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Section I.  
Introduction to translational modeling in oncology 
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Chapter 1 

Introduction and scope 
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1.1 Challenges in oncology drug development 

Significant advances have been made in the treatment of cancer in the past decades, with a shift 
away from cytotoxic drugs, towards more targeted therapies, immune-oncology drugs, cancer 
vaccines and cell-based treatments. Groundbreaking new therapies have been identified, with a 
myriad of potential combination therapies possible. Some 50 years since ‘the war on cancer’ was 
declared, these are enabling a different era in cancer treatment with declines in mortality and 
morbidity, less side effects and talk of chronic treatments [1]. Despite these advances, the 
success rate of oncology drug development remains the lowest among all the therapeutic areas 
[2] with an overall success rate of only 3.4%, mainly driven by failure in Phase 2 [2].  

There are multiple reasons why oncology drug discovery and development are so difficult. First, 
cancer is an exceptionally heterogeneous and adaptable disease, with massive variability 
between tumors and within a tumor. At the molecular level, it is likely that no two cancers are 
identical. In treating cancer, we are therefore treating a multitude of different diseases [1]. This 
is exacerbated by the fact that patients are entering trials heavily pre-treated with high potential 
for drug resistance. A ‘one size fit all’ approach will not work in cancer treatment.  Secondly, it is 
difficult to translate from preclinical data to the clinic to predict efficacy and toxicity [3]. Until 
recently, efficacy was assumed to be dose related and clinicians would push cancer drugs to the 
maximum tolerated dose (MTD) in clinical development, which was subsequently defined as the 
efficacious dose [3]. This assumption may have been possible for small molecule drugs but is 
much less appropriate for biotherapeutics. The trade-off between efficacy and toxicity has almost 
always been resolved in the clinic and remains a large source of drug failure.  

The workhorse preclinical model in oncology is the mouse xenograft model, which comprises 
subcutaneous implantation of a human cell line or tumor into immune compromised host mice 
[4]. The xenograft model represents extreme simplification of human cancer, as it does not 
account for complexities of tumor metastasis, host immunity, tumor heterogeneity, and the 
development of treatment resistance that is routinely observed in cancer patients [5]. However, 
the drug exposure response relationship derived from these models is useful for understanding 
efficacy and if accompanied by rigorous quantitative analysis such as mathematical modeling, 
can be used to translate from mouse to human to predict clinical anti-tumor response [6, 7]. 
Clinically translatable biomarkers are another useful tool likely to improve preclinical to clinical 
translation, and advances in experimental techniques has made these easier to measure. 
However, often the biomarkers need to be measured kinetically in tumor tissue, necessitating 
tumor biopsies from patients, which are still not common path. In vitro to in vivo correlation is 
thought to be poor, which means that in vitro assays are typically only used for drug screening. 
A rigorous unifying preclinical to clinical translational framework could facilitate oncology clinical 
development by better identifying translational strategies, patient selection criteria and 
appropriate biomarkers to measure [3]. 
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1.2 Biotherapeutic modalities used to treat cancer 

