and payload in the plasma and distribution to the tumor cell. The 
plasma PK model structure describes distribution of inotuzumab ozogamicin into peripheral 
tissues, and ADC catabolism and de-conjugation to release payload into the systemic circulation. 
The entire payload released systemically from the hydrolysis of the acid-labile hydrazone linker 
was assumed to be N-Ac-γ-calicheamicin DMH. It is possible that metabolites are also formed 
which were not specified in the model. However, since the unconjugated calicheamicin PK assay 
used a non-specific ELISA method, it may well detect some of these calicheamicin metabolites. 
The model also accounts for distribution and clearance of the payload.  Important data to 
characterize this part of the model included inotuzumab ozogamicin PK in mouse (total antibody 
and ADC) and calicheamicin PK. The plasma concentrations of ADC and payload were 
characterized using a simple two compartmental model. This step also enabled estimation of the 
rate of dissociation of payload from the ADC (kdis), providing an estimate of the drug to antibody 
ratio (DAR) for ADCs that would internalize into cancer cells. 

The solid tumor penetration part of the model was incorporated using drug exchange parameters 
from the literature (10, 22, 52, 53). The model assumes that diffusion is the predominant pathway 
of ADC passage into the tumor, as the high interstitial pressure within the tumor and absence of 
lymphatics means that convection is absent or minimal. The drug exchange parameters account 
for the size of the molecule being exchanged, the vascular permeability, tissue diffusion rates and 
accessible tissue volume corresponding to that size. The model includes diffusion from the 
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periphery of the tumor which is predominant when the tumors are small and avascular. As the 
tumor becomes larger, diffusion from the vasculature takes over as the dominant pathway (10, 
22, 52, 53). Once the ADC is in the tumor interstitium, the cellular model is used to describe 
binding to the target and intracellular processing and binding. 

The advantage of using a physiological relevant PK model for inotuzumab ozogamicin was that it 
enabled prediction of tumor calicheamicin concentrations, which are a more appropriate 
exposure endpoint to link to tumor regression/efficacy.  The efficacy of inotuzumab ozogamicin 
was studied in 3 different xenograft bearing mouse models: Ramos (Burkitts lymphoma), RL (NHL) 
and REH (ALL) (15, 16). The mechanism-based tumor disposition model was combined with a 
pharmacodynamic model of tumor growth and cell kill (12), in which tumor payload 
concentrations were used to drive efficacy. The model features a dynamic interaction between 
tumor distribution parameters and tumor size, where changes in tumor volume are directly able 
to influence the concentration of payload in the tumor, which in turn is responsible for the size 
of the tumor. As shown in Fig. 2b, the PK/PD model was able to provide a good fit to the observed 
inotuzumab ozogamicin preclinical TGI data, providing estimates of the efficacy parameters and 
the inter-individual variability associated with them.  

Translation to the Clinic  

Once the preclinical PK/PD relationship describing tumor growth inhibition as a function of tumor 
calicheamicin concentration had been characterized, the next step was to translate this model to 
the clinic to predict inotuzumab ozogamicin efficacy in patients.  The overall model structure was 
kept the same, with the exception that mouse system parameters such as initial tumor size, 
tumor growth rates and receptor expression were replaced with clinically relevant parameters, 
to make the model representative of the human system. In addition, inotuzumab ozogamicin and 
calicheamicin clinical PK were incorporated into the model.  To accomplish this, a two 
compartment linear PK model was used to fit the Phase 1 clinical PK data for inotuzumab 
ozogamicin (26). Clinical PK for calicheamicin was allometrically scaled from rat and dog (Figure 
3). The rate of dissociation of payload from the ADC (kdis) was determined in clinical data by 
simultaneous fitting of the total mAb and ADC data. Since the parameters describing the tumor 
disposition are clinically translatable, they were kept the same (10).  In addition, drug specific 
parameters including binding parameters for ADC and calicheamicin to their targets, 
internalization rate, exocytosis rate of intracellular payload (koutPL), IC50, kill rate (kmax) and 
transduction time between tumor compartments (τ) were not changed. Most importantly, 
systems parameters were changed to match literature estimates for NHL and ALL patients. For 
example, initial tumor volumes for NHL and ALL were taken from the literature (28, 29).  Tumor 
growth rates and CD22 receptor expression for low grade NHL (FL), refractory aggressive NHL 
(DLBCL) and ALL were all used in clinical simulations (27, 30-34).  

This ‘switching’ of systems parameters from murine values to relevant clinical values for the 
disease population gives this method for translating efficacy a greater level of  relevance and 
fidelity compared to previous translational approaches which account for exposure differences 
only (43, 45). Following translation of the PK/PD model to the clinic, the model was used to 
perform clinical trial simulations.  
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Simulations of Tumor Calicheamicin Concentrations 