Large molecule biotherapeutics in oncology are enabling tumor targeting, activation and re-
targeting of the immune system to kill cancer cells, and stimulation of separate 
immunomodulatory pathways from one molecule. However, the versatility of these molecules 
brings with it an additional level of complexity, with intricate mechanisms of action and 
concentration response relationships that are non-intuitive and difficult to predict. In this thesis, 
different types of biotherapeutic drugs are discussed including monoclonal antibodies (mAbs), 
antibody drug conjugates (ADCs), T-cell engagers (TCEs) and other bispecific antibodies (bsAbs)- 
see Figure 1. mAbs have formed the backbone of many successful biotherapeutic modalities for 
the treatment of cancer. Monospecific mAbs have been used to target specific tumor receptors 
such as HER-2 and CD20 to inhibit signaling and/or trigger antibody dependent cellular toxicity 
(ADCC) [8]. This has resulted in first generation mAb drugs in oncology such as trastuzumab and 
rituximab. More recently, mAbs have been used to target immune checkpoint receptors such as 
CTLA4 and PD1 on T cells, releasing negative immune regulation of the tumor [9]. This has led to 
revolutionary new immunotherapy treatments including ipilimumab and pembrolizumab. 
Although undoubtedly a breakthrough in cancer treatment, immunotherapy still only works well 
in a minority of patients and for certain cancer types [9]. ADCs are a targeted therapy for cancer 
treatment, combining a specific mAb to a tumor antigen linked to a potent cytotoxic agent [10]. 
They make use of the specific binding properties of the antibody to deliver a cytotoxic payload to 
cancer cells for increased efficacy, whilst minimizing exposure of normal tissues. Brentuximab-
vedotin and ado-trastuzumab-emtansine are examples of ADCs on the market for oncology 
indications. T cell retargeting molecules are bispecific antibodies, or antibody fragments, that 
bind to CD3 on the surface of T cells and to a tumor associated antigen (TAA) on the tumor cell 
surface [11]. When both CD3 and the TAA are engaged, the proximity of the T cell and tumor cell 
results in the formation of an immune synapse, stimulation of the T cell and ‘redirection’ of 
cytotoxic activity against the tumor cells. Blinatumomab is a CD19 x CD3 bispecific T cell engager 
that has received regulatory approval. A second wave of bsAbs are emerging, with tumor 
selective recruitment and activation of T cells, or more powerful immunomodulation by targeting 
two distinct immunomodulatory pathways [12].  

 

Figure 1: Biotherapeutic drug modalities discussed in different sections of this thesis. 

 

https://www.cancerresearch.org/immunotherapy/cancer-types
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1.3 Mathematical modeling in oncology drug development 

To overcome the challenges in oncology drug discovery and development, and to deconvolve the 
complexities of novel biotherapeutic modalities, innovative approaches are needed. 
Mathematical modeling is a key tool which has been shown to increase efficiency and 
effectiveness in drug discovery and development and can be used to facilitate design, selection 
and preclinical to clinical translation of oncology therapies and to optimize clinical trials [13]. 
Mathematical modeling can be used to integrate data from disparate sources including literature, 
preclinical experimental data, and clinical data, to examine the relationships between a drug, the 
biological system, and the disease process. A quantitative framework is assembled which can 
provide mechanistic understanding of drug function, enabling optimal experimental design and 
faster data interpretation. The model framework can be used at early stages to aid in the 
identification of optimal drug properties for next generation molecules, including optimal target, 
epitopes, and drug format. Once a lead compound has been selected, the model can be used to 
translate from preclinical in vitro and in vivo studies to the clinic, to inform clinical study design 
including prediction of clinical starting dose, efficacious dose, and regimen. 

 

Figure 2: The continuum of mathematical models utilized in drug discovery and development. In this thesis PK, 
PK/PD and quantitative systems pharmacology models are used, depending on the questions asked and the 
objective of the modeling. Systems biology modeling was not in the scope of this thesis.  

1.4 Scope of this thesis 

The aim of this work was to investigate different ways in which mechanistic mathematical 
modeling and simulation can be used to help with quantitative decision making in oncology drug 
discovery and development.  Section I introduces the thesis and its scope. Section II focuses on 
modeling of mAbs, Section III on ADCs and Section IV on bispecific antibodies. Conclusions and 
further perspectives are discussed in Section V. 
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Different levels of mathematical modeling were used depending on the questions asked and are 
introduced in Chapter 1 (Figure 2). For example, a more statistical population-pharmacokinetic 
(pop-PK) modeling approach was used for analysis of a large mAb PK dataset with quantitation 
of variability (Chapter 2). Pharmacokinetic/ pharmacodynamic (PK/PD) modeling was used for 
data driven interpolation of in vitro and in vivo datasets with limited extrapolation (Chapters 3 & 
4). Quantitative systems pharmacology (QSP) modeling was used to answer more complex 
mechanistic questions, involving integration of data from disparate sources (literature, in vitro, 
in vivo and the clinic), linkage of drug pharmacology to biological systems and disease, and multi-
scale predictions (Chapters 4, 5, 6 & 7).  

The scope of this work extends from early drug discovery through to clinical trials, and includes 
use of modeling and simulation to influence: 

• Hypothesis testing 
• Interpretation of large datasets to simplify processes, and to avoid unnecessary in vivo 

studies 
• Establishment of in vitro to in vivo correlations 
• Preclinical to clinical translational strategies to predict PK and PD 
• Competitor differentiation, to ensure that therapeutically beneficial molecules are 

progressed to clinical studies 
• Prediction of optimal clinical doses and regimens  
• Precision medicine approaches, including identification of sensitive parameters impacting 

dose in patients, which could be used as clinical diagnostics and/or to select the optimal 
patient population. 

1.5 Outline of this thesis 

In Chapter 1, the challenges of oncology drug development are introduced, along with the 
increasingly diverse array of biotherapeutic modalities being developed to treat cancer. The role 
of mathematical modeling in the process is discussed. 

In Chapter 2, pop-PK modeling was used for a meta-analysis of the linear PK of mAbs across 
different species used in the pharmaceutical industry. This work indicated that linear PK of 
therapeutic mAbs can be considered a class property, with a typical set of parameters identified 
across species, with similar values to endogenous IgG. Strategies are presented for predicting 
linear PK of mAbs with less reliance on cynomolgus monkeys and use of smaller animal or in silico 
alternatives.  

In Chapter 3, in vitro to in vivo correlation (IVIVC) was established for ADCs using a PK/PD 
modeling approach. A comparable efficacy parameter, tumor static concentration (TSC), was 
derived for in vitro and in vivo experiments and a predictive correlation determined. The 
methodology established here could potentially be applied to all anti-cancer drugs (large and 
small molecules). This work has many applications including early triage of ADCs, prevention of 
unnecessary in vivo studies and saving of resources.  
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In Chapter 4, a PK/PD modeling approach was used for quantitative comparison of a new 
generation HER2 ADC (PF-06804103) with trastuzumab-DM1 (T-DM1), to ensure efficacy 
differentiation and as a rationale to pursue clinical development of PF-06804103. This included 
comparison of TSC values across a range of in vivo tumor models, representing different disease 
origins (breast, gastric and lung), clinical pathologies such as low-high HER2 expression and 
resistance to T-DM1. A mechanistic model was developed to describe non-linearity in T-DM1 PK 
in patients due to binding to shed HER2. A similar model was then used to predict clinical PK for 
PF-06804103. A translational strategy was proposed to predict clinical efficacy in patients. 

In Chapter 5, a translational QSP model for ADCs is presented, which was used for preclinical 
clinical translation of inotuzumab-ozogamicin, a CD22 targeting ADC for the treatment of B cell 
malignancies. The model predicted progression free survival responses for inotuzumab versus 
non-Hodgkin’s Lymphoma (NHL) that were comparable to observed clinical trial results, 
demonstrating its utility for predicting efficacy of ADCs. The model was also able to give useful 
mechanistic insight into optimal dosing regimens and sensitive parameters impacting outcome. 
This knowledge could be applied to optimize the design of ADCs in the discovery phase of 
research and/or for selection of predictive diagnostic in the clinic. 

In Chapter 6, a translational QSP model for T cell retargeting CD3 bsAbs is presented. This model 
predicts trimolecular complex formation between drug, T cell and tumor cells required to form 
an immune synapse, which triggers T cell activation and cytotoxicity. The model was used to 
characterize the PK/PD relationship in mouse tumor models and translated to the clinic to predict 
clinical efficacious dose. Notably, this model can also be applied at early stages to aid in CD3 bsAb 
design and candidate selection.  

In Chapter 7, as a means of a general conclusion to this investigation, mechanistic quantitative 
pharmacology strategies for the early clinical development of bispecific antibodies (bsAbs) in 
oncology is presented. This includes use of modeling to understand complexities of bsAbs, impact 
decision making and aid in clinical translation, trial design, and prediction of regimens and 
strategies to reduce dose limiting toxicities. BsAbs are an integral component of the current 
therapeutic research strategy in oncology and explorative preclinical and emerging clinical data 
indicate potential for enhanced efficacy and reduced systemic toxicity. The strategies discussed 
could be powerful tools to facilitate clinical success of bsAbs, while decreasing time required for 
non-clinical development.  
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