In the first simulations, tumor concentrations of calicheamicin in NHL (DLBCL) and ALL patient 
populations were compared following equivalent doses of inotuzumab ozogamicin (1.8mg/m2 
Q4w) to each group. The PK model for NHL (DLBCL) differed from the ALL model in terms of the 
tumor penetration parameters. NHL is considered to be a malignant solid tumor of the immune 
system which can arise from undifferentiated lymphoid cells in virtually any part of the body. 
Drug exchange parameters for solid tumors are therefore required to describe penetration of 
inotuzumab ozogamicin into the NHL tumor types. In contrast, ALL is a hematopoietic or ‘liquid’ 
tumor which arises in the bone marrow. These tumors have less of a barrier to diffusion 
compared with solid tumors. As a result, the PK/PD model was simplified by elimination of the 
drug exchange tumor penetration parameters, and equilibrium was assumed between ADC 
concentration in plasma and tumor interstitium.  The manifestation of the difference in the tumor 
model between a liquid tumor (such as ALL) and a solid tumor (such as DLBCL) is shown in Figure 
4. Following the same dose of inotuzumab ozogamicin, the ALL tumor calicheamicin 
concentrations are predicted to be approximately 2 orders of magnitude higher than the DLBCL 
tumor calicheamicin concentrations. This simulation suggests that liquid tumors such as ALL will 
be easier to treat, requiring lower doses than solid tumors. This simulation agrees with the 
observation that solid tumors are often difficult for drugs to penetrate (54). 

Simulations of Optimal Dosing Regimens for ALL 

The model was also used to simulate different dosing regimens for treating ALL. The first regimen 
selected was 1.8mg/m2 Q4w, which had been investigated in clinical trials for inotuzumab 
ozogamicin in the treatment of NHL (25). The second regimen was a fractionated schedule of 3 
weekly doses over a 4-week treatment cycle, with doses of 0.8, 0.5, and 0.5mg/m2 on days 1, 8 
and 15 respectively. This regimen is under investigation in clinical trials for the treatment of ALL 
(40). Both regimens had the same total dose of 1.8mg/m2 per monthly cycle. Individual subject 
tumor volume plots over time are shown in Figure 5 (with the subject chosen having median rate 
of clearance of inotuzumab ozogamicin). In the ALL simulations, the fractionated dosing regimen 
was predicted to be more tumor regressive than the Q4 weekly regimen. Although Q4 weekly 
dosing results in higher tumor suppression at each dose, this is offset by considerable tumor re-
growth. In contrast, the fractionated dosing results in a more constant suppression over the 
dosing period. This analysis demonstrates that prediction of optimal dosing regimen is dependent 
on integration of all parameters and is therefore a worthy application of this type of mechanistic 
model. 

Prediction of Progression Free Survival Rates 

For each simulated clinical trial, PFS rates were calculated (Figure 6). For the NHL trial, PFS 
predictions could be compared with clinical trial data for inotuzumab ozogamicin (25). For both 
FL and DLBCL, the model predicted PFS and observed data from clinical trial compared well. 
Interestingly, large drops in PFS were observed at the longest survival times in the clinical trial, 
which may have been due to the small ‘n’ number by this stage of the analysis. In contrast, the 
model predicts a more logical flattening of PFS at the longer survival times.   
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Sensitivity Analysis 

The final application of the model in this analysis was to perform a local sensitivity analysis to 
give insight into the most important parameters defining, or even limiting, efficacy of inotuzumab 
ozogamicin versus NHL. CD22 receptor expression, calicheamicin efflux rate, inotuzumab 
ozogamicin PK (clearance rate) and tumor growth rate were selected as interesting parameters 
to vary in the model. The impact of varying these parameters over orders of magnitude from 
their nominal values, at a range of inotuzumab ozogamicin doses, is shown in Figure 7. At the 
recommended dose of 1.8 mg/m2 (0.05 mg/kg)  the least sensitive parameter was CD22 receptor 
expression, indicating that for inotuzumab ozogamicin this is least limiting for efficacy and 
probably reflects the optimal characteristics of this receptor as an ADC target, due to its high 
expression across B-cell types and rapid internalization (and recycling rates).  Calicheamicin efflux 
from the tumor cell was a more sensitive parameter, indicating the impact of this parameter on 
intracellular payload concentrations and resultant efficacy. This is important, as N-Ac-γ-
calicheamicin DMH is known to be a substrate for P-glycoprotein (P-gp), an efflux transporter 
which is upregulated on many tumor cell types (49). A further development of the model would 
be to include P-gp expression across cell lines or patients to investigate its relationship with 
efflux. Data was not available to support this in the current version of the model; however, this 
refinement would enable assessment of MDR1 as a quantitative diagnostic of efficacy. 

Clearance was also a sensitive parameter for inotuzumab ozogamicin.  Compared to more recent 
ADCs, inotuzumab ozogamicin has a faster rate of clearance, likely due to the contribution of 
CD22 receptor-mediated clearance as an additional CL mechanism, supplemental to the usual 
mechanisms of ADC catabolism and de-conjugation. As can be seen from the sensitivity plots, 
high clearance values of inotuzumab ozogamicin have a substantial impact on efficacy. However, 
the most sensitive parameter was rate of tumor growth in the model, indicating that even at 
nominal clearance and efflux values, the most aggressive, refractory tumors require higher doses 
for treatment of NHL. 

5.6 Conclusions 

In summary, a mechanism-based PK/PD model has been used for preclinical to clinical translation 
of inotuzumab ozogamicin. The model was able to predict PFS responses for inotuzumab versus 
NHL that were comparable to observed clinical trial results, demonstrating its utility for 
predicting efficacy of ADCs. The model was also able to give useful mechanistic insight into 
optimal dosing regimens and sensitive parameters impacting outcome, including tumor growth 
rate, inotuzumab ozogamicin clearance and calicheamicin efflux. This knowledge could be 
applied to optimize the design of ADCs in the discovery phase of research, and/or for selection 
of predictive diagnostics in the clinic.  
